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Abstract
We demonstrate that the five vortex equations recently introduced by Manton 
arise as symmetry reductions of the anti-self-dual Yang–Mills equations  in 
four dimensions. In particular the Jackiw–Pi vortex and the Ambjørn–Olesen 
vortex correspond to the gauge group SU(1, 1), and respectively the Euclidean 
or the SU(2) symmetry groups acting with two-dimensional orbits. We show 
how to obtain vortices with higher vortex numbers, by superposing vortex 
equations of different types. Finally we use the kinetic energy of the Yang–
Mills theory in 4  +  1 dimensions to construct a metric on vortex moduli 
spaces. This metric is not positive-definite in cases of non-compact gauge 
groups.

Keywords: topological solitions, integrable systems, Yang–Mills theory, 
symmetry reductions, gauge theory, Abelian vortices

1.  Introduction

The Abelian Higgs model at critical coupling admits static solutions modeling vortices which 
neither attract nor repel each other [14]. The mathematical content of the model consists of 
a Hermitian complex line bundle L over a Riemannian surface (Σ, gΣ), together with a U(1) 
connection a and a complex Higgs field φ satisfying the Bogomolny equations

Dφ = 0, f = ωΣ(1 − |φ|2).

Here ωΣ is the Kähler form on Σ, D = ∂ − ia(0,1) is the covariant ∂–operator (the anti- 
holomorphic part of the covariant derivative D defined by a), f = da is the Abelian Maxwell 
field and a(0,1) is the anti-holomorphic part of a. Setting |φ|2 = exp (h), and solving the 
first Bogomolny equation  for the one–form a reduces the second equation  to the Taubes 
equation [21]
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�h + 2(1 − eh) = 0,� (1.1)

which is valid outside small discs enclosing the logarithmic singularities of h—the locations 
of vortices on Σ. Here � is the Laplace operator on (Σ, gΣ).

In [13] Manton has considered a two–parameter generalisation of the Taubes equation

�h − 2(C0 − Ceh) = 0.� (1.2)

The constants C0 and C can be rescaled to 0, 1 or −1, and Manton has argued that only five 
combinations lead to non–singular vortex solutions

	 •	C = C0 = −1 corresponds to the Taubes equation [21]. The magnetic field f decays to 
zero away from vortex center.

	 •	C = C0 = 1 is the Popov equation [17, 18].
	 •	C = 0, C0 = −1 corresponds to the magnetic field with constant strength equal to 1.  

In [13] this was called the Bradlow vortex.
	 •	C = 1, C0 = −1 is the Ambjørn–Olesen vortex. The magnetic field is enhanced away 

from the position of the vortex [1, 13].
	 •	C = 1, C0 = 0 is the Jackiw–Pi vortex equation, which arises in a first order Chern–

Simons theory [11, 10]. In this case |φ|2 tends to zero at the position of the vortex and 
(non-compact surfaces) at ∞.

The aim of this paper is to show (theorem 2.1 in section 2.3) that Manton’s equation (1.2) for 
all values of C0, C arises as the symmetry reduction of the anti-self-dual Yang–Mills equa-
tions (ASDYM) on a four-manifold M = Σ× N , where N is a surface of constant curvature, 
and the symmetry group is the group of local isometries of N. The value of C0 in (1.2) is deter-
mined by the curvature of N, and C depends on the choice of the gauge group GC. We shall 
demonstrate that N = S2 if C0 = −1, N = H2 if C0 = 1, and N = R2  if C0 = 0. The gauge 
group is SU(2) if C = −1, SU(1, 1) if C = 1 and the Euclidean group E(2) if C = 0. In the 
integrable cases the Gaussian curvatures of Σ and N add up to zero.

In section 2.5 we shall show how the five vortex equations are related by a superposition 
principle which leads to a construction of vortices with higher vortex numbers.

The four-dimensional perspective allows us to derive a canonical expression for the result-
ing energy of vortices. By considering the kinetic energy of the dynamical Yang–Mills theory 
on R× M  in section 3.1 we shall derive integral expressions for moduli space metrics corre
sponding to various choices of constants in (1.2). If the gauge group is non-compact, then 
the kinetic energy and the resulting moduli space metric are not positive definite and the 
moduli space may contain surfaces where they identically vanish. In the integrable cases of  
equation (1.2), the moduli space metric takes a simple form that generalises the one for inte-
grable Taubes vortices described in [20].

