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Abstract We establish a twistor correspondence between a cuspidal cubic curve in a
complex projective plane, and a co-calibrated homogeneous G2 structure on the seven-dimen-
sional parameter space of such cubics. Imposing the Riemannian reality conditions leads to
an explicit co-calibrated G2 structure on SU (2, 1)/U (1). This is an example of an SO(3)

structure in seven dimensions. Cuspidal cubics and their higher degree analogues with con-
stant projective curvature are characterised as integral curves of certain seventh order ODEs.
Projective orbits of such curves are shown to be analytic continuations of Aloff–Wallach
manifolds, and it is shown that only cubics lift to a complete family of contact rational curves
in a projectivised cotangent bundle to a projective plane.

Keywords Co-calibrated G2 · Twistor theory · Cubic curves

1 Introduction

Twistor theory gives rise to correspondences between global algebraic geometry of rational
curves in complex two-folds or three-folds, and local differential geometry on the moduli
spaces of such curves. The embedding of a rational curve L in a complex manifold Z is, to the
first order, described by the normal bundle N (L) := T Z/T L . This is a holomorphic vector
bundle, and thus by the Birkhoff–Grothedieck theorem, it is a direct sum of (dim(Z)−1) line
bundles O(n) of degree n which can vary between the summands. The Kodaira deformation
theorem [25] states that if H1(L , N (L)) = 0, then L belongs to a locally complete family
{Lm, m ∈ M} where M is some complex manifold, and there exists a canonical isomorphism:
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Tm M ∼= H0(Lm, N (Lm)).

In the original Non-linear Graviton construction of Penrose [31], the twistor space Z is a
complex three-fold and the normal bundle is N (L) = O(1) ⊕ O(1). This gives rise to an
anti-self-dual conformal structure on a four-dimensional manifold M such that the null vec-
tors fields in M correspond to sections of N (L) vanishing at one point. In the subsequent
twistor constructions of Hitchin [24], the twistor space Z is a two-fold, and N (L) = O(1)

or O(2). In the first case M is a surface admitting a projective structure, and in the second
case, M is a three-dimensional manifold with an Einstein–Weyl structure. The whole set up
can be generalised to contact rational curves in complex three-folds [6]. The moduli space of
such curves with normal bundle O(n) ⊕ O(n) admits an integrable GL(2) structure [6,17].
See [14] for other examples of twistor constructions.

The aim of this article is to use a twistor correspondence to construct seven dimensional
manifolds with G2 structure. The general theory was developed in [15], and in the pres-
ent article we construct a class of explicit new examples corresponding to L being a plane
cuspidal cubic:

y2 − x3 = 0 (1.1)

in a complex two-fold Z = CP
2. In order to do this, we need to refine the twistor corre-

spondence as outlined above, because the cuspidal cubics, although rational, are singular in
the complex projective plane. This can be dealt with either by considering the contact lifts
of the cuspidal cubics to P(T CP

2), where they become smooth contact curves with normal
bundle O(5) ⊕ O(5), or by working directly with singular curves. Both approaches lead to
deformation theory of (1.1) as a cuspidal cubic curve (rather than as a general plane cubic).
We shall find that normal vector field to a cuspidal cubic L vanishes at six general points on
L away from the cusp. The parameter space of cuspidal cubics arising from this deforma-
tion theory is the seven-dimensional homogeneous space M = P SL(3, C)/C

∗. All cuspidal
cubics are projectively equivalent and belong to the same P SL(3, C) orbit of (1.1) in CP

2.
To formulate our main result, recall that the (n + 1)-dimensional space of holomorphic

sections H0(CP
1, O(n)) is isomorphic to the vector space Vn = Symn(C2) of homogeneous

polynomials of degree n in two variables (s, t). Any such section is of the form:

V (s, t) = v0tn + nv1tn−1s + 1

2
n(n − 1)v2tn−2s2 + · · · + vnsn . (1.2)

Let U, V be elements of Vn . The pth transvectant of two polynomials U and V is an element
of V2n−2k given by

< U, V >p = 1

p!
p∑

i=0

(−1)i
(

p

i

)
∂ pU

∂t p−i∂si

∂ pV

∂t i∂s p−i
.

We shall first establish (Proposition 3.2) a canonical identification between vector fields on
M and elements of Sym6(C2), and then use it to prove.

Theorem 1.1 The seven-dimensional space M = SL(3, C)/C
∗ of plane cuspidal cubics

admits a canonical complexified G2 structure where the three form φ and the metric g

φ(U, V, W ) =<< U, V >3, W >3, g(U, U ) =< U, U >6

are explicitly given by (4.19). This G2 structure is co-calibrated, i.e.

dφ = λ ∗ φ + ∗τ, d ∗ φ = 0, (1.3)

where λ is a constant, and τ is a certain three-form such that φ ∧ τ = φ ∧ ∗τ = 0.
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We are ultimately interested in real G2, and we shall show that the structure from Theorem 1.1
admits three homogeneous real forms: two with signature (4, 3), where M = SL(3, R)/R

∗
or M = SU (3)/U (1), and one Riemannian with M = SU (2, 1)/U (1).

This article is organised as follows: In the next section, we shall summarise basic facts
about the nonlinear group actions on spaces of symmetric polynomials, with the particular
emphasis on sextics in two variables and cubics in three variables. In Sect. 3, we shall dem-
onstrate (Proposition 3.2) that the family M of cuspidal cubics admits a GL(2) structure, so
that the vectors tangent to M can be identified with elements of Sym6(C2). In Sect. 4, we
shall prove Theorem 1.1 and construct the conformal structure and the associated three-form
directly from the GL(2) structure on M . Restricting to a real Riemannian slice will reveal
a co-calibrated G2 structure on SU (2, 1)/U (1). In Sect. 5, we shall discuss the differential
equations approach, where M arises as the solution space of a seventh order ODE. To find
this ODE, take seven derivatives of the general form of the cuspidal cubic and express the
seven parameters in terms of y(x) and its first six derivatives, which leaves one condition
in the form of the ODE (Proposition 5.1). From the point of view of projective geometry of
curves, the cuspidal cubics belong to the class of algebraic curves with constant projective
curvature [36]. We shall find (Proposition 5.2) all curves in CP

2 which give rise to seven-
dimensional projective orbits. These curves have constant projective curvature and are related
to Aloff–Wallach seven-manifolds. In Sect. 6 we shall introduce the generalised Wilczynski
invariants, and show (Theorem 6.4) that only cubics give rise to a complete analytic family
on a contact complex three-fold P(T CP

2).
The connection between the algebraic geometry of cuspidal cubics, the differential geom-

etry of their parameter space, and the seventh order differential equations forms a part of
more general theory [15]. Any seven-dimensional family of rational curves which lifts to a
complete family of non-singular contact curves in contact complex three-folds gives rise to a
G2 structure. This structure in general has torsion which can be expressed in terms of contact
invariants of the associated seventh order ODE characterising the curves.

