

Part II Integrable Systems, Sheet Two

Professor Maciej Dunajski, Lent Term 2026

1. **Lax pair.** Consider a one-parameter family of self-adjoint operators $L(t)$ in some complex inner product space such that

$$L(t) = U(t)L(0)U(t)^{-1}$$

where $U(t)$ is a unitary operator, i.e. $U(t)U(t)^\dagger = 1$ where U^\dagger is the adjoint of U .

Show that $L(t)$ and $L(0)$ have the same eigenvalues. Show that there exist an anti-self-adjoint operator A such that $U_t = -AU$ and

$$L_t = [L, A].$$

2. **Lax representation of ODEs.** Let $L(t), A(t)$ be complex valued n by n matrices such that

$$\dot{L} = [L, A].$$

Deduce that $\text{Trace}(L^p), p \in \mathbb{Z}$ does not depend on t .

[It is possible to show that systems integrable in a sense of Arnold–Liouville’s theorem can be put in this form, with the Poisson commuting first integrals given by traces of powers of L .]

Assume that

$$\begin{aligned} L &= (\Phi_1 + i\Phi_2) + 2\Phi_3\lambda - (\Phi_1 - i\Phi_2)\lambda^2, \\ A &= -i\Phi_3 + i(\Phi_1 - i\Phi_2)\lambda \end{aligned}$$

where λ is a parameter and find the system of ODEs satisfied by matrices $\Phi_j(t), j = 1, 2, 3$.

[The Lax relations should hold for any value of the parameter λ . The system you are asked to find known as Nahm’s equations. It underlies the construction of non-abelian magnetic monopoles.]

Now take $\Phi_j(t) = -i\sigma_j w_j(t)$ (no summation) where σ_j are matrices

$$\sigma_1 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

which satisfy $[\sigma_j, \sigma_k] = i \sum_{l=1}^3 \varepsilon_{jkl} \sigma_l$. Show that the system reduces to the Euler equations

$$\dot{w}_1 = w_2 w_3, \quad \dot{w}_2 = w_1 w_3, \quad \dot{w}_3 = w_1 w_2.$$

Use $\text{Trace}(L^p)$ to construct first integrals of this system.

3. **Toda equation.** Write down the Hamiltonian equations for the Toda Hamiltonian for N particles moving in one dimension, $H = \frac{1}{2} \sum_{j=1}^N p_j^2 + \sum_{j=1}^{N-1} \exp(q_j - q_{j+1})$ and show that with the definitions $a_j = \frac{1}{2} \exp[(q_j - q_{j+1})/2]$ and $b_j = -\frac{1}{2} p_j$ they imply the Toda equations

$$\dot{a}_j = a_j(b_{j+1} - b_j), \quad \dot{b}_j = 2(a_j^2 - a_{j-1}^2). \quad (1)$$

(Use the convention that $q_0 = -\infty, e^{q_0} = 0, q_{N+1} = +\infty, e^{-q_{N+1}} = 0$.)

Verify that the Toda problem with $N = 2$ can be written as the Lax pair $\dot{L} = [B, L]$ with

$$L = \begin{pmatrix} b_1 & a_1 \\ a_1 & b_2 \end{pmatrix} \quad B = \begin{pmatrix} 0 & a_1 \\ -a_1 & 0 \end{pmatrix}.$$

Express the eigenvalues of L in terms of the total momentum $p_1 + p_2$ and the energy H , check they are in involution.

Obtain the general solution to the system.

4. **Lax pair for KdV.** Show that the The KdV equation is equivalent to

$$L_t = [L, A]$$

where the Lax operators are

$$L = -\frac{d^2}{dx^2} + u, \quad A = 4\frac{d^3}{dx^3} - 3\left(u\frac{d}{dx} + \frac{d}{dx}u\right), \quad u = u(x, t).$$

5. **Review of IB quantum mechanics** Let $L = -\frac{d^2}{dx^2} + u(x)$ be the one dimensional Schrödinger operator with potential u , assumed to decay rapidly at infinity. Show that if $L\psi = \lambda\psi$ and $L\psi' = \lambda\psi'$ then the Wronskian $W(\psi, \psi') \equiv \psi\psi'_x - \psi'\psi_x$ is constant.

Show that if ψ and ψ' are bound states corresponding to the same discrete eigenvalue then $\psi \propto \psi'$. Deduce that the discrete eigenvalues are non-degenerate, i.e. each discrete eigenvalue corresponds to exactly one bound state.