2.  Equivariant anti-self-dual connections and symmetry reduction

In this section we shall formulate the main theorem. Let us first introduce some notation.

2.1. The group GC

The key role will be played by a Lie group GC ⊂ SL(2,C) which consists of matrices K such that

K
(

1 0
0 −C

)
K† =

(
1 0
0 −C

)
, where C ∈ R
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or equivalently

GC =

{
K =

(
k1 k2

Ck2 k1

)
; k1, k2 ∈ C, and |k1|2 − C|k2|2 = 1

}
.� (2.3)

Therefore G−1 = SU(2), G1 = SU(1, 1) and G0 = E(2)—the Euclidean group. The genera-
tors of the corresponding Lie algebra gC,

J1 =
1
2

(
0 i

−Ci 0

)
, J2 =

1
2

(
0 −1
−C 0

)
, J3 =

1
2

(
i 0
0 −i

)
,� (2.4)

satisfy commutation relations

[J1, J2] = −CJ3 , [J2, J3] = J1 , [J3, J1] = J2.

The explicit parametrisation of GC as well as the left-invariant one-forms are constructed in 
the appendix.

In what follows, GC0 will denote the Lie group defined in the same way, but changing C 
into C0.

2.2. The four-manifold

Let M be the Riemannian four-manifold given by the Cartesian product Σ× N  with a product 
metric

g = gΣ + gN ,� (2.5)

where (Σ, gΣ) is the Riemann surface introduced in section 1, and (N, gN) is a surface of con-
stant Gaussian curvature −C0. Let w be a local holomorphic coordinate on Σ, and z be a local 
holomorphic coordinate on N so that

gΣ = Ωdwdw, and gN =
4dzdz

(1 − C0|z|2)2 ,

where Ω = Ω(w, w) is the conformal factor on Σ. The Kähler forms ωΣ on Σ and ωN  on N are 
given by

ωΣ =
i
2
Ωdw ∧ dw, ωN =

2idz ∧ dz
(1 − C0|z|2)2 = 2idβ, where β =

zdz − zdz
2(1 − C0|z|2)

.

�

(2.6)

We shall choose an orientation on M by fixing the volume form volM = ωΣ ∧ ωN .

2.3.  Equivariance

Let GC and GC0 be Lie groups corresponding, via (2.3) to two real constants C and C0. In the 
theorem below GC will play a role of a gauge group, and GC0 will be the symmetry group.

Let E → M  be a vector bundle with a connection which, in a local trivialisation, is repre-
sented by a Lie-algebra valued one-form A ∈ gC ⊗ Λ1(M). The Lie group GC0 is a subgroup 
of the conformal group on (M, g), and acts on M isometrically by

(w, z) �→
(

w,
k1z + k2

C0k2z + k1

)
.� (2.7)

We shall impose the symmetry equivariance condition on A: it is preserved up to a gauge 
transformation by the action (2.7) of GC0. The infinitesimal equivariance condition yields

F Contatto and M Dunajski﻿J. Phys. A: Math. Theor. 50 (2017) 375201
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LXA = DW,� (2.8)

where L is the Lie derivative, X is any vector field on M generating the action (2.7) and 
DW ≡ dW − [A, W] is the covariant derivative of a gC-valued function on M.

In the coordinates (w, w, z, z) introduced above we have

A = AΣ + AN , where AΣ = Awdw + Awdw and AN = Azdz + Azdz.

Theorem 2.1.  Let A ∈ Λ1(M)⊗ gC be GC0-equivariant. Then

	(1)	There exists a gauge such that

A =

(
−C0β + i

2 a − i
1−C0zzφdz

iC
1−C0zzφdz C0β − i

2 a

)
,� (2.9)

		 where β is defined in (2.6), a is a u(1)-valued one-form, and φ is a complex Higgs field  
on Σ.

