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B6b Variational Principles: Example Sheet 2 Easter term 2023

Corrections and suggestions should be emailed to m.dunajski@damtp.cam.ac.uk.

1. Using the Lagrange multiplier method, write down the Euler-Lagrange equations associated to the
problem of minimising the functional

I[ψ] =

∫ +∞

−∞

(
ψ′2 + x2ψ2

)
dx

subject to the normalization condition
∫
ψ2dx = 1. Given that xψ(x)2 → 0 as x→ ±∞, show that

I[ψ] = 1 +

∫ +∞

−∞
(ψ′ + xψ)2dx ,

and hence deduce that I ≥ 1. Show that equality holds for a function ψ that you should give explicitly.
Verify that it satisfies the Euler-Lagrange equation for an appropriate value of the Lagrange multiplier.

2. Let x(t) ∈ R3 be a curve which is constrained to lie on the sphere S2 = {x : |x| = 1}. Use the
Lagrange multiplier function formalism to obtain the following Euler-Lagrange equation

ẍ + |ẋ|2x = 0

for the problem of minimising I[x] =
∫
|ẋ|2dt amongst curves satisfying the constraint x(t) ∈ S2.

Show that the solutions of the Euler-Lagrange equation lie on a plane through the origin (i.e. that
they are great circles.)

3. Obtain the Euler-Lagrange equations associated with the functionals

(i) I[u] =
∫

[ 12u
2
t − F (ux)]dxdt , (ii) I[u] =

∫
[|∇u|2 + e2u]dxdy .

4. Show that:

(i) x2/y is convex on the upper half plane (x, y) : y > 0.

(ii) the function F (x, y) = yf(x/y) (called the “perspective” of f) is convex on (x, y) : y > 0 if f(x)

is convex [Hint: after introducing t ∈ (0, 1) use the new variable s = ty′

(1−t)y+ty′ ]. Now, assuming f

to be twice differentiable, verify convexity of F by computing its Hessian matrix.

5. Find the Legendre transform of f(x) = ex, (giving its domain also). Find the Legendre transform of
f(x) = a−1xa, a > 1 defined on x > 0, and hence deduce Young’s inequality

xy ≤ xa

a
+
yb

b
,

1

a
+

1

b
= 1 .

6. For an ideal gas, the internal energy U = U(S, V ) as a function of entropy and volume is

U = U0 + αnRT0

[(V0
V

) 1
α e

S−S0
αnR − 1

]
for some constants U0, T0, V0, S0, α, n,R. Calculate the Helmholtz free energy F = F (T, V ) defined
by F (T, V ) = minS(U(S, V )− TS).

7. A particle of mass m is constrained to roll on the inside of a smooth upturned hemispherical bowl of
radius a. The Lagrangian describing the motion is

L =
1

2
ma2θ̇2 +

1

2
ma2(sin2 θ)φ̇2 +mga cos θ ,

where g is the acceleration due to gravity, and θ and φ are the usual spherical angles (with θ measured
relative to the downward vertical). Find two constants of the motion.

Find the two momenta pθ and pφ and hence the particle’s Hamiltonian. What do Hamilton’s equations
become in this case?
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8. Hamilton’s Principle is applicable to the relativistic dynamics of a charged particle in an electromag-
netic field. The appropriate choice of Lagrangian L[x(t), ẋ(t), t] for a particle of rest-mass m and
charge q in a given electric potential φ(t,x) and magnetic vector potential A(t,x) is

L = −mc2
√

1− |v|2/c2 − qφ+ qv ·A ,

where v = ẋ(t). Verify that the Euler-Lagrange equations yield the equation of motion

d

dt
(m0γv) = q(E + v ×B) , γ = (1− |v|2/c2)−

1
2 ,

where E = −∇φ− ∂A/∂t (the electric field) and B = ∇×A (the magnetic field).

9. The mass density ρ(t,x) and velocity field v(t,x) of a compressible fluid are constrained by conser-
vation of mass to satisfy the continuity equation

ρ̇+∇ · (ρv) = 0 . (∗)

Given that the energy density of the fluid is u(ρ), the action (for inviscid irrotational flow) is

S[ρ,v, φ] =

∫
dt

∫
d3x

{
1

2
ρ|v|2 − u(ρ) + φ [ρ̇+∇ · (ρv)]

}
,

where φ(t,x) is a Lagrange multiplier field imposing the continuity condition (∗). Find the Euler-
Lagrange equations for this action. Show that they imply v = ∇φ (so φ is the velocity potential).
Given that the fluid pressure P (t,x) satisfies

∇P = ρ∇h(t,x) , h = u′(ρ) ,

deduce Euler’s equation for inviscid irrotational flow:

ρ [v̇ + (v · ∇)v] = −∇P .

10. If a curve between points A and B on the unit sphere can be parametrised by the polar angle θ then

its length is given by the functional L[φ] =
∫ B
A

(1 + φ′2 sin2 θ)
1
2 dθ. Show that δ2L is positive.

If the curve can be parametrised by the azimuthal angle φ then its length is given by the functional

L̃[θ] =
∫ B
A

(θ′2 + sin2 θ)
1
2 dφ. Why does your result for L[φ] not imply that δ2L̃ is positive?

11. For F [y] =
∫ β
α

(y′2 + y4)dx with y(α) = a, y(β) = b, show that δ2F is strictly positive, and hence that
any solution of the Euler-Lagrange equation is a local minimum of F . Write down the Euler-Lagrange
equation and find its solution for the case a = b = 0. Why is this solution a global minimum of F?

12. A function y(x) defined for 0 ≤ x ≤ 1 is such that y(0) = y(1) = 0. Write down the Euler-Lagrange
equation associated to the functional

F [y] =

∫ 1

0

(
1

2
y′2 + g(y)

)
dx ,

where g(y) is such that g′(0) = 0. Show that y0(x) = 0 is a solution. Given that the Euler-Lagrange
equation is satisfied, find δ2F and determine the range of values of g′′(0) for which it is positive. [This
includes a range of negative values of g′′(0).]
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