6. **Evolution of scattering data.** Referring to the operators L, A defining the Lax structure of KdV in Q4, show that L is selfadjoint and A is skew-adjoint: $\langle \varphi, L\psi \rangle = \langle L\varphi, \psi \rangle$, $\langle \varphi, A\psi \rangle = -\langle A\varphi, \psi \rangle$ for any smooth, rapidly decaying functions ψ and φ . If ψ is a real function with $\|\psi(t)\| = 1$ for all t and $\tilde{\psi}(t) = \psi_t(t) + A\psi(t)$, show that ψ and $\tilde{\psi}$ are orthogonal, i.e. $\langle \tilde{\psi}, \psi \rangle = 0$. Conclude that if u satisfies the KdV equation and ψ is a bound state for L then $\psi_t + A\psi = 0$ and obtain the time dependence of the discrete part of the scattering (b_n, χ_n) data associated to the potential u . [Hint: use question Q5. Take the definition of b_m to be

$$\phi(x) \approx b_n e^{-\chi_n x} \quad (x \rightarrow +\infty)$$

where $E_n = -\chi_n^2$ is the n th energy level.]

7. **2-soliton solution.** Assume that the scattering data consists of two energy levels $E_1 = -\chi_1^2, E_2 = -\chi_2^2$ where $\chi_1 > \chi_2$ and a vanishing reflection coefficient. Solve the Gelfand–Levitan–Marchenko equation to find the 2-soliton solution.

[Follow the derivation of the 1-soliton in the Notes but try not to look at the N-soliton unless you really get stuck.]

8. **Integral equation.** Let $L\psi = k^2\psi$ where $L = -\partial_x^2 + u$. Consider ψ of the form

$$\psi(x) = e^{ikx} + \int_x^\infty K(x, z)e^{ikz}dz$$

where $K(x, z), \partial_z K(x, z) \rightarrow 0$ as $z \rightarrow \infty$ for any fixed x . Use integration by parts to show

$$\psi = e^{ikx} \left(1 + \frac{i\hat{K}}{k} - \frac{\hat{K}_z}{k^2} \right) - \frac{1}{k^2} \int_x^\infty K_{zz} e^{ikz} dz,$$

where $\hat{K} = K(x, x)$ and $\hat{K}_z = (\partial_z K)|_{z=x}$. Deduce that the Schrödinger equation is satisfied if

$$u(x) = -2(\hat{K}_x + \hat{K}_z), \quad \text{and}$$

$$K_{xx} - K_{zz} - uK = 0 \quad \text{for } z > x.$$

9. **Initial data for KdV solitons.** Recall from lectures that if $A = \partial_x + \chi \tanh \chi x$ and $A^\dagger = -\partial_x + \chi \tanh \chi x$, then

$$-\partial_x^2 + \chi^2 = AA^\dagger \quad \text{and} \quad -\partial_x^2 + \chi^2 - 2\chi^2 \operatorname{sech}^2 \chi x = A^\dagger A, \quad (2)$$

from which we found the bound state for the potential $-2\chi^2 \operatorname{sech}^2 \chi x$ with energy $E_1 = -\chi^2$. Now by considering $B = \partial_x + 2\chi \tanh \chi x$ and $B^\dagger = -\partial_x + 2\chi \tanh \chi x$, and computing BB^\dagger and $B^\dagger B$, find the bound states for the potential $-6\chi^2 \operatorname{sech}^2 \chi x$ and their energy levels.

10. **First integrals for KdV.** Consider the Riccati equation

$$\frac{dS}{dx} - 2ikS + S^2 = u.$$

for the first integrals of KdV. Assume that

$$S = \sum_{n=1}^{\infty} \frac{S_n(x)}{(2ik)^n}$$

and find the recursion relations

$$S_1(x, t) = -u(x, t), \quad S_{n+1} = \frac{dS_n}{dx} + \sum_{m=1}^{n-1} S_m S_{n-m}.$$

Solve the first few relations to show that

$$S_2 = -\frac{\partial u}{\partial x}, \quad S_3 = -\frac{\partial^2 u}{\partial x^2} + u^2, \quad S_4 = -\frac{\partial^3 u}{\partial x^3} + 2\frac{\partial}{\partial x}u^2.$$

and find S_5 . Use the KdV equation to verify directly that

$$\frac{d}{dt} \int_{\mathbb{R}} S_3 dx = 0, \quad \frac{d}{dt} \int_{\mathbb{R}} S_5 dx = 0.$$