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Abstract

A GL(2, R) structure on an (n + 1)-dimensional manifold is a smooth point-wise identification
of tangent vectors with polynomials in two variables homogeneous of degree n. This, for even
n = 2k, defines a conformal structure of signature (k, k + 1) by specifying the null vectors to be
the polynomials with vanishing quadratic invariant. We focus on the case n = 6 and show that the
resulting conformal structure in seven dimensions is compatible with a conformal G2 structure or
its non-compact analogue. If a GL(2, R) structure arises on a moduli space of rational curves on a
surface with self-intersection number 6, then certain components of the intrinsic torsion of the G2
structure vanish. We give examples of simple seventh-order ordinary differential equations whose
solution curves are rational and find the corresponding G2 structures. In particular we show that
Bryant’s weak G2 holonomy metric on the homology seven-sphere SO(5)/SO(3) is the unique
weak G2 metric arising from a rational curve.

1. Introduction

Consider the three-dimensional space M of holomorphic parabolas in C
2. Each parabola is of the form

y = ax2 + 2bx + c

and (a, b, c) serve as local holomorphic coordinates on M . Two parabolas generically intersect at two
points, and we can define a holomorphic conformal structure on M by declaring two points p and p̃

to be null separated if and only if the corresponding parabolas are tangent. The tangency condition is
equivalent to a polynomial equation

v3x2 + 2v2x + v1 = 0

having a double root. Here (v1, v2, v3) = (c̃ − c, b̃ − b, ã − a) is the vector connecting p and p̃.
Calculating the discriminant shows that this vector is null if (v2) − v1v3 = 0. This quadratic condition
defines a flat conformal structure on M = C

3.
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An immediate question is whether this approach can be generalized to curved conformal structures.
One answer goes back to Wünschmann [29] who worked in the real category. The parabolas are
integral curves of a third-order ordinary differential equation (ODE) y ′′′ = 0. Wünschmann has found
the necessary and sufficient condition for a general third-order ODE so that the conformal structure
induced on the solution space by the tangency condition is well defined. The question has also been
considered in the context of twistor theory [14] where one is not concerned with differential equations
but rather with the algebro-geometric properties of rational curves in a complex 2-fold.

How about higher dimensions? It turns out that one can define conformal structures on certain
odd-dimensional moduli spaces of rational curves, but the discriminant (which is not quadratic for
higher degree curves) needs to be replaced by another invariant. In this paper we shall consider the
seven-dimensional case and answer the following questions:

(i) Given a seven-dimensional family of rational curves, can one define a conformal complexified
G2 structure on the moduli space M on these curves? Does this structure admit a real form of
Riemannian signature?

(ii) Can one characterize the curves and the corresponding G2 structures in terms of a seventh-order
ODE

y(7) = F(x, y, y ′, . . . , y(6))

with M as its solution space?

The methods employed in this paper form a mixture of ‘old’ and ‘new’. To define the conformal
structure on M we use the nineteenth century classical invariant theory (formula (7) in Section 3),
but the characterization of curves builds on the Penrosean holomorphic twistor methods. The allowed
rational curves must (after complexification) have self-intersection number 6 in some complex 2-fold
or a normal bundle O(5) ⊕ O(5) in a complex contact 3-fold. This allows a point-wise identification
of tangent vectors in M with sextic homogeneous polynomials in two variables. Now the invariant
theory can be applied to construct a conformal structure, and the associated G2 3-form φ (formulae (9)
and (12) in Section 4). The ODE approach gives a good handle on the local differential geometry
on M and allows expressing the components of intrinsic torsion of the G2 structure (as well as the
torsion of the associated Cartan connection) in terms of the contact invariants of the corresponding
ODE (Theorems 5.1 and 5.2 formulated in Section 5 and proved in Section 10). Here we make an
extensive use of the Tanaka–Morimoto theory of normal Cartan’s connection (Sections 8 and 9).
These methods allow us to show that if the component of the intrinsic G2 torsion taking value in the
27-dimensional irreducible representation �3(R7∗

) vanishes, then the resulting G2 geometry admits
a Riemannian real form and (up to diffeomorphisms) it is either flat, or is given by Bryant’s weak G2

holonomy [2] on SO(5)/SO(3), or is given by a seven-parameter family of curves

(y + Q(x))2 + P(x)3 = 0,

where the polynomials (Q(x), P (x)) are the general cubic and quadratic, respectively. These curves
have degree 6, but we shall find that they are rational and form a complete analytic family. The
corresponding seventh-order ODE is

y(7) = 21

5

y(6)y(5)

y(4)
− 84

25

(y(5))3

(y(4))2
, where y(k) = ∂ky

∂xk
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and the associated conformal structure is given by (9) and (22). There exists a choice of the conformal
factor such that corresponding G2 structure is closed, that is

dφ = 0, d ∗ φ = τ ∧ φ

for some 2-form τ on M .
Most calculations in the second half of the paper were performed using MAPLE. In particular

proving Theorem 5.2 required solving a system of over 600 quadratic equations for components of
curvature and torsion of Cartan’s normal connection. The resulting expressions are usually long and
unilluminating and we have not included all of them in the manuscript. Readers who want to verify
our calculations can obtain the MAPLE codes from us.

2. GL(2, R) structures

DEFINITION 2.1 A GL(2, R) structure on a smooth (n + 1)-dimensional manifold M is a smooth
bundle isomorphism

T M ∼= S � S � · · · � S = Sn(S), (1)

where S → M is a real rank-2 vector bundle, and � denotes symmetric tensor product.

The isomorphism (1) identifies each tangent space TtM with the space of homogeneous nth-
order polynomials in two variables. The vectors corresponding to polynomials with repeated root of
multiplicity n are called maximally null. A hypersurface in M is maximally null if its normal vector
is maximally null.

In practice the isomorphism (1) giving rise to a GL(2, R) structure is specified by a binary quantic
with values in T ∗M

Q(X1, X2) =
n∑

i=0

(
n

i

)
θ i+1(X1)

i(X2)
n−i ,

(
n

i

)
= n(n − 1) · · · (n − i + 1)

i! . (2)

Here (X1, X2) are coordinates on R
2, and the ‘coefficients’ in the quantic are given by linearly

independent 1-forms θ1, θ2, . . . , θn+1 on M . If V is a vector field on M , then the corresponding
polynomial is given by V Q, where denotes the contraction of a 1-form with a vector field. If
V = ∑

i v
iθi is expressed in a basis θi of T M such that θi θj = δ

j

i , the polynomial is

n∑
i=0

(
n

i

)
vi+1(X1)

i(X2)
n−i , (3)

with the coefficients vi being smooth functions on M .
Consider a general ODE of order (n + 1)

dn+1y

dxn+1
= F(x, y, y ′, . . . , y(n)), (4)

where y ′ = dy/dx etc, whose general solution is of the form y = Z(x, t) where t are constants
of integration. Assume that the space of solutions to (4) is equipped with a GL(2, R) structure (1)
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such that the two-parameter family of hypersurfaces given by fixing (x, y) are maximally null. It has
been shown in [10] that this imposes conditions on F which are expressed by vanishing of (n − 1)

expressions
Wα[F ], α = 1, 2, . . . , n − 1 (5)

for the ODE (4). Each expression Wα is a polynomial in the derivatives of F . The simplest of these
is the contact invariant

W1[F ] = D2Fn − 6

n + 1
FnDFn + 4

(n + 1)2
(Fn)

3 − 6

n
DFn−1

+ 12

n(n + 1)
FnFn−1 + 12

n(n − 1)
Fn−2,

where

Fk = ∂F

∂y(k)
and D = ∂

∂x
+

n∑
k=1

y(k) ∂

∂y(k−1)
+ F

∂

∂y(n)
.

Moreover if W1[F ] = W2[F ] = · · · = Wm−1[F ] = 0 then Wm[F ] is a contact invariant of the
ODE (4). The explicit expressions for Wα are unilluminating, but for completeness we list the five
invariants (in the form given in [13]) of seventh-order ODEs in Appendix A.

The same invariants have also arisen in other related contexts [6, 7, 13]. The description given by
Doubrov is particularly clear. First note that a linearization of the ODE (4) around any of its solutions
is a linear homogeneous ODE of the form

(δy)(n+1) = pn(x)δy(n) + · · · + p0(x)δy, (6)

where pk = ∂F/∂y(k) is evaluated at the solution.

THEOREM 2.2 [6, 7] The expressions (5) vanish if and only if the linear homogeneous ODE (6) can
be brought to a form δy(n+1) = 0 by a coordinate transformation (x, y) → (β(x), γ (x)y) for some
functions β and γ . Vanishing of (5) is invariant under the contact transformations of the non-linear
ODE (4).

The linear homogeneous ODEs of the form (6) have been studied by Wilczynski [28] who gave
explicit conditions for their trivializability in terms of the functions pk and their derivatives.

In the simplest non-trivial case n = 2 the corresponding invariant was already known to Wün-
schmann [29]. In the case n = 3 the invariants have been implicitly constructed by Bryant in his
study of exotic holonomy [3] and developed by Nurowski [20].

One source of ODEs for which these contact invariants vanish comes from twistor theory [3, 10].
Let Y be a complex contact 3-fold with an embedded rational Legendrian curve with a normal bundle
N = O(n − 1) ⊕ O(n − 1). The moduli space of such curves is (n + 1)-dimensional and carries a
natural (complexified) GL(2, R) structure.

The special case is Y = P(T T), where T is a complex 2-fold T containing embedded rational curve
Lwith self-intersection number n. Such curve has a natural lift L̂ toY , given by z ∈ L → (z, ż ∈ TzL).
The lifted curves are Legendrian with respect to the canonical contact structure on the projectivized
tangent bundle. The ODE whose integral curves are given by holomorphic deformations of L satisfies
the GL(2, R) conditions.
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3. GL(2, R) conformal structure

In this section we shall associate a conformal structure to a GL(2, R) structure. From now we assume
that n = 2k is even. We shall first recall some classical theory of invariants [12]. Let Vn ⊂ R[X1, X2]
be the (n + 1)-dimensional space of homogeneous polynomials of degree n. Consider the linear
action of GL(2, R) on R

2 given by

X̃1 = αX1 + βX2, X̃2 = γX1 + δX2, αδ − γβ �= 0.