2 Group actions on symmetric polynomials

Most calculations in the article rely on an explicit description of the actions of the projective
linear group on spaces of homogeneous polynomials, and in this Section we shall summarise
the basic facts and notation here. Let E = C

m be an m-dimensional complex vector space,
and let Symk(E) be the vector space of complex homogeneous polynomials of degree k in m
variables. The two cases of interest will be the space of binary sextic where (k = 6, m = 2),
and the space of ternary cubics where (k = 3, m = 3).

The general element of Symk(E) is of the form:

P(Z) =
m∑

αi =1

Pα1α2...αk Zα1 Zα2 . . . Zαk ,

where the symmetric tensor Pα1α2...αk consists of the coefficients of the polynomial, and
Zα = [Z1, Z2, . . . , Zk] are homogeneous coordinates on P(E). The linear action of GL(E)

on E is given by ordinary matrix multiplication Z → Ẑ , where Zα = Nα
β Ẑβ for N ∈

GL(E). This induces a nonlinear action of GL(E) on Symk(E) given by P(Z) = P̂(Ẑ), so
that
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P̂α1α2...αk =
m∑

βi =1

Nβ1
α1 Nβ2

α2 . . . Nβk
αk Pβ1β2...βk . (2.4)

This action preserves the homogeneity of the polynomials, and so it induces a nonlinear pro-
jective group action of PGL(E) on P(E). Before going any further we shall restrict ourselves
to the following two cases of interest:

2.1 Binary sextics and classical invariants

Let E = C
2 and let V6 = Sym6(C2) be the seven-dimensional space of binary sextics of the

form (1.2) with n = 6. Let

V (s, t) = v0t6 + 6v1t5s + 15v2t4s2 + 20v3t3s3 + 15v4t2s4 + 6v5ts5 + v6s6 ∈ V6.

Definition 2.1 An invariant of a binary sextic under the GL(2, C) action (2.4) is a function
I = I (v0, . . . , v6) such that

I (v̂0, . . . , v̂6) = (αδ − βγ )w I (v0, . . . , v6), where N =
(

α β

γ δ

)
.

The number w is called the weight of the invariant.

One of the classical results of the invariant theory is that all invariants arise from the trans-
vectants (see e.g. [19,29] ). There are five invariants for binary sextics of degrees 2, 4, 6, 10
and 15, respectively, connected by a syzygy of degree 30. The one we will be concerned with
is the quadratic invariant:

I2(V ) :=< V, V >6 = v0v6 − 6v1v5 + 15v2v4 − 10(v3)
2. (2.5)

Invariants of several binary forms arise in an analogous way, and we shall make use of an
invariant of three binary sextics, which should be thought of as a scalar part in the Clebsh–
Gordan decomposition of V6 ⊗ V6 ⊗ V6. This is given by

I3(U, V, W ) :=<< U, V >3, W >6 . (2.6)

The invariant I2 defines a symmetric quadratic form. The invariant I3 is anti-symmetric in
any pair of vectors.

2.2 Ternary cubics and their orbits

Let E = C
3. We shall consider the space of irreducible ternary cubics which give rise to

plane cubic curves in CP
2 of the form:

3∑

α,β,γ=1

Pαβγ Zα Zβ Zγ = 0.

There are ten coefficients Pαβγ , but the overall scale is unimportant, and so the space of such
cubics is CP

9. The group action (2.4) preserves the homogeneity, and so it descends to the
projective action of PGL(3, C) on CP

9. There are three types of orbits (see e.g. [23]) which
we shall present in inhomogeneous coordinates x = Z1/Z3, y = Z2/Z3 (Fig. 1).
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Fig. 1 Three types of orbits of
irreducible cubics

T

CP

CP

2

1

1

(1) Smooth cubic y2 = x(x − 1)(x − c).
(2) Nodal cubic y2 = x3 − x2.
(3) Cuspidal cubic y2 = x3.

The first orbit corresponds to a smooth cubic which is a curve of genus one. Two smooth cubics
are projectively equivalent if their j-invariants j = (c2 − c +1)3/(c2(c −1)2) coincide. The
remaining two orbits correspond to singular rational cubics. There is the eight-dimensional
orbit of the nodal cubic(Z2)2 Z3 −(Z1)3 +(Z1)2 Z3 = 0 which contains all nodal cubics, and
finally there is the seven-dimensional orbit M of the cuspidal cubic Z3(Z2)2 − (Z1)3 = 0.
The one-dimensional stabiliser of this cubic is given by the projective transformations with
N = diag(a, a4, a−5), where a ∈ C

∗. Thus the space of cuspidal cubics is a homogeneous
manifold M = SL(3, C)/C

∗.

3 Cuspidal cubics, their moduli, and the GL(2) structure

In this section, we shall use the twistor correspondence to construct a GL(2) structure on the
space of cuspidal cubics.

3.1 GL(2) structures

Definition 3.1 The GL(2) structure on an (n + 1)-dimensional manifold M is an isomor-
phism:

T M ∼= Symn(S), (3.7)

where S is a rank two symplectic vector bundle over M .

