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a b s t r a c t

We consider the octonionic self-duality equations on eight-dimensional manifolds of
the form M8 = M4 × R4, where M4 is a hyper-Kähler four-manifold. We construct
explicit solutions to these equations and their symmetry reductions to the non-abelian
Seiberg–Witten equations on M4 in the case when the gauge group is SU(2). These
solutions are singular for flat and Eguchi–Hanson backgrounds. For M4 = R × G with
a cohomogeneity one hyper-Kähler metric, where G is a nilpotent (Bianchi II) Lie group,
we find a solution which is singular only on a single-sided domain wall. This gives rise
to a regular solution of the non-abelian Seiberg-Witten equations on a four-dimensional
nilpotent Lie group which carries a regular conformally hyper-Kähler metric.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Gauge theory in dimensions higher than four has been investigated in both theoretical physics [1–5] and pure
mathematics [6,7] contexts. While the solutions to the full second order Yang–Mills equations seem to be out of reach,
the first order higher dimensional analogues of four-dimensional self-duality equations admit some explicit solutions. Such
equations can be written down on any n-dimensional Riemannian manifoldMn, once a closed differential formΩ of degree
(n−4) has been chosen. The generalised self-duality equations state that the curvature two-formof a Yang–Mills connection
takes its values in one of the eigenspaces of the linear operator T : Λ2(Mn) → Λ2(Mn) given by T (F) = ∗(Ω ∧ F). The
full Yang–Mills equations are then implied by the Bianchi identity. If n = 4, and the zero-formΩ = 1 is canonically given
by the orientation, the eigenspaces of T are both two-dimensional, and are interchanged by reversing the orientation. In
general the eigenspaces corresponding to different eigenvalues have different dimensions. For the construction to work,
one of these eigenspaces must have dimension equal to (n− 1)(n− 2)/2, as only then does the number of equations match
the number of unknowns modulo gauge.

Any Riemannian manifold with special holonomy Hol ⊂ SO(n) admits a preferred parallel (n − 4)-form, and the
eigenspace conditions above can be equivalently stated as F ∈ hol, where we have identified the Lie algebra hol of the
holonomy group with a subspace of Λ2(Mn) ∼= so(n). One of the most interesting cases corresponds to eight-dimensional
manifolds with holonomy Spin(7). The only currently known explicit solution on M8 = R8 with its flat metric has a gauge
group Spin(7). The aim of this paper is to construct explicit solutions to the system

∗8(F ∧Ω) = −F,

with gauge group SU(2). This will be achieved by exploiting the embedding SU(2) × SU(2) ⊂ Spin(7). This holonomy
reduction allows a canonical symmetry reduction to the Yang–Mills–Higgs system in four dimensions — a non-abelian
analogue of the Seiberg–Witten equations involving fourHiggs fields [6,4,8]. The explicit SU(2) solutions arise froma t’Hooft-
like ansatz which turns out to be consistent despite a vast overdeterminancy of the equations. The resulting solutions on
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R8 fall into two classes, both of which are singular along a hypersurface. To overcome this, and to evade Derrick’s theorem
prohibiting finite action solutions in dimensions higher than four we shall consider the case of curved backgrounds of the
form M8 = M4 × R4, where M4 is hyper-Kähler. The gauge fields on the Eguchi–Hanson gravitational instanton are still
singular, but if M4 is taken to be a Bianchi II gravitational instanton representing a domain wall [9], then the Yang–Mills
curvature is regular away from the wall. This gives rise to a regular solution of the non-abelian Seiberg–Witten equation on
a four-dimensional nilpotent Lie group H which carries a regular conformally hyper-Kähler metric.

Theorem 1.1. Let H be the simply-connected Lie group whose left-invariant one-forms satisfy the Maurer–Cartan relations

dσ0 = 2σ0 ∧ σ3 − σ1 ∧ σ2, dσ1 = σ1 ∧ σ3, dσ2 = σ2 ∧ σ3, dσ3 = 0.

• The left-invariant metric ĝ = σ0
2
+ σ1

2
+ σ2

2
+ σ3

2 on H is regular and conformally hyper-Kähler.
• The su(2)-valued one-forms

A =
3
4
(σ2 ⊗ T1 − σ1 ⊗ T2 + σ0 ⊗ T3), Φ = −

√
21
3

A

with [T1, T2] = T3, [T3, T1] = T2, [T2, T3] = T1 satisfy

F+ =
1
2
[Φ,Φ]+, (DΦ)− = 0, D ∗4Φ = 0,

where D = d + [A, . . .], F = dA + A ∧ A, and ± denote self-dual (+) and anti-self-dual (−) parts with respect to ĝ .

Finally we should mention that there are other candidates for ‘self-duality’ equations in higher dimensions. One
possibility in dimension eight, exploited by Polchinski in the context of heterotic string theory [10], is to consider the system
∗F∧F = ±F∧F. These equations are conformally invariant, and thus the finite action solutions compactify R8 to the eight-
dimensional sphere, but unlike the system (2.2) considered in this paper they do not imply the Yang–Mills equations.

2. Self-duality in eight dimensions

Let (M8, g8) be an eight-dimensional oriented Riemannianmanifold. The 21-dimensional Lie group Spin(7) is a subgroup
of SO(8) preserving a self-dual four-formΩ . Set eµνρσ = eµ ∧ eν ∧ eρ ∧ eσ . There exists an orthonormal frame in which the
metric and the four-form are given by

g8 = (e0)2 + (e1)2 + · · · + (e7)2,

Ω = e0123 + e0145 + e0167 + e0246 − e0257 − e0347 − e0356

− e1247 − e1256 − e1346 + e1357 + e2345 + e2367 + e4567. (2.1)

Let T : Λ2(M8) → Λ2(M8) be a self-adjoint operator given by

ω → ∗8(Ω ∧ ω),

where ∗8 is the Hodge operator of g8 corresponding to the orientation Ω ∧ Ω . The 28-dimensional space of two-forms in
eight dimensions splits intoΛ2

21 ⊕Λ2
+