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1. Verify the Jacobi identity for Poisson brackets:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 . (1)

2. A particle with mass m , position x and momentum p has angular momentum

L = x× p . Evaluate {xj , Lk}, {pj , Lk}, {Lj , Lk} and {Li ,L2}.

The Runge-Lenz vector is defined as

A =
p× L

m
− r̂ ,

where r̂ = r/|r| . Show that {La , Ab} = εabcAc . For a system described by the

Hamiltonian H = (p2/2m)− (1/r), show, using Poisson brackets, that A is conserved.

3. A particle of charge e moves in a background magnetic field, B . Show that

{m ṙa , m ṙb} = e εabcBc , {m ṙa , rb} = − δab .

A magnetic monopole is a particle which produces a radial magnetic field, of the form

B = g
r̂

r2
,

where r̂ is the unit vector in the r–direction. Consider a charged particle, moving in

the background of the magnetic monopole. Define the generalised angular momentum,

J = m r× ṙ − eg r̂ . Show that {H , J} = 0 . Why does this imply that J is conserved?

4. In the lectures we constructed canonical transformations using generating func-

tions. Consider canonical transformations, qi → Qi(q, p), pi → Pi(q, p), from the

following perspective. Define 2n-dimensional vector x = (q1, ..., qn, p1, ..., pn)T and the

2n× 2n matrix

J =

(
0 1

−1 0

)
, (2)

where each entry is itself an n× n matrix.
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(a) Write Hamilton’s equations for ẋ in terms of J and the Hamiltonian, H.

(b) Hence deduce the following equation for vector y = (Q1, ..., Qn, P1, ..., Pn)T

ẏ =
(
J JJ T

) ∂H
∂y

, (3)

where Jij = ∂yi/∂xj (i = 1, ..., 2n) is the Jacobian. This implies that if Jacobian

of a transformation satisfies

J JJ T = J. (4)

then Hamilton’s equations are invariant under that transformation. The transfor-

mations with such a Jacobian (said to be symplectic) are canonical.

(c) Use the above conclusion to prove that if the Poisson bracket structure is preserved,

then the transformation is canonical.

5. Show that the following transformations are canonical:

(a) P = 1
2

(p2 + q2) and Q = tan−1(q/p).

(b) P = q−1 and Q = p q2 .

(c) P = 2
√
q
(
1 +
√
q cos p

)
sin p and Q = log

(
1 +
√
q cos p

)
.

6. Show that the following transformation is canonical, for any constant, λ :

q1 = Q1 cosλ+ P2 sinλ , q2 = Q2 cosλ+ P1 sinλ ,

p1 = − Q2 sinλ+ P1 cosλ , p2 = − Q1 sinλ+ P2 cosλ . (5)

Given that the original Hamiltonian is H(qi , pi) = 1
2

(q 2
1 + q 2

2 + p 2
1 + p 2

2 ), determine

the new Hamiltonian, H(Qi , Pi). Hence, solve for the dynamics, subject to the con-

straint Q2 = P2 = 0 .

7. A group of particles, all of the same mass m , have initial heights z and verti-

cal momenta p , lying in the rectangle − a ≤ z ≤ a and − b ≤ p ≤ b . The particles

fall freely in the Earth’s gravitational field for a time t . Find the region in phase space

in which they lie at time t , and show by direct calculation that its area is still 4ab .

8 A Poisson on structure on Rn is an anti–symmetric matrix ωab whose components

depend on the coordinates ξa ∈ Rn, a = 1, · · · , n and such that the Poisson bracket

{f, g} =
n∑

a,b=1

ωab(ξ)
∂f

∂ξa
∂g

∂ξb
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satisfies the Jacobi identity.

1. Show that

{fg, h} = f{g, h}+ {f, h}g.

2. Assume that the matrix ω is invertible with W := (ω−1) and show that the

antisymmetric matrix Wab(ξ) satisfies

∂aWbc + ∂cWab + ∂bWca = 0. (6)

[Hint: note that ωab = {ξa, ξb}.]

