Part II Integrable Systems, Sheet One

Professor Maciej Dunajski, Lent Term 2026

1. Jacobi identity. Assume that (p;,q;) satisfy the Hamilton equations and show that any function
f = f(p,q,t) satisfies
ar_os

where H is the Hamiltonian.
Show that the Jacobi identity
{foAfe, f3} )+ {fs A fot b+ {f2s {f3, 1} =0 (1)

holds for Poisson brackets.

Deduce that if functions f; and fo which do not explicitly depend on time are first integrals of a
Hamiltonian system then so is f5 = {f1, f2}.

2. Canonical transformations.

e Find the canonical transformation generated by

S = qupk.
k=1

e Show that the canonical transformations preserve volume in the two—dimensional phase space, i.e.

(P, Q)
(p,q)

[This result also holds in phase spaces of arbitrary dimension.]

=1.

e Show that the transformation

Q = cos (B)g —sin (B)p, P = sin (8)q + cos (B)p

is canonical for any constant 5 € R. Find the corresponding generating function. Is it defined for
all 37

3. Action variables for the Kepler problem. Consider the four-dimensional phase space coordinatised
by
=9, q=r p = D¢, D2 =DPr

equipped with a Hamiltonian

92 2 T
where « > 0 is a constant. Use the fact that 0, = 0 to show the existence of two first integrals in
involution and deduce that this system is integrable in a sense of the Arnold—Liouville theorem.

Construct the action variables. Express the Hamiltonian in terms of the action variables to show that
the frequencies associated to the corresponding angles are equal.

[Hint: ¢ and one function of (r,p,) parametrise M;. Varying ¢ and fixing the other coordinate gives
one cycle I'y C M. To find the second action coordinate fix ¢ (on top of H and py).]



4. Radial harmonic oscillator.

(a) Consider the Hamiltonian system on phase space R* defined by Hy(q1,q2,p1,p2) = %(p% +w?q? +
p3 + w3q3) , with wy,ws positive real numbers. Find two first integrals which are in involution and
action-angle variables. Writing the system in terms of these variables, show that the system is
integrable. Find a relation between w; and ws which ensures that all solutions are periodic in t,
show this relation holds if w; = wy and find an additional first integral in this case.

(b) Cousider the Hamiltonian for motion of a particle of unit mass in a radially symmetric harmonic
potential on the plane

vy p2o 1
H2(¢a rapdﬁp'r‘) - ﬁ + ?’r + 50.)27“2

in polar coordinates. Working in polar coordinates, and using the integral

/al\/mdx:w(a;b—\/@>, 0<b<a<oo,
b T

find action-angle variables for Hy and show that all solutions are periodic in t.
Comment on the relation with part (a) of the question.

5. Poisson structures. A Poisson on structure on R?” is an anti-symmetric matrix w® whose components
depend on the coordinates £ € R?"®,a = 1,---,2n and such that the Poisson bracket

— ab —7
{f7g} - a7b221w (f) aga agb

satisfies the Jacobi identity (1).
Show that
{fg,h} = f{g,n} +{f, h}g.

Assume that the matrix w is invertible with W := (w™!) and show that the antisymmetric matrix W ()
satisfies

aaWbc + 8cvvab + 8bVVca =0. (2)

[Hint: note that w = {¢9 ¢}.] Deduce that if n = 1 then any antisymmetric invertible matrix w(¢?, €2)
gives rise to a Poisson structure (i.e. show that the Jacobi identity holds automatically in this case).

[In differential geometry the invertible antisymmetric matrix W which satisfies (2) is called a symplectic
structure. We have therefore deduced that symplectic structures are special cases of Poisson structures.]

6. KdV and its 1-soliton solution Verify that the equation
1
U, 4+ VU, + V¥ pr + ¥ W, =0.
v

where ¥ = ¥(z,¢) and (v, 5, ) are non-zero constants is equivalent to the KdV equation
U — 6UUy + Ugge = 0, u = u(x,t) (3)
after a suitable change of dependent and independent variables.
Assume that a solution of the KdV equation (3) is of the form
u(z,t) = f(&), where &=z —ct
for some constant ¢. Show that the function f(§) satisfies the ODE

1, e 1
U= +5ef?+af+8

where («, 3) are arbitrary constants. Assume that f and its first two derivatives tend to zero as || — oo
and solve the ODE to construct the one—soliton solution to the KdV equation.



7. Sine—Gordon soliton from Backlund transformations. The Sine-Gordon equation is
G — P1r = sin (@), ¢ = ¢(z,1).
Set 7 = (z+1t)/2,p = (x —t)/2 and consider the Bicklund transformations
¢1 + ¢0)
9 )

D7 (¢1 + ¢p) = 2b~ ' sin (@),

where b = const and ¢, ¢1 are functions of (7,p). Take ¢g = 0 and construct the 1-soliton (kink)
solution ¢;. Draw the graph of ¢4 (z,t) for a fixed value of ¢. What happens when ¢ varies?

9,(¢1 — do) = 2bsin (

8. Backliind for Liouville equation. Let v be any solution of the wave equation in double-null coordi-
nates: v,; = 0. Show that the two equations:

ux+v$=\/§exp(u;v), ut—vtz\/iexp<u_;v>, (4)

are compatible iff u satisfies Liouville’s equation u,; = e“. These equations constitute a Béacklund
transformation. By considering the most general form of v = v(x,t), show that:

V2
7 exp[—f(€))de + [* explg(r)ldr

9. Miura transformation. Let v = v(z,t) satisfy the modified KdV equation

u(z,t) = 2log ( > +g(t) — f(x). (5)

Vg — 6v2vz + Vpze = 0.
Show that the function u(x,t) given by
u =1+ v, (6)

satisfy the KdV equation. Is it true that any solution u to the KdV equation gives rise, via (6), to a
solution of the modified KdV equation?

Books. The course follows the first four chapters of
Dunajski, M. (2024) Solitons, Instantons and Twistors, 2nd edition, OUP.
Other interesting books are

e Hamiltonian Systems.

Arnold, V. I. Mathematical Methods of Classical Mechanics. (This uses a language of differential forms
but has the best possible exposition of the Arnold-Liouville theorem. Chapter 10 is most relevant).

Schuster, H. G. Deterministic Chaos: An Introduction. (A popular introduction to KAM theorem and
ergodicity with some mention of integrable systems).
e Solitons and Inverse Scattering.

Novikov S., Manakov S. V., Pitaevskii L. P., Zaharov V. E., Theory of Solitons. (The lectures follow
Chapter 1 of this book in the treatment of the KdV equation and solitons).

Drazin, P. G., Johnson, R.S. Solitons: an introduction. (A very readable text. Chapters 3, 4, 5 are most
relevant).
e Lie symmetries, Painleve equations.

Hydon P. E. Symmetry Methods for Differential Equations: A Beginner’s Guide. (Elementary and very
easy to follow)

Olver, P. J. Applications of Lie groups to differential equations.

Fokas, A.S. et. al. Painleve transcendents. The Riemann-Hilbert approach.



