
Optical metrics and projective equivalence

Stephen Casey,* Maciej Dunajski,† Gary Gibbons,‡ and Claude Warnickx

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
(Received 27 January 2011; published 27 April 2011)

Trajectories of light rays in a static spacetime are described by unparametrized geodesics of the

Riemannian optical metric associated with the Lorentzian spacetime metric. We investigate the unique-

ness of this structure and demonstrate that two different observers, moving relative to one another, who

both see the Universe as static may determine the geometry of the light rays differently. More specifically,

we classify Lorentzian metrics admitting more than one hyper-surface orthogonal timelike Killing vector

and analyze the projective equivalence of the resulting optical metrics. These metrics are shown to be

projectively equivalent up to diffeomorphism if the static Killing vectors generate a group SLð2;RÞ, but
not projectively equivalent in general. We also consider the cosmological C metrics in Einstein-Maxwell

theory and demonstrate that optical metrics corresponding to different values of the cosmological constant

are projectively equivalent.
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I. INTRODUCTION: NONEQUIVALENT
OPTICAL METRICS

When trying to interpret the physical properties of a
spacetime, of fundamental importance is the behavior of
null geodesics as these correspond to the trajectories of
light rays. The vast majority of measurements made of the
Universe consist of observation of electromagnetic waves
emitted in the past at great distances from us. The behavior
of light rays as they bend around the sun gave the first
observational evidence for general relativity and such
gravitational lensing continues to be a significant branch
of astronomy.

In the case where a spacetime is static or conformally
static, a powerful approach for investigating the properties
of light rays is the optical metric. This may be thought of as
a natural Riemannian geometry experienced by light rays.
It has been recently used to study light bending by a black
hole in the presence of a cosmological constant [1] and to
give an alternative interpretation of black hole no-hair
theorems [2]. An important question one should address
when introducing such a structure is to what extent it is
unique; in other words, can one spacetime give rise to more
than one optical metric. Physically this would mean that
there exist two different observers, moving relative to one
another, who both see the Universe as (possibly confor-
mally) static and who would determine the geometry of the
light rays differently. This is the question we shall address
here.

Let ðM;gÞ be a pseudo-Riemannian manifold with a
metric of signature ðD; 1Þ, where D> 0. The metric is
called static if it admits a hyper-surface-orthogonal

(HSO) timelike Killing vector K. Any such metric is
locally of the form

g ¼ V2ð�dt2 þ hÞ; (1.1)

where h ¼ hijdx
idxj is a Riemannian metric on the space

of orbits � of K ¼ @=@t and V ¼ VðxiÞ is a function on �.
The metric h is called the optical metric of g and the
motivation behind this terminology [1–3] comes from the
fact that null geodesics of g project to unparamertrized
geodesics of h. This can be readily verified as null geo-
desics of g coincide with the null geodesics of V�2g.
It is clear from this discussion that an optical metric

depends on the choice of a static timelike Killing vector
(Fig. 1). Three different equivalence classes of Riemannian
metrics will play a role in our discussion. Let ð�; hÞ and
ð ��; �hÞ be two D-dimensional Riemannian manifolds, and

let �: � ! �� be a diffeomorphism. The metrics h and �h
are

Σ

M

FIG. 1 (color online). Nonequivalent optical metrics.
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(i) Equivalent, if there exists a � such that �� �h ¼ h.
(ii) Projectively equivalent, if there exists a � such

that �� �h and h share the same unparametrized
geodesics.

(iii) Optically equivalent, if there exists a pseudo-
Riemannian (Dþ 1)-dimensional manifold M
with two HSO Killing vectors K and �K such that

� and �� are hypersurfaces orthogonal to K and �K,
respectively, and ðh; �hÞ are optical metrics of K and
�K, respectively.

All equivalences we shall discuss are in fact local equiv-
alences as � is only required to be a smooth map between
some open sets.

If two metrics are equivalent, they are also projectively
equivalent, but the converse is not true in general. In this
paper we shall analyze the connection between the projec-
tive equivalence and optical equivalence. It turns out that
the latter does not always imply the former.

Let us assume that ðM;gÞ admits two optical metrics h
and �h. Thus g can be written in the form (1.1) in more
than one way. Therefore there exists a diffeomorphism
f: M ! M such that f�g and g are both of the form
(1.1) albeit written in different coordinate systems

V2ð�dt2 þ hÞ ¼ �V2ð�d�t2 þ �hÞ;
where �V ¼ �Vð �xÞ and �x ¼ �xðx; tÞ; �t ¼ �tðx; tÞ. Moreover
�K ¼ @=@�t and K ¼ f�ð@=@tÞ are two timelike HSO
Killing vectors. If one of these vectors is a constant mul-
tiple of the other then we can deduce that the optical
metrics h and �h are related by a constant rescaling. Let
us therefore assume that these vectors are not proportional.