The GL(2) structures were originally called the paraconformal structures in [17]. If M is a
complex manifold, we talk about GL(2, C) structures and S is a complex vector bundle. The
tangent vector fields to M are identified by (3.7) with homogeneous polynomials of degree n
in two variables. There is also a unique, up to scale, symplectic structure on the fibres C

2 of
S. The group action (2.4) with m = 2 and k = n gives rise to an irreducible (n +1) represen-
tation of GL(2, C), and thus to the embedding of GL(2, C) inside GL(n +1, C). The image
of SL(2, C) ⊂ GL(2, C) is contained in Sp(n + 1, C) if n is odd, or in SO(n + 1, C) if n is
even. We shall consider the case of even n, where the representation space Vn is odd-dimen-
sional. Then we have two-real sections of the GL(2, C) structures on real (n+1)-dimensional
manifold M which correspond to two real forms of GL(2, C).
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(1) The GL(2, R) structures give an identification of tangent vectors with real homogeneous
polynomials of degree n. The fibers of S are real vector spaces R

2.
(2) The SO(3, R) × R

∗ structures (or locally equivalent U (2) structures) identify the tan-
gent vectors to M with harmonic homogeneous polynomials in three variables. This
has its roots in the isomorphism C

3 = Sym2(C2) between complex vectors in C
3

and symmetric 2 by 2 matrices with complex coefficients. The (n + 1)-dimensional
space Symn(C2) is then identified with a subspace of Symn/2(C3) which consist of
harmonic ternary forms, i.e. those forms

∑n/2
α,...,γ=1 Pαβ...γ Zα Zβ . . . Zγ which satisfy

∑n/2
α,β=1 δαβ Pαβ...γ = 0.

In practice, the isomorphism (3.7) is specified by a homogeneous polynomial S of degree n
with values in 
1(M). Given S ∈ 
1(M)⊗Vn , the homogeneous polynomial corresponding
under (3.7) to a vector field V ∈ T M is the contraction V S.

3.2 Cuspidal cubics and their deformations

A cuspidal cubic L ⊂ CP
2 is a singular rational curve with self-intersection number 9, as

two general cuspidal cubics intersect in exactly nine points (albeit not in the general posi-
tions). The arithmetic genus is constant in algebraic families, and so this is the same as
the genus of a smooth cubic curve. The arithmetic genus of a curve with a cusp is 1 plus
the genus of a resolution of singularities.) The Riemann-Roch theorem for singular curves
yields

h0(L , N (L)) − h1(L , N (L)) = deg(N (L)) − g(L) + 1 = 9 − 1 + 1 = 9.

In the case of cuspidal cubics, h1(L , N (L)) = 0 and so h0(L , N (L)) = 9. Here h0(L , N (L))

is equal to the dimension of the space of all deformations of L as a curve in CP
2. Indeed,

the space of all cubic curves in CP
2 is isomorphic to CP

9. Thus, H0(L , N (L)) describes all
deformations of L as a curve in CP

2, not just those as a cuspidal curve.
We want to consider the deformations of y2 − x3 = 0 as a rational cuspidal curve, and

not allow the perturbations of cuspidal cubics to smooth curves. Thus we shall compute the
Zariski tangent space to M at a point in M . This will make use of the rational parametrisation
of L and lead to the first-order deformations.1

Let Lm ∈ Z = CP
2 be a cuspidal cubic corresponding to m ∈ M . Consider a neighbour-

ing curve in Z corresponding to a point m + δm in M . In the proof of Proposition 3.2 where
we shall show that two nearby cuspidal cubics Lm and Lm+δm intersect at six points away
from the triple intersection at the cusp. This will follow from the form of the normal vector
field to L (Fig. 2).

Thus, a vector in M connecting two neighbouring points corresponds to a six-order homo-
geneous polynomial (defined by its six roots) in two variables which gives rise to an isomor-
phism:

Tm M ∼= Sym6(C2). (3.8)

To make contact with the notation in formula (2.4) we let Ẑα = [Ẑ1, Ẑ2, Ẑ3] be homoge-
neous coordinates on CP

2.

1 An alternative construction based on contact resolution of the cusp will be presented in Theorem 6.4.
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Fig. 2 Normal vector field to
Lm ⊂ Z and tangent vector at
m ∈ M .

MZ

Proposition 3.2 The seven-dimensional space of cuspidal cubics M = SL(3, C)/C
∗ admits

a GL(2) structure (3.8). If

3∑

α,β,··· ,φ=1

Pαβγ Nα
δ Nβ

ε N γ
φ Ẑ δ Ẑ ε Ẑφ = 0, (3.9)

where P111 = −1, P223 = P232 = P322 = 1/3 (and other components of P vanish) is the
general element of M then the GL(2) structure is given by S ∈ 
1(M) ⊗ Sym6(C2)

S(s, t) = 2σ 2
3 s6 − 3σ 1

3 ts5 + 2σ 2
1 t2s4 + (σ 3

3 + 2σ 2
2 − 3σ 1

1) t3s3 − 3σ 1
2 t4s2

+ σ 3
1 t5s + σ 3

2 t6, (3.10)

where σ = N−1d N is the Maurer–Cartan one-form on SL(3, C) with values in the Lie
algebra of traceless 3 × 3 matrices.

Proof Consider a rational parametrisation of (1.1)

x = t2, y = t3,

or, in homogeneous coordinates Zα = T α(t) = [t2, t3, 1]. To establish he isomorphism (3.8)
we shall construct a binary sextic in (s, t) with values in T ∗M . The P SL(3) orbit of (1.1) is
seven-dimensional, and is parametrised by the components of the matrix N ∈ SL(3, C). We
identify two such matrices if they differ by a multiplication by the stabiliser diag(a, a4, a−5).

Formula (2.4) with d = 3 thus implies that the homogeneous form of the general cuspidal
cubics is (3.9), as this is the general orbit of y2 − x3 = 0. To construct the normal vector field
to this family, differentiate (3.9) with respect to the moduli parameters Nα

β , and substitute
the rational parametrisation:

Ẑα(t) =
3∑

β=1

(N−1)αβ T β(t), where T α = (t2, t3, 1).