	(2)	The ASDYM equations on (M, g) are

Dφ = 0, f + ωΣ(C0 − C|φ|2) = 0� (2.10)

		 where f = da. Equivalently, setting |φ|2 = eh,

∆0h − 2Ω(C0 − Ceh) = 0, where ∆0 = 4∂w∂w.� (2.11)

We shall split the proof of this theorem into two Propositions

Proposition 2.2.  Let GC0 be the maximal group of isometries of (N, gN), where N = R2, S2 
or H2. The most general GC0–equivariant GC–connection is gauge equivalent to (2.9).

and

Proposition 2.3.  The ASDYM equations on (2.9) are equivalent to (2.10) or (2.11).

Proof of proposition 2.2.  Every vector field X generating the GC0 action on M corresponds 
to a gC-valued function ΦX on M called the Higgs field. The symmetry group GC0 does not act 
freely on N, which leads to a set of differential and algebraic constraints. These constraints 
are kinematical, as they arise purely from the symmetry requirement, and do not involve the 
ASDYM equations. Our analysis of the constraints, and the construction of A follows [9, 14], 
and we refer the reader to these works for details. Another method is presented in [15].

Consider N = GC0/U(1) as the homogeneous space, where U(1) ⊂ GC0 stabilises a point 
with coordinates z = 0 in N. This U(1) action is generated by J3 ∈ gC0 defined in (2.4), and 
corresponds to a vector field X3 on M. The constraint equations are

DΦ3 = 0, [Φ3,Φm]gC +Φ[X3,Xm]gC0
= 0,� (2.12)

where the vector fields Xm, m = 1, 2, 3 generate the GC0 action, and we set Φm ≡ ΦXm. The 
map X3 �→ Φ3 is a homomorphism from u(1) ⊂ gC0 to gC, and equations (2.12) imply that the 
Σ-components of the potential AΣ = Awdw + Awdw belong to the image of this homomor-
phism in the gauge Lie algebra, i.e. u(1) ⊂ gC . We also find that the components (Aw, Aw) are 
functions on Σ which do not depend on the coordinates on N. Therefore we have arrived at the 
Abelian Maxwell potential a on Σ given by

F Contatto and M Dunajski﻿J. Phys. A: Math. Theor. 50 (2017) 375201
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a = awdw + awdw ≡ AΣ.

To solve (2.12) for the Higgs fields, we chose a gauge such that Φ3 is diagonal. This is always 
possible if C = −1 as Hermitian matrices are diagonalisable by unitary changes of basis, but 
needs to be verified by a direct calculation which uses the constraint equations if C = 0 or 
C = 1. In general we find Φ3 = εJ3, where ε = ±1. The choice of ε amounts to a choice of an 
orientation1 on Σ, and we shall take ε = 1. The general solution of (2.12) now becomes

Φ1 = φ1J1 + φ2J2, Φ2 = φ2J1 − φ1J2, Φ3 = J3,

where φ = φ2 − iφ1 is a complex valued function on Σ which we shall later identify with the 
Abelian Higgs field in the vortex equation.

We shall now construct the remaining part of the gauge potential A—its components on the 
surface N. Following [9] define a gauge potential on GC0 by

A =

3∑
m=1

Φm ⊗ χm,

where χ1,χ2,χ3 are right invariant one-forms on GC0 given by (A.2). In what follows, we use 
coordinates (κ1,κ2,κ3) for GC0 described in the appendix.

We can perform a gauge transformation on GC0 such that

ρ3�A = 0, Lρ3A = 0,

where ρ1, ρ2, ρ3 are right-invariant vector fields on GC0 such that ρm�χl = δm
l, and ρ3 = ∂/∂κ3. 

This yields a gauge potential defined on the quotient GC0/U(1), where the U(1) subgroup is 
generated by J3. It is given by

A = A1dκ1 +A2dκ2,

where

A1 = −φ2J1 + φ1J2

A2 =
1√
−C0

sin(
√
−C0κ1)φ1J1 +

1√
−C0

sin(
√

−C0κ1)φ2J2 + cos(
√

−C0κ1)J3.

Notice that sin and cos above become hyperbolic functions for C0 > 0. This one-form Lie 
derives along ∂/∂κ3 and thus we can use the diffeomorphism between N and GC0/U(1) to pull 
back A to N. This gives AN = A, and finally A = AΣ + AN.