We emphasize that the light cone structure on M does
not give rise to a canonical bijection between geodesics of
h and �h. For example, if

g ¼ �dt2 þ dx2 þ dy2

is the Minkowski metric on M ¼ R2;1 and K ¼ @=@t then
the associated optical metric is h ¼ dx2 þ dy2. Setting

t ¼ �y sinh�t; x ¼ �x; y ¼ �y cosh�t

yields g ¼ �y2ð�d�t2 þ �hÞ, where the upper half-plane met-
ric �h ¼ �y�2ðd �x2 þ d �y2Þ is the optical metric of �K ¼ @=@�t.
Now consider a geodesic � of h given by y ¼ 1. This lifts
to a one parameter family of null geodesics fy ¼ 1; t ¼
x� cg of g, and this family projects to a family �c of
geodesics of �h given by unit semicircles

�y 2 þ ð �x� cÞ2 ¼ 1

parametrized by the position of their centers on the �x axis
(Fig. 2).

Note that for this example h and �h are projectively
equivalent: there exists a diffeomorphism between
the Euclidean plane � ¼ R2 and the upper half plane
�� ¼ H2 which maps unparametrized geodesics of h to

unparametrized geodesics of �h. We shall demonstrate that
this is not the case in general.
The paper is organized as follows: In Sec. II

(Proposition 2.3) we shall find generic local forms of
Lorentzian metrics which admit two nonproportional
HSO timelike Killing vectors.1 They are warped product
metrics on M ¼ S0 � S1 given by

g ¼ ew�0 þ �1; (1.2)

where ðS0; �0Þ is a two-dimensional Lorentzian manifold
of constant curvature, ðS1; �1Þ is an arbitrary two-
dimensional Riemannian manifold, and w: S1 ! R is an
arbitrary function. We shall also show that imposing the
Einstein condition on (1.2) leads to nontrivial metrics
which are analytic continuations of the Kottler metric
(Proposition 2.4). In Sec. III we shall compute the optical
metrics associated to each Killing vector (Proposition 3.1
and Proposition 3.2). In Sec. IV we shall determine when
optically equivalent metrics are projectively equivalent. If
the curvature of �0 is nonzero, then the general HSO
Killing timelike vector is a linear combination of the gen-
erators of SLð2;RÞ acting isometrically on M with two-
dimensional orbits S0. In this case the resulting optical
metrics are projectively equivalent to

h ¼ ð1� �r2Þ�2dr2 þ e�wð1� �r2Þ�1�1;

where � ¼ �1 is the curvature of �0 (Proposition 4.1). If
�0 is flat, then the HSO Killing vector arises from the
generators of the three-dimensional group Sol of isometries
of R1;1 and the optical metrics are not projectively equiva-
lent in general. In Sec. V we shall consider the cosmologi-
cal C metrics in Einstein-Maxwell theory. These metrics
fall outside of our class (1.2) and the notion of optical
metric is unambiguous. We shall demonstrate that optical
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FIG. 2 (color online). No bijection between geodesics of two
optical metrics.

1This problem was already addressed in [4] but our construc-
tion will be different. In the language of [4] we shall look for a
special case of conformal ultrastatic transformations such that
exp2� ¼ �V2=V2.
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metrics corresponding to different values of the cosmo-
logical constant are projectively equivalent. Thus, the tra-
jectories of light rays in theC-metric spacetimes depend on
the mass and electric charge, but not on the cosmological
constant.

II. MULTI-STATIC METRICS

We shall now classify local forms of pseudo-
Riemannian structures ðM;gÞ which admit more than one
HSO timelike Killing vector.

Definition 2.1—A Lorentzian metric is called multistatic
if it admits at least two nonproportional HSO timelike
Killing vectors.

