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Abstract: We discuss the twistor correspondence between path geometries in three
dimensions with vanishing Wilczynski invariants and anti-self-dual conformal struc-
tures of signature (2, 2). We show how to reconstruct a system of ODEs with vanishing
invariants for a given conformal structure, highlighting the Ricci-flat case in particular.
Using this framework, we give a new derivation of the Wilczynski invariants for a sys-
tem of ODEs whose solution space is endowed with a conformal structure. We explain
how to reconstruct the conformal structure directly from the integral curves, and present
new examples of systems of ODEs with point symmetry algebra of dimension four and
greater which give rise to anti—self—dual structures with conformal symmetry algebra
of the same dimension. Some of these examples are (2, 2) analogues of plane wave
space—times in General Relativity. Finally we discuss a variational principle for twistor
curves arising from the Finsler structures with scalar flag curvature.

1. Introduction

A path geometry on an open set 7 C R” consists of unparametrised curves, one curve
through each point in 7 in each direction. Regarding these curves as solutions to a
system of (n — 1) second order ODEs, one can give an alternative definition of the
path geometry as an equivalence class of systems of second order ODEs, where two
systems are regarded as equivalent if they can be mapped into each other by a change
of dependent and independent variables. In this paper we shall study three—dimensional
path geometries encoded into a system of two second order ODEs,

Y' =F(X,Y,2,Y.,7Z), Z'=G(X,Y,2,Y,Z), (1.1)

where Y’ = dY/dX etc, and (F, G) are arbitrary functions on an open set in R5 which
we assume to be of class C°. Two such systems are locally equivalent if they are related
by a point transformation (X, Y, Z) — (X(X,Y, Z2),Y(X,Y, Z), Z(X,Y, Z)). A nat-
ural question arises: Given a system (1.1) is it equivalent to a pair of trivial ODEs
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Y” =0, Z"” =07 The answer comes down to constructing a set of invariants for (1.1).
These invariants can be divided into two groups C and P. Vanishing of the invariants
from each of these groups selects a subclass of three—dimensional path geometries.

e The system (1.1) belongs to the conformal branch if its four—dimensional solution
space M admits a conformal structure such that the two—dimensional surfaces in M
corresponding to points in 7 are totally isotropic (this condition uniquely determines
the conformal structure). The conformal branch is characterised by the vanishing of
three fundamental Wilczynski invariants C given by the expressions (2.1). Systems
with vanishing Wilczynski invariants are also referred to as torsion-free [17] and we
will use this terminology several times throughout.

e The system (1.1) belongs to the projective branch if its integral curves in 7 are
unparametrised geodesics of some projective connection. The projective branch is
characterised by the vanishing of eight invariants P given by the expressions (2.2).

A system is point equivalent to a trivial one if and only if it belongs to both the conformal
and projective branches [17]. In this case the symmetry algebra of (1.1) is isomorphic
to s[(4, R). The corresponding Lie group PSL(4,R) acts projectively on 7 = RP?
preserving the unparametrised geodesics of the flat projective connection.

In this paper we shall concentrate on the conformal branch, and make use of the local
isomorphism,

PSL(4,R)=S0(@3,3),

where SO (3, 3) is the conformal group of the flat conformal structure on the solution
space M. If the curvature of the conformal structure does not vanish, then the conformal
symmetry group is a proper subgroup of SO (3, 3), and conformal Killing vectors on M
give rise to point symmetries of the system (1.1) (see Lemma 6.1). We shall exploit this
correspondence to construct several examples of torsion-free ODE systems and the cor-
responding conformal structures which admit a large symmetry group, 9—dimensional
symmetry being the sub-maximal case.

In the rest of the paper we shall call 7 the twistor space, and the integral curves of (1.1)
the twistor lines. In the next section we shall give explicit expressions for point invariants
of (1.1). In Sect. 3 we summarise the twistor correspondence anti—self—dual conformal
structures which underlies all constructions in this paper. In Sect. 4, we describe how,
given an ASD conformal structure of (2, 2) signature, to construct a system of ODEs on
the twistor space 7 whose integral curves are the twistor lines. Using this framework, in
Sect. 5 we present a new derivation for the condition of vanishing Wilczynski invariants
assuming solely that the space of solutions be endowed with a conformal structure. We
demonstrate how this construction proceeds in the Ricci-flat case, and show (Theorem
5.1) that in this case the system of ODEs can be read-off directly from the solution of
Plebanski’s heavenly equation. In Sect. 6, we explore the local isomorphism between
groups of point symmetries of (1.1) and conformal symmetries of the corresponding
conformal structure. In Sect. 7 we construct examples of torsion-free ODE systems in
three dimensions with point symmetry algebras of dimensions between nine and two.
Finally in Sect. 8 we explore the connection between systems of ODEs with vanishing
Wilczynski invariants, and unparametrised geodesics of Finsler structures with scalar
flag curvature. This correspondence gives rise to yet another class of examples. Some of
these examples have gravitational analogues in the theory of plane wave space—times, and
the whole construction sheds new light on variational aspects of the Nonlinear Graviton
theorem.
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It is a pleasure to dedicate this paper to Mike Eastwood on the occasion of his 60th
birthday. Mike has made important contributions to twistor theory and conformal geom-
etry over the last thirty five years. He and his coworkers [3] have developed an approach
to symmetry of differential equations which underlies some of our work.

2. Systems of ODEs and Their Invariants

To present the invariants in a compact form set Y A —(Y,Z) and FA = (F, G), where
the capital letter indices A, B, C, ... take values 0, 1. Moreover we set

Y4 d 9 9 9
PY=—— and —=-—+P —+F4 .
X dX ~— 39X ayA apPA

The three Wilczynski conditions C are given by

dFA  19FA BFC+1 d 9F4
aYB  49PCo9PB  2dX dPB’

Our terminology is motivated by the work of Doubrov [8,9], who has demonstrated
that the conditions (2.1) for systems of non—linear ODEs are equivalent to the classical
Wilczynski invariants [30] on the linearisations of these ODEs.