Given a binary quantic Q(X1, X2) (whose coefficients may be numbers, functions, 1-forms, etc.) let
Q̃(X̃1, X̃2) be a binary quantic such that

Q̃(X̃1, X̃2) = Q(X1, X2).

This induces an embedding GL(2, R) ⊂ GL(n + 1, R), as the coefficients θ̃ = (θ̃1, . . . , θ̃ n+1) are
linear homogeneous functions of the coefficients of Q. Recall that an invariant of a binary quantic is
a function I (θ) depending on the coefficients θ = (θ1, θ2, . . . , θn+1) such that

I (θ) = (det A)wI (θ̃), where A =
(

α β

γ δ

)
∈ GL(2, R).

The number w is called the weight of the invariant. For example, if n = 2, the discriminant θ1θ3 −
(θ2)2 is an invariant with weight 2.

One of the classical results of the invariant theory is that all invariants arise from the
transvectants [12].

DEFINITION 3.1 For any homogeneous polynomials Q ∈ Vn, R ∈ Vm the pth transvectant is

〈Q, R〉p = 1

p!
p∑

i=0

(
p

i

)
∂pQ

∂(X1)p−i∂(X2)i

∂pR

∂(X1)i∂(X2)p−i
∈ Vn+m−2p.

In particular specifying Q = R the successive transvectant operations reduce to elements of V0

which are invariants. The simplest of these is

I0 = 〈Q, Q〉n.

It vanishes if n is odd, and for even n = 2k it has weight n and is given by

I0 =
{

2
k−1∑
i=0

(−1)i
(

2k

i

)
θ i+1θ2k+1−i

}
+

(
2k

k

)
(−1)k(θk+1)2. (7)

In particular if I0 is evaluated for the binary quantic (2) defining the GL(2, R) structure where θ i

are 1-forms, then I0 should be regarded as a section of S2(T ∗M). It is well known that a conformal
structure [g] is determined by specifying null vectors, i.e. sections V ∈ �(T M) such that g(V, V ) = 0
for g ∈ [g]. This gives the following proposition.
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PROPOSITION 3.2 A GL(2, R) structure on a (2k + 1)-dimensional manifold M induces a conformal
structure [g] of signature (k + 1, k) or (k, k + 1). A vector field is null with respect to [g] if and only
if the corresponding polynomial has I0(V ) = 0.

Proof . The ‘nullness’ of a vector is a quadratic condition and thus leads to a quadratic bilinear form
up to scale. Let a vector V correspond to a polynomial (3). The condition I0(V ) = 0, where I0 is given
by (7) is indeed a quadratic and leads to a symmetric bilinear form g(X, Y ) = 〈X, Y 〉n of signature
(k + 1, k) or (k, k + 1).

In general conformal structures induced by GL(2, R) structures form a subclass of all conformal
structures of signature (k + 1, k), except when k = 1 in which case the two notions are equivalent.
For n odd (that is, for even-dimensional M), the bilinear form (compare formula (7)) resulting from
this definition is anti-symmetric, so does not lead to conformal structures.

EXAMPLE 3.3 In three dimensions GL(2, R) structures are the same as conformal structures of
Lorentzian signature. This is related to the isomorphism

SL(2, R)/Z2
∼= SO(2, 1)

which underlies the existence of spinors. Let a conformal structure be represented by a metric
g = ηij e

iej where η = diag(1, −1, −1) and ei, i = 1, 2, 3, is an orthonormal basis of 1-forms. The
GL(2, R) structure is defined by (2) with θ1 = e1 + e3, θ2 = e2, θ3 = e1 − e3. A vector V = viθi

corresponds to a polynomial
v1 + 2xv2 + x2v3,

where x = X2/X1. The nullness condition

I0(V ) = v1v3 − (v2)2 = 0

is given by vanishing of the discriminant. Thus a vector is null if and only if the corresponding
polynomial has a repeated root. In the standard approach to spinors in three dimensions one represents
a vector by a symmetric 2 × 2 matrix V AB where A, B = 1, 2, such that g(V, V ) = det (V AB). The
non-zero null vectors correspond to matrices with vanishing determinant, which therefore must have
rank 1. Any such matrix is of the form V AB = pApB . In our approach the matrix V AB gives rise to a
homogeneous polynomial V ABXAXB which, in case of null vectors, has a repeated root x = −p1/p2.

EXAMPLE 3.4 The five-dimensional GL(2, R) structures correspond to special conformal structure
in signature (3, 2). The nullness condition can also be described geometrically in this case and the
following interpretation is well known in the context of classical invariant theory [12, 22]. In the
five-dimensional case vectors correspond to binary quartics. A generic quartic will have four distinct
roots, and the nullness condition I0(V ) = 0 implies that their cross-ratio is a cube root of unity. This
is the equianharmonic condition. The roots of the quartic, when viewed as points on the Riemann
sphere, can in this case be transformed into vertices of a regular tetrahedron by Möbius transformation.
Riemannian analogues of such geometries have been studied in [1].

We have been unable to find a geometric interpretation of the null condition I0(V ) = 0 in the case
of seven-dimensional GL(2, R) conformal structures which will play a role in the rest of the paper.
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The vectors correspond to binary sextics which generically admit six distinct roots z1, z2, . . . , z6. In
this case one can also form an SL(2, C) invariant multi cross-ratio

(z1 − z2)(z3 − z4)(z5 − z6)

(z2 − z3)(z4 − z5)(z6 − z1)
.

Let z1, z2, . . . , z6 denote positions of six points on a plane. Given a triangle with vertices (z1, z3, z5),
and three points (z2, z4, z6) on the lines (z3z5), (z5z1) and (z1z3), respectively, the lines (z1z2), (z3z4)

and (z5z6) are concurrent if and only if the multi cross-ratio is equal to 1. This is the Ceva theorem.
The theorem of Menelaus states that the points (z2, z4, z6) are collinear if the multi cross-ratio is

equal to −1.
We have expressed the invariant I0 in terms of the roots, hoping to characterize its vanishing

by the Menelaus–Ceva conditions, but found that the invariant does not vanish in either of these
two cases.

3.1. Twistor theory

If the GL(2, R) structure comes from an ODE, then induced conformal structure (7) arises from the
twistor correspondence described at the end of Section 2. Here we shall concentrate on the special
case when the Legendrian curves on a complex 3-fold are lifts of rational curves from a 2-fold.

Let
x −→ (x, y = Z(x, t1, t2, . . . , t2k+1))

be a graph of a rational curve L in a complex surface T with a normal bundle N(L) = O(2k). The
cohomological obstruction group H 1(L, N(L)) vanishes, and therefore the Kodaira theorems [16]
imply that the curve belongs to a (2k + 1)-dimensional complete family {Lt, t ∈ M} parametrized
by points in a (2k + 1)-dimensional complex manifold (the space of solutions to (4)). Moreover there
exists a canonical isomorphism

TtM ∼= H 0(Lt , N(Lt))

which associates a tangent vector at t ∈ M to a global holomorphic section of a normal bundle
N(Lt) = O(2k). Such sections are given by homogeneous polynomials of degree 2k which establishes
the existence of a GL(2, R) structure.

The curve Lt has self-intersection number 2k, i.e.

δy = ∂Z

∂t
δt

vanishes at the zeros of a polynomial of degree 2k in x = X2/X1. In its homogeneous form this
polynomial is a binary form (3) with coefficients vα, α = 1, . . . , 2k + 1 which depend on tα and are
linear in δtα . A vector at a point in t ∈ M corresponds to a normal vector field to the rational curve
Lt , i.e. a section of N(Lt) = O(2k) which is the same as a homogeneous polynomial of degree 2k.
The corresponding invariant I0 gives a quadratic form on M up to a multiple and its vanishing selects
the null vectors. This determines the conformal structure.

In practice one proceeds as follows: if the rational curve is given by

F(x, y, tα) = 0
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and its rational parametrization is

x = p(λ, tα), y = q(λ, tα),

where p, q are functions rational in λ ∈ CP
1, then the polynomial in λ giving rise to a null vector is

given by the polynomial part of ∑
α

∂F

∂tα

∣∣∣∣∣
{x=p,y=q}

δtα. (8)

4. G2 structures from GL(2, R) conformal structures

We shall now restrict to the case n = 6, and demonstrate that the seven-dimensional GL(2, R) man-
ifolds admit a conformal structure with a compatible G2 structure. If the associated 3-form is closed
and co-closed, then the conformal structure is necessarily flat. We will however find examples of non-
trivial G2 structures where some components of the torsion vanish. In particular there is a non-trivial
example of weak G2 holonomy compatible with the GL(2, R) structure. This example is originally
by Bryant [2]. In Theorem 5.2 we shall show that this example is essentially unique.

Consider a GL(2, R) structure given by the binary form

Q(x) = θ1x6 + 6θ2x5 + 15θ3x4 + 20θ4x3 + 15θ5x2 + 6θ6x + θ7,

with the corresponding quadratic invariant (conformal structure) (7)

I0 = θ1θ7 − 6θ2θ6 + 15θ3θ5 − 10(θ4)2. (9)

Here x = X2/X1 is an inhomogeneous coordinate on the projective line RP
1.

Use a combination of transvectants to construct a 3-form (Some readers may prefer the two
component spinor notation [22]. The capital letter indices A, B, . . . take values 1, 2. They are raised
and lowered by a symplectic form represented by an anti-symmetric matrix εAB on R

2 such that ε12 =
1. The homogeneous polynomials are of the form Q = QAB...CπAπB . . . πC , where πA = (X1, X2).
Then 〈Q, P 〉n = QAB...CP AB...C . The conformal structure and the 3-form are given by

I0 = eABCDEF � eABCDEF ,

φ = eABC
DEF ∧ eDEF

GHI ∧ eGHI
ABC,

where eABCDEF = e(ABCDEF) is R
7 valued 1-form such that

e111111 = θ1, e111112 = θ2, e111122 = θ3, e111222 = θ4, e112222 = θ5, e122222 = θ6, e222222 = θ7.)