A direct calculation shows that this gauge potential is indeed GC0-equivariant. Indeed, it 
satisfies (2.8) where the vector fields Xm, m = 1, 2, 3, are push forwards of the left-invariant 
vector fields (A.3) on GC0 by the projection GC0 → N , and

1 A calculation analogous to the one in this proof shows that if we choose ε = −1, then the resulting form of A 
will be

A =

(
C0β + i

2 a − i
1−C0zzφdz

iC
1−C0zzφdz −C0β − i

2 a

)
,

F Contatto and M Dunajski﻿J. Phys. A: Math. Theor. 50 (2017) 375201
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W1 = −
√
−C0

sin(
√
−C0κ1)

cosκ2J3, W2 = −
√
−C0

sin(
√
−C0κ1)

sinκ2J3, W3 = 0.

In order to obtain a neater final expression, perform another gauge transformation by 
diag(e−

i
2 κ2 , e

i
2 κ2) and change into z-coordinates using the local coordinate formula (A.1) to 

find the GC0-equivariant GC-gauge potential on M given by (2.9).� □ 

Proof of proposition 2.3.  Let (w, z) be holomorphic coordinates on M. The basis of self-
dual two forms is spanned by

�(dw ∧ dz), �(dw ∧ dz), ωN + ωΣ.

The ASDYM equations (ωN + ωΣ) ∧ F = 0, and dw ∧ dz ∧ F = 0 take the form

Fwz = 0, Fwz = 0, Ω−1Fww +
(1 − C0|z|2)2

4
Fzz = 0.� (2.13)

Let the Greek letters µ, ν, . . . index the local coordinate system of M chosen above and let  
Aµ, Aν , . . . be the corresponding matrix-components of (2.9), so that A = Awdw + Awdw+  
Azdz + Azdz. The components of the gauge field Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ] are given by

Fzz =
−C0 + Cφφ

(1 − C0zz)2 σ3, Fww =
i
2

fww σ3,

Fzw =
i

1 − C0zz
Dwφσ+, Fzw = − i

1 − C0zz
Dwφσ−,

Fzw = − i
1 − C0zz

Dyφσ− Fzw =
i

1 − C0zz
Dwφσ+,

where φ = φ2 − iφ1, fww = ∂waw − ∂waw, D is the covariant derivative with respect to the 
U(1)-connection a and

σ3 =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
C 0

)
.

Set

Dφ = dφ− iaφ, Dφ = dφ+ iaφ

and

D = dw ⊗ (∂w − iaw), D = dw ⊗ (∂w − iaw), so that D = D +D.

The ASDYM equations (2.13) yield vortex-type equations

Dwφ = ∂wφ− iawφ = 0,� (2.14)

i
2

fww +
Ω

4
(−C0 + Cφφ) = 0.� (2.15)

This system of non-linear PDEs can be reduced to a single second order equation for one sca-
lar function. In fact, solve the first equation (2.14) for aw  so that aw = −i∂w ln(φ) and, using 
the reality of a, aw = i∂w ln(φ). Using these expressions for the components of a, calculate the 
Abelian Maxwell field fww  and the second equation (2.15) yields (2.11).� □ 

F Contatto and M Dunajski﻿J. Phys. A: Math. Theor. 50 (2017) 375201
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2.4.  Integrable cases

Following the integrability dogma [3, 7, 15], a symmetry reduction of ASDYM is integrable if 
the ASDYM equations are defined on a background (M, g) with anti-self-dual Weyl curvature. 
Computing the Weyl tensor of (2.5) shows that conformal anti-self-duality is equivalent to 
the vanishing of the scalar curvature of g. Thus in the integrable cases the Riemann surface 
(Σ, gΣ) on which the vortex equations  are defined must have constant Gaussian curvature 
equal to minus the Gaussian curvature of (N, gN), i.e. locally,

gΣ =
4dwdw

(1 + C0|w|2)2 , g =
4dwdw

(1 + C0|w|2)2 +
4dzdz

(1 − C0|z|2)2 .� (2.16)

The local solutions of integrable vortex equations are given explicitly, in a suitable gauge, by [13]

φ =
1 + C0|w|2

1 + C|s(w)|2
ds
dw

,� (2.17)

where s = s(w) is a holomorphic map from Σ to a surface of curvature C. The vortices are 
located at zeros of φ, which are the zeros of ds/dw and the poles2 of s of order at least 2.