The complementary set of invariant conditions P characterising the projective branch
is

1
T — ETrace(T)]I =0, where T =— (2.1

S4 ey =0, (2.2)
where [15]

PB3FA 3 9FE 5
dPBaPCIPD  49PEJPBypC L

A
S%Bcp =

The following result gives an interpretation of the zero locus of Wilczynski invariants.

Theorem 2.1 (Grossman [17]). There is one—to—one correspondence between equiva-
lence classes of systems of second order ODEs with vanishing Wilczynski invariants (2.1)
and conformal structures of signature (2, 2) with vanishing self-dual Weyl curvature.

A point p € M corresponds to an integral curve L, of the system (1.1) — a twistor
line. Moreover, if the Wilczynski invariants vanish then M is endowed with a conformal
structure and points in 7 correspond to special null two-surfaces in M called a—surfaces
(see next section). In Grossman’s terminology M acquires a Segre structure from the
torsion—free system of ODEs [17,21]. In four dimensions the Segre structure is the split-
ting of the tangent bundle into a product of rank two vector bundles. This is equivalent
to the existence of a conformal structure on M - see formula (3.3) in the next section —
so from now on we shall use the terminology of conformal geometry without referring
to the Segre structures.

In the original Penrose twistor correspondence [24], the four—manifold M is assumed
to be real analytic, and the correspondence extends to the complexified category. The
curves L, in a complex three—fold 7 corresponding to points in M are globally charac-
terised by the type of their normal bundle N (L) = O(1) ® O(1), where O(k) — CP!
is a holomorphic line bundle with Chern class k. In the present context we shall replace
this global condition on L, by local—differential conditions (2.1).
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3. Twistor Correspondence

Let [g] = {cg,c : M — R*} be a conformal structure on a 4-dimensional manifold
M consisting of an equivalence class of metrics of signature (2, 2) and let g € [g]. A
vector field V. C T M is called null if g(V, V) = 0. The null property of vector fields
is invariant under rescalings of g, therefore it makes sense to talk about a null vector of
a conformal structure. Conversely any conformal structure is completely characterised
by specifying null vector fields.

Locally there exist real rank two vector bundles S, S’ (called spin-bundles) over M
equipped with parallel symplectic structures &, &’ such that

TM=S®S (3.3)
is a canonical bundle isomorphism, and
g1 @ wi, v2 ® wp) = e(vy, V2)e (Wi, wa)

for vy, vo € I'(S) and wy, wy € T'(S). Under this decomposition, any null vector field
is of the form V = « ® 7 for some k € I'(S) and 7 € I'(S'). Also, the Riemann tensor
can be decomposed as

Rubed = VABCcDEA B EC'D + VA B'C'D'EABECD
+PABC'D'EA'B'ECD + PA'B'CDEABEC D!

R
+ E(SACSBDSA/C’SB/D’ — EADEBCEA'D'ERIC!), (3.4)

where Y apcp and Y pcp are ASD and SD Weyl spinors which are symmetric in
their indices and ¢ 4'p'cp = ¢4’y (cD) i the traceless Ricci spinor.

An o—plane is a two—dimensional plane in 7, M spanned by null vectors of the above
form with 7 fixed, and an a—surface is a two—dimensional surface in ¢ C M such that
its tangent plane at every point is an o—plane. Examining the Frobenius integrability
conditions for the existence of a—surfaces leads to the seminal result of Penrose [24]: A
maximal, three dimensional, family of a«—surfaces exists in M iff the Weyl tensor of g
is anti—self—dual.

The anti—self—duality of the Weyl tensor is a conformally invariant property, therefore
one can talk about ASD conformal structures. Let us assume that the conformal struc-
ture is real-analytic and therefore can be complexified. Thus (M, [g]) is a holomorphic
four-manifold with a holomorphic conformal structure.

Definition 3.1. The twistor space T of a holomorphic conformal structure (M, [g]) with
anti-self-dual Weyl curvature is the manifold of a—surfaces in M.

The twistor correspondence puts restrictions on the twistor space 7 :

Theorem 3.2 (Penrose [24]). There is a one—to—one correspondence between ASD con-
formal structures (M, [g]) and three-dimensional complex manifolds T with the four
parameter family of sections of u with normal bundle O(1) & O(1).

The additional structures on the twistor space which give Ricci flat metric g C [g] are

(1) A projection u : 7 —> CP', such that the four parameter family of curves above
are sections of 1.
(2) Symplectic structure with values in O(2) on the fibers of .
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The points in the twistor space 7 correspond to totally null self-dual two dimensional
surfaces (which coincide with the a-surfaces) in M, and points in M correspond to
rational curves (in the Ricci flat case these are sections of 1) in 7. The relation between
T and M is best revealed by exploiting the double fibration picture

M F ST, (3.5)
where the correspondence space
fZTXM|§€Lp=MXCP1

can be identified with the projective primed spin bundle P (S'). A point in F corresponds
to a point in p € M together with one a—surface containing p.

The holomorphic curves s ((C]P’})), where (CIP’}, =r~!'p, p € M, have normal bundle
N = O(1) & O(1). Two points p; and py in M are null separated iff the corresponding
curves L, and L, intersect at one point.

In the double fibration approach, the twistor space arises as a quotient of F by a two—
dimensional integrable distribution (called the Lax pair) defined by two vector fields
Lo, Ly which at each point of F are horizontal lifts to P(S') of vectors spanning an «
surface at a point in M. The existence of the Lax pair for an arbitrary conformal structure
with vanishing self-dual Weyl curvature has the following consequence [13,20].