φ(X, Y, Z) = 〈〈X, Y 〉3, Z〉6, (10)

PROPOSITION 4.1 The 3-form φ is compatible with the conformal structure I0: The vector V is null
with respect to I0 if and only if

(V φ) ∧ (V φ) ∧ φ = 0, (11)

where (V φ)(X, Y ) := φ(V, X, Y ).
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Proof . Consider the conformal structure induced by the vanishing of (7). Calculating the components
of the 3-form φ given by (10) and its dual with respect to I0 gives

φ = 3(θ2 ∧ θ3 ∧ θ7 + θ1 ∧ θ5 ∧ θ6) + θ4 ∧ (θ1 ∧ θ7 + 6 θ2 ∧ θ6 − 15θ3 ∧ θ5),

∗φ = −20θ1 ∧ θ4 ∧ θ5 ∧ θ6 + 5θ1 ∧ θ3 ∧ θ5 ∧ θ7 − 20θ2 ∧ θ3 ∧ θ4 ∧ θ7

− 2θ1 ∧ θ2 ∧ θ6 ∧ θ7 + 30θ2 ∧ θ3 ∧ θ5 ∧ θ6. (12)

This is in fact the non-compact form G
split
2 of the G2 structure, as these forms agree with the more

usual orthonormal frame formulae (see [2])

I0 = (e1)2 + (e2)2 + (e3)2 − (e4)2 − (e5)2 − (e6)2 − (e7)2,

φ = e123 − e145 − e167 − e246 + e257 + e347 + e356, (13)

∗φ = e4567 − e2367 − e2345 − e1357 + e1247 + e1256,

provided that

e1 = 1
2 (θ1 + θ7), e5 = 1

2 (−θ1 + θ7), e2 =
√

6
2 (θ2 − θ6)

e6 =
√

6
2 (θ2 + θ6), e3 =

√
15
2 (θ3 + θ5),

e7 =
√

15
2 (−θ3 + θ5), e4 = √

10θ4.

(here eijk = ei ∧ ej ∧ ek etc.). The condition (11) can now be verified directly. Conversely, given a
3-form φ, the conformal structure defined by (11) is represented by I0 as shown in [2].

We have therefore explicitly demonstrated that gl(2, C) can be embedded in the complexification
g2

C ⊕ C of g2 ⊕ R, or equivalently that sl(2, C) can be embedded in g2
C. This follows more abstractly

from a theorem of Morozov [26] which says that for any nilpotent element e of a complex semi-simple
Lie algebra g there exist f, h ∈ g and a homomorphism ρ : sl(2, C) → g such that ρ(e) = e, ρ(f) =
f, ρ(h) = h, where e, f, h, is the basis of sl(2, C) such that

[e, f] = h, [h, e] = 2e, [h, f] = −2f .

4.1. Fernandez–Gray types

In this paper we follow the standard terminology of G-structures and define a G2 structure on a seven-
dimensional manifold to be a reduction of the frame bundle from GL(7, R) to G2 (or its non-compact
analogue G

split
2 ). This structure is represented by a 3-form φ in the open orbit of GL(7, R) in �3(M).

The 3-form induces a metric [2] on M . If φ is given by (13) then the metric is given by I0. It is
Riemannian if the forms e1, . . . , e3 are real and e4, . . . , e7 are imaginary and has signature (3, 4) if
all 1-forms are real. (Another equivalent definition [11] is to start form a Riemannian (respectively,
signature (3, 4)) metric g and define a G2 structure to be a cross product P : TtM × TtM → TtM on
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each tangent space which varies smoothly with t ∈ M and such that P is a bilinear map satisfying

g(P (X, Y ), X) = 0, |P(X, Y )|2 = |X|2|Y |2 − g(X, Y )2, ∀X, Y,

where |X|2 = g(X, X). One then defines the associated 3-form by

φ(X, Y, Z) = g(P (X, Y ), Z).

This cross product equips each tangent space with the algebraic structure of pure octonions
(respectively, pure split octonions)). The latter case corresponds to the non-compact form G

split
2 .

Proposition 4.1 shows that seven-dimensional GL(2, R) structure is equivalent to a further reduction
of the frame bundle from R

+ × G2 ⊂ R
+ × SO(3, 4) to GL(2, R).

We do not assume anything about the closure of the 3-form φ or its dual. Various types of G2

structures (or their non-compact analogues) are characterized by a representation theoretic decom-
position of ∇φ, where ∇ is the Levi-Civita connection of the metric induced by φ. Following [4, 11]
we have

dφ = λ ∗ φ + 3
4� ∧ φ + ∗τ3

d ∗ φ = � ∧ ∗φ − τ2 ∧ φ,
(14)

where λ is a scalar, � is a 1-form, τ2 is a 2-form such that τ2 ∧ φ = − ∗ τ2 and τ3 is a 3-form such that
τ3 ∧ φ = τ3 ∧ ∗φ = 0. The forms (λ, �, τ2, τ3) can be interpreted as components of intrinsic torsion
of a natural connection of G2 structure. To define this connection apply the canonical decomposition
so(7) = g2 ⊕ R

7 (or its so(3, 4) analogue) to the Levi-Civita connection. If γ is the so(7)-valued
connection 1-form, then writing γ = γ̂ + τ defines a connection with torsion (not to be confused
with the torsion T of the gl(2, R)-valued connection � studied in Sections 7 and 10) represented by
a 1-form γ̂ with values in g2. See [4] for details. If the 3-form is only defined up to a multiple by
a non-zero function (as it is the case in this paper) then λ, τ2 and τ3 scale with appropriate weights
and � transforms like a Maxwell field. More precisely conformal rescaling g → e2f g leaves (14)
invariant if

φ −→ e3f φ, λ −→ e−f λ, � −→ � + 4 df, τ2 −→ ef τ2, τ3 −→ e2f τ3. (15)

If all components of the torsion vanish, then the G2 structure gives rise to G2 holonomy and the
resulting metric is Ricci-flat. Such G2 structures are sometimes called integrable or more correctly
torsion-free. If � = τ2 = τ3 = 0, then the metric is Einstein with non-zero Ricci scalar and one
speaks of weak G2 holonomy. If λ = � = τ3 = 0 then the G2 structure is closed (see [5]).

The representation theoretic decomposition of the torsion is as follows.

(i) λ is a function and λφ belongs to the one-dimensional irreducible representation W1 ⊂ �3
R

∗7

of G2.
(ii) The 2-form τ2 belongs to the 14-dimensional irreducible representation W2 ⊂ �2

R
∗7.

(iii) The 3-form τ3 belongs to the 27-dimensional irreducible representation W3 ⊂ �3
R

∗7.
(iv) The Lee 1-form � belongs to the seven-dimensional representation W4 = R

7∗.
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Equations (14) uniquely define λ, τ2, τ3 and �. Vanishing of these objects defines the Fernandez–
Gray W type of G2 geometry: if none of them vanishes the geometry is of generic type W1 + W2 +
W3 + W4, if λ = 0 then the geometry is of type W2 + W3 + W4, when τ2 = 0 we have the type
W1 + W3 + W4 and so on. There are sixteen W types.

Proposition 4.1 demonstrates that the seven-dimensional GL(2, R) geometry is a special case of
conformal split G2 geometry as GL(2, R) ⊂ R × G

split
2 . The representations of G

split
2 decompose into

irreducible representations of GL(2, R) as follows:

W1 = V 1,

W2 = V 3 ⊕ V 11,

W3 = V 5 ⊕ V 9 ⊕ V 13,

W4 = V 7,

(16)

where V k is the k-dimensional representation space Sk−1(S). Hence τ2 and τ3 have a priori two and
three irreducible components under action of GL(2, R).

A GL(2, R) geometry defines a whole conformal class of G
split
2 geometries, hence we may only

talk about those W types which are invariant with respect to conformal rescalings (15). In particular
vanishing of � is not conformally invariant. However, d� is a well-defined 2-form, in particular the
condition d� = 0 means that in some conformal gauge � vanishes locally. In general d� is a 2-form
decomposing according to

�2
R

7 = V 3 ⊕ V 7 ⊕ V 11. (17)

5. G2 structures from ODEs

Now we are ready to give the relations between the intrinsic torsion of the split G2 structure and the
contact invariants of the seventh-order ODE

y(7) = F(x, y, y ′, . . . , y(6)). (18)

In the following theorems (which will be established in Section 10) we shall assume the vanishing
of the conditions Wα (Appendix A) which are necessary and sufficient for an ODE to give rise to a
GL(2, R) geometry.

THEOREM 5.1 Let the seventh-order ODE (18) admit the GL(2, R) geometry on the solution space.
Then the following conditions hold:

no W1 component
(λ = 0)

⇐⇒ F66(9DF6 − 9
7F 2

6 − 15F5) + 12F65F6 + 14F55 − 84
5 F64 = 0.

no W2 component
(τ2 = 0)

⇐⇒ 21DF66 + 14F65 + 15F6F66 = 0.

no W3 component
(τ3 = 0)

⇐⇒ F66 = 0.
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The 2-form d� falls into components in irreducible representations V 3, V 7 and V 11. The V 3-part
is expressed algebraically by λ, τ2 and τ3. In particular it vanishes if τ2 vanishes. The V 7-part of d�

vanishes if and only if

(DF)66F66 + 3
2 (DF)6F666 − 12

7 F666F
2
6 − 4F666F5

+ 2F665F6 − 14
5 F664 + 7

3F655 − 4
3F66F65 − 16

7 F 2
66F6 = 0.

The V 11-part of d� vanishes if and only if

F666 = 0.

The non-generic W types are characterized by the following result.

THEOREM 5.2 There are only three conformal split G2 geometries from ODEs of type W1 + W2 +
W4.

(1) The flat geometry of y(7) = 0, which is the only case admitting holonomy G
split
2 .

(2) The geometry of

y(7) = 7
y(6)y(4)

y(3)
+ 49

10

(y(5))2

y(3)
− 28

y(5)(y(4))2

(y(3))2
+ 35

2

(y(4))4

(y(3))3
. (19)

This is the only geometry of type W1 + W4. The Lee form is closed, so that in certain conformal
gauge it is the nearly parallel (W1) geometry of SO(3, 2)/SO(2, 1).

