Part II Integrable Systems, Sheet Two

Professor Maciej Dunajski, Lent Term 2026

1. Lax pair. Consider a one-parameter family of self-adjoint operators L(t) in some complex inner product
space such that
L(t) =U®)LO)U®) ™

where U(t) is a unitary operator, i.e. U(t)U ()T = 1 where UT is the adjoint of U.

Show that L(t) and L(0) have the same eigenvalues. Show that there exist an anti-self-adjoint operator
A such that U, = —AU and
Lt = [L, A]

2. Lax representation of ODEs. Let L(t), A(t) be complex valued n by n matrices such that
L=IL,A.

Deduce that Trace(LP),p € Z does not depend on ¢.

[It is possible to show that systems integrable in a sense of Arnold-Liouville’s theorem can be put in
this form, with the Poisson commuting first integrals given by traces of powers of L].

Assume that
L = (B +i®y) 4203\ — (B — i®o)\?,
A = —i®g+i(P; —iPo)A
where ) is a parameter and find the system of ODEs satisfied by matrices ®;(¢),j =1,2,3.

[ The Lax relations should hold for any value of the parameter A. The system you are asked to find
known as Nahm’s equations. It underlies the construction of non—abelian magnetic monopoles.]

Now take ®;(t) = —io;w;(t) (no summation) where o; are matrices

1/0 1 C1/0 —i 1/(1 0
175\ 1 0 ) 273\ i o )0 T3\ 0 -1

which satisfy [0, 0%] = i22:1 k0. Show that the system reduces to the Euler equations
w1 = waws, Wy = wyws, W3 = wW1W3.
Use Trace(LP) to construct first integrals of this system.

3. Toda equation. Write down the Hamiltonian equations for the Toda Hamiltonian for N particles

moving in one dimension, H = %Z;\;l p? + Z;\;l exp(g; — gj+1) and show that with the definitions

a; = %exp[(qj —¢j+1)/2] and b; = —%pj they imply the Toda equations

aj =a;(bjy1 —b;), by =2(al—al ). (1)
(Use the convention that gg = —00,e% = 0,gn+1 = +00,e”IN+1 = (.)
Verify that the Toda problem with N = 2 can be written as the Lax pair L = [B, L] with

(1w _ 0 am
L= ( ay b2 ) B= < —aq 0 '
Express the eigenvalues of L in terms of the total momentum p; + ps and the energy H, check they are

in involution.

Obtain the general solution to the system.



. Lax pair for KdV. Show that the The KdV equation is equivalent to
Ly = [La A]

where the Lax operators are

d? d? d d

. Review of IB quantum mechanics Let L = —d% +u(z) be the one dimensional Schrodinger operator
with potential u, assumed to decay rapidly at infinity. Show that if Li) = Ay and Ly’ = i)’ then the
Wronskian W (i, v¢") = ¢l — "1, is constant.

Show that if 1) and v’ are bound states corresponding to the same discrete eigenvalue then ) oc 1)’

Deduce that the discrete eigenvalues are non-degenerate, i.e. each discrete eigenvalue corresponds to
exactly one bound state.

. Evolution of scattering data. Referring to the operators L, A defining the Lax structure of KdV
in Q4, show that L is selfadjoint and A is skew-adjoint: (o, Lv) = (Lp,¥), (v, AY) = — (Ap, ) for
any smooth, rapidly decaying functions ¢ and ¢. If ¢ is a real function with ||1(¢)|| = 1 for all ¢ and
O(t) = 1y (t) + Ay(t), show that ¢ and 1) are orthogonal, i.e. (¥,4) = 0. Conclude that if u satisfies the
KdV equation and v is a bound state for L then v; + Ay = 0 and obtain the time dependence of the
discrete part of the scattering (b, x») data associated to the potential u. [Hint: use question Q5. Take
the definition of b,, to be
o(x) = bye X" (z — +00)
where E,, = —x2 is the nth energy level. ]

. 2-soliton solution. Assume that the scattering data consists of two energy levels By = —x?, Ey = —x3
where x1 > x2 and a vanishing reflection coefficient. Solve the Gelfand-Levitan—-Marchenko equation to
find the 2-soliton solution.

[Follow the derivation of the 1-soliton in the Notes but try not to look at the N—soliton unless you really
get stuck.]

. Integral equation. Let Ly = k%t where L = —92 + u. Consider 1 of the form
Y(z) = et +/ K(z,2)e**dz

where K(x,2),0,K(z,z) — 0 as z — oo for any fixed z. Use integration by parts to show

where K = K(x,x) and K, = (0,K)|.=s. Deduce that the Schrodinger equation is satisfied if
u(z) = —2(K, + K.), and
K., — K,.,—uK =0 for z>uz.

. Initial data for KdV solitons. Recall from lectures that if A = 0, + ytanhyz and AT = -0, +
x tanh xx , then

—P4+x? = AAT and — 8%+ 2 — 2x%sech®yx = AT A, (2)
from which we found the bound state for the potential —2y2sech?yx with energy F; = —x2. Now by
considering B = 0, + 2x tanh yz and Bf = —9, 4 2y tanh yz , and computing BB' and BB, find the
bound states for the potential —6x2sech?yz and their energy levels.



10. First integrals for KdV. Consider the Riccati equation

ﬁ—21’!654—52:14.
dxr

for the first integrals of KdV. Assume that

- - Sn(x)
5= Z (2ik)"

n=1

and find the recursion relations
dS n—1
Sl(fﬂ,t) = 7U(I,t)7 Sn+1 - TZER +mZ:15mSn_m

Solve the first few relations to show that

ou 0%u
92 32—@‘1‘“2, Sy =

and find S5. Use the KdV equation to verify directly that

A3y 0

527 ~755 T 252

d d
— dr = — dx = 0.
dt RSg X 0, thS5 T 0