Theorem 3.3. Let Eq, ..., E4 be four real vector fields on M and let el ..., e bethe
corresponding dual one—forms. The conformal structure defined by

g=c 0l - oe

is ASD if and only if there exist functions fy, f1 on M X RP! depending on A € RP!
such that the distribution

0 d
Lo=FE; —AE3+ fo—, L =E4—AE>r+ f1— 3.6
0 1 3 foak 1 4 2 flak (3.6)

is Frobenius integrable, that is, [Lo, L1] = 0 modulo Ly and L.

The real (2,2) ASD conformal structures are obtained by introducing an involution
T : 7 — 7 on the twistor space given by complex conjugation. The fixed points corre-
spond to real e—surfaces in M. The involution acts on the twistor lines, thus giving rise
to maps from CP! to CP' which swaps the lower and upper hemispheres preserving the
real equator. The moduli space of t—invariant twistor curves is a real four—-manifold.

4. From ASD Conformal Structures to Systems of ODEs

In this section we shall present an algorithm for reconstructing a system (1.1) of torsion—
free ODEs from a given ASD conformal structure [g]. Given (M, [g]) we shall construct
a real projective line parametrised by 1 € RP! of real a—surfaces through a point in
p € M. Thisis a curve in M x RP' which also depends on the four coordinates of p in
M. We shall regard this as a parametrised integral curve of a system of two second order
ODE:s. The system (1.1) will arise by eliminating the coordinates of p and removing the
parametrisation. To implement this procedure, consider the Lax pair (3.6) (see Sect. 3)
of vector fields Lo, L; on M x RP'. Now proceed as follows:
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(1) Find three independent functions (X', Y, Z) on F = M X RP! which satisfy
Lof =0, Lif=0.

These functions descend to the twistor space 7 where they provide a local coor-
dinate system (X, Y, Z). A point in M corresponds to a curve in 7. The pull back
of the four—parameter family of curves to F can be parametrised as

A — (X, p), Y&, p), Z(, p)),

where p = (w, z, x, y) are local coordinates on M.
(2) Use the implicit function theorem to solve the equation X = X (A, p) for A =
ML(X, p). Then solve the relations
ad 0Z
Y:y, Z:Z, Y/:—y’ Z/:_
0X 0X
to express (w, z, x, y) as functions of (Y, Z, Y’, Z').
(3) Differentiating once more, and substituting for (w, z, x, ¥) from above gives a pair
of second order ODEs (1.1).
As an example of this construction, let us consider the ASD Ricci-flat metric which, in
local coordinates may be written as

g = dwdx +dzdy — Oy dz? — Oyydw? +20,ydwdz, (4.1)

where ®, = 9,0 etc, and ® = O(w, x, y, z) is a function satisfying the second heav-
enly equation

Oxw + Oz + OBy, — O =0. (4.2)

X

It follows from the work of Plebanski [25] that all (2, 2) ASD Ricci flat metrics locally
arise from some solution to this equation. The only non—vanishing part of curvature is
given by the ASD Weyl spinor which in the spin-frame adapted to the heavenly equation
is a section of Sym*(S) — M given by
3*e

0xA49xBaxCoxP’
where the indices A, B, ... take values 0, 1 and x4 = (y, —x). The Lax pair for this
system may be written as

Lo = 09y — A(0y — Oxy0y + Oyy0y),

L1 =0y +A(0; + Oy 0y — Oy 0x). (4.3)

YaBCcD =

A curve L, C 7 corresponding to a point p € M is parametrised by choosing a two—

dimensional fiber of u : 7 — CP! and defining (w, z) to be the coordinates of the
initial point of the curve, and (y, —x) to be the tangent vector to the curve. Thus the
pulled back curve is A — (X = A, Y = Y(A, p), Z = Z(A, p)), where the functions
(Y, Z) admit the following expansion [10]:

V=w+iy—0,22+0. 1% +..., (4.4)
Z:z—)\x—Gykz—@wk3+.--,

and the higher order terms can be determined by recursion on successive powers of A
from L4 (Y) = La(Z) =0, where A =0, 1.
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Example 1. Consider a solution to (4.2),

1
0= -y~
27
The corresponding system of ODEs is
Y'=0, Zz'=-20"). 4.5)

The system has a nine—dimensional symmetry group (see formula (7.1)), which is also
the largest symmetry group of a non—trivial ASD conformal structure. The corresponding
pp—wave metric has constant Weyl curvature with only one non-vanishing component

Y0000 = 6.

Example 2. This example, when analytically continued to the Riemannian signature, is
relevant in the theory of gravitational instantons. The second heavenly equation (4.2)
with ®, = 0 reduces to a wave equation on a flat (2 + 1)—dimensional background.
Introduce ¢ := ®, and perform a Legendre transform

H(t, y,w):=tx(w,y, t) — 0w,y x(w,y,1)).
Then x = H;, ®, = —H, and (4.2) yields the wave equation
Hyy+ Hyy =0, (4.6)
together with the metric

1 1
= H,(~dy? + dwdt) — —
8 tz(4y wdt) H,

1
= V(Zdyz +dwdt) — V- (dz + A, (4.7)

H,
(dz — %dy + Hyydw)?

where V = H;; and A = H;,dw— (H;,/2)dy satisfy the monopole equation *d V = d A,
where  is the Hodge operator on R>! with its flat metric. Thus (4.7) is an analytic con-
tinuation of the Gibbons—Hawking metric [16]. The vanishing of ®_ implies that the
whole series (4.4) for ) truncates at 2" order. From (4.4), we get

Y =w+iy— A%, (4.8)
Z =7 AH +AHy+ X Hy+ ...,

where H = H(w, y, t), from which we can obtain the corresponding path geometry.
An example with H(w, y, t) = yt2 is

Y =x"yY - J(x-y)? -2x-17/, (4.9)
7' = (X7'Y - J(X-1y)?2 —2Xx-12"2)2.