(3) The geometry of

y(7) = 21

5

y(6)y(5)

y(4)
− 84

25

(y(5))3

(y(4))2
, (20)

which is of type W2 + W4. The Lee form is closed, so in certain conformal gauge it is a closed
G2 structure (W2).

The G2 geometry associated with (19) has two real forms: The homogeneous space
SO(3, 2)/SO(2, 1) which yields a weak G2 metric in signature (3, 4) and SO(5)/SO(3) which gives
a Riemannian metric. The later metric was first constructed by Bryant in his seminal paper [2] without
using the ODE or twistor techniques. Theorem 5.2 implies that up to diffeomorphisms of M this is
the only weak G2 metric arising from an ODE. The ODE (19) has appeared in several other contexts.
See [21, 23].

The ODE (20) has an elementary solution given by certain rational curves which will be analysed
in the next section. The solution to (19) can also be constructed in terms of rational curves, but explicit
description in this case is more involved [9].

We note that there exists at least one more connection between differential equations and non-
compact G2: the holonomy of an ambient metric associated to Nurowski’s (3, 2) conformal structure
is contained in G

split
2 (see [19]).
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6. Examples

In this section we give some examples. The first three arise on moduli spaces of rational curves
by twistor theoretic techniques. The last one comes from an ODE satisfying the Wünshmann
conditions (5).

We shall write the general seventh-order ODE (18) as

y(7) = F(x, y, p, q, r, s, t, u),

where p = y ′, q = y ′′, r = y(3), s = y(4), t = y(5), u = y(6).
The examples below can be partially classified by the dimension of the group of contact symmetries

(recall that the maximal symmetry group of the trivial ODE y(7) = 0 is 11-dimensional and given by
GL(2, R) � R

7).

EXAMPLE 6.1 Consider a hyperelliptic curve of degree 6 with 2 cusps. The general sextic has genus
10 and so is not rational, but in our case the genus is 0 and a rational parametrization exist. To see it
write the curve as

(y + Q(x))2 + P(x)3 = 0, (21)

where (Q, P ) are general cubic and quadratic, respectively, which we write as

Q(x) = q0 + q1x + q2x
2 + q3x

3, P (x) = p3(x − p2)(x − p1).

This has three singular points. Two double points at (p1, −Q(p1)) and (p2, −Q(p2)) of type [2, 1, 1]
(see [27]) and one point of order 4 at infinity of type [4, 8, 2], which can be seen by writing (21) in
the homogeneous coordinates. Calculating the genus yields

g = 5 · 4

2
− 1 − 1 − 8 = 0,

as the quadruple point at infinity is not ordinary and has the δ-invariant equal to 8. The rational
parametrization can now be found

x(λ) = p1 + p2λ
2

λ2 + 1
,

y(λ) = p3
3/2(p1 − p2)

3 λ3

(λ2 + 1)3
− Q(x(λ)).

Eliminating the parameters (p1, p2, p3, q0, . . . , q3) between (21) and its six derivatives yields the
seventh-order ODE characterizing the sextic (21)

d7y

dx7
= 21

5

ut

s
− 84

25

t3

s2
,

which is the ODE (20) from Theorem 5.2.
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Using the prescription (8) we find that the conformal structure and the associated 3-form are
represented by (9) and (12) with

θ1 = −2�

3∑
α=0

(p2)
αdqα, θ7 = −2�

3∑
α=0

(p1)
αdqα,

θ2 = −�

2
(p2 − p1)

2(p3)
3/2dp2, θ6 = �

2
(p2 − p1)

2(p3)
3/2dp1,

θ3 = − �

15
(3 dq0 + (2p2 + p1) dq1 + (2p1p2 + (p2)

2) dq2 + 3p1(p2)
2 dq3),

θ5 = − �

15
(3 dq0 + (2p1 + p2) dq1 + (2p1p2 + (p1)

2) dq2 + 3p2(p1)
2 dq3),

θ4 = −3�

20
(p2 − p1)

2√p3 d(p3(p2 − p1)),

(22)

where � = (p1 − p2)
−12/5(p3)

−9/10.
This conformal G2 structure can be analytically continued to Riemannian signature: Setting p2 =

p, p1 = p̄ where p ∈ C and keeping (q0, q1, q2, q3, p3) real gives purely imaginary θ4 and

θ7 = θ1, θ6 = −θ2, θ3 = θ5.

The corresponding conformal structure is positive definite and the 3-form φ is real. It gives rise to
a closed (in a sense of decomposition (14)) G2 structure as dφ = 0, d ∗ φ = −τ2 ∧ φ in agreement
with Theorem 5.2. This theorem also implies that up to diffeomorphisms this is the only closed G2

structure arising from ODEs.

EXAMPLE 6.2 Consider a rational curve in CP
1 × CP

1 of bidegree (1, k)

y = r0 + r1x + · · · + rkx
k

s0 + s1x + · · · + skxk
.

It has self-intersection number 2k, and the enumerator of the perturbed curve (section of a normal
bundle) δy defines the conformal structure (7) with

θ i+1 =
(

2k

i

)−1 ∑
α+β=i

(rα dsβ − sβ drα), i = 0, . . . , 2k.

This conformal structure is defined on a hypersurface where the resultant of the denominator and
enumerator in y has a non-zero fixed value. Alternatively we can fix the ambiguity by choosing
affine coordinates, say rk = 1. Now restrict to the seven-dimensional case k = 3. This also gives
φ ∧ dφ = 0. The corresponding seventh-order ODE is

d7y

dx7
= P

Q
,
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where

P = 420q2u2 + 2520qst2 − 1680qrut − 2100qs2u − 504pt3

+ 1680r2t2 − 6300trs2 + 840tups + 2625s4 − 280u2rp + 2800ur2s,

Q = 360q2t − 1200rqs − 240rtp + 800r3 + 300s2p.

This example has a six-dimensional group of point symmetries, given by the Möbius transformations
of x and y.

EXAMPLE 6.3 We can construct less trivial conformal structures and the associated 3-forms by gen-
eralizing the last example, and taking a double covering of a neighbourhood of a non-singular curve
of bidegree (1, 6) branched along a fixed curve. Consider a (1, 6) curve in CP

1 × CP
1

y = R(x)

S(x)
, (23)

where
S = s0 + s1x + · · · + s6x

6, R = r0 + r1x + · · · + r6x
6.

This curve has normal bundle O(12), and is parametrized by CP
13 minus a hypersurface where both

polynomials have a common factor. We take the branch locus to be the (1, 6) curve

y = x6.

The curves in a covering space we are constructing project to those curves (23) which meet the branch
locus in seven points to second-order. Thus

x6S(x) − R(x) = (t0 + t1x + · · · + t6x
6)2.

This gives 13 conditions on 20 coefficients (s, r, t), leaving the seven-dimensional moduli space of
curves.

EXAMPLE 6.4 In [10] it was shown that the moduli space of solutions to the ODE

dn+1y

dxn+1
=

(
dny

dxn

)(n+1)/n

admits the GL(2, R) structure. Consider a solution curve x → (x, y(x)) and its perturbation δy

y = t1 + t2x + · · · + tnx
n−1 − nn

(n − 1)! ln(x + tn+1),

δy = 1

x + tn+1

((
− nn

(n − 1)!δtn+1 + tn+1δt1

)
+

n−1∑
i=1

(δti + tn+1δti+1)x
i + δtnx

n

)
.
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The enumerator of the polynomial δy defines a conformal structure (7) with

θ1 = − nn

(n − 1)! dtn+1 + tn+1 dt1, θ i+1 =
(

2k

i

)−1

(dti + tn+1 dti+1), θ2k+1 = dt2k,

where i = 1, . . . , 2k − 1. We can now specify 2k = 6 and construct the 3-form. We find that φ ∧
dφ = 0 so that λ = 0 but there is no conformal scale which makes φ closed.

7. Construction of the Cartan connection

We shall now describe the GL(2, R) and conformal Gsplit
2 structures arising from seventh-order ODEs

by constructing a gl(2, R)-valued linear connection on M . The basic object in this description is the
torsion, which contains lowest order invariants of the GL(2, R) geometry, identifies the Fernandez–
Gray types of the associated conformal G

split
2 geometry, and expresses these quantities by contact

invariants of the underlying ODE. This approach will give us a better handle on the various torsion
components. Our aim is to express these components in terms of invariants of the seventh-order ODE
and eventually prove Theorems 5.1 and 5.2. Our treatment of Cartan’s connection follows closely
that of [13].

We shall use an equivalent form of Definition 1 and regard a GL(2, R) geometry on a manifold
M as a reduction of the frame bundle FM to a GL(2, R)-sub-bundle, where GL(2, R) ⊂ GL(n, R)

acts irreducibly in each tangent space [13]. We shall focus on the case n = 6 where

GL(2, R) ⊂ R
+ × G

split
2 ⊂ R

+ × SO(3, 4)

holds (see Proposition 4.1). The central role will be played by the six-jet spaceJ 6 and its description via
the Tanaka–Morimoto theory, [18, 25], which is a special version of Cartan’s method of equivalence.
We shall first construct a gl(2, R) ⊕. R

7-valued Cartan connection � on a bundle over J 6 and then
re-interpret � from the point of view of the GL(2, R) structure. The conditions for the existence of
the geometry appear to be certain linear conditions for the curvature of �. If they are satisfied, then
the gl(2, R)-part of � is the desired linear connection on M .

7.1. Jet space

Let us consider the space J 6 of six-jets of functions from R to R. It is an eight-dimensional real
manifold, locally parametrized by (x, y, y1, . . . , y6), and such that each curve x �→ (x, f (x)) in the
xy-space has a unique lift to a curve in J 6 given by x �→ (x, f (x), f ′(x), . . . , f (6)(x)) in the above
coordinate system. This gives a distinguished family of all curves lifted from the xy-space in J 6. One
may encode this family in a coordinate-free language of distributions. Let us fix a point w ∈ J 6 and
consider all lifted curves through w. The linear span of their tangent vectors at w is a two-dimensional
subspace Cw in TwJ 6. The collection C = ⋃

w Cw is by definition the contact distribution on J 6. It
is generated by two vector fields

D = ∂x + y1∂y + y2∂y1 + . . . + y6∂y5 and ∂y6 .

