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1. Tensor of Inertia
a. Prove that the principal moments of inertia, I, are real and non-negative.

b. During the lectures we have outlined the proof of the Parallel Axis Theorem, which is a
statement that the inertia tensor about a point P’, which is displaced by c from the centre
of mass is related to the inertia tensor about the centre of mass as

(Ip)ab = (Loonr)ab + M(C25ab — C,Cyp), (1)

where M is the total mass of the body. Complete the proof of the theorem. Hint: it will be
helpful to choose the origin in the centre of mass.

2. Euler’s Angles

Show that the effect of three rotations by Euler angles results in the relationship e, = R.;€p
between the body frame axes {e,} and the space frame axes {€,} where the orthogonal
matrix R is

T
coshcosp —cosfsingsiny  — cos ¢sin — cos @ cos sin @ sin # sin ¢
R =] sin¢costy + cosfsinycos¢p  —sinysing + cosfcosycos¢p  —sinb cos o
sin 6 sin ¢ sin 0 cos ¥ cos 0

[Hint: mind the order in which the individual rotational matrices are multiplied!]

Use this to find the angular velocity w expressed in terms of Euler angles in (a) the body
frame, and (b) the space frame.

3. Free Symmetric Top

(a) Consider a torque-free motion of a round plate. Show that in the body frame the vector of
the angular velocity w precesses about the body axis es with constant angular frequency
equal to ws.

(b) The physicist Richard Feynman tells the following story:



“I was n the cafeteria and some guy, fooling around, throws a plate in the
air. As the plate went up in the air I saw it wobble, and I noticed the red
medallion of Cornell on the plate going around. It was pretty obvious to me
that the medallion went around faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate. I
discover that when the angle is very slight, the medallion rotates twice as fast
as the wobble rate — two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the
electron orbits start to move in relativity. Then there’s the Dirac equation
in electrodynamics. And then quantum electrodynamics. And before I knew
it....the whole business that I got the Nobel prize for came from that piddling
around with the wobbling plate.”

[Here the “wobble” is associated with precession of the top about €3 (motion in ¢), not
nutation (motion in #).] Feynman was right about quantum electrodynamics. But what
about the plate?

[You could try two alternative methods. One, by using the expression for ws in terms of
Euler’s angles together with the expression for {2 — the angular frequency of precession
of w about ej, derived in lectures. Second, by writing down the Lagrangian of the top
and deriving the equation of motion for the #-component.|

Consider a uniform symmetric ellipsoid of mass M with a = b # ¢ (see example sheet 2,
q. 5). Find the ratio of the semi-axes, for which ¢ — the angular frequency of precession
of the top about the vector of angular momentum L — equals ws/(5cosf). Deduce
further that the spin of the top is w = %wg,. What is the relationship between ng and @/)
for small values of 87 Compare with the result obtained in (b).

4. Free Asymmetric Top (1)

(a)

(b)

Throw a book in the air. If the principal moments of inertia are I; > Iy > I3, convince
yourself that the book can rotate in a stable manner about the principal axes e; and es,
but not about e,.

Use Euler’s equations to show that the energy £ and the total angular momentum L? of
a free asymmetric top are conserved. Suppose that the initial conditions are such that

L?=2LF (2)

with the initial angular velocity w perpendicular to the intermediate principal axes e,.
Show that w will ultimately end up parallel to e; and derive the characteristic time
taken to reach this steady state.



5. Free Asymmetric Top (2)
A rigid lamina (i.e. a two dimensional object) has principal moments of inertia about the
centre of mass given by,

L= (-1 L=@*+1) |  I3=2u° (3)

Write down Euler’s equations for the lamina moving freely in space. Show that the com-
ponent of the angular velocity in the plane of the lamina (i.e. \/w?+ w3) is constant in
time.

Choose the initial angular velocity to be w = uNe; + Nes. Define tan a = ws/wy, which
is the angle the component of w in the plane of the lamina makes with e;. Show that it
satisfies

&+ N?cosasina =0 (4)
and deduce that at time ¢,

w = [uNsech Nt]e; + [uNtanh Nt]es + [Nsech Nt]es (5)

6. Heavy Symmetric Top

Consider a heavy symmetric top of mass M, pinned at point P which is a distance [ from
the centre of mass (see Figure 1). The principal moments of inertia about P are I, I; and I3
and the Euler angles are shown in the figure. The top is spun with initial conditions ¢ = 0
and 0 = 0y,. Show that 6 obeys the equation of motion,

- dVeg(0)
16 = — dﬂ; (6)

where

I2w? (cos O — cos 6)?

Verr(6) = 21, sin? 6

+ Mgl cos 6 (7)

Suppose that the top is spinning very fast so that

IgWg > 4/ Mgl]l (8)

Show that 6 is close to the minimum of Vig(#). Use this fact to deduce that the top nutates
with frequency

w3l

O~
I

(9)

3



Figure 1: The Euler angles for the heavy symmetric top

and draw the subsequent motion.

7. Heavy Symmetric Top in Hamiltonian Formalism
The Lagrangian for the heavy symmetric top is

L=1p (6’2 + ¢?sin® 9) + 1L(¢ + g cos 0)? — Mgl cos 6 (10)

Obtain the momenta py, ps and p,, and the Hamiltonian H (6, ¢, 1, pg, ps, py). Derive Hamil-
ton’s equations.

8. Hamilton’s Equations
A system with two degrees of freedom x and y has the Lagrangian,

L = xy +yi® + 2y (11)

Derive Lagrange’s equations. Obtain the Hamiltonian H(x,y,p,,p,). Derive Hamilton’s
equations and show that they are equivalent to Lagrange’s equations.