The potential in the Gibbons—Hawking metric is linear in the flat coordinates on R>!.
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5. Wilczynski Invariants

We shall now demonstrate a new way of deriving the Wilczynski invariants (2.1), from
the double fibration picture (3.5). This will provide a converse of the construction pre-
sented in the last section. Our procedure is analogous to the recursive construction of
the Wilczynski invariants of a single n" order ODE [11].

Each point in 7 corresponds to an a-plane in M, and the functions P4 = (dY /d X,
dZ/dX) are null coordinates which are mutually orthogonal and thus agP° + a; P! is
null for arbitrary constants ag, a;. Furthermore, by differentiation, the one-form apdY 04
adY!is orthogonal to apdP® +a;dP'.

In the derivation below we shall regard (Y A pA X ) as coordinates on the five dimen-
sional correspondence space F from the double fibration picture (3.5), and define the
degenerate metric g on this five-dimensional space. We then demand that this quadratic
form Lie derives up to scale along the total derivative d /d X, and so it gives a conformal
structure on M. The metric g necessarily takes the form

g =eapdY dPB + ppapdY?dY B, (5.1)
where ¢pap = ¢(ap). The conformal structure of M is invariant along the fibres of s in
the fibration (3.5), and therefore

dg 2
2o
ax 8

for some function 2. Plugging in the expression (5.1) and comparing coefficients on
both sides we obtain the equations

OF C
2pan + - ppeac = Leas, (5.2)
dpap OFC
d_X 8Y(B£A)C Q2¢AB~ (5.3)

Taking the trace of the (5.2) (using ¢ to raise and lower indices),
— =207,
aPC

and substituting back into (5.2) for 2 we get

1 8FC1 aFC¢

b5 = CopB T 4B ypC:
Then, from (5.3), we obtain the Wilczynski invariants (2.1),

1d 8FA+8FA+18FC3FA A
2dX 3PB " gyB " 49pBypPC B

where here we have used the fact that
AFC aF4  9FC aFA 54
aPBypPC gpCops B

to rewrite the third term.
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Note here that the expression for the conformal metric (5.1) actually gives a metric
it @ =0ie, 25 = 0 which implies
oA
FA =2e"8 —— 5.4
& S pB (5.4)

for some function A. The metric (5.1) then resembles the heavenly form (4.1) of the
Ricci—flat metric. The exact equivalence arises from evaluating (5.1) at X = 0, where
Y4 = (w,2), PA = (=y,x)and A(YA, PA) = —O(w, 7, x, y).

Example 3. One example is given by
Y'=0 Z" =B (5.5)

for some arbitrary function 8. The ASD conformal structure on the solution space M is
type—N and Ricci-flat. Notice here that the system (4.5) of sub-maximal point symmetry
is just a special case of this solution.

The last example was Ricci-flat. One may seek conditions on F4 for this to be true
more generally. In other words one seeks to obtain (4.2) as well as (4.1). For this, one
may proceed as follows: introduce the two-form

1
Y =dY AdZ = EEABdYA AdYE,

and then calculate

dx
= — eupdYA AdPE,

X EAB

dz—z = eap(dPA ANdPB +dYA NdF?)
dx? ’

and
3
°X d
—— =eap(3dP* NdFB +dY* A ——dFP),
7x3 = eaB( XA
all modulo dX and where d/d X may be thought of as Lie-derivative.

In the context of the Nonlinear Graviton Theorem 3.2 the two-form X is the pull
back of the O(2)-valued symplectic structure on the fibres of 7 —> CP' to the cor-
respondence space. Thus, up to an overall scale, this two—form is given by a quadratic
polynomial in the base coordinate X. We can therefore examine the consequences of
imposing the requirement

> % modulo d X

——~ ~ ¥ modulo d X.

ax3
The coefficient of d PO A d P! on the left-hand-side must vanish, which imples 8 F 2 /3
P8 =0, and we may introduce A asin (5.4). Then the vanishing of termsindY4 A d P
reduces to a single equation

2 2 2
Aap__97A +lgADSBE 9”A 9°A
aYAapB 2 APAYPE gpBypPD
which is precisely (4.2) in this notation. The remaining condition (5.3) can now be

viewed as the initial value problem for A with the initial data given by the solution of
the heavenly equation. This proves the following

£ =0,
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Theorem 5.1. Let ® = O(w, z, x, y) be a solution to the heavenly equation (4.2) which
gives the Ricci—flat ASD metric (4.1). The corresponding system of ODEs with vanishing
Wilczynski invariants is
Y// — 2 BA Z// — _za_A
VAN Y’
where Alx=x, = —O(Y (Xo), Z(Xo), Z'(Xo), —Y'(X0)) and the X—dependence of A
is determined by (5.3).

(5.6)

The formula (5.1) gives a way to reconstruct the conformal structure directly from the
system of ODEs. An alternative procedure based on the original non-linear graviton con-
struction of Penrose [24] gives the conformal structure directly from the integral curves
of the system of ODEs. This procedure will be implemented in the example (7.2).

6. Symmetries of Torsion-free Path Geometries

In the twistor approach, we observed there is a one-to-one correspondence between
points in 7 and a-surfaces in M. Therefore, any transformation which preserves points
in 7 will give rise to a transformation of M which preserves the ASD conformal
structure.

Lemma 6.1. There is a one—to—one correspondence between conformal Killing vectors
of a (2,2) ASD conformal structure (M, [g]) and point symmetries of the torsion—free
system of ODEs whose integral curves are twistor lines for (M, [g]).