Given the distribution C we define

∂C = [C, C], ∂2C = [∂C, C], . . . , ∂5C = [∂4C, C], ∂6C = T J 6.
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The distributions constitute a filtration, that is

C ⊂ ∂C ⊂ . . . ⊂ ∂5C ⊂ ∂6C = T J 6 (24)

and
[∂iC, ∂jC] = ∂i+j+1C. (25)

The diffeomorphisms of J 6 which preserve C are called contact transformations. The well-known
Lie–Bäcklund theorem states that all contact transformations of J 6 are uniquely defined by the contact
transformations of J 1 and have the following form

x �−→ x̄(x, y, y1), y �−→ ȳ(x, y, y1), y1 �−→ ȳ1(x, y, y1), (26)

and for higher-order jet coordinates

yk+1 �−→ Dȳk

Dx̄
, k = 1, 2, . . . , n.

The functions x̄, ȳ and ȳ1 in (26) are not arbitrary but subject to the condition

ȳ1 = Dȳ

Dx̄
.

The contact transformation preserves the whole filtration (24).
Now consider the seventh-order ODE (18). Any solution y = f (x) of the equation is uniquely

defined by a choice off (x0), f
′(x0), . . . , f

(6)(x0) at somex0. Since this choice of initial data is equiva-
lent to a choice of a point in J 6 there exists exactly one lifted curve x �→ (x, f (x), f ′(x), . . . , f (6)(x))

through any point of J 6. Therefore the solutions form a one-dimensional foliation in J 6. The
corresponding tangent distribution is spanned by

D = ∂x + y1∂y + y2∂y1 + . . . + y6∂y5 + F∂y6 .

An important consequence of this is that J 6 → M is locally a line bundle, where M is the solution
space of the seventh-order ODE (18).

DEFINITION 7.1 The contact geometry of seventh-order ODEs is the jet space J 6 equipped with

(i) the filtration C ⊂ . . . ⊂ ∂5C ⊂ ∂6C = T J 6;
(ii) the foliation by the solutions, tangent to the field D.

One may associate to the contact geometry of the ODEs a sub-bundle

G̃ −→ P̃ −→ J 6 (27)

of the frame bundle FJ 6: the structure group G̃ is the lower triangular group preserving the filtration
and the 1-distribution span{D} ⊂ C tangent to solutions.
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7.2. Cartan connection

The main object we use in the construction is Cartan connection defined here as in [15].

DEFINITION 7.2 Let M be a manifold of dimension n, G be a Lie group, H be a closed subgroup of G

with dim G/H = n and H → P
π−→ M be a principal bundle. A Cartan connection of type (G, H)

on P is a 1-form � with values in the Lie algebra g of G satisfying the following conditions:

(i) �u : TuP → g for every u ∈ P is an isomorphism of vector spaces;
(ii) �(A∗) = A for every A ∈ h and the corresponding fundamental field A∗;

(iii) R∗
h� = Ad(h−1)� for every h ∈ H .

The curvature of a Cartan connection is a g-valued 2-form on P defined by

K(X, Y ) = d�(X, Y ) + 1
2 [�(X), �(Y )].

If � is given in a matrix representation, then

K = d� + �∧ �. (28)

The curvature is horizontal, that is it vanishes on each vertical vector field:

K(X, ·) = 0 if π∗(X) = 0. (29)

Horizontality of the curvature is locally equivalent to the property (iii) in Definition 7.2. Cartan
connections with vanishing curvature are called flat.

We are now in a position to describe the construction of GL(2, R) geometry on the solution space.
We start from the bundle P̃ of the contact geometry of ODEs. We are interested in invariants of this
geometry. The filtration is preserved by the contact transformations but the foliation of solutions is
not, and generates the contact invariants of the underlying ODE. However, the situation further is
complicated by the fact that the object generating the invariants—a Cartan connection—exists on a
sub-bundle P ⊂ P̃ rather than P̃ itself. Using the Tanaka–Morimoto theory we shall construct the
sub-bundle H → P → J 6 together with a Cartan connection � of type (GL(2, R) � R

7, H), where
H is isomorphic to the group of triangular 2 × 2 matrices. The curvature K of � contains all the local
information about the contact geometry of the ODEs. The contact invariants are either components
of K or certain combinations of their derivatives of sufficiently high order.

The jet space J 6 is a bundle over the solution space M and P → M is also a principal bundle
with the structure group GL(2, R). That � generates the GL(2, R) geometry on M only if certain
conditions (which we will determine) hold. First of all, we ask whether � (which is a Cartan connection
on P → J 6) satisfies the conditions for the Cartan connection of P → M . It holds if and only if

K(X, ·) = 0 for all X vertical with respect to P −→ M.

This condition is not satisfied automatically but only holds for the ODEs with vanishing Wünschmann
invariants (Appendix A).

The Cartan connection � on P → M is of type (GL(2, R) � R
7, GL(2, R)). It naturally decom-

poses into the R
7-part and the gl(2, R)-part. The former behaves like a canonical form θ on a principal
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bundle and turns P into a sub-bundle of the frame bundle FM . The latter is a linear gl(2, R)-valued
connection � on P . Together θ and � define a GL(2, R) geometry on M . The torsion T and curvature
of � contain the information about local invariants of the geometry, which are in turn expressed by
contact invariants of the underlying ODE, since � also describes the contact geometry of the ODEs.

EXAMPLE 7.3 For the trivial equation y(7) = 0, all the objects may be immediately constructed by
means of the symmetry group. The full group of contact symmetries is GL(2, R) � R

7. Its action on J 6

is transitive and turns it into a homogeneous space GL(2, R) � R
7/H , where H is isomorphic to the

group of triangular 2 × 2 matrices. Thus we have the bundle H → P → J 6 and P = GL(2, R) � R
7

locally. The connection �, flat in this case, is given by the Maurer–Cartan form on P .

8. The Tanaka–Morimoto theory

We turn to detailed description of the construction. First of all, we briefly describe the general pattern,
next we apply it to our case. The references for this subsection are [8, 17, 18, 24, 25]. The contact
geometry of ODEs contains the filtration (24) which is encoded by the graded tangent bundle gr T J 6,
denoted here by gr for short. Its fibre over w ∈ J 6 is gr(w) = ⊕7

i=1 gr−i (w), where

gr−1(w) = Cw, gr−2(w) = ∂Cw/Cw, . . . , gr−6(w) = ∂5Cw/∂4Cw, gr−7(w) = TwJ 6/∂5Cw.

The relation (25) implies that gr(w) carries the structure of a nilpotent graded Lie algebra, that is

[gr−i (w), gr−j (w)] ⊂ gr−i−j (w), and gr(w) is generated by gr−1(w).

Let
m = g−1 ⊕ . . . ⊕ g−7,

where gr−i
∼= g−i . We have dim m = dim gr(w) = dim TwJ 6 = 8 and

[g−i , g−j ] ⊂ g−i−j .

The additional piece of structure—the distribution span{D}—is encoded in the following manner.
One defines a weighted frame zw at w ∈ J 6 to be an isomorphism of graded Lie algebras zw : m →
gr(w). The bundle of weighted frames RJ 6 is a principal bundle over J 6 with the structure group
G0(m) being the group of all grading preserving algebra automorphisms of m.

The vector Dw at any w belongs to Cw and is complementary to the one-dimensional subspace of
Cw which is vertical with respect to J 6 → J 5 and spanned by ∂y6 . At the level of m it is reflected by
a decomposition of g−1 into two one-dimensional subspaces. These subspaces, call them D and V

for short, are then encoded by reducing RJ 6 to a G0-sub-bundle, where G0 is the two-dimensional
subgroup of G0(m) preserving the decomposition g−1 = D ⊕ V .

However, the G0-sub-bundle still is not the bundle P where the connection � exists. In order to
construct P one needs to prolong the G0-bundle. The procedure of prolongation is quite involved
and the reader is referred to the original paper [24]. The underlying idea is, however, simple. One
aims to extend the G0-bundle so that it is large enough to contain all the symmetries in the most
symmetric homogeneous case. From the example of the trivial ODE we know that the total space
P must be 11-dimensional, so one dimension is lacking. After the prolongation one obtains the
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desired H → P → J 6 with the structural group H being a product of G0 and the one-dimensional
prolongation, isomorphic to the group of triangular 2 × 2 matrices.

At the algebraic level the filtration is encoded by m and the full (prolonged) structural group H is
encoded by its algebra h = g0 ⊕ g1. Since commutators [m, h] are known from the construction, we
obtain a graded algebra

g = m ⊕ h = g−7 ⊕ g−6 ⊕ . . . ⊕ g0 ⊕ g1 = gl(2, R) ⊕. R
7. (30)

The Cartan connection � takes values in this algebra.
The next step is constructing the form � using the normality conditions of Tanaka and Morimoto.

The normality conditions, which are certain linear constraints for the curvature, were originally
introduced by Cartan in the context of conformal and projective geometries. The purpose was fix-
ing ambiguity in the choice of Cartan connections and providing canonical connections for these
geometries in a sense analogous to the Levi-Civita connection in Riemannian geometry. Later, these
conditions were generalized to the case of the filtered manifolds. We discuss them below.

The connection 1-form at p ∈ P is a vector space isomorphism �p : TpP → g. We define Vp =
�−1

p (h) and Hp = �−1
p (m), hence TpP = Vp ⊕ Hp. The curvature Kp is then characterized by a

tensor κp ∈ Hom(∧2m, g) given by

κp(A, B) = Kp(�−1
p (A), �−1

p (B)), A, B ∈ m. (31)

In the space Hom(∧2m, g) let us define Hom1(∧2m, g) to be the space of all α ∈ Hom(∧2m, g)

fulfilling
α(gi , gj ) ⊂ gi+j+1 ⊕ . . . ⊕ gk for i, j < 0.