From now on we shall assume that the dimension ofM is
equal to four. Let ðK; �Þ be two HSO timelike Killing
vectors2 on M. We can choose a local coordinate system
[Note: We use the letters from the start of the alphabet
ða; b; c; . . .Þ to run over 0,1,2,3 and letters from the middle
of the alphabet ði; j; k; . . .Þ to run over 1, 2, 3] xa ¼ ðt; xiÞ,
such that the metric is given by (1.1) and K ¼ @=@t. In this
coordinate system

� ¼ �0 @

@t
þ �i @

@xi
;

where �0; . . . ; �3 are functions of ðx; tÞ. From our assump-
tions it follows that not all �i are identically zero (if they
where, then the Killing equations r0�0 ¼ rði�0Þ ¼ 0
would imply �0 ¼ const thus contradicting our assump-
tions about the independence of K and �). Therefore, there
exists t0 such that the projection of the restriction of � at
the surface � given by t ¼ t0

~� ¼ �jt¼t0 (2.1)

is a nonzero vector field. Furthermore, we can make the
coordinate transformation t ! t� t0 while preserving the

form of the metric (1.1) so that ~�i ¼ �i jt¼0 .

The HSO Killing equations for � imply that ~� is a HSO
Killing vector for V2h and so there exists a function
r: � ! R such that

V2h ¼ ewdr2 þ �;

where ~� ¼ @=@r, and ðw; �Þ are a function and a metric on

a two-dimensional surface S1 (the space of orbits of ~� in�)
which do not depend on r. We can use the isothermal
coordinates ðx; yÞ so that � ¼ euðdx2 þ dy2Þ and u, w are
functions of ðx; yÞ. Thus, the most general Lorentzian
metric which admits more than one optical metric is locally
of the form

g ¼ �V2dt2 þ ewdr2 þ euðdx2 þ dy2Þ; (2.2)

where V ¼ Vðr; x; yÞ, u ¼ uðx; yÞ, and w ¼ wðx; yÞ. We
note that the function V is not arbitrary—its form is re-
stricted by the Killing equation for �.
Our next step is to classify the normal forms of � and

thus read off the canonical forms of its optical metric �h on

some three-manifold �� where �K ¼ @=@�t giving rise to �h is
the push forward of � under some local diffeomorphism

between � and ��. We shall make the additional genericity
assumption.
Definition 2.2—A multistatic metric is called generic if

the isometry group generated by any pair of HSO timelike
Killing vectors (and their commutators) has two-
dimensional orbits in M.
The genericity assumption implies that for any t0, the

HSO Killing vector � restricted to the surface t ¼ t0 de-
fined by K is proportional to a fixed vector field.
Proposition 2.3—Any generic multistatic metric is lo-

cally a warped product metric on M ¼ S0 � S1 given by

g ¼ ew�0 þ �1; (2.3)

where ðS0; �0Þ is a two-dimensional Lorentzian manifold
whose curvature is constant, ðS1; �1Þ is a two-dimensional
Riemannian manifold, and w: S1 ! R is an arbitrary
function.
Proof.—First we shall show that given a pair of HSO

timelike Killing vectors ðK; �Þ, the genericity assumption
implies existence of two functions ðr; tÞ such that the
metric takes the form (2.2), and

K ¼ @

@t
; � ¼ �0ðt; r; x; yÞ @

@t
þ aðtÞ @

@r
; (2.4)

where ðx; yÞ are coordinates on surface S1 parametrizing
the 2D orbits inM, and a is a function which depends only
on t. To prove this statement, note that the group generated
by the Killing vectors and their commutators acts on M
with two-dimensional orbits so

½K; �� ¼ pK þ q�; (2.5)

where p, q are functions onM. We need to show that there
exists functions �, � such that

½��1ð�� �KÞ; K� ¼ 0; (2.6)

as then the local existence of r, t will follow from the
Frobenius theorem. Expanding the Lie bracket (2.6) and
using (2.5) gives a pair of ODEs

Kð��1Þ ¼ ��1q; Kð���1Þ ¼ ��1p:

The existence of �, � is a consequence of the Picard
existence theorem applied to these ODEs and

K ¼ @

@t
; � ¼ �K þ �

@

@r
:

2The vector field � is closely related to �K from the previous
section. These vector fields are however defined on different
spaces which justifies our notation. Moreover, as we shall see in
Sec. III, the general form of � depends on some constants of
integration and thus, several different forms of �K can arise.
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Now consider the HSO Killing vector ~� given by (2.1) on
the surface � of constant t. The Killing equations on �
imply that � ¼ �ðr; tÞ and that for any value of t0 the
resulting vector is proportional to the same Killing vector.
Thus, �ðr; tÞ ¼ aðtÞbðrÞ. We now redefine the r coordinate
to set bðrÞ ¼ 1. This establishes (2.4). Therefore, for any
value of t0,

�i @

@xi

��������t¼t0

/ @

@r
:

