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1. Tensor of Inertia

a. Prove that the principal moments of inertia, Ia, are real and non-negative.

b. During the lectures we have outlined the proof of the Parallel Axis Theorem, which is a

statement that the inertia tensor about a point P ′, which is displaced by c from the centre

of mass is related to the inertia tensor about the centre of mass as

(IP ′)ab = (ICoM)ab +M(c2δab − cacb), (1)

where M is the total mass of the body. Complete the proof of the theorem. Hint: it will be

helpful to choose the origin in the centre of mass.

2. Euler’s Angles

Show that the effect of three rotations by Euler angles results in the relationship ea = Rabẽb
between the body frame axes {ea} and the space frame axes {ẽb} where the orthogonal

matrix R is

R =

 cosψ cosφ− cos θ sinφ sinψ − cosφ sinψ − cos θ cosψ sinφ sin θ sinφ

sinφ cosψ + cos θ sinψ cosφ − sinψ sinφ+ cos θ cosψ cosφ − sin θ cosφ

sin θ sinψ sin θ cosψ cos θ


T

[Hint: mind the order in which the individual rotational matrices are multiplied!]

Use this to find the angular velocity ω expressed in terms of Euler angles in (a) the body

frame, and (b) the space frame.

3. Free Symmetric Top

(a) Consider a torque-free motion of a round plate. Show that in the body frame the vector of

the angular velocity ω precesses about the body axis e3 with constant angular frequency

equal to ω3.

(b) The physicist Richard Feynman tells the following story:
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“I was in the cafeteria and some guy, fooling around, throws a plate in the

air. As the plate went up in the air I saw it wobble, and I noticed the red

medallion of Cornell on the plate going around. It was pretty obvious to me

that the medallion went around faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate. I

discover that when the angle is very slight, the medallion rotates twice as fast

as the wobble rate – two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the

electron orbits start to move in relativity. Then there’s the Dirac equation

in electrodynamics. And then quantum electrodynamics. And before I knew

it....the whole business that I got the Nobel prize for came from that piddling

around with the wobbling plate.”

[Here the “wobble” is associated with precession of the top about ẽ3 (motion in φ), not

nutation (motion in θ).] Feynman was right about quantum electrodynamics. But what

about the plate?

[You could try two alternative methods. One, by using the expression for ω3 in terms of

Euler’s angles together with the expression for Ω – the angular frequency of precession

of ω about e3, derived in lectures. Second, by writing down the Lagrangian of the top

and deriving the equation of motion for the θ-component.]

(c) Consider a uniform symmetric ellipsoid of mass M with a = b 6= c (see example sheet 2,

q. 5). Find the ratio of the semi-axes, for which φ̇ – the angular frequency of precession

of the top about the vector of angular momentum L – equals ω3/(5 cos θ). Deduce

further that the spin of the top is ψ̇ = 4
5
ω3. What is the relationship between φ̇ and ψ̇

for small values of θ? Compare with the result obtained in (b).

4. Free Asymmetric Top (1)

(a) Throw a book in the air. If the principal moments of inertia are I1 > I2 > I3, convince

yourself that the book can rotate in a stable manner about the principal axes e1 and e3,

but not about e2.

(b) Use Euler’s equations to show that the energy E and the total angular momentum L2 of

a free asymmetric top are conserved. Suppose that the initial conditions are such that

L2 = 2I2E (2)

with the initial angular velocity ω perpendicular to the intermediate principal axes e2.

Show that ω will ultimately end up parallel to e2 and derive the characteristic time

taken to reach this steady state.
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5. Free Asymmetric Top (2)

A rigid lamina (i.e. a two dimensional object) has principal moments of inertia about the

centre of mass given by,

I1 = (µ2 − 1) I2 = (µ2 + 1) , I3 = 2µ2 (3)

Write down Euler’s equations for the lamina moving freely in space. Show that the com-

ponent of the angular velocity in the plane of the lamina (i.e.
√
ω2

1 + ω2
2) is constant in

time.

Choose the initial angular velocity to be ω = µNe1 + Ne3. Define tanα = ω2/ω1, which

is the angle the component of ω in the plane of the lamina makes with e1. Show that it

satisfies

α̈ +N2 cosα sinα = 0 (4)

and deduce that at time t,

ω = [µNsechNt]e1 + [µNtanhNt]e2 + [NsechNt]e3 (5)

6. Heavy Symmetric Top

Consider a heavy symmetric top of mass M , pinned at point P which is a distance l from

the centre of mass (see Figure 1). The principal moments of inertia about P are I1, I1 and I3

and the Euler angles are shown in the figure. The top is spun with initial conditions φ̇ = 0

and θ = θ0. Show that θ obeys the equation of motion,

I1θ̈ = −dVeff(θ)

dθ
(6)

where

Veff(θ) =
I2

3ω
2
3

2I1

(cos θ − cos θ0)2

sin2 θ
+Mgl cos θ (7)

Suppose that the top is spinning very fast so that

I3ω3 �
√
MglI1 (8)

Show that θ0 is close to the minimum of Veff(θ). Use this fact to deduce that the top nutates

with frequency

Ω ≈ ω3I3

I1

(9)
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Figure 1: The Euler angles for the heavy symmetric top

and draw the subsequent motion.

7. Heavy Symmetric Top in Hamiltonian Formalism

The Lagrangian for the heavy symmetric top is

L = 1
2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+ 1

2
I3(ψ̇ + φ̇ cos θ)2 −Mgl cos θ (10)

Obtain the momenta pθ, pφ and pψ and the Hamiltonian H(θ, φ, ψ, pθ, pφ, pψ). Derive Hamil-

ton’s equations.

8. Hamilton’s Equations

A system with two degrees of freedom x and y has the Lagrangian,

L = xẏ + yẋ2 + ẋẏ (11)

Derive Lagrange’s equations. Obtain the Hamiltonian H(x, y, px, py). Derive Hamilton’s

equations and show that they are equivalent to Lagrange’s equations.
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