The integrable cases on simply-connected Riemann surfaces under the anti-self-duality 
framework are the following:

	 •	The Taubes vortex (C = C0 = −1) is integrable on H2, in which case it is a symmetry 
reduction from ASDYM on H2 × S2. In this case, s is a Blaschke function

s(w) =
(w − c0) . . . (w − cN)

(w − c0) . . . (w − cN)
,

		 where |ck| < 0. This is the original integrable reduction of Witten [22].
	 •	The Popov vortex (C = C0 = 1) is integrable on S2, in which case it is a symmetry reduc-

tion from S2 ×H2. In this case, s : CP1 → CP1 is a rational function p(w)/q(w), where p 
and q are polynomials of the same degree with no common root.

	 •	The Bradlow vortex (C = 0, C0 = −1) is integrable on H2, in which case it is a symmetry 
reduction from H2 × S2.

	 •	The Ambjørn–Olesen vortex (C = 1, C0 = −1) is integrable on H2, in which case it is a 
symmetry reduction from Σ× S2.

	 •	The Jackiw–Pi vortex (C = 1, C0 = 0) is integrable on R2, in which case it is a symmetry 
reduction from R2 × R2.

In each case the symmetry group is GC0 and the gauge group is GC.
These integrable cases of (1.2) do not exhaust the list of all integrable vortices: there are 

other integrable cases related to the sinh-Gordon and the Tzitzeica equations [4, 5, 8], where 
the vortex is interpreted as a surface with conical singularities.

2.5.  Superposition of vortices

Given a solution to the vortex equation (1.2) define the vortex number to be

N =
1

2π

∫

Σ

f .� (2.18)

which is equal to (2.9) up to a change z ↔ z, w ↔ w .

F Contatto and M Dunajski﻿J. Phys. A: Math. Theor. 50 (2017) 375201
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This is an integer equal to the first Chern number of the vortex line bundle L → Σ, and we 
shall assume that this integer is non-negative.

Let us now explain why there exist only five vortex equations among the nine possible 
combinations of values of C and C0. Equation (2.14) implies that the vortex number N coin-
cides with the number of zeros of φ counted with multiplicities [14]. Since φ is holomorphic, 
N is necessarily non-negative. Since N is proportional to the magnetic flux, the magnetic field 
B ≡ −2ifww/Ω can not be negative everywhere on Σ, but (2.15) implies that this is only pos-
sible for the choice of constants

(C, C0) = (−1,−1), (0,−1), (1,−1), (1, 0), (1, 1), (0, 0),

where the last possibility means that the magnetic field is null everywhere and (1.2) is the 
Laplace equation. We shall call this the Laplace vortex.

The resulting six equations are not disconnected from one another. We shall show that it is 
possible to construct higher order vortex solutions of one type by superposing two other types 
of vortices. Let h be a vortex solution on Σ with vortex number N satisfying

∆0h + 2Ω(−C0 + C1eh) = 0,� (2.19)

so that |φ|2 = eh has N isolated zeros, counting multiplicities. We say that this vortex is of 
type (C1, C0).

Consider a metric on Σ

g̃Σ = ehgΣ

which has conical singularities at zeros of |φ|2. Let h̃ be a vortex solution with vortex number 
Ñ on (Σ, g̃Σ) satisfying

∆0h̃ + 2ehΩ(−C1 + Ceh̃) = 0,� (2.20)

so that |φ|2 = eh̃ has Ñ zeros. We shall say that this vortex is of type (C, C1) with a rescaled 
metric. Adding both PDEs (2.19) and (2.20), we find that

∆0(h + h̃) + 2Ω(−C0 + Ceh+h̃) = 0

and that eh+h̃ has N+ Ñ zeros. Therefore the superposition of a vortex of type (C, C1) with a 
rescaled metric on a vortex of type (C1, C0) gives rise to a vortex of type (C, C0) with vortex 
number being the sum of the first two vortex numbers, N+ Ñ. In the case C = C0 = −1 this 
is the Baptista superposition rule [2].