The Killing equations rð2�0Þ ¼ 0 ¼ rð3�0Þ give �0 ¼
�0ðt; rÞ. Using this and Eq. (2.4) above, the hypersurface
orthogonality conditions �½0r1�2� ¼ 0 and �½0r1�3� ¼ 0
yield

V2ðr; x; yÞ ¼ v2ðrÞewðx;yÞ (2.7)

for some function vðrÞ. Hence, the metric gmay already be
written as (2.3) where the two-dimensional metric �0 is
given by

�0 ¼ �v2ðrÞdt2 þ dr2:

The scalar curvature of this metric is

� ¼ � 2v00ðrÞ
vðrÞ : (2.8)

This will be important later. The only remaining
equations that need to be satisfied are the Killing condi-
tions rð0�0Þ ¼ 0 and rð1�0Þ ¼ 0. These equations give

�v2ðrÞ@t�0 ¼ vðrÞdvðrÞ
dr

aðtÞ;

�v2ðrÞ@r�0 ¼ � daðtÞ
dt

:

Differentiating the first condition with respect to r and the
second condition with respect to t and equating the mixed
partial derivatives of �0 yields

1

aðtÞ
d2aðtÞ
dt2

¼
�
dvðrÞ
dr

�
2 � vðrÞd

2vðrÞ
dr2

: (2.9)

The left-hand side of this equation is a function of t only.
Hence

�
dvðrÞ
dr

�
2 � vðrÞd

2vðrÞ
dr2

¼ � ¼ constant:

Differentiating with respect to r, we find that

0 ¼ v0ðrÞv00ðrÞ � vðrÞv000ðrÞ ¼ v2ðrÞ
2

@

@r

�
� 2v00ðrÞ

vðrÞ
�
:

Hence, by (2.8), the curvature of �1 is constant.
Furthermore, if the curvature is � � 0 then we can set its

absolute value to one by adding a constant to the
function w. j

Einstein equations

We shall now impose the Einstein condition on (1.2) and
show that the resulting metrics are analytic continuations
of the cosmological Kottler solution.

Proposition 2.4—Let �ð0Þ
0 be the two-dimensional

Minkowski metric and �ð�1Þ
0 be the line element of the

two-dimensional de Sitter and anti–de Sitter metrics with
cosmological constant �1, respectively. Consider metrics
of the form

g ¼ �1 þ w2�0
ðkÞ; (2.10)

where �1 and w are, respectively, a metric and nonconstant
function on some two-dimensional surface. Any such met-
ric which is Einstein, with cosmological constant � is
locally diffeomorphic to the metric

g ¼
�
kþ c

r
��

3
r2
�
d�2 þ dr2

kþ c
r � �

3 r
2
þ r2�ðkÞ

0 (2.11)

for some constant c. The case where w is constant yields
that �1 is an Einstein metric with appropriate cosmological
constant to match that of the other factor.
Proof.—The derivation of (2.11) is analogous to the

proof of Birkhoff’s theorem in general relativity (see,
e.g., [5]), except that the constant curvature warped factor
is Lorentzian rather than Riemannian. One chooses a co-
ordinate system ðr; �Þ on S1, where r ¼ w, establishes the �
independence of the metric and finally examines the ðr�Þ
component of the Einstein tensor, which gives the r
dependence. j

III. OPTICAL METRICS

To determine the optical metrics resulting from (1.2)
we need to consider three cases depending on the curvature
of �0.

A. Zero curvature case

We can find local coordinates such that �0¼�dt2þdr2,
and the general HSO Killing vector of g becomes

� ¼ ðArþ BÞ @
@t

þ ðAtþ CÞ @
@r

for some constants A, B, and C. If A � 0 we translate ðr; tÞ
by adding constants and rescale the Killing vector so that

� ¼ r
@

@t
þ t

@

@r
:

Setting t ¼ �r sinhð�tÞ, r ¼ �r coshð�tÞ gives the optical metric
of @=@�t,

�h ¼ �r�2ðd�r2 þ e�w�1Þ: (3.1)
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If A ¼ 0 then a constant rescaling of t can be used to set
� ¼ cos�@t þ sin�@r, where � is a constant in a range
which makes � timelike. The pseudo-orthogonal transfor-
mation of ðr; tÞ can now be used to set � ¼ @=@t, so the
optical metric in this case is

h ¼ dr2 þ e�w�1: (3.2)

B. Anti–de Sitter case

Now, let us consider the case where the metric has the
form (1.2), where the constant curvature of �0 is negative.
In the AdS2 case we can choose local coordinates so that

�0 ¼ �dt2 þ dr2

r2
:

Both �0 and the resulting Lorentzian metric g have three
Killing vectors generating SLð2;RÞ. In the chosen coordi-
nates these vectors are

K1 ¼ @

@t
; K2 ¼ t

@

@t
þ r

@

@r
; K3 ¼

�
t2þ r2

2

�
@

@t
þ tr

@

@r
;

and

½K1; K2� ¼ K1; ½K2; K3� ¼ K3; ½K1; K3� ¼ K2:

Furthermore, it is easy to show that any linear combination

� ¼ AK1 þ BK2 þ CK3

is an HSO Killing vector for the metric g, which is timelike
in some open set to which we restrict our attention from
now on.