In general, if the family of rational curves f (x, y; m) = 0 parametrised by m ∈ M admits a
rational parametrisation x = x(t, m), y = y(t, m), then the polynomial is given by [15]

dim M∑

k=1

∂ f

∂mk
|{x=x(t,m),y=y(t,m)} dmk .
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In our case this gives a polynomial of degree 9 in t

3∑

α,β,γ,δ=1

Pαβγ σ γ
δT αT β T δ, (3.11)

where σ = N−1d N is the Maurer–Cartan one-form on SL(3, C) with values in the Lie
algebra of traceless 3 × 3 matrices. Pulling out the overall scalar factor of t3 and introducing
the homogeneous coordinates (s, t) in place of an affine coordinate t yields the T ∗M-valued
sextic polynomial (4.13) given by (3.10). Its roots depend on coordinates on M . 
�
In particular, the proof above shows that the normal vector field to a cuspidal cubics vanishes
to the third order at the cusp t = 0, and at six smooth points on the cubics in general positions.

4 Construction of the G2 structure

In this section we shall present the proof of Theorem 1.1 and show that the space of cuspidal
cubics M is equipped with a conformal G2 structure (a good reference to G2 structures is [33]).
In our discussion of GL(2, C) structures, we have noted the existence of the embedding of
SL(2, C) in SO(7, C). The representation theoretic argument of [35], or the explicit construc-
tion in [15] shows that this leads to an intermediate embedding SL(2, C) ⊂ G2

C ⊂ SO(7, C)

which we shall now explore.2

Let V, U, W ∈ T M . The GL(2) structure allows the identification of vector fields with
binary sextics, and therefore the invariants (2.5) and (2.6) give rise to a non-degenerate
symmetric quadratic form and a skew-symmetric three-form on M given by

g(U, V ) =< U S, V S >6, φ(U, V, W ) =<< U S, V S >3, W S >3 .

(4.12)

For a general GL(2) structure the isomorphism (3.8) is specified by a T ∗M valued sextic
polynomial

S(s, t) = a0t6 + 6a1t5s + 15a2t4s2 + 20a3t3s3 + 15a4t2s4 + 6a5ts5 + a6s6, (4.13)

for linearly independent one-forms a0, . . . , a6 on M . Given S(s, t), a sextic polynomial cor-
responding to a vector V ∈ T M is given by the contraction V S(s, t). The transvectant
formulae for the invariants (2.5) and (2.6) , and formula (4.12) imply that the quadratic form
g and the three-form φ are given by

g = a0 � a6 − 6a1 � a5 + 15a2 � a4 − 10(a3)2, (4.14)

and

φ =
√

5

2

(
3 (a1 ∧ a2 ∧ a6 + a0 ∧ a4 ∧ a5) + a3 ∧ (a0 ∧ a6 + 6 a1 ∧ a5 − 15 a2 ∧ a4)

)
.

(4.15)

2 Dynkin has shown (see e.g. [35]) that for general n, there is no proper Lie subgroup G of Sp(n + 1, C) or
SO(n + 1, C) such that SL(2, C) ⊂ G. The exception is n = 6, where G = G2

C. Thus, in all dimensions
apart from seven, the GL(2) structure does not induce any additional G structure on M apart from a conformal
structure if n is even, or a symplectic structure, if n is odd.

123

Author's personal copy



Ann Glob Anal Geom

The quadratic invariant g induces a conformal structure on M and φ (the overall multiple√
5/2 has been chosen for later convenience) endows M with a three-form compatible with

g in a sense that

(V φ) ∧ (V φ) ∧ φ = 0 iff g(V, V ) = 0.

The invariants (2.5) and (2.6) have weights six and nine, respectively, and thus g gives rise
to a conformal structure, but not a metric. Changing a metric in the conformal structure has
to be complemented by changing the three-form according to

g −→ 6g, φ −→ 9φ,

where  is a non-vanishing function on M . Thus, the structure group of T M reduces to
the complexification of conformal G2 [15]. We shall now find this structure explicitly, and
demonstrate that it is co-calibrated.

Proof of Theorem 1.1 Using the form of the GL(2) structure given by (3.10) together with
formulae (4.14) and (4.15) gives rise to a conformal structure represented by the metric

g = 2σ 3
2 � σ 2

3 + 1

2
σ 3

1 � σ 1
3 − 2

5
σ 1

2 � σ 2
1 − 1

40
(4σ 1

1 − σ 2
2)

2. (4.16)

This holomorphic conformal structure on SL(3, C)/C
∗ admits three real forms, all leading

to co-calibrated G2 structures.

• If the components of σ are all real, then g is a metric of signature (3, 4) on the non-compact
manifold SL(3, R)/R

∗.
• If σ is anti-hermitian then g is a metric of signature (4, 3) on a compact seven-manifold

M = SU (3)/U (1), where U (1) is the group of diagonal matrices:
⎛

⎝
eiθ 0 0
0 e4iθ 0
0 0 e−5iθ

⎞

⎠ , θ ∈ R. (4.17)

Thus, M is the Aloff–Wallach space N (1, 4). The homogeneous co-calibrated G2 struc-
tures of Riemannian signature on some Aloff–Wallach spaces have appeared before in
[1,4,7,10,32].

• If the diagonal components of σ are imaginary and the reality conditions

σ 2
1 = −σ 1

2, σ 3
1 = σ 1

3, σ 3
2 = σ 2

3 (4.18)

hold, then the metric (4.16) has Riemannian signature. The relations (4.18) imply that σ

takes values in su(2, 1). Thus we obtain a homogeneous Riemannian conformal class on
the non-compact seven-manifold M = SU (2, 1)/U (1), where U (1) is given by (4.17).

We shall now work out the details of the G2 structure (4.16) associated with the Riemannian
reality conditions (4.18), and show that it is co-calibrated with the conformal factor equal
to 1. Let

e8 =
⎛

⎝
i 0 0
0 4i 0
0 0 −5i

⎞

⎠

span the one dimensional Lie algebra of the U (1) stabiliser (4.17). We choose the following
basis for the invariant complement of e8 (the various square roots multiples are chosen such
that the dual one-forms in the resulting metric have length one)
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e3 =
√

10

2

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ , e7 =
√

10

2

⎛

⎝
0 i 0
i 0 0
0 0 0

⎞

⎠ , e2 = √
2

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ ,

e6 = √
2

⎛

⎝
0 0 −i
0 0 0
i 0 0

⎞

⎠ , e1 = 1√
2

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ , e5 = 1√
2

⎛

⎝
0 0 0
0 0 i
0 −i 0

⎞

⎠ ,

e4 =
√

10

7

⎛

⎝
−3i 0 0

0 2i 0
0 0 i

⎞

⎠ .