Taking into account the six possible vortex equations, we make a list of all possible 
superpositions

Taubes + Taubes = Taubes
Bradlow + Taubes = Bradlow

Laplace + Bradlow = Bradlow
Ambj/orn–Olesen + Taubes = Ambj/orn–Olesen

Jackiw–Pi + Bradlow = Ambj/orn–Olesen
Popov + Ambj/orn–Olesen = Ambj/orn–Olesen

Popov + Jackiw–Pi = Jackiw–Pi
Jackiw–Pi + Laplace = Jackiw–Pi

Popov + Popov = Popov,

F Contatto and M Dunajski﻿J. Phys. A: Math. Theor. 50 (2017) 375201
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where the non-commutative summation + means that the first vortex (of type (C, C1) with a 
rescaled metric) is superposed on the second one (of type (C1, C0)) to result in the vortex on 
the right hand side of the equality (of type (C, C0)) with higher vortex number.

3.  Energy and Moduli space metric

The energy functional E of pure Yang-Mills theory on M can be reduced to the energy function 
of an Abelian–Higgs model on Σ using the ansatz (2.9). This can be done by direct calculation,

E = − 1
8π2

∫

M
Tr(F ∧ �gF)

=
1

4π2

∫

N
ωN

∫

Σ

[
1
4
(
B2 + (C0 − Cφφ)2)− C

Ω

(
|Dφ|2 +

∣∣Dφ
∣∣2)

]
ωΣ

where

B = −2ifww/Ω

is the magnetic field on Σ. This expression for the energy is proportional to the one given 
in [13].

If we assume that N is compact3 then the first integral is the area of N given by

AreaN =

∫

N
ωN =





4π
−C0

, if C0 < 0
4π, if C0 = 0
4π
C0
(g− 1) if C0 > 0,

where g  is the genus of N and we normalised the area of the torus (C0 = 0) to 4π. Thus 
the energy can be written, using the Bogomolny argument along with [Dw, Dw]φ = −ifwwφ 
and the integration by parts (with an additional boundary condition Dφ = 0 if Σ is not 
compact) as

E =
AreaN

16π2

∫

Σ

[(
B + C0 − C|φ|2

)2 − 8C
Ω

∣∣Dφ
∣∣2
]
ωΣ − C0

AreaN

4π
N,

where N is the vortex number defined by (2.18). If the vortex equations (2.14) and (2.15) are 
satisfied, then the energy is proportional to the vortex number, characterising a non-interacting 
theory, and this value is the global minimum of E if C � 0. However, equation (2.14) can-
not be naturally derived from this argument if C = 0. In fact the theory corresponding to this 
energy functional does not involve any Higgs field in this case even though the symmetry 
reduction of ASDYM necessarily gives rise to a holomorphic Higgs field satisfying (2.14). 
This is a counter-example to the principle of symmetric criticality, proved under certain condi-
tions in [16].

If N is not compact we can still make sense of energy density (or energy per unit of area 
of N).

Originally, E is the energy functional of pure Yang–Mills theory in four dimensions, which 
under the ASDYM condition is

2 Notice that |φ|2 is invariant under s �→ 1/s .
3 Notice that this is already the case if C0 = −1, as N = S2. Otherwise we assume that the corresponding surfaces 
are quotiented out by a discrete subgroup of GC0. If C0 = 0, N is a two-torus T2 (R2 quotiented out by a lattice) and 
if C0 = 1 N is a compact Riemann surface of genus g > 1 (H2 quotiented out by a Fuchsian group). The ansatz (2.9) 
must then admit this further discrete symmetry.
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E =
1

8π2

∫

M
Tr (F ∧ F) ≡ k,

where k is the instanton number. Comparing both expressions for the energy, we derive a rela-
tion between the vortex and instanton numbers,

k = −C0
AreaN

4π
N = (1 − g)N, g = 0, 1, 2, . . . .