3. Set ξa = (x, y, z). Show that

{x, y} = z, {y, z} = x, {z, x} = y

defines a Poisson structure on R3, and find the Hamilton equations corresponding

to a Hamiltonian H = Ax2 +By2 +Cz2 where (A,B,C) are non–zero constants.

9. Explain what is meant by an adiabatic invariant for a mechanical system with one

degree of freedom.

A light string passes through a small hole in the roof of a lift compartment of a very

high skyscraper, and a small weight is attached at the lower end. Initially, the lift is

at rest and the system behaves like a simple pendulum executing small oscillations.

Construct a Hamiltonian for the system and use the theory of adiabatic invariants to

discuss what happens to the frequency, linear and angular amplitudes of the motion if:

(a) the lift begins to move upwards slowly with constant speed, with the string

attached at the hole,

(b) the lift stays at rest, but the string is slowly withdrawn through the roof.

10. Consider a system with Hamiltonian

H(p , q) =
p2

2m
+ λ q2n , (7)

where λ is a positive constant and n is a positive integer. Show that the action

variable, I , and the energy, E , are related by

E = λ1/(n+1)

(
nπI

Jn

)2n/(n+1) (
1

2m

)n/(n+1)

, (8)

where Jn =
∫ 1

0
(1− x)1/2 x(1−2n)/2n dx .
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Consider a particle which moves in a potential V (q) = λ q4 . Assuming that λ varies

slowly with time, show that the particle’s total energy, E , is proportional to λ1/3 .

Conversely, in the case that λ is fixed, show that the period of the motion is propor-

tional to (λE)−1/4 .

11. A pulsar, of mass m , moves in a plane orbit around a luminous supergiant

star with mass M � m . You may regard the supergiant as being fixed at the origin

of a plane polar co–ordinate system, (r , θ), and the neutron star as moving under a

central potential, V (r) = − GMm/r . Construct the Hamiltonian for the motion,

and show that pθ and E are constants, where E is the total energy.

The neutron star is in a non–circular orbit, with E < 0 . Give an expression for the

adiabatic invariant, J(E , pθ , M), associated with the radial motion. The supergiant

is steadily losing mass in a radiatively–driven wind. Show that, over a long time–scale,

one has E ∝ M2 .

Eventually, the supergiant becomes a supernova, throwing off its outer layers on a

short time–scale, and leaving behind a remnant black hole, of mass 1
2
M . Explain why

the theory of adiabatic invariants cannot be used to calculate the new orbit.

Note: You may find the following integral helpful:

r2∫
r1

{(
1− r1

r

)(r2
r
− 1
)} 1

2
dr =

π

2
(r1 + r2)− π

√
r1 r2 , (9)

where 0 < r1 < r2 .
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12.* (after 2010/Paper 4/section II/15D)

A system is described by the Hamiltonian, H(q , p , t). Define the Poisson bracket,

{f , g}, of two functions f(q , p , t), g(q , p , t). Show from Hamilton’s equations that

df

dt
= {f , H} +

∂f

∂t
.

Consider the Hamiltonian

H =
1

2
(p2 + ω2 q2),

where ω = ω(t), and define

a = (p − i ωq)/(2ω)
1
2 , a∗ = (p + i ωq)/(2ω)

1
2 ,

where i2 = −1 . Evaluate {a , a} and {a , a∗}, and show that {a , H} = − i ωa and

that {a∗ , H} = i ωa∗ . Show further that, when f(q , p , t) is regarded as a function

of the independent complex variables, (a , a∗), and of t , one has

df

dt
= i ω

(
a∗

∂f

∂a∗
− a

∂f

∂a

)
− 1

2

ω̇

ω

(
a
∂f

∂a∗
+ a∗

∂f

∂a

)
+

∂f

∂t
.

Deduce that, in the case dω/dt = 0 , both (log a∗ − i ωt) and (log a + i ωt) are

constant during the motion.

Consider now the case in which ω(t) varies slowly with time. Writing f = (H/ω),

show that the time average of (df/dt) over one period, (2π/ω), is approximately zero

(that is, to order (ω̇2, ω̈)). [Hint:You might like to start with writing a = A(t)e−iωt =

A(0)e−iωt +O(ω̇).]
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