The Maurer–Cartan one-form on SU (2, 1) is

σ = N−1d N =
⎛

⎝
σ 1

1 σ 1
2 σ 1

3

σ 2
1 σ 2

2 σ 2
3

σ 3
1 σ 3

2 −σ 1
1 − σ 2

2

⎞

⎠ =
8∑

k=1

ek ⊗ θk,

where θk are the left-invariant one-forms on the group. Thus,

σ 1
2 =

√
10

2
(−θ3 + iθ7), σ 1

3 = √
2(θ2 − iθ6), σ 2

3 = 1√
2
(θ1 + iθ5),

σ 2
2 − 4σ 1

1 = 2i
√

10 θ7

together with the reality conditions (4.18). The metric (4.16) and the G2 three-form (4.15)
become

g = (θ1)2 + (θ2)2 + (θ3)2 + (θ4)2 + (θ5)2 + (θ6)2 + (θ7)2, (4.19)

φ = θ123 + θ145 + θ167 + θ246 − θ257 − θ347 − θ356,

where θ jkl = θ j ∧ θk ∧ θ l . The relations

dσ + σ ∧ σ = 0, [e j , ek] =
3∑

l=1

c jkl el

give

dθ1 = √
10θ2 ∧ θ3 +

√
10

7
θ4 ∧ θ5 − 9θ5 ∧ θ8 + √

10θ6 ∧ θ7,

dθ2 = −
√

10

4
θ1 ∧ θ3 + 4

√
10

7
θ4 ∧ θ6 −

√
10

4
θ5 ∧ θ7 + 6θ6 ∧ θ8,

dθ3 = −
√

10

5
θ1 ∧ θ2 + 5

√
10

7
θ4 ∧ θ7 +

√
10

5
θ5 ∧ θ6 − 3θ7 ∧ θ8,

dθ4 =
√

10

20
θ1 ∧ θ5 + 4

√
10

5
θ2 ∧ θ6 − 5

√
10

4
θ3 ∧ θ7,

dθ5 =
√

10

7
θ1 ∧ θ4 + 9θ1 ∧ θ8 + √

10θ2 ∧ θ7 + √
10θ3 ∧ θ6,

dθ6 = −
√

10

4
θ1 ∧ θ7 + 4

√
10

7
θ2 ∧ θ4 − 6θ2 ∧ θ8 −

√
10

4
θ3 ∧ θ5,

dθ7 = −
√

10

5
θ1 ∧ θ6 +

√
10

5
θ2 ∧ θ5 + 5

√
10

7
θ3 ∧ θ4 + 3θ3 ∧ θ8,
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dθ8 = 3

14
θ1 ∧ θ5 − 4

7
θ2 ∧ θ6 − 5

14
θ3 ∧ θ7

and finally (1.3). Thus, the G2 structure is co-calibrated. 
�
The real form SU (2, 1)/U (1) which we have explored in the proof corresponds to the second
‘real form’ of the GL(2, C) structure (see the discussion of the real forms in Sect. 3). Thus
it is an example of the SO(3) structure in seven dimensions [2].

A similar construction applied to nodal cubics would instead lead to a symplectic struc-
ture on the eight-dimensional P SL(3) orbit. To make contact with conformal geometry one
needs to blow up a point in CP

2 to get a seven-dimensional family M . This will admit a
non-homogeneous G2 structure.

5 ODEs for cuspidal curves

All rational curves with seven-dimensional orbits are projectively equivalent to the cuspidal
curves

y p − xq = 0 (5.20)

with (p, q) integers. This fact follows from a more general result established in [13]. In
this section, we shall present a direct proof based on the projective curvature. We shall also
characterise the family of cuspidal cubics and their higher degree generalisations (5.20) as
integral curves of the seventh order ODEs.

In Wilczyński’s approach to projective differential geometry [36] each curve C → CP
2

(or R → RP
2) corresponds to a unique third order homogeneous linear ODE

d3Y

dx3 + 3p1(x)
d2Y

dx2 + 3p2(x)
dY

dx
+ p3(x)Y = 0 (5.21)

such that given a curve x → [y1(x), y2(x), y3(x)], the functions y = [y1(x), y2(x), y3(x)]
span the solution space of (5.21). To find this ODE, substitute each yi (x) into (5.21) and solve
the resulting system of linear algebraic equations for each of the smooth functions pi s. Linear
transformations of the basis y correspond to projective transformations of the curve. These
transformations do not change the ODE (5.21). The combinations of the coefficients which
only depend on the ratios of the solutions, i.e. are unchanged by transformations y → γ (x)y
are the semi-invariants

P2 = p2 − (p1)
2 − (p1)x , P3 = p3 − 3p1 p2 + 2(p1)

3 − (p1)xx , (5.22)

where the subscripts stand for partial derivatives. The lowest-order relative projective invari-
ant is given by

�3(x) = P3 − 3

2
(P2)x .

The cubic differential �3(x)dx3 is invariant under an overall scaling of homogeneous coor-
dinates and reparametrisation of the curve,

(x, y) −→ (ξ(x), γ (x)y).

Invariants of the ODE (5.21) under this class of transformations are also projective invariants
of the curve. Using these transformations, one can set two out of the three functions pi to
zero.
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• The Laguerre–Forsyth canonical form is achieved by setting p1 = p2 = 0 in which case
�3 = p3. Thus, if �3 = 0, the solution space is y = [1, x, x2] and the curve is a conic.

• Consider a curve y = y(x), so that y = [1, x, y(x)]. This gives p2 = p3 = 0 and
p1 = −yxxx/(3yxx ). Then,

�3 = 9(y(2))2 y(5) − 45y(2)y(3)y(4) + 40(y(3))3

(y(2))
3 . (5.23)

This, as we have just shown, vanishes for conics which gives a characterisation of the
five-dimensional space of plane conics by a fifth order ODE originally due to Halphen
[22].