Proof. We shall use the double fibration picture (3.5). Given a conformal Killing vector
K of (M, [g]) we can lift it to the vector field K on the correspondence space F, so
that [Lg, K] = 0 and [L{, K] = 0, where L, L1 is the twistor distribution (3.6), and
the commutators vanish modulo a linear combination of Lo and Lj. The lift is explic-
itly given by K = K + Q9,, where Q is a quadratic polynomial in A with coefficients

depending on coordinates on M. In the spinor notation Q = V4 K4 BrnA/nB/, where

a4 =1, -»).

The space 7 is a quotient if F by the distribution spanned by Lo and L; and thus
K = 54K is a vector field on 7. Therefore it generates a one—parameter group of trans-
formations of 7~ which therefore takes a—surfaces in M to a—surfaces. As K generates
diffeomorphisms of M and integral curves of the system (1.1) in 7 correspond to points
in M, then the action generated by K preserves the integral curves of (1.1). Thus it is a
point symmetry on (1.1).

Conversely, a point symmetry of (1.1) corresponds to a transformation of M which
maps a—surfaces to a—surfaces. Therefore it gives a conformal Killing vectoron M. O

In the trivial case (Y” = 0, Z” = 0), the path geometry has point symmetry group
SL(4,R) which is isomorphic to the symmetry group of the flat conformal structure
SO (3, 3). The sub-maximal case of a torsion-free system of ODEs with nine-dimen-
sional point symmetry algebra (4.5) which corresponds to a Ricci-flat ASD conformal
structure with only one constant non-vanishing component of the ASD Weyl tensor.
Therefore the ‘gap’ in (2, 2) conformal geometry equals to 6 = 15 —9. This, by Lemma
6.1 coincides with the gap of path geometries in three dimensions, as it is known that
the sub-maximal symmetry in the projective class P is only eight dimensional. This fol-
lows from the general result of Egorov [14] that all sub-maximally symmetric projective
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connections on R” are transitive and have symmetry algebra of dimension n> — 2n + 5.
See [19] for an account of the general theory of such ‘gaps’.

Example (4.5) is the unique (up to diffeomorphism) torsion-free path geometry with
point symmetry algebra of sub-maximal size and we expect systems with 6, 7, 8 sym-
metries to be also comparatively rare. To see explicitly why this occurs, consider the
lift of the integral curves of an arbitrary path geometry (1.1) to the second jet bun-
dle J>(T,R) which is a seven-dimensional manifold with local coordinates given by
(X, Y.z, Y, 7.,Y", Z”). Any point symmetry of (1.1) can locally be described by some
vector field x on 7 which we can prolong to a vector field pr® x over some open set in
J 2(’7, R). Then, the functions

A'=Y' - F(X,Y,Z,Y,Z), A*=2Z2"-G(X.,Y,Z,Y,Z)

are constant along pr® x.

Now suppose that the given path geometry admits a Lie point symmetry algebra of
dimension five, generated by five vector fields which prolong to an integrable distri-
bution L of J 2(7, R) on rank at most five. In the generic case, when the rank is five,
these vector fields will lie in the tangent bundle of some five-dimensional submanifold
U c J*(T,R). Given that the codimension of U is 2, we can construct two functions
A%, Al which are invariant with respect to the action of L, i.e, given a five-dimensional
Lie algebra L of vector fields over 7, we can find a (non-trivial) path geometry (1.1)
which has L as its point symmetry algebra. This statement is true subject to some reg-
ularity conditions. For example it is sufficient to demand that the first prolongation of
the vector fields to the first jet bundle J (7T, R) must not be contained within some
four-dimensional submanifold of the tangent bundle 7' (J (T, R)).

Lie algebras L of dimension six or greater will generically not give rise to func-
tions A, A, and there will be a constraint on finding non-trivial path geometries with
point symmetry algebras of this size. In particular, we must require that the prolonged
algebra forms a distribution of rank lower than six. If additionally, we impose the con-
straint that the Wilczynski conditions (2.1) hold, then this sudden decline of examples
will be observed sooner (at dimension four rather than six). In the next section, we
outline the prolongation procedure and present some examples of path geometries with
4,5,6,7,8,9 point symmetries together with some details of the Lie algebraic structure.
Where possible, we also make use of the twistor approach to say something about the
corresponding conformal structure on the space of solutions.

7. Examples

For a given path geometry in three dimensions (1.1) the point symmetries may be found
by the following well known procedure:

(1) Let the generator of a point symmetry be
X = X-10x + xody + x19z,

where the y; are functions of (X, Y, Z) for which we must solve.
(2) Determine the first and second prolongations by

1
O dxa _ padx-i n® = dn'y’ _adx-
A dx dx =4 dx dx "’

A =0, 1, where QA = ddzTYZA.
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(3)  The prolongation of the vector field x to the jet bundle J?(7, R) is given by

1
1 2 9
pr? (0 = x + Znﬁ;)aPB + ngg)aQy
B=0

(4) Then we determine point symmetries by finding functions yx; from

pr? OO (A% | qop1—g = pr® GO (A g1 = 0.

7.1. Special Ricci-Flat Case. Consider the system (5.5) with f real analytic. The sub-
maximal torsion-free system (4.5) lies in this class so we might expect it to yield more
examples of systems with a high number of point symmetries. The corresponding ASD
conformal structure on the moduli space of solutions is given by

1
g =dwdx +dzdy — Eﬂ/(y)dw2

and is Ricci-flat, as it corresponds to (4.1) with ® = (1/2) f B(y)dy.

Under these conditions, it is not difficult to show that the point symmetry algebra
contains a six-dimensional subalgebra L¢ C sl(4, R). It transpires that L¢ is solvable
and in terms of point symmetries we may write it down explicitly,

Le =span{e; =0y, ey =0y, e3 =0z, es1= Xy, es=Zdy, e, = Xdx +2Ydy + Zdz}.