3.1.  Dynamical theory

Yang–Mills instantons on M can be regarded as static solitons on R× M  with a product metric 
−dt2 + g. Implementing the symmetry reduction of theorem 2.1, but from five dimensions, 
leads to vortices on Σ interpreted as stationary solitons in a dynamical theory on R× Σ. 
We shall use this approach to find the kinetic term in the total energy functional on R× Σ, 
and use it to read-off the metric on the moduli space of static vortices. Let F  be a gC-valued 
Yang–Mills field on R× M . The action functional of pure YM theory with t-dependence is

S = − 1
8π2

∫

R×M
Tr(F ∧ �5F) =

∫

R
Ldt,

where L is defined by the second equality and involves the integral on M alone. Under the 
symmetry reduction of theorem 2.1, L becomes a Lagrangian on R× Σ,

L = −AreaN

4π2

∫

Σ

(1
4
(B2 + (C0 − Cφφ)2)− C

Ω
(DwφDwφ+ DwφDwφ)−

1
Ω

f0wf0w +
C
2
|D0φ|2

)
ωΣ.

The Euler–Lagrange equations, resulting from calculating the variation with respect to φ, aw 
and a0, are, respectively,

DwDwφ+ DwDwφ− Ω

2
D0D0φ+

Ω

2
(−C0 + Cφφ)φ = 0,� (3.21)

−2∂w

(
1
Ω

fww

)
+ ∂0f0w − iC(Dwφφ− Dwφφ) = 0,� (3.22)

∂wf0w + ∂wf0w +
iCΩ

2
(
φD0φ− φD0φ

)
= 0.� (3.23)

The equations resulting from varying φ and aw  are the complex conjugate of equations (3.21) 
and (3.22), respectively. The third equation is usually referred to as Gauss’ law.

This system of second order dynamical equations  is satisfied by static solutions to 
the first order vortex equations  ((2.14) and (2.15)) in the temporal gauge a0 = 0. In fact, 
Gauss’ law (3.23) is automatically satisfied. To see that (3.21) is satisfied, use (the com-
plex conjugate of) (2.14) to write DwDwφ = [Dw, Dw]φ = ifwwφ and eliminate fww  with 
(2.15). Finally, equation (3.22) is satisfied upon eliminating fww  in the same way and using 
∂w

(
φφ

)
= (Dwφ)φ+ φDwφ = φDwφ.

The kinetic energy T can be read off from L. In the temporal gauge when a0 = 0 it takes 
the form

T =
AreaN

8π2

∫

Σ

[
2
Ω

ȧwȧw − Cφ̇φ̇

]
ωΣ,� (3.24)
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where the dots denote t-derivatives. This generalises the known kinetic energy for the Taubes 
vortex (C, C0 < 0) [20].

In the usual Abelian Higgs model in the critical coupling (yielding Taubes vortices), there 
is a moduli space MN  of static N vortex solutions. All these solutions have the same poten-
tial energy, so there are no static forces. The moduli space acquires a metric from the kinetic 
energy of the theory, and the geodesics of this metric model slow motion of N-vortices. There 
are several ways to obtain the metric for both flat and curved backgrounds [6, 14]. One way to 
proceed for the integrable vortices is to assume that the vortex positions depend on time, and 
substitute the explicit solution (2.17) into the kinetic energy (3.24). This, when quotiented out 
by the gauge equivalence (which is equivalent to imposing Gauss’ law [14]), gives a quad-
ratic form on MN . In case of Taubes vortices the resulting metric is positive definite, but we 
see that (3.24) is not positive definite if C > 0, which is the case for Jackiw–Pi, Popov and 
Ambjørn–Olesen vortices.

Samols derived a localised expression for the metric of the moduli space of Taubes vorti-
ces [19] (see also [20] and [12] for the metric of moduli space of hyperbolic vortices), where 
the moduli are the vortex positions (or zeros of the Higgs field). The moduli space metric of 
Taubes vortices with simple zeros {W1, . . . , WN} is, from (3.24),

AreaN

8π

N∑
i,j=1

(Ω(Wk)δij + 2∂Wi bj) dWidWj,

where bj = ∂w(h − 2 log |w − Wj|)|w=Wj,w=Wj
 and Ω(Wi) means that the conformal factor Ω is 

being evaluated at the point (w, w) = (Wi, Wi).
A similar calculation as the one performed by Samols (see also [14]) adapted to vortices 

defined by (1.2) gives the following result for the metric on the moduli subspace associated to 
the simple zeros of the Higgs field