We will say that �r (x) is a relative invariant of weight r if �r (x)dxr is an invariant. Wil-
czynski shows that given �r , the quantity

�2r+2 = 2r�r (�r )xx − (2r + 1)((�r )x )
2 − 3r2 P2(�r )

2 (5.24)

is a relative invariant of weight (2r + 2). Thus, �3 gives rise to �8, and we can define the
projective curvature to be an absolute invariant

κ = (�8)
3

(�3)8 . (5.25)

This is the lowest-order absolute projective invariant.3 If a parametrisation with p2 = p3 = 0
is chosen, then the expression for κ depends on y and its first seven derivatives.

Proposition 5.1 (Wilczynski [36], Sylvester [34]) The cuspidal cubics have constant pro-
jective curvature, and are characterised by the seventh order ODE

κ(y, y′, · · · , y(7)) = 3973

2452 . (5.26)

Proof This can be seen directly parametrising the cuspidal cubic by [1, x, x3/2] so that
Eq. 5.21 becomes

d3Y

dx3 + 1

2x

d2Y

dx2 = 0,

and κ can be found directly by substituting p1 = 1/(6x) in the formulae above. 
�
It is easy to find all other curves with constant projective curvature. A curve [1, x, xγ ], where
γ �= 0, 1 is characterised by

κ = 39 (1 + γ 2 − γ )3

(γ − 2)2(2γ − 1)2(γ + 1)2 .

The case

κ = 39/22

which corresponds to γ = 0 or γ = 1 has to be considered separately, as for these two values
the solutions to Wilczyński’s ODE (5.21) are not independent. We verify that this special
case corresponds to a curve [1, x, ln(x)]. Therefore, we have established.

3 The fact that there are no invariants of order lower than seven can also be seen by direct counting. The pro-
longations of the eight generators of P SL(3) from the (x, y) plane to the sixth jet J 6 are vector fields which
are independent almost everywhere, and thus span T J 6 at almost every point. Therefore, the only functions
of (x, y, y′, . . . , y(6)) constant along the flows generated by the lifts are constant identically.
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Proposition 5.2 All curves of constant projective curvature are projectively equivalent to

y = xγ , γ �= 0, 1,−1, 2, 1/2 or y = ln x .

This is in agreement with [13], where the same class of curves arose as the most general
homogeneous curves in CP

2. All algebraic curves in this class are projectively equivalent to
the rational cuspidal curves (5.20). The stabiliser of (5.20) is the one-dimensional group of
matrices

⎛

⎝
aq−2p 0 0

0 a p−2q 0
0 0 a p+q

⎞

⎠ , a ∈ C
∗.

There are three real forms of the space of orbits, as before. One of these is the Aloff-Wallach
space N (k, l) = SU (3)/U (1), where the U (1) subgroup consists of matrices of the form [3]

⎛

⎝
eilθ 0 0
0 eikθ 0
0 0 e−i(k+l)θ

⎞

⎠ , θ ∈ R

and k, l are integers such that

p = 2l + k

3
, q = − l + 2k

3
.

The space N (1, 1) is special from this perspective. It corresponds to curves of the form
xy = 1. These curves form a five-dimensional orbit SL(3)/SL(2) which is the space of all
conic sections.

6 Generalised Wilczynski invariants for the constant projective curvature

6.1 Classical Wilczynski invariants

Equation 5.25 with constant κ is a seventh order ODE, solutions of which are curves with
constant projective curvature κ . Therefore, for any given κ we have a seven-dimensional
space of such curves and each of the curves has a one-dimensional stabiliser. All these solu-
tion spaces can be identified with homogeneous spaces P SL(3, R)/H , where H is one of
the one-dimensional subgroups in P SL(3, R) described above.

In [15], it has been demonstrated that a solution space to a seventh order ODE admits a
G2-structure if all its generalised Wilczynski invariants vanish identically. To introduce these
invariants, recall that given an arbitrary linear differential equation

Y (n) +
(

n

1

)
p1(x)Y (n−1) +

(
n

2

)
p2(x)Y (n−2) + · · · + pn(x)Y (x) = 0, (6.27)

with real smooth or complex holomorphic coefficients pi (x), i = 1, . . . , n the classical Wil-
czynski invariants are constructed as follows: First, we can always bring this equation to the
so-called semi-canonical form:

Y (n) +
(

n

2

)
P2(x)Y (n−2) +

(
n

3

)
P3(x)Y (n−3) + · · · + Pn(x)Y (x) = 0. (6.28)

This is achieved by

Y �→ λY, where λ = exp

(
−

∫
p1(x)dx

)
. (6.29)
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It is easy to check that the new coefficients Pi (x), i = 2, . . . , n are polynomial expressions in
terms of pi (x), i = 1, . . . , n and their derivatives. They also do not depend on the integration
constant in (6.29). For example, P2 and P3 are given by (5.22). Next, the semi-canonical
form (6.28) can be brought to the Laguerre–Forsyth canonical form:

Y (n) +
(

n

3

)
q3(x)Y (n−3) + · · · +

(
n

n − 1

)
qn−1(x)Y ′(x) + qn(x)Y (x) = 0, (6.30)

by means of the following change of variables:

(x, Y ) �→ (ξ(x), (ξ ′)(n−1)/2Y ), (6.31)

where ξ is satisfies the third-order ODE reduced to the Riccati equation:

η′ − 1/2η2 = 6

n + 1
P2, η = ξ ′′/ξ ′. (6.32)

In general, the coefficients qi (x), i = 3, . . . , n of the canonical form (6.30) depend on the
choice of the solution ξ(x) of defined by (6.32).

Theorem 6.1 (Wilczynski [36]) The expressions:

�r = 1

2

r−3∑

s=0

(−1)s (r − 2)!r !(2r − s − 2)!
(r − s − 1)!(r − s)!(2r − 3)!s!q(s)

r−s (6.33)

are relative invariants of the linear differential equation (6.27) with respect to the transfor-
mations (x, y) �→ (ξ(x), λ(x)y), i.e. �r �→ (ξ ′)r�r .

The expressions (6.33) were introduced by Wilczynski in [36] and are called the linear (rela-
tive) invariants of the equation (6.27). Wilczynski also shows that all other invariants (relative
and absolute) can be defined from them via differentiation and algebraic operations. In par-
ticular, equation (6.27) can be transformed to the trivial equation Y (n) = 0 if and only if
�r = 0 for all r = 3, . . . , n.