However, as we have seen, there will be some special cases of (5.5) for which the point
symmetry algebra is larger but will contain Lg as a subalgebra.

Proposition 7.1. Consider a system of two second order ODEs of the form (5.5) for
some function B of the form

By =D s
k=0

If B is a quadratic function then the system (5.5) is diffeomorphic to a trivial one (and
the symmetry group is 15-dimensional). Otherwise, the symmetry algebra has dimension

12 — Rank (M) — Rank (M>),
where M| is a matrix with rows

Gk &ks1), k=3

and M» is a matrix with rows

Gk (k=2)& (k=31 —(k+D&y1), k=3
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Proof. Without loss of generality, let us simplify the problem by making the diffeomor-
phism

1 2 1 2
Z— Z+ EEOX + & XY + ESQY

so that we obtain the system

9]
Y'=0. z"=3 &
k=3

which has the same number of point symmetries as the original.
For a given vector field,

88D
X=Xoigy H X5y X5

the expressions

pr® (O(AY) qop1—g and pr'? () (A p0_a1g

are real analytic in P° and P! with coefficients which are functions of X, Y and Z. For x
to be a symmetry of the system (4.5), each of these coefficients must vanish separately.
This leads to the following system of differential equations in y_1, xo and xi:

Fxo  Fxi _ xo P Pxo1 Pxo1 9%xo _0
9X2 ~ 9X2 T 9XdazZ  9XdaY  dYdz  9z2 ~ az?2 7
Pxo _ xo1 xo . 0%xa 0%xo 9% x-a
aXoY 0X2 ' ay? 0X9Y' 0YdZ 9XoZ’
Fxi Py P x1 P 0%x
9X0Z 9X2 ' 3YdZ 9Xay’ 9Zz2 0Xo0Z’
3% x1 9x0 xo  *x-1 9%x- dx0
A 350 5T : +36 220 — o,
ar? o 8%x B9z Tyt vz 92
and, for k > 3,
X1 9 X0 9X0 dx-1
k—3)&—— — (k+1 22 RECL Y
( ) 57 ( Vi1 57 &k 27 &k 57
Ix—1 9x1 0x—1 X0 9x0
k—2 2 (k=3 —(k+1 20 kg2 =0,
( )6k 5% + &k 27 +( Vék—1 37 (k + 1)k 3% &k Y

Enforcing the system to be non-trivial (i.e, not all £ = 0) we obtain
dx-1 _ dxo _ 3%x-1
0Z 9z  oay?

Then, the most general solution for x is

=0.

X—1 = a1X2+a2XY+(a3 +a4)X +asY +ag,
X0 = alXY+a7X+a2Y2+2a3Y +ag,

3
X1t =a1XZ+ayX +arYZ + (a3 +a9)Z + %ale + (%07 +a11) Y +ap,
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where, for all k > 3,
§raz +§kr1ar =0
and
§raio + (k — 2)&ras + (k — 3)&—1as5 — (k + Dékr1a7 — (k + D)éraz =0,

and the result follows.

Thus, in the non-trivial case, the point symmetry algebra of (5.5) has at most dimen-
sion 9. A little more work shows us that systems of dimension 8 are not attainable for
this example (if the rank of M> is 1, then the rank of M> is 2 and if the rank of M is 2
then the rank of M, is at least 3). 0O

Dimension 9. A system with point symmetry algebra of dimension 9 is given by (4.5),
y" — 0, 7" — —Z(Y/)S.
A quick check of the expressions for M1 and M> will show that the system

()3

Y//ZO Z//=
' 1-Y

also admits a nine-dimensional point symmetry algebra but these systems can be shown
to be diffeomorphic. The associated Lie algebra in the first case can be written as

Lo = L¢ @ span{ey, es, €9} (7.1)
with
3
e; =3Ydy +Zdz , eg = EZ dy + Xoz ,

_]X28 + 1XY+]Z% d +]XZ8
€ = — = -7 = .
P20 T2 4 L) z

This has Levi-decomposition

. 1
L9 = Lg x sl(2,R) = span{e;, e3, €4, €5, €7, eg} X span{ej, e5 — e €9}.

Dimension 7. A path geometry with point symmetry algebra of dimension 7 is given by
Y// =0 Z// — (Y/)k

for k > 4. This will be a solvable Lie algebra for any value of k and is obtained by
adding the vector field e; = kY dy + Zdz to L.
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7.2. ASD Einstein - dimension 8. Consider the system

2(2/)2Y/

Y/ = 0, gl 27
zZY —1

(7.2)
This system has been suggested to us by Boris Doubrov, who has also pointed out
its appearance in the theory of chains in the homogeneous contact geometry [4]. The
Wilczynski invariants vanish for (7.2).

The corresponding conformal structure is found by demanding that two neighbour-
ing integral curves in 7 intersect at one point — this is the condition which selects null
vectors in M. This, in the complexified setting, reduces the normal bundle of the integral
curve L, to O(1) ® O(1). To perform this calculation explicitly, solve (7.2) for (Y, Z)
and demand that equations §Y = 0 and §Z = 0 for X have a common solution. We
apply this procedure to the integral curves

1 1
Y=w+yX, Z=—4+———,
y YAz —xX)
where 8Y = 3", 0,Y 8x%,8Z = 3 ,9,2Z 6x%, and x* = (w, z, x, y). Then the dis-
criminant condition for two curves to intersect gives the metric

2
g =dwdx +dzdy +x2dw? + (z2 + —Z) dy2 +2 (Zx + f) dwdy,
y y

which is ASD and Einstein, with scalar curvature equal to —24. Both the system of ODEs
and the metric have eight-dimensional symmetry group SL(3, R) which acts isometri-
cally on M. The homogeneous model for the space of solutions is SL(3, R)/GL(2, R),
which is a (2, 2) real form of the Fubini-Study metric on CP?2 = SU®3)/U(2).