The algebra g is equipped with the following complex

· · · ∂−→ Hom(∧q
m, g)

∂−→ Hom(∧q+1
m, g)

∂−→ · · ·

with ∂ : Hom(∧qm, g) → Hom(∧q+1m, g) given by

(∂∗α)(A1∧ . . . ∧ Aq+1) =
∑

i

(−1)i+1[Ai, α(A1∧ . . . ∧ Âi∧ . . . ∧ Aq+1)]

+
∑
i<j

(−1)i+jα([Ai, Aj ]∧ A1 . . . ∧ Âi∧ . . . ∧ Âj ∧ . . . ∧ Aq+1),

where α ∈ Hom(∧qm, g) and A1, . . . Aq+1 ∈ m.
Consider a positive definite scalar product (·, ·) in g satisfying the following three conditions:

(i) (gi , gj ) = 0 for i �= j ;
(ii) there exists a mapping τ : h → g such that

τ(gi ) ⊂ g−i for i ≥ 0,

([A, X], Y ) = (X, [τ(A), Y ]) for X, Y ∈ g, A ∈ h; (32)



GL(2, R) STRUCTURES, G2 GEOMETRY AND TWISTOR THEORY Page 21 of 32

(iii) there exists a mapping τ0 : G0 → G0 such that

(aX, Y ) = (X, τ0(a)Y ) for X, Y ∈ g, a ∈ G0.

This product extends to Hom(∧qm, g) through

(α, β) = 1

q!
∑

i1,...,iq

(α(vi1 ∧ . . . ∧ viq ), β(vi1 ∧ . . . ∧ viq )),

where α, β ∈ Hom(∧qm, g) and (vi) is any orthonormal basis of g. Given ∂ and (·, ·) the formal
adjoint operator

· · · ∂∗−→ Hom(∧q+1
m, g)

∂∗−→ Hom(∧q
m, g)

∂∗−→ · · ·
is defined by

(∂∗α, β) = (α, ∂β).

A normal connection is defined as follows.

DEFINITION 8.1 A Cartan connection � is normal if κ given by (31) satisfies the following conditions:

(i) κ ∈ Hom1(∧2m, g);
(ii) ∂∗κ = 0.

By a general result of Morimoto [18, Theorem 2.3 and Proposition 2.10], given an inner product
satisfying the three properties (32) one can construct the normal Cartan connection which preserves
the contact equivalence of the underlying ODEs.

9. Application to seventh-order ODEs

Define seven 1-forms on J 6 by

ωi = dyi−1 − yi dx, ω7 = dy6 − F dx, i = 1, . . . , 6. (33)

These forms encode the geometry of an ODE, and in particular C is annihilated by the ideal
span{ω1, ω2, . . . , ω6} and the foliation by solutions is annihilated by span{ω1, ω2, . . . , ω7}. On P̃

there is the fundamental R
8-valued 1-form, whose components are denoted by θ1, . . . , θ7 and �+.

(The notation �+ instead of θ8 will be useful later on.) One may introduce a coordinate system
(x, y, y1, . . . , y6, u1, u2, . . . , u36) compatible with the local trivialization P̃ ∼= J 6 × G̃ and such that
locally ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1

θ2

θ3

θ4

θ5

θ6

θ7

�+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 0 0 0 0 0 0 0
u2 u3 0 0 0 0 0 0
u4 u5 u6 0 0 0 0 0
u7 u8 u9 u10 0 0 0 0
u11 u12 u13 u14 u15 0 0 0
u16 u17 u18 u19 u20 u21 0 0
u22 u23 u24 u25 u26 u27 u28 0
u29 u30 u31 u32 u33 u34 u35 u36

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1

ω2

ω3

ω4

ω5

ω6

ω7

dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

The structural group G̃ is the group of the lower triangular matrices as above.
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We choose a representation of gl(2, R) ⊕. R
7 and write down � in the following matrix form

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6�0 − 6�1 6�+ 0 0 0 0 0 θ1

�− −4�0 − 6�1 5�+ 0 0 0 0 θ2

0 2�− −2�0 − 6�1 4�+ 0 0 0 θ3

0 0 3�− −6�1 3�+ 0 0 θ4

0 0 0 4�− 2�0 − 6�1 2�+ 0 θ5

0 0 0 0 5�− 4�0 − 6�1 �+ θ6

0 0 0 0 0 6�− 6�0 − 6�1 θ7

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(35)
Here θ1, . . . , θ7, �+, �0, �1 and �− are 1-forms on P .

Starting from this representation we construct a basis (eμ), μ = 1, . . . , 11 of gl(2, R) ⊕. R
7. To

get the element e1 we formally set θ1 = 1 and the remaining 1-forms equal to zero. All the remaining
elements of the basis can be obtained in an analogous way, so that (35) may be written as

� =
7∑

i=1

θ iei + �+e8 + �0e9 + �1e10 + �−e11. (36)

The basis satisfies

g−7 = span{e1}, g−6 = span{e2}, g−5 = span{e3},
g−4 = span{e4}, g−3 = span{e5}, g−2 = span{e6},
g−1 = span{e7, e8}, g0 = span{e9, e10}, g1 = span{e11},

and, moreover,
gl(2, R) = span{e8, . . . , e11}, R

7 = span{e1, . . . , e7}.
To construct P and � we need to:

(i) find a scalar product satisfying the conditions (32);
(ii) find formulae of P ↪→ P̃ by expressing u4, . . . , u36 as certain functions of u1, u2, u3, x, y, y1,

. . . , y6; then (u1, u2, u3, x, y, y1, . . . , y6) is a local coordinate system in P and the forms
θ1, . . . , θ7, �+ of (35) are given by the pull-back of (34);

(iii) find formulae for �−, �0 and �1.

We choose a scalar product on g so that the basis (e1, . . . , e11) is orthogonal and

(e1, e1) = 1, (e2, e2) = 6, (e3, e3) = 15,

(e4, e4) = 20, (e5, e5) = 15, (e6, e6) = 6,

(e7, e7) = 1, (e8, e8) = 1, (e9, e9) = 2,

(e10, e10) = 1, (e11, e11) = 1.

The product satisfies the conditions (32) if we set τ0 = id, τ(e9) = e9, τ(e10) = e10 and τ(e11) = e8.
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Both (ii) and (iii) are obtained from the horizontality condition (29) and the normality conditions
of Definition 8.1 with the scalar product as above. The 1-forms �0, �1 and �+ on P are a priori
arbitrary

�A =
3∑

j=1

a
j

Aduj +
7∑

i=1

bi
Aθ i + b+

A�+ A = −, 0, 1.

The functions a and b are arbitrary but sufficiently smooth on P , so they depend on the jet coordinates
and u1, u2, u3.

The curvature (28) becomes

K =
11∑

μ=1

7∑
j=1

K
μ

8j�+∧ θj ⊗ eμ + 1

2

11∑
μ=1

7∑
i,j=1

K
μ

ij θ
i∧ θj ⊗ eμ. (37)

and Kρ
μν = −Kρ

νμ, The terms proportional to �0, �1 and �− must be absent since K is horizontal.
This produces a set of first-order differential equations for the functions a, which may be determined
without ambiguity giving

�0 =1

2

du1

u1
− 1

2

du3

u3
+

∑
i

bi
0θ

i + b+
0�+,

�1 = − 1

3

du1

u1
+ 1

2

du3

u3
+

∑
i

bi
1θ

i + b+
1�+,

�− =du2

u1
+ u2du3

u1u3
+

∑
i

bi
−θ i + b+

−�+.

(38)

The tensor κ is equal to

κ = 1

2

11∑
μ=1

8∑
i,j=1

K
μ

ij e
i∧ ej ⊗ eμ.

The condition κ ∈ Hom1(∧2m, g) is equivalent to vanishing of the following components of K .

K
1,2,3,4,5
67 K

1,2,3,4
57 K

1,2,3
47

K
1,2
37 K1

27 K
1,2,3
56

K
1,2
46 K1

36 K1
45

K
1,2,3,4,5,6
87 K

1,2,3,4,5
86 K

1,2,3,4
85

K
1,2,3
84 K

1,2
83 K1

82,

(39)

where K
1,2
37 is an abbreviation for K1

37, K2
37 and so on.

In order to evaluate the condition ∂∗κ = 0 we introduce the notation (eμ, eμ) = pμμ (no
summation) and [eμ, eν] = cρ

μνeρ . The explicit form of ∂∗κ = 0 is

4
11∑

ν=1

8∑
j=1

pνν

piipjj

Kν
ij c

ν
jμ +

8∑
j,k=1

pμμ

pjjpkk

K
μ

jkc
i
jk = 0, (40)

where μ = 1, . . . , 11 and i = 1, . . . , 8.
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We compute K via (33), (35) and (38). The conditions (37) and (39) become a set of easy algebraic
and differential equations for the functions u4, . . . , u36 and b. By solving these equations we obtain
u4, . . . , u36 and b as rational functions of u1, u2, u3 with coefficients given by arbitrary functions of
the jet coordinates. After these substitutions the normality condition (40) becomes a set of algebraic
and differential equations on the coefficients. The equations, although complicated, are overdeter-
mined and may be solved without integration. It is enough to perform usual algebraic elimination
of the functions, provided it is done in an appropriate order. The elimination also assures us that the
solution—the Cartan connection—is unique. We have therefore proved

PROPOSITION 9.1 Given a seventh-order ODE y(7) = F(x, y, y ′, . . . , y(6)) one can construct:
(i) a principal fibre bundle H → P → J 6, where H = R × (R � R);

(ii) a Cartan connection � on P of type (GL(2, R) � R
7, H).

Two ODEs
y(7) = F(x, y, y ′, . . . , y(6))

and
ȳ(7) = F̄ (x̄, ȳ, ȳ ′, . . . , ȳ(6))

are locally contact equivalent if and only if there exists a local bundle diffeomorphism � : P̄ → P

such that �∗� = �̄. The connection is given by (35), where

θ1 = u1ω
1,

θ2 = u2ω
1 + u3ω

2,

θ3 = u2
2

u1
ω1 + 2

u2u3

u1
ω2 + u2

3

u1

((
3

14
(DF)6 − 12

35
F5 − 13

49
F 2

6

)
ω1 − 2

35
F6ω

2 + 6

5
ω3

)
,

θ4 = . . . .

The explicit formulae for θ i, i = 4, 5, 7, and �+, �−, �0, �1 are omitted since they are complicated
and unilluminating.