We note that the invariants �r do not depend on the choice of η in (6.32) and can be
expressed explicitly in terms of coefficients pi (x), i = 1, . . . , n, of the initial equation (6.27).
To do it in practice, bring (6.27) to the form (6.28) and calculate the coefficients qi using
(6.31). Now q1 vanishes identically, but q2, does not, unless the Riccati equation holds.
We nevertheless formally compute the expressions (6.33) with substitutions ξ ′′ = ξ ′η and
η′ = 1/2η + 6

n+1 P2. The coefficients in (6.33) are chosen in such a way that the resulting
expression will no longer depend on η. For example, the explicit expression for �3 does not
depend on the order n and has the form:

�3 = p3 − 3p1 p2 + 2p3
1 + 3p1 p′

1 − 3

2
p′

2 + 1

2
(p′

1)
2.

For n = 3 we arrive at the invariant �3 defined in the previous section.
Other approaches to define Wilczynski invariants (6.33) are presented in some other stud-

ies [8,30]. In particular, R. Chalkley provides an algorithm for computing Wilczynski invari-
ants in a way that avoids the Laguerre–Forsyth canonical form. He also gives alternative
proofs of the above results.

We note that Wilczynski invariants can also be computed in the cases when the coefficients
of the initial equation have isolated singularities. In particular, they are well-defined mero-
morphic functions if the linear equation is defined on complex domain with all coefficients
being meromorphic functions on this domain.
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6.2 Generalized Wilczynski invariants

The generalised Wilczynski invariants [11,12] of an arbitrary nonlinear ODE

y(n) = F(x, y, y′, . . . , y(n−1)) (6.34)

are defined as classical Wilczynski invariants of its linearisation. Analytically, they are com-
puted by substituting −(n

r

)−1
Dk

x

(
∂ F

∂y(n−r)

)
in place of p(k)

r (x) in the classical Wilczynski
invariants. Here by Dx , we denote the operator of total derivative:

Dx = ∂

∂x
+ y′ ∂

∂y
+ · · · + y(n−1) ∂

∂y(n−2)
+ F

∂

∂y(n−1)
.

We denote by �i the generalised Wilczynski invariant that we obtain from �i by this formal
substitution.

Theorem 6.2 ([11]) Generalised Wilczynski invariants are (relative) contact invariants of
nonlinear ordinary differential equations.

Generalised Wilczynski invariants were defined and studied in [11,12]. They are closely
related to Wünschmann conditions defined in [17] and further explored in [18]. For n = 7,
these Wünschmann conditions are explicitly computed in [15]. They consist of five expres-
sions W1, . . . , W5, which should vanish identically to guarantee the existence of a natural
GL(2, R)-structure (3.7) on the solution space4 M of the equation, such that normal vector
to a hypersurface given by fixing (x, y) in the general solution to (6.34) corresponds to a
sextic polynomial with a root of multiplicity 6. For n = 7 these Wünschmann conditions are
related to the generalised Wilczynski invariants as follows:

Wi = ai

⎛

⎝�i+2 +
i+1∑

j=3

b j
i � j

⎞

⎠ ,

where ai are constants and b j
i are linear differential operators which are polynomials in the

total derivative operator Dx of order at most 4. For example, a1 = −3430, a2 = −240100
and b3

2 = 2
5 Dx − 12

35
∂ F

∂y(6) so that:

W1 = −3430 �3,

W2 = −240100
(
�4 + 2

5 Dx (�3) − 12
35

∂ F
∂y(6) �3

)
.

In particular, it immediately follows that vanishing of �i , i = 3, . . . , 7 is equivalent to
vanishing of Wi , i = 1, . . . , 5.

Lemma 6.3 Let (�8)
3 = κ(�3)

8 be the differential equation (5.25) defining all curves on
projective plane with the constant projective curvature κ �= 0. All generalized Wilczynski

invariants vanish for this equation if and only if κ = 3973

2452 . It corresponds exactly to the family
of all cuspidal cubics.

Proof The explicit expression for �3 is given by equation (5.23). The explicit expression
for �8 is given by (5.24) and is linear in the highest derivative y(7). Resolving the equation

4 Not all GL(2) structures come from ODEs. Those which do have been partially characterised in [26].
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(�8)
3 = κ(�3)

8 with respect y(7) and using the explicit formulae for Wilczynski invari-
ants (6.33), we get that the generalised Wilczynski invariants for equation (5.25) are given
by

�3 = �4 = �5 = �7 = 0,

�6 = − (2452κ − 3973)

2231274

(
9(y(2))2 y(5) − 45y(2)y(3)y(4) + 40(y(3))3

)2

(y′′)6 .

Thus, we see that κ = 3973

2452 is the only value of projective curvature, for which all generalised
Wilczynski invariants vanish identically. 
�

6.3 Orbits of general cuspidal curves

Theorem 6.4 Let C(p,q) = SL(3, C)/C
∗ be a seven-dimensional family of all plane curves

projectively equivalent to the curve

y p − xq = 0,

where (p, q) are coprime positive integers with Max(p, q) > 2. The following statements
are equivalent

(1) The seven-dimensional family C(p,q) is a complete contact deformation family of non-
singular Legendrian curves in P(T CP

2).
(2) Generalised Wilczynski invariant of the ODE (5.25) vanish.
(3) C(p,q) is projectively equivalent to the family of cuspidal cubics C(2,3).

Proof Let us consider the SL(3) orbits of general cuspidal curves (5.20). The reason for
non-vanishing of �6 is that the SL(3) orbit is not a complete analytic family in the sense of
[25] unless the curve is cubic. Repeating the steps leading to (3.10), with T α = (t p, tq , 1)

gives

S(s, t) = (q − p)σ 3
2 t2q + (q − p)σ 3

1 tq+psq−p − qσ 1
2 t2q−ps p

+ ((q− p)σ 3
3+ pσ 2

2−qσ 1
1) tq sq + pσ 2

1 t ps2q−p−qσ 1
3 tq−psq+p + pσ 2

3s2q .