Proposition 3.1—For any timelike HSO Killing vector,
�, of the metric (1.2), where �0 has negative constant
curvature, the optical metric associated to � is diffeomor-
phic to

�h ¼ 1

ð	þ �r2Þ2 d�r
2 þ e�w

	þ �r2
�1 (3.3)

for some constant 	.
Proof.—Let us first consider the HSO Killing vectors

for which C � 0. Then, adding a constant to t we can set
B ¼ 0 without changing the metric. If A ¼ 0 then divide �
by C=2 to set C ¼ 2. Otherwise, rescale ðt; rÞ by the same
constant factor to set A ¼ �C=2 and then divide � by C=2.
Thus, the resulting Killing vector can take one of three
possible forms

� ¼ ðcþ t2 þ r2Þ @
@t

þ 2tr
@

@r
; where c ¼ 0;�1; 1:

We look for a coordinate transformation ðt; rÞ ! ð�t; �rÞ such
that � ¼ @=@�t.

(i) If c ¼ 1 set

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2 þ 4

p
cosð2�tÞ

�r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2 þ 4

p
sinð2�tÞ ;

r ¼ 2

�r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2 þ 4

p
sinð2�tÞ :

(ii) If c ¼ �1 set

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2 � 4

p
ð1� e4�tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2 � 4
p

ð1þ e4�tÞ � 2�re2�t
;

r ¼ 4e2�tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2 � 4

p
ð1þ e4�tÞ � 2�re2�t

:

(iii) If c ¼ 0 set

t ¼ �r2 �t

1� �r2 �t2
; r ¼ �r

�r2 �t2 � 1
:

This gives, in all three cases �0 ¼ �ð�r2 þ 4cÞd�t2þ
ð�r2 þ 4cÞ�1d�r2 and the optical metric (3.3) with 	 ¼ 4c.
Now consider the case C ¼ 0. Adding an appropriate

constant to t sets B ¼ 0 so that

� ¼ t
@

@t
þ r

@

@r
:

Setting

t ¼ �rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2 � 1

p e�t; r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2 � 1

p e�t

yields � ¼ @=@�t and �0 ¼ �ð�r2 � 1Þd�t2 þ ð �r2 � 1Þ�1d�r2.
The optical metric in this case is (3.3) with 	 ¼ �1.
Finally, suppose C ¼ B ¼ 0 so that � ¼ @

@t . This gives

the optical metric

�h ¼ dr2 þ r2e�wðx;yÞ�1:

A coordinate transformation r ¼ �r�1 puts it in the form
(3.3) with	 ¼ 0. Thus, we have covered all cases. j

C. de Sitter case

In this case �0 can be written in local coordinates as

�0 ¼ �dt2 þ dr2

t2
:

This switches the role of r and t in the previous section.
The general HSO timelike Killing vector on g is of the
form

� ¼ AK1 þ BK2 þ CK3;

where
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K1 ¼ @

@r
;

K2 ¼ r
@

@r
þ t

@

@t
;

K3 ¼
�
t2 þ r2

2

�
@

@r
þ tr

@

@t
:

If C � 0, then adding a constant to r can be used to set
B ¼ 0. The resulting vector will be timelike (in a certain
open set in M) only if AC< 0. In this case we can rescale
ðr; tÞ by the same constant factor to set A ¼ �C=2, so that

� ¼ ð�1þ t2 þ r2Þ @
@r

þ 2tr
@

@t
:

A coordinate transformation

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �r2

p
ð1þ e4�tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� �r2
p

ð1� e4�tÞ þ 2�re2�t
;

r ¼ � 4e2�tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �r2

p
ð1� e4�tÞ þ 2�re2�t

gives � ¼ @=@�t and

�0 ¼ �ð4� �r2Þd�t2 þ 1

4� �r2
d�r2;

which is defined for j�rj< 2. The optical metric is

�h ¼ 1

ð4� �r2Þ2 d�r
2 þ e�w

4� �r2
�1:

If C ¼ 0 then, adding an appropriate constant to r gives
� ¼ K2. The transformation

t ¼ �rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p e�t; r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r2

p e�t

yields � ¼ @=@�t and �0 ¼ �ð1� �r2Þd�t2 þ ð1� �r2Þ�1d�r2.
The optical metric is this case is

�h ¼ 1

ð1� �r2Þ2 d�r
2 þ e�w

1� �r2
�1: (3.4)

Finally, if C ¼ B ¼ 0 then � is always spacelike and does
not lead to an optical structure. Therefore we have.