AreaN

8π

N∑
i,j=1

(−C0Ω(Wk)δij + 2∂Wi bj) dWidWj,� (3.25)

where the constant C0 appears because the calculation involves the use of equation (1.2).
In the integrable case, the background metric is locally given by gΣ in (2.16) and the Higgs 

field is (2.17) in a particular gauge. As above, we assume that |φ| admits only simple zeros and 
that each of them is as zero of ds/dw and not a pole, which is always the case up to performing 
the transformation s �→ 1/s . In this case, bj can be calculated directly and is given by

bj = C0
Wj

1 + C0 |Wj|2
+

3
2
βj,

where βj =
s( j)

3

s( j)
2

 and s( j)
k = k! dks

dwk

∣∣
w=Wj

, k = 0, 1, 2, 3, . . ., that is to say, the s( j)
k ’s are defined by

s(w) = s( j)
0 + s( j)

2 (w − Wj)
2 + s( j)

3 (w − Wj)
3 + · · · ,

where the linear term is absent because we assumed that Wj is a simple zero of s.
Now, the moduli space metric (3.25) of simple vortices can be calculated and is given by

3 AreaN

16π

N∑
i,j=1

∂βj

∂Wi
dWidWj.� (3.26)

This is in agreement with the formula derived for integrable Taubes vortices in [20]. In par
ticular, (3.26) tells us that the metric is zero when s depends only holomorphically on the 
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vortex positions, which is the case for some Popov and Jackiw–Pi vortices. In fact, this is what 
happens for the N = 2 Popov vortex on Σ = S2 corresponding to s = (w − W1)

2/(w − W2)
2, 

and to the N = 1 Jackiw–Pi vortex on Σ = R2  corresponding to s = (w − W1)
2.
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Appendix. The group GC0

In this appendix, we denote by JC0
m , m = 1, 2, 3 the generators of the Lie-algebra gC0  given by 

(2.4) with C replaced by C0.
A parametrisation of GC0 is given by

K =

(
ei(κ3−κ2)/2 cos(

√
−C0κ1/2) − 1√

−C0
ei(κ2+κ2)/2 sin(

√
−C0κ1/2)

√
−C0e−i(κ3+κ2)/2 sin(

√
−C0κ1/2) e−i(κ3−κ2)/2 cos(

√
−C0κ1/2)

)
,

where 0 � κ3 � 4π, 0 � κ2 � 4π, 0 � κ1 < π/
√
−C0  if C0 < 0 and κ1 � 0 if C0 � 0.

The coordinate κ3 parametrises the U(1) fibres of the fibration GC0 → N = GC0/U(1). In 
the proof of proposition 2.2 we need expressions relating the local coordinates (z, z) on N to 
(κ1,κ2) on GC0/U(1). Let p ∈ N  be a point corresponding to the coordinate z = 0. Consider 
the group action (2.7) such that the RHS is 0. This gives a system of two equations for (z, z) 
with a solution

z =
1√
−C0

tan(
√
−C0κ1/2)eiκ2 .� (A.1)

Note that 1√
−C0

tan(
√
−C0κ1/2) � 0 regardless of the sign of C0. The formula (A.1) is well 

defined for C0 = 0 upon taking the limit C0 → 0. The coordinate κ3 of GC0 parametrises the 
stabiliser of p ∈ N , which is a U(1) subgroup generated by JC0

3 .
The right-invariant one-forms χ1,χ2,χ3 such that (dK)K−1 +

∑3
m=1 χm ⊗ JC0

m = 0, and 
the left–invariant vector fields η1, η2, η3 on GC0 are given by

χ1 =

(
1√
−C0

sin(
√
−C0κ1) cos γdκ2 + sinκ3dκ1

)

χ2 =

(
− cosκ3dα+

1√
−C0

sin γ sin(
√

−C0 κ1)dκ2

)

χ3 =
(
−dκ3 + cos(

√
−C0 κ1)dκ2

)
,

�

(A.2)

and

η1 = − sinκ2∂κ1 −
√
−C0

tan(
√
−C0κ1)

cosκ2∂κ2 −
√
−C0

sin(
√
−C0κ1)

cosκ2∂κ3 ,

η2 = cosβ∂κ1 −
√
−C0

tan(
√
−C0κ1)

sinκ2∂κ2 −
√
−C0

sin(
√
−C0κ1)

sinκ2∂κ3

η3 = −∂κ2 .
�

(A.3)
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