The form of this polynomial is not preserved by the rational transformation of t unless
Max(p, q) = 3.

Let us also clarify this fact from the point of view of singularities of Legendrian curves.
Passing to the homogeneous coordinates [X : Y : Z ] on CP

2 and permuting the coordinates
if needed, we can always assume that the equation of the curve is written as Y p Zq−p = Xq ,
where p ≤ q and q ≥ 3. In this case, the point [0 : 0 : 1] is always singular, so that all curves
in our family will be singular as well.

In order to apply Bryant’s generalisation [6] of Kodaira deformation theory we need all
curves of the family C(p,q) to be non-singular, or at least their lifts to the projectivized cotan-
gent bundle P(T CP

2) to be non-singular. Elementary computation shows that the lift of the
curve Y p Zq−p = Xq to P(T CP

2) is a non-singular curve if and only if p = 1 or q = p +1.
Indeed, the parametrisation of the affine coordinates(x, y) = (t p, tq) lifts to a rational para-
metrisation of the curves γ (t) = (x, y, ζ ) = (t p, tq , (q/p)tq−p) which are Legendrian with
respect to the contact form dy − ζdx . We find that γ = γ̇ = 0 at t = 0 unless p = 1, or
q = p + 1.
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Both cases are projectively equivalent via the change of coordinates Y and Z . Hence, we
shall treat only the first case and assume that p = 1. Then, only for q = 3 (the cuspidal
cubics case), the lifts of all curves in the family C(p,q) constitute the complete deformation
family of the curve Y Z2 = X3. Indeed, Lemma 6.3 shows that for q > 3, the projective

curvature (5.25) is different from the distinguished value 3973

2452 and the generalized Wilczyn-
ski invariant �6 does not vanish for the seventh order ODE defining the family of curves
projectively equivalent to Y Zq−1 = Xq . 
�

The fact that the generalised Wilczynski invariant �6 does not vanish on curves Y Zq−1 = Xq

for q > 3, although all these curves are rational can be explained as follows. Consider the sev-
enth order ODE defining the family of curves C(1,q). Formulae (5.24) with r = 3 and (5.25)
imply that the coefficient of the leading term y(7) equal exactly to the nominator of the
classical Wilczynski invariant �3 (see (5.23)). Thus, the equation of plane conics

9(y(2))2 y(5) − 45y(2)y(3)y(4) + 40(y(3))3 = 0

defines at the same time the set of singular points for the equation of curves of constant projec-
tive curvature. This is exactly the set where all generalized Wilczynski invariants have singu-
larities as well. Now computing the expression (5.23) for the curve Y Zq−1 = Xq , q ≥ 3, we
find that it is equal to X3q−9 up to a non-zero constant. Thus, the lifts of curves projectively
equivalent to Y Zq−1 = Xq cross the set of singular points transversally whenever q > 3 and
do not intersect this set at all if q = 3. In other words, the generalized Wilczynski invariants
have no singularities on the curves Y Zq−1 = Xq if and only if q = 3.

7 Outlook. ODEs for rational curves

We have constructed a co-calibrated G2 structure on the moduli space M of cuspidal cubics.
Co-calibrated G2 structures play a role in theoretical physics: they give rise to solutions of
IIB supergravity for which the only flux is the self-dual five-form [20]. They also appear
in the context of near-horizon geometries in heterotic supergravity. In particular, the eight-
dimensional spatial cross-sections of the horizon are U (1) fibrations over a conformaly
co-calibrated G2 structures on a seven-manifold M [21]. There is also a connection with
SU (3) structures [9].

In this study, the manifold M arises as the solution space of the seventh order ODE (5.26).
This is an example of the general construction of [15] which associates G2 structures with
7th order ODEs with general solutions given by rational curves.

There are few known ODE with that property—they are partially characterised by the
vanishing of the Wilczynski invariants [11,12,17,18]. They also correspond to projective
differential invariants [28].

• The ODE

25y(7)(y(4))2 − 105y(6)y(5)y(4) + 84(y(5))3 = 0

describes rational sextics with two cusps and admits eight-dimensional group of symme-
tries (this group is different than P SL(3)). The corresponding G2 structure is closed:

dφ = 0, d ∗ φ = τ ∧ φ,

where τ is some two-form [15].
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• The ODE

10(y(3))3 y(7)−70(y(3))2 y(4)y(6)−49(y(3))2(y(5))2+280(y(3))(y(4))2 y(5)−175(y(4))4 =0

is (together with y′′′ = 0) the unique ODE admitting ten-dimensional group of contact
symmetries [27]. The general solution is given by certain family of rational sextics [16].
The symmetry group is isomorphic to Sp(2), and the seven-dimensional solution space
M = Sp(2)/SL(2) admits a nearly integrable G2 structure:

dφ = λ ∗ φ, d ∗ φ = 0,

where λ is a constant. If the real form SO(5)/SO(3) is chosen, then the G2 structure is
Riemannian [5].

There are also some lower order examples.

• The fifth order ODE for conics

9(y(2))2 y(5) − 45y(2)y(3)y(4) + 40(y(3))3 = 0

is equivalent to the vanishing of �3 given by (5.23). This ODE goes back at least to
Halphen [22]. The resulting solution space SL(3)/SL(2) admits a homogeneous metric
which can be read off from the general conic in a way analogous to our construction of
(4.16).

• Considering all conics passing through two points [1, 0, 0], [0, 1, 0] in CP
2 gives a three-

dimensional family

y = ax + b

cx + d
.

This arises from the Schwartzian ODE

2y(3)y(1) − 3(y(2))2 = 0.

The problem of classifying ODEs, all solutions of which are rational curve, remains open.
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15. Dunajski, M., Godliński, M.: GL(2, R) structures, G2 geometry and twistor theory. Quart. J. Math.
(2010). arXiv:1002.3963

16. Dunajski, M., Sokolov, V.V.: On 7th order ODE with submaximal symmetry. J. Geom. Phys. 61, 1258–
1262 (2011). arXiv:1002.1620

17. Dunajski, M., Tod, K.P.: Paraconformal geometry of nth order ODEs, and exotic holonomy in dimension
four. J. Geom. Phys. 56, 1790–1809 (2006)
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