7.3. Symmetry algebra of dimension 5. The example discussed in the Gibbons-Hawking
context (4.9) has five-dimensional point symmetry algebra which we can write as

1
Ls = span{dy, 0z, X9x + Y dy, —EXZ)X + Z0dy, X23Y +2Yoz}.

The algebra L5 is solvable and contains both Bianchi II and Bianchi V as three—dimen-
sional subalgebras.

7.3.1. Sparling-Tod solution Another way to construct a torsion-free path geometry
with a given point symmetry algebra is to determine an ASD metric with that conformal
symmetry algebra and determine the system of ODEs governing twistor lines via the
method given in Sect. 5. The metric of [28] given by

2
= dwdx +dzdy — ————— (wdz — zdw)?
g =dwdx +dzdy (xw+yz)3(w 7z —zdw)
is an ASD Ricci-flat metric (4.1) with ® = ﬁ and has five-dimensional conformal

symmetry algebra. The conformal Killing vectors are

ki = 20y — x9y, ky = —2way +x3y — y9y, k3 = woy, +20;, kg = —y0y + way,
ks = 20, — wd,.
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We should note here that the resulting system of ODEs does not coincide with the pre-
vious example as the conformal symmetry algebra of the Sparling-Tod solution is not
solvable. It has an s[(2, R) subalgebra generated by (ki, kz +k3, k4). Its Levi decompo-
sition can be expressed as the semi-direct product of an s[(2, R) with the 2—dimensional
non-Abelian Lie algebra.

The system of ODEs can be read—off directly using Theorem 5.1 and setting A =
—O(Y, Z,Z',—Y'). This yields A = (Y'Z — YZ')~! and (5.4) gives

2Y . 27
Y'Z —YZ)H?’ T (Y'Z-YZ)?

" o__

(7.3)

The integral curves are
Y =Ae"X + Be VX, Z =Ce"* + De VX,

. . —1
where (A, B, C, D) are constants of integrations, and y2 =(AD — BC)_I«/E . The
original metric can be recovered from the twistor lines by setting

w=A+B, z=(C+D), y=y(B—-A), x=y(C— D).

7.4. Symmetry algebra of dimension 4. Consider the system

Y =0, 7' =— (z/ +J/n? = 1)2. (7.4)

This example was found by constructing the most general system of ODEs with Lie
point symmetry algebra

L4 = span{dyx, dy, 9z, Y dx + Xy}

and imposing the torsion-free conditions. The algebra L4 above is a particular realisation
of the abstract algebra' A4 | as given by Patera and Winternitz [23]. The integral curves
of the system (7.4) are given by

YV=w+Xy, Z=log(X —x)—/y2—1X+z.

Following the procedure applied in case of the system (7.2) we find the ASD conformal
structure

g =dxdy + (dw + xdy)(dz + y{/ y* — lildw).
This admits a null Killing vector d/dz and thus fits into the classification of [12].
! The Referee has pointed out that there are two more nonequivalent representations of this algebra:
Ly, = span{dy, —Xdy, dz,dxy — XZdy}
and
Lap = span{2dy, 3z, —Y2dx — ydz, 2Zdx + dy ).

‘We have checked that there is no torsion—free system of ODEs with symmetry L4, and there exists a torsion—
free system of ODEs with a seven—dimensional symmetry algebra which contains L4, as a sub-algebra.
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7.5. Symmetry algebra of dimension 3 or less. 1f the symmetry algebra has dimension
3, then it necessarily belongs to the Bianchi classification of three—dimensional Lie
algebras. There are many examples in this case which are analytic continuations of Rie-
mannian metrics. See [29] for a discussion of these examples. Examples of an ASD
conformal class with one or two symmetries can be found in the Gibbons—Hawking
class (4.7). An axisymmetric solution H to the wave equation (4.6) gives a metric with
two Killing vectors. Another example with two—dimensional symmetry is the system
(8.5) discussed in the next section. A general solution of (4.6) with no symmetries gives
a metric which only admits one Killing vector d/dz. Gravitational instantons of class
Dy are examples of ASD conformal structures with no symmetries.

8. Finsler Structures with Scalar Flag Curvature

For a given n-dimensional manifold 7" with coordinates X k (k =1,...,n), a Finsler
metric is a positive continuous function F : 7 — [0, co) such that

e Fissmoothon T7\0 = {(XK, PX) e TT|P # 0},
F(XK, cPk) = c]—'(X" P*y fore > 0,

e The tensor fi; = 5 aftfm is positive definite for all (X, P¥) € TT\0.

We shall consider the case n = 3 and set X¥ = (X, Y, Z) and P¥ = X* = df for some
parameter ¢. Finsler geometry generalizes the notion of Riemannian geometry in that
the norm on each tangent space F(X*, -) is not necessarily induced by a metric tensor.
This makes these metrics useful in the study of problems involving paths of least time.
The metric tensor f;; allows us to define Finslerian geodesics, which are integral curves
of the system

Xwyp XX =0, ijk=1,...n,

where
. 1.,
V]l'k = Efl (flk,xf + finxk — fjk,X/)-

It was argued in [5] that, for n > 2, given any system of ODEs with vanishing Wilczyn-
ski invariants its integral curves arise as the set of unparametrised geodesics of a Finsler
function of scalar flag curvature. In this context, the torsion-free path geometries are
viewed as projective equivalence classes of isotropic sprays on T7 . Given a spray

