Mathematics of curved spaces

Maciej Dunajski

Clare College
and

Department of Applied Mathematics and Theoretical Physics University of Cambridge

Intrinsic vs Extrinsic

- Bugs can only measure distance along curves - curvature is extrinsic

- Intelligent bugs can measure curvature of surfaces - curvature is intrinsic

Curved Curves

- Curvature=reciprocal of the osculating circle radius. $\kappa=r^{-1}$

- Straight line: $\kappa=0$
- Circle of radius one: $\kappa=1$
- In general $y=f(x)$ (Exercise!)

$$
\kappa=\frac{f^{\prime \prime}}{\left(1+\left(f^{\prime}\right)^{2}\right)^{3 / 2}}
$$

Gaussian curvature

- Carl Friedrich Gauss 1777-1855

$$
K=\kappa_{\max } \times \kappa_{\min }
$$

Negative Curvature

Zero Curvature

Positive Curvature

- $K=1 \times(-1)=-1 . \quad K=1 \times 0=0 . \quad K=1 \times 1=1$

Back to bugs - geodesic triangles

- Geodesic=shortest path.

- Geodesic triangles

- Small geodesic circle of radius r

$$
\text { Circumference }=2 \pi r-K \pi \frac{r^{3}}{3}+\ldots
$$

MAP MAKING

- Stereographic projection

$$
X^{2}+Y^{2}+Z^{2}=1, \quad z=\frac{X+i Y}{1-Z}, \quad S^{2}=\mathbb{R}^{2}+\{\infty\}
$$

- Gerard Mercator (1512-1594): straight lines are rhumb lines

- Both projections are conformal: angles are preserved.

Euclid's Parallel postulate

Euclid of Alexandria (4th century BC) 'Let the following be postulated'

(1) A straight line may be drawn between any two points.
(2) A piece of straight line may be extended indefinitely.
(3) A circle may be drawn with any given radius and an arbitrary center.
(1) All right angles are equal.
(0) (The parallel postulate)

Hyperbolic geometry

- Poincare Disc $\mathbb{D}=\{z \in \mathbb{C},|z|<1\}$.
- Geodesics

Hyperbolic geometry

- Poincare Disc $\mathbb{D}=\{z \in \mathbb{C},|z|<1\}$.
- Geodesics

- Hyperbolic distance

$$
d(P, Q)=\ln \left(\frac{|A Q||P B|}{|A P||P Q|}\right) .
$$

UPPER HALF-PLANE AND THE PSEUDOSPHERE

- S^{2} can be embedded in \mathbb{R}^{3}, but the disc can not: pseudosphere

- Upper half-plane $\mathbb{H}=\{w \in \mathbb{C}, \operatorname{Im}(w)>0\}$.

MÖbiUs TRANFORMATION

Maurits Cornelis Escher (1898-1972)

Exercise: Show that $f: \mathbb{D} \rightarrow \mathbb{H}$.
(1) $\operatorname{lm}(w)>0$ if $|z|<1$.
(2) The map is one-to-one: any point in \mathbb{H} is an image of exactly one point in \mathbb{D}.

Curvature of the Universe

- One-dimensional curve, two-dimensional surface, ..., four dimensional space-time (three space+one time)
- Gravitation is an effect of the curvature

- Einstein's general relativity: Mass=Curvature.
- Regions where curvature is infinite: Big-bang, black holes
- Physics (as we know it) breaks down...