Proposition 3.2—For any timelike HSO Killing vector,
�, of the metric (1.2) where the curvature of �0 is positive,
the optical metric associated to � is diffeomorphic to

�h ¼ 1

ð	� �r2Þ2 d�r
2 þ e�w

	� �r2
�1 (3.5)

for some constant 	> 0.

IV. PROJECTIVE EQUIVALENCE

A. Zero curvature

We claim that �h and h given by (3.1) and (3.2), respec-
tively, are not projectively equivalent even up to diffeo-
morphisms: The metric (3.2) admits a nontrivial affine

equivalence, i.e., there exists a covariantly constant sym-
metric (0, 2)-tensor h1 that is not proportional to (3.2) (in
our case h1 ¼ dr2). The canonical forms of Levi-Civita3

[6] implies that (3.1) admits a nonaffine geodesic equiva-
lence, i.e., there exists a geodesically equivalent metric that
is not covariantly constant in the Levi-Civita connection of
(3.1). It is given by

h2 ¼ 1

�r2 þ 1

�
�r2

�r2 þ 1
d�r2 þ e�w�1

�
:

Thus, if (3.1) and (3.2) were equivalent, there would exist at
least three nonproportional metrics sharing the same geo-
desics. This in dimension three implies [7] that h has
constant curvature and so it is flat.4

B. Nonzero curvature

Let us first consider the case when �0 has negative
curvature.
Proposition 4.1—Let �1 and �2 be two timelike HSO

Killing vectors for the metric g defined by (1.2) where �0 is
AdS2. Then, the optical metric associated to �1 is projec-
tively equivalent to the optical metric associated to �2 after
some diffeomorphism. Thus, all optical metrics are equiva-
lent to (3.3) with 	 ¼ 1.
Proof.—Let us first consider (3.3) By Proposition 3.1, the

optical metric associated to any timelike HSO Killing
vector � is given, after diffeomorphism, by (3.3) for
some constant 	. For Killing vectors �1 and �2, let h1,
h2 be the associated optical metrics written in the form
(3.3) with corresponding constants 	1 and 	2, respec-

tively. Let �i
jk,

~�i
jk be the connection components of the

metric connection of h1, h2, respectively. Then, these
metrics are projectively equivalent (see, for example,
[8,9]) if and only if there exists a 1-form ! ¼ !jdx

j

such that

3The result of Levi-Civita is that the metrics

h ¼ dr2 þ fðrÞ�; and ~h ¼ 1

ð�fðrÞ þ 1Þ2 dr
2 þ fðrÞ

�fðrÞ þ 1
�

are projectively equivalent for any constant �. Here f is an
arbitrary function of r and � is an arbitrary r-independent metric.
The result holds in any dimension.

4This example shows that some care is needed with the
projective Weyl tensor argument from [1]. Consider the metric
(4.1) in this paper (numbers as in published version but r
replaced by u and h replaced by e�w�1)

h ¼ du2

u4fðuÞ2 þ
1

fðuÞ e
�w�1:

Taking f ¼ 1 and setting u ¼ 1=r this gives our (3.2). Now take
(4.1) with f ¼ 2=u, so that u3f0 þ ð1=2Þu4f00 ¼ 0 and the pro-
jective Weyl tensor is the same as that with f ¼ 1. Changing
variables by u ¼ 2=R2 gives (3.1). So (3.2) and (3.1) are both of
the form (4.1) where the Weyl tensor only depends on hij but, as
we have demonstrated, they are not projective equivalent.
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~� i
jk ¼ �i

jk þ 
i
j!k þ 
i

k!j:

Working this out explicitly, we find that the 1-form

! ¼ �rð	2 �	1Þ
ð �r2 þ	1Þð�r2 þ	2Þ

d�r

satisfies this criteria. j
The same argument, with

! ¼ �rð	1 �	2Þ
ð �r2 �	1Þð�r2 �	2Þ

d�r;

can be used in the dS2 case, to show that any two
optical metrics (3.5) are projectively equivalent to (3.5)
with 	 ¼ �1.