Szpfi—zr"i. i=1,....n
aXl 8Pl7 9 b 9

we can define its Riemann curvature by
I 1 1
Ry = Hi (ij) — H; (Fik) + th jk — F/m ik

where T =3 g 75 pr» etc and the H; form a horizontal distribution determined by S:
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Then the spray S is said to be isotropic if its Ricci curvature is given by
R = Ry, P*P' = ps' +7; P’

for some function p and covector 7;. It was shown in [6], that for n > 2, a spray is
isotropic if and only if it is projectively equivalent to one whose Riemann curvature van-
ishes (so-called R-flat) and in [7], that any R-flat spray arises as the geodesic spray of
some Finsler function. More importantly, in [27] it is shown that the geodesic sprays of a
Finsler function are isotropic if and only if the Finsler function has scalar flag curvature.
Here, the flag curvature of a Finsler metric is defined in terms of its Riemann curvature
by

KXk, Pk vk = VI(PTRjin POVE 5
fP,PYf(V, V)= (f(P,V))

where V is a section of the tangent bundle transverse to P and the indices are raised/low-
ered with the tensor f;;. The flag curvature is scalar if

KXk, Pk vk = k(X*, PY.

Thus, we could construct all systems of ODEs with vanishing Wilczynski invariants if
we know how to characterize the Finsler functions of scalar flag curvature. Although a
lot of work has been done in this area, a complete characterization of such functions has
not yet been achieved. Most success has come with a special type of Finsler function

F = \ai;(X*)PIPI +b;( X" P, i, jk=1,...,n.

This is known as a Randers metric. If we restrict our attention to Randers metrics of
constant flag curvature, then we can use the following

Theorem 8.1 (Bao—Robels—Shen [2]). A Randers metric F has constant flag curvature
if and only if the corresponding Zermelo data (h, W) satisfy the following:

e 1 is a Riemannian metric with constant sectional curvature.
e W is a Killing vector or homothety of h.

Here, the Randers data can be expressed in terms of the Zermelo data as follows [26]:

)\hij + W W; _ Wi

ajj = )»2

where A = 1—h;; WiW/and W; = h; j W/ . This gives rise to a procedure for constructing
torsion-free systems of ODEs from a three-dimensional Riemannian metric of constant
sectional curvature and a homothety of this metric. The geodesic spray coefficients of
such systems was worked out in [26].

Example 4. Consider the Zermelo data

h=dX?>+dY?>+Y%*dZ? W= —.



Twistor Geometry of a Pair of Second Order ODEs 699

The geodesics of the Randers metric associated to this Zermelo data are the integral
curves of the systems of ODEs with vanishing Wilczynski invariants,

2YZ/\/1 + (Y2 HY2((Z)2 = (V)2 = 1)

Y" (8.5)
Y(Y2—1)
Y (1+ @)+ (Z)Y2(Z2')> — (¥)? - D)
’ (2 =12 ’
Loz e ey (@202 - 2 - 1))
Z = Y(Y2Z— 1) '

. . a d
This system has two symmetries 3% and .

We can also view this correspondence in the other direction i.e, given a system of
ODE:s with vanishing Wilczynski invariants, we can construct a Finsler metric of scalar
flag curvature.

Example 5. To illustrate this point, let us consider the submaximal system (4.5) corre-
sponding to ASD Ricci—flat pp waves with constant Weyl curvature. Then, using the
procedure in [22], this system describes the unparametrised geodesics of the Finsler
function

. (Y _Z Xy3 6vy?
]—‘:Xg(—.,2—.—2—. +— )
X' 7x X3 X2

in some open domain of 7" where f;; is positive definite, where G is any function of two
variables. In particular, let G (.x, y) = ,/xy and consider the Lagrangian L = %]—" 2 in
unparametrised form, where X = 1,

L=2Y'7Z —2X¥Y)*+6Y(Y)>.

The Euler-Lagrange equations give (4.5). For this example, the flag curvature of F
vanishes.

Similarly other systems with vanishing Wilczynski invariants arise from a variational
principle induced by a Finsler structure. Thus all these systems fit into the formalism
of [1].

9. Conclusions and Outlook

We have constructed several examples of systems of two second order ODEs with van-
ishing Wilczynski invariants. The integral curves of such systems are twistor curves
which correspond to points in a four-manifold M with ASD conformal structure. The
twistor curves can also be viewed as unparametrised geodesics of Finsler structures with
scalar flag curvature.

The maximally symmetric, non—trivial example is a Ricci—flat ASD pp—wave with
9—-dimensional group of conformal symmetries, and we have given examples of systems
with symmetry groups of dimensions between 9 and 5. Some of the examples have a
specialformY” =0, Z”" = G(X,Y, Z,Y’, Z'). This is what Grossman calls ‘a weaker
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form of integrability for the second ruling’ [17]. It corresponds to the existence of a two
parameter family of S—surfaces (these are null ASD surfaces). This family gives a sur-
face in the twistor space 7, and it is known [12] any ASD (2, 2) conformal structure
with a conformal null Killing vector admits such structure.

In the case of a trivial ODE with integral curves being straight lines in 7 = R is
a starting point for John’s integral transform [18]. Given a function ¢ : 7 — R with

appropriate decay conditions at infinity and a straight line L C 7, define a function )
on the space M of straight lines
&m=/¢
L

The result of John is that the range of this transform is characterised by an ultra-hyper-
bolic wave equation on M, where the wave operator is induced by a flat (2, 2) metric on
M = R*. If the line L is parametrised by X — (X,Y = w+ Xy, Z = 7z — Xx), then

émaamy>=/ﬂﬂxﬂu+X»z—xxwx and Gy + ey = 0.
R

It may be interesting to develop a non—linear version of John’s transform applicable to
non-trivial systems of ODEs with vanishing Wilczynski invariants. Integral curves of
(4.5) could be a good starting point for this construction.
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