10. GL(2, R) geometry from Cartan connection

The manifold P is endowed with two structures of a principal bundle: H → P → J 6 given by
construction, and GL(2, R) → P → M over the solution space which is generated by the connection
�. Let Xμ, μ = 1, . . . , 11, denote the frame dual to the coframe (θ2, θ2, θ3, θ4, θ5, θ6, θ7, �+, �0,

�1, �−) of (35). The curvature K written in the form

d� = −�∧ � + K, (41)
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and split into scalar-valued equations reads

dθ1 = 6(�1 + �0)∧ θ1 − 6�+∧ θ2 + 1
2K1

ij θ
i∧ θj ,

dθ2 = −�−∧ θ1 + (6�1 + 4�0)∧ θ2 − 5�+∧ θ3 + 1
2K2

ij θ
i∧ θj ,

dθ3 = −2�−∧ θ2 + (6�1 + 2�0)∧ θ3 − 4�+∧ θ4 + 1
2K3

ij θ
i∧ θj

+ K3
18θ

1∧ �+,

dθ4 = −3�−∧ θ3 + 6�1∧ θ4 − 3�+∧ θ5 + 1
2K4

ij θ
i∧ θj

+ (K4
18θ

1 + K4
28θ

2)∧ �+,

dθ5 = −4�−∧ θ4 + (6�1 − 2�0)∧ θ5 − 2�+∧ θ6 + 1
2K5

ij θ
i∧ θj

+ (K5
18θ

1 + K5
28θ

2 + K5
38θ

3)∧ �+,

dθ6 = −5�−∧ θ5 + (6�1 − 4�0)∧ θ6 − �+∧ θ7 + 1
2K6

ij θ
i∧ θj

+ (K6
18θ

1 + K6
28θ

2 + K6
38θ

3 + K6
48θ

4)∧ �+,

dθ7 = −6�−∧ θ6 + (6�1 − 6�0)∧ θ7 + 1
2K7

ij θ
i∧ θj

+ (K7
18θ

1 + K7
28θ

2 + K7
38θ

3 + K7
48θ

4 + K7
58θ

5)∧ �+,

d�+ = 2�0∧ �+ + 1
2K8

ij θ
i∧ θj + K8

i8θ
i∧ �+,

d�0 = �+∧ �− + 1
2K9

ij θ
i∧ θj + K9

i8θ
i∧ �+,

d�1 = 1
2K10

ij θ
i∧ θj + K10

i8θ
i∧ �+,

d�− = −2�0∧ �− + 1
2K11

ij θ
i∧ θj + K11

i8θ
i∧ �+. (42)

Since J 6 is a bundle over M then so is P and Theorem 9.1 together with equation (33) guarantees
that the fibres of the projection P → M are annihilated by the simple ideal span{θ1, . . . , θ7}. The
relation (42) implies that this ideal is closed

dθ i∧ θ1∧ . . . ∧ θ7 = 0 for i = 1, . . . , 7.

It is annihilated by an integrable distribution span{X8, X9, X10, X11} and the maximal integral leaves
of this distribution are locally the fibres of the projection P → M . Moreover, by (42) the commutation
relations of the vector fields are isomorphic to the commutation relations of the algebra gl(2, R). This
allows us to define an action of GL(2, R) on P by defining X8, X9, X10, X11 to be the associated
fundamental vector fields.

10.1. Existence of GL(2, R) geometry

Does the bundle GL(2, R) → P → M define a GL(2, R) geometry on M? The answer to this question
is positive only if P may be identified with a sub-bundle of the frame bundle FM . However, this may
only be done if the original ODE satisfies additional conditions. An object that turns P into a sub-
bundle of FM is the canonical R

7-valued 1-form. The R
7-part of � (the 1-forms θ1, . . . , θ7 arranged
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into a column) is the natural candidate for it here, but one must still check whether the canonical
1-form has the property R∗

gθ = g−1θ under the actions of GL(2, R) in P and R
7. In the language of

the curvature K this is equivalent to the horizontality with respect to the projection P → M . Since
K is already horizontal with respect to P → J 6 we must only impose K(X8, ·) = 0 which amounts
to

K
μ
ν8 = 0, μ, ν = 1, . . . , 11.

Due to algebraic and differential relations among the curvature components this condition may be
further reduced to

K3
18 = 0, K4

18 = 0, K5
18 = 0, K6

18 = 0, K7
18 = 0, (43)

where

Kα+2
18 =

α∑
β=1

cα
βWβ, α = 1, . . . , 5.

The expressions W1, W2, . . . , W5 are the Wünschmann conditions discussed in Section 1 and given by
(Appendix A), and cα

β are rational functions of u1, u2, u3. The condition (43) is therefore equivalent
to the vanishing of Wα . Simultaneous vanishing of these expressions is a property of a seventh-
order ODE invariant under contact transformations. It is also equivalent to the conditions for trivial
linearizations obtained in [6, 7].

From now on we restrict our considerations to those ODEs which satisfy all five conditions in
Appendix A. Then the curvature contains no �+∧ θ i terms, and the equations (42) may be written as
the structural equations for a gl(2, R)-connection. We have proven

THEOREM 10.1 Consider a seventh-order ODE satisfying the conditions Wα = 0, α = 1, . . . , 5. Then
its solution space M is equipped with a gl(2, R) geometry. Let

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6�0 − 6�1 6�+ 0 0 0 0 0

�− −4�0 − 6�1 5�+ 0 0 0 0

0 2�− −2�0 − 6�1 4�+ 0 0 0

0 0 3�− −6�1 3�+ 0 0

0 0 0 4�− 2�0 − 6�1 2�+ 0

0 0 0 0 5�− 4�0 − 6�1 �+
0 0 0 0 0 6�− 6�0 − 6�1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(44)
be the gl(2, R)-part of the Cartan connection � of Proposition 9.1 and θ = (θ i) be its R

7 part. Then
� is a gl(2, R) linear connection on P compatible with the GL(2, R) geometry and the equations (28)
and (42) read

dθ i + �i
j ∧ θj = 1

2T i
klθ

k∧ θ l, i, j = 1, . . . , 7, (45)

d�i
j + �i

k∧ �k
j = 1

2Ri
jlmθ l∧ θm, (46)

where T and R are the torsion and curvature of �, respectively.
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We will construct two tensor fields on M preserved by the GL(2, R) geometry: the conformal
metric g and the conformal 3-form φ. This is done as follows. The action of gl(2, R) on R

7 is given
by the matrix representation (44), in particular it defines two of the conformal classes of tensors
represented by g ∈ S2

R
7∗ and φ ∈ �3

R
7∗. Next we transport these tensors to T ∗P . The connection

� gives the identification ei ↔ θ i , i = 1, . . . , 7, where (ei) is dual of the basis (ei) of (35) and (36).
By this identification we get the tensor fields on P :

g = θ1θ7 − 6θ2θ6 + 15θ3θ5 − 10(θ4)2

and
φ = 3θ2∧ θ3∧ θ7 − 6θ2∧ θ4∧ θ6 − θ1∧ θ4∧ θ7 + 3θ1∧ θ5∧ θ6 + 15θ3∧ θ4∧ θ5. (47)

Finally, we project these fields to conformal fields on M . This projection is well defined because g

and φ satisfy two conditions: (i) the vertical directions of P → M are degenerate for g and φ, and
(ii) the vertical directions are conformal symmetries of g and φ, that is

LX8g = 0, LX9g = 0, LX10g = 12g, LX11g = 0,

LX8φ = 0, LX9φ = 0, LX10φ = 18φ, LX11φ = 0.

It is worth noting that LX8g = LX8φ = 0 are equivalent to conditions listed in Appendix A. The
conformal fields on M will be also denoted by g and φ—on solutions to the ODE they coincide
with (9) and (12), respectively.

The following fact is an immediate consequence of Theorem 10.1.

PROPOSITION 10.2 Let ∇ denote the covariant derivative on M associated to �. We have

∇Xg = −A(X)g,

∇Xφ = − 3
2A(X)φ,

where the 1-form A is proportional to the trace of the connection matrix:

A = 2

7

∑
j

�
j

j =
∑
i,j

〈∇iXj , ξ
j 〉ξ i,

for any frame (Xi) and the dual coframe (ξ i) such that g = gij ξ
i ⊗ ξ j with constant gij .

Of course, g and φ do not reduce GL(7, R) to GL(2, R), since their conformal stabilizers are
CO(3, 4) and R

+ × G
split
2 , respectively. The object whose conformal stabilizer is precisely the irre-

ducible GL(2, R) is a certain totally symmetric 4-tensor ϒijkl , which is however irrelevant in our
approach.

10.2. Torsion

In this section we consider only those ODEs which admit the GL(2, R) geometry on the solution
space. First we shall characterize the torsion T of �. Let V k denote the k-dimensional irreducible
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representation of GL(2, R) as before. Torsion of any gl(2, R)-connection at p ∈ P belongs to the
representation �2V 7∗ ⊗ V 7 which decomposes as

�2V 7∗ ⊗ V 7 = V 1 ⊕ V 3 ⊕ 3V 5 ⊕ 3V 7 ⊕ 3V 9 ⊕ 2V 11 ⊕ 2V 13 ⊕ V 15 ⊕ V 17.

PROPOSITION 10.3 The only non-vanishing components of the torsion T of the connection � in
Theorem 10.1 are in the one-dimensional, the three-dimensional, and a fixed five-dimensional
representation in the above decomposition.

T = T1 + T3 + T5.

Explicit form of T in (45) is given in Appendix B, where λ spans T1; a1, a2, a3 span T3, and
b1, b2, b3, b4, b5 span T5.

Proof . To prove the formula of Appendix B we use Proposition 9.1 to explicitly calculate (45). Next
we check that T only occupies the irreducible representations as above.

We are now ready to prove Theorems 5.1 and 5.2.

Proof of Theorem 5.1 Using (47), (45) and (14) we calculate λ, τ2, τ3 and � in terms of the torsion
coefficients and the forms θ i . We find that τ2 = 0 if T3 = 0, τ3 = 0 if T5 = 0, and also � = 24�1. Next
we calculate explicitly λ, ai and bi using formulae for � given in Theorem 9.1. Since the components
T3 and T5 lie in irreducible representations they vanish if and only if any of the components ai or bi

vanishes. In the theorem we gave the simplest ones.