V. C METRIC

The C metric represents a pair of separated black holes
accelerating in opposite directions. The original solution
constructed by Weyl can be generalized to the cosmologi-
cal setting—the relevant line element with �< 0 belongs
to the Plebański-Demiański class [10] and is given by

g ¼ 1

A2ðx2 þ y2Þ
�
�Fdt2 þ 1

F
dy2 þ 1

G
dx2 þGd	2

�
;

(5.1)

where

F ¼ y2 � 2mAy3 þ e2A2y4 � 1� �

3A2
;

G ¼ 1� x2 � 2mAx3 � e2A2x4:

The angular coordinate ranges between ��C and �C,
where C is a positive constant. The constants A, m, and e
characterize the acceleration, mass and charge, respec-
tively, and are such that e2 <m2. The x coordinate lies in
an interval between two roots of G which contains 0 and
y 2 ð�x;1Þ.

The C metric solves the Einstein-Maxwell equations
with the electromagnetic field edy ^ dt, or the pure
Einstein equations in the limiting case e ¼ 0. The case
m ¼ e ¼ 0 is the space of constant curvature. Ifm � 0, the

case A <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=3

p
corresponds to a single accelerated black

hole and A >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=3

p
corresponds to infinite number of

pairs of accelerating AdS black holes.
The optical metric of (5.1) is

h ¼ 1

F2
dy2 þ 1

GF
dx2 þG

F
d	2: (5.2)

We claim that the optical metrics corresponding to differ-
ent values of � are projectively equivalent. To establish
this it is enough calculate the Christoffel symbols of h and
notice that

�i
jk ¼ ð�0Þijk þ 
i

j!k þ 
i
k!j;

where ð�0Þijk is the Levi-Civita connection of (5.2) with

� ¼ 0 and

! ¼ !idx
i ¼ 1

2dðlnðFðyÞj�¼0Þ � lnFðyÞÞ:
This projective equivalence implies that the unparame-
trized geodesics of h (and so null geodesics of the C
metric) are not affected by the cosmological constant.
The details of this projective equivalence do not depend
on the exact form of F ¼ FðyÞ and G ¼ GðxÞ and the
argument above demonstrates that the projective class
does not change under F ! Fþ const. Moreover, analyz-
ing the associated Liouville system [8,9,11] it can be
shown any metric which shares unparametrized geodesics
with the optical metric (5.2) is a constant rescaling (5.2)
possibly with a different value of �. Setting

x ¼ cos�; y ¼ 1

Ar
;

and taking the limit A ! 0 (need to rescale t) yields the
Schwarzschild-de Sitter metric, and in this case we recover
a known result [1,12] that the trajectories of light rays in
the Schwarzchild-de Sitter metric depend on the mass but
not on the cosmological constant.

VI. CONCLUSIONS

The significance of projective differential geometry in
general relativity goes back at least to Weyl: an equiva-
lence class of unparametrized geodesics can be used to
describe the geometry of free falling massive particles.
Various aspects of the theory have been explored—see
[13,14] and references therein—but, as emphasized in
[15], there is more to general relativity than projective
geometry. Some cosmological observables—for example
cosmic jerk and its higher order generalizations [16]—are
not projectively invariant, and thus depend on a choice of
the metric in a projective equivalence class.
In this paper we have explored a novel aspect of projec-

tive equivalence. The light rays in static spacetimes give
rise to projective structures of optical metrics. This leads to
ambiguity if a spacetime is static in more than one way, as
nonproportional timelike Killing vectors lead to different
optical metrics, which as we have demonstrated are not
always projectively equivalent.
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APPENDIX: ULTRASTATIC METRICS

Here we shall show that in the ultrastatic case V ¼ 1,
we can integrate the Killing equations without making
the additional genericity assumption and establish
Proposition (2.3) with w ¼ const and �0 being flat. This
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is essentially the case considered by Sonego [4]. We shall
however take our analysis further and consider optical
metrics resulting from this construction. In the adapted

coordinate system, the Killing vector ~� on � satisfies

ð�1; �2; �3Þ jt¼0¼ ð1; 0; 0Þ: (A1)

Now consider the Killing equations for �. Using �0
ij ¼ 0

we find that rð0�0Þ ¼ 0, rð0�iÞ ¼ 0 imply

@t�
0 ¼ 0; ewðx;yÞ@t�1 ¼ @r�

0;

euðx;yÞ@t�2 ¼ @x�
0; euðx;yÞ@t�3 ¼ @y�

0:

Integrating and using the initial conditions (A1) gives

�1 ¼ e�wðx;yÞð@r�0Þtþ 1; �2 ¼ e�uðx;yÞð@x�0Þt;
�3 ¼ e�uðx;yÞð@y�0Þt: (A2)

Now, let us consider the hypersurface orthogonality con-
dition � ^ d� ¼ 0. We find

0 ¼ �½0r1�2�

¼ ��0

�
ð@r@x�0Þt� ð@x@r�0Þt� @w

@x
ew

�

þ ðð@r�0Þtþ ewÞð�2@x�
0Þ þ ð@x�0Þtð2@r�0Þ:

This, together with a similar condition resulting from
�½0r1�3� ¼ 0, implies after some algebra

�0 ¼ �ðrÞeð1=2Þwðx;yÞ: (A3)

The rest of the hypersurface orthogonality conditions are
then satisfied. The remaining Killing equations will yield
conditions on wðx; yÞ and uðx; yÞ as well as a condition for
�ðrÞ as follows: Eq. (A3) and rð2�3Þ ¼ 0 give

@2w

@x@y
þ 1

2

�
@w

@x

��
@w

@y

�
¼ 1

2

��
@u

@x

��
@w

@y

�
þ

�
@u

@y

��
@w

@x

��
:

(A4)

Similarly, the Killing conditions rð2�2Þ ¼ 0 ¼ rð3�3Þ give

@2w

@x2
þ 1

2

�
@w

@x

�
2 ¼ 1

2

��
@u

@x

��
@w

@x

�
�

�
@u

@y

��
@w

@y

��
;

@2w

@y2
þ 1

2

�
@w

@y

�
2 ¼ 1

2

��
@u

@y

��
@w

@y

�
�

�
@u

@x

��
@w

@x

��
:

(A5)

The Killing equations rð1�2Þ ¼ 0 ¼ rð1�3Þ are now satis-

fied and the condition rð1�1Þ ¼ 0 gives

@2�ðrÞ
@r2

¼ � 1

4
ew�u

��
@w

@x

�
2 þ

�
@w

@y

�
2
�
�ðrÞ:

The left-hand side of this equation depends only on r, so
the quantity

�2 � 1

4
ew�u

��
@w

@x

�
2 þ

�
@w

@y

�
2
�

(A6)

is a constant. Let us first consider the case � � 0. Solving
(A6) for u and substituting the partial derivatives of u into
(A4) and (A5) gives, after some algebra,

@2w

@x2
þ @2w

@y2
þ 1

2

��
@w

@x

�
2 þ

�
@w

@y

�
2
�
¼ 0:

This means that the function ew=2 is harmonic, thus

ewðx;yÞ=2 ¼ GðzÞ þGðzÞ, where G is holomorphic in
z ¼ xþ iy. A coordinate transformation

X ¼ 2

�
ReðGÞ cosð�rÞ; Y ¼ 2

�
ReðGÞ sinð�rÞ;

Z ¼ 2

�
ImðGÞ; T ¼ t

yields the Minkowski metric g ¼ �dT2 þ dX2 þ dY2 þ
dZ2.
Now, let us consider the case � ¼ 0. Equation (A6)

implies that wðx; yÞ is a constant and so the metric (2.2),
after rescaling r, becomes

g ¼ �dt2 þ dr2 þ �1;

where �1 ¼ euðdx2 þ dy2Þ. We also have � ¼ Arþ B,
and given the initial conditions, the Killing vector � can
be written as

� ¼ ðArþ Beð1=2ÞwÞ @
@t

þ ðAtþ eð1=2ÞwÞ @
@r

:

If A � 0 we translate ðr; tÞ by adding constants and rescale
the Killing vector so that

� ¼ r
@

@t
þ t

@

@r
:

Setting t ¼ �r sinhð�tÞ, r ¼ �r coshð�tÞ gives

g ¼ �r2ð�d�t2 þ �hÞ;
where

�h ¼ �r�2ðd�r2 þ �1Þ (A7)

is the optical metric associated to the Killing vector @=@�t.
If A ¼ 0 then a constant rescaling of t can be used to set

� ¼ cos�@t þ sin�@r, where � is a constant in a range
which makes � is timelike. The pseudo-orthogonal trans-
formation of ðr; tÞ can now be used to set � ¼ @=@t, so the
optical metric in this case is

h ¼ dr2 þ �1: (A8)
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