Proof of Theorem 5.2 In order to prove this result we need to extensively use the Bianchi identities.
First, we suppose that τ3 = 0 which is equivalent to vanishing of b1, b2, . . . , b5. Then from d2θ i = 0
we find that either (i) ai = 0 (equivalently τ2 = 0) or (ii) λ = 0.

Suppose (i). Then the torsion is reduced to λ and it makes all the curvature except the Ricci scalar
vanish. In particular the Lee form � = 24�1 is closed. Therefore there exists a conformal gauge
in which locally � = 0 and λ = const, and which defines a 10-dimensional sub-bundle P ′ of P .
Equations (45) and (46) pulled-back to P ′ become the structural equations of SO(3, 2) while the
integrable distribution on P ′ annihilated by θ1, . . . , θ7 defines the action of SO(2, 1) on P ′, which is
vertical with respect to P ′ → M . This also means that the maximal symmetry group of an underlying
ODE is SO(3, 2). We find the ODE of point 2 by integration of the conditions from Appendix A and
the conditions of Theorem 5.1.

Suppose (ii). Lengthy but straightforward calculations show that the condition λ = 0 specifies
curvature in equation (46); all torsion and curvature coefficients and their coframe derivatives are
polynomials of a1, a2 and a3, which span T3. Again, we have d� = 0. Since T3 belongs to the
three-dimensional representation V 3 of GL(2, R) we may classify it by the orbit it sweeps out.
The component T3 is a tensor field on P , which is a gl(2, R) bundle over M . If we fix x ∈ M

and sweep out the fibre Px then T3 at points p ∈ Px sweeps a GL(2, R)-orbit in V 3. These orbits
are labelled by the sign of 〈·, ·〉, the conformal product in V 3 preserved by GL(2, R). The case
〈T3, T3〉 = 0 is forbidden by the Bianchi identities. The only remaining possibilities are 〈T3, T3〉 > 0
and 〈T3, T3〉 < 0. The ODE (20) generates both cases in two disjoint areas of M , depending on the
sign of 〈T3, T3〉 = const · (5y(6)y(4) − 6(y(5))2).
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A. Appendix

The five Wünschmann conditions for the seventh-order ODE are as follows:

W1 = 245D2F6 − 245DF5 + 98F4 − 210DF6F6 + 70F5F6 + 20F 3
6 ,

W2 = 6860D2F5 − 10976DF4 + 6615(DF6)
2 + 6860F3 − 8330DF6F5

+ 1715F 2
5 − 1960DF5F6 + 1568F4F6 − 1890DF6F

2
6 + 1190F5F

2
6 + 135F 4

6 ,

W3 = 9604D2F4 − 24010DF3 + 15435DF5DF6 + 24010F2 − 14749DF6F4

− 5145DF5F5 + 4459F4F5 − 2744DF4F6 + 6615(DF6)
2F6 + 3430F3F6

− 6615DF6F5F6 + 1470F 2
5 F6 − 2205DF5F

2
6 + 2107F4F

2
6

− 1890DF6F
3
6 + 945F5F

3
6 + 135F 5

6 ,

W4 = 336140D2F3 − 1344560DF2 + 180075(DF5)
2 + 432180DF4DF6

+ 2352980F1 − 624260DF6F3 − 216090DF5F4 + 64827F 2
4

− 144060DF4F5 + 154350(DF6)
2F5 + 192080F3F5 − 102900DF6F

2
5

+ 17150F 3
5 − 96040DF3F6 + 308700DF5DF6F6 + 192080F2F6

− 246960DF6F4F6 − 154350DF5F5F6 + 113190F4F5F6 − 61740DF4F
2
6

+ 132300(DF6)
2F 2

6 + 89180F3F
2
6 − 176400DF6F5F

2
6 + 47775F 2

5 F 2
6

− 44100DF5F
3
6 + 35280F4F

3
6 − 37800DF6F

4
6 + 22050F5F

4
6 + 2700F 6

6 ,
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W5 = 2352980D2F2 − 16470860DF1 + 1512630DF4DF5 + 2268945DF3DF6

− 5126135DF6F2 − 1512630DF5F3 − 907578DF4F4 + 648270(DF6)
2F4

+ 907578F3F4 − 756315DF3F5 + 1080450DF5DF6F5 + 1596665F2F5

− 1080450DF6F4F5 − 360150DF5F
2
5 + 288120F4F

2
5 − 672280DF2F6

+ 540225(DF5)
2F6 + 1296540DF4DF6F6 + 2352980F1F6

− 1620675DF6F3F6 − 864360DF5F4F6 + 324135F 2
4 F6 − 648270DF4F5F6

+ 926100(DF6)
2F5F6 + 756315F3F5F6 − 771750DF6F

2
5 F6 + 154350F 3

5 F6

− 324135DF3F
2
6 + 926100DF5DF6F

2
6 + 732305F2F

2
6 − 926100DF6F4F

2
6

− 617400DF5F5F
2
6 + 524790F4F5F

2
6 − 185220DF4F

3
6 + 396900(DF6)

2F 3
6

+ 231525F3F
3
6 − 661500DF6F5F

3
6 + 209475F 2

5 F 3
6 − 132300DF5F

4
6

+ 119070F4F
4
6 − 113400DF6F

5
6 + 75600F5F

5
6 + 8100F 7

6 + 65883440F0.

B. Appendix

The torsion components in Proposition 10.3 are as follows:

T 1 = 55

18
b1θ

1∧ θ2 + 55

9
b4θ

1∧ θ3 +
(

55

18
b3 − 10

3
λ − 3a3

)
θ1∧ θ4

+
(

−55

9
b5 + 3

2
a2

)
θ1∧ θ5 − 77

36
b2θ

1∧ θ6 +
(

−55

2
b3 + 10λ + 9a3

)
θ2∧ θ3

+
(

55

3
b5 − 3a2

)
θ2∧ θ4 + 55

12
b2θ

2∧ θ5,

T 2 = 55

36
b1θ

1∧ θ3 +
(

275

54
b4 + 1

2
a1

)
θ1∧ θ4 +

(
−55

36
b3 − 5

3
λ − a3

)
θ1∧ θ5

+
(

−11

18
b5 + 1

2
a2

)
θ1∧ θ6 − 77

216
b2θ

1∧ θ7 +
(

−55

18
b4 − 3

2
a1

)
θ2∧ θ3

+
(

−55

9
b3 + 2a3 + 10

3
λ

)
θ2∧ θ4 − 11

18
b2θ

2∧ θ6 +
(

275

18
b5 − 5

2
a2

)
θ3∧ θ4

+ 275

72
b2θ

3∧ θ5,

T 3 = 11

54
b1θ

1∧ θ4 +
(

22

9
b4 + 1

2
a1

)
θ1∧ θ5 +

(
−44

45
b3 − 1

5
a3 − 2

3
λ

)
θ1∧ θ6

+
(

22

135
b5 + 1

10
a2

)
θ1∧ θ7 + 22

9
b1θ

2∧ θ3 +
(

11

9
b4 − a1

)
θ2∧ θ4

+
(

−11

45
b5 + 3

5
a2

)
θ2∧ θ6 − 11

20
b2θ

2∧ θ7 +
(

55

18
b3 + 10

3
λ + a3

)
θ3∧ θ4

+
(

55

9
b5 − 3

2
a2

)
θ3∧ θ5 + 11

12
b2θ

3∧ θ6 + 55

18
b2θ

4∧ θ5 − 11

2
b3θ

2∧ θ5,
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T 4 = −11

24
b1θ

1∧ θ5 +
(

11

15
b4 + 3

10
a1

)
θ1∧ θ6 +

(
−11

90
b3 − 1

6
λ

)
θ1∧ θ7

+ 11

6
b4θ

2∧ θ5 +
(

−22

5
b3 − λ

)
θ2∧ θ6 +

(
11

15
b5 + 3

10
a2

)
θ2∧ θ7

+
(

55

18
b4 − 3

2
a1

)
θ3∧ θ4 + 5

2
λθ3∧ θ5 + 11

6
b5θ

3∧ θ6 − 11

24
b2θ

3∧ θ7

+
(

55

18
b5 − 3

2
a2

)
θ4∧ θ5 + 22

9
b2θ

4∧ θ6 + 22

9
b1θ

2∧ θ4,

T 5 = −11

20
b1θ

1∧ θ6 +
(

22

135
b4 + 1

10
a1

)
θ1∧ θ7 + 11

12
b1θ

2∧ θ5

+
(

−11

45
b4 + 3

5
a1

)
θ2∧ θ6 +

(
−44

45
b3 − 2

3
λ + 1

5
a3

)
θ2∧ θ7

+ 55

18
b1θ

3∧ θ4 +
(

55

9
b4 − 3

2
a1

)
θ3∧ θ5 − 11

2
b3θ

3∧ θ6

+
(

22

9
b5 + 1

2
a2

)
θ3∧ θ7 +

(
55

18
b3 + 10

3
λ − a3

)
θ4∧ θ5

+
(

11

9
b5 − a2

)
θ4∧ θ6 + 11

54
b2θ

4∧ θ7 + 22

9
b2θ

5∧ θ6,

T 6 = − 77

216
b1θ

1∧ θ7 − 11

18
b1θ

2∧ θ6 +
(

−11

18
b4 + 1

2
a1

)
θ2∧ θ7

+
(

−55

36
b3 − 5

3
λ + a3

)
θ3∧ θ7 +

(
275

18
b4 − 5

2
a1

)
θ4∧ θ5

+
(

−55

9
b3 + 10

3
λ − 2a3

)
θ4∧ θ6 +

(
275

54
b5 + 1

2
a2

)
θ4∧ θ7

+
(

−55

18
b5 − 3

2
a2

)
θ5∧ θ6 + 55

36
b2θ

5∧ θ7 + 275

72
b1θ

3∧ θ5,

T 7 = −77

36
b1θ

2∧ θ7 + 55

12
b1θ

3∧ θ6 +
(

−55

9
b4 + 3

2
a1

)
θ3∧ θ7

+
(

55

3
b4 − 3a1

)
θ4∧ θ6 +

(
55

18
b3 − 10

3
λ + 3a3

)
θ4∧ θ7

+
(

−55

2
b3 + 10λ − 9a3

)
θ5∧ θ6 + 55

9
b5θ

5∧ θ7 + 55

18
b2θ

6∧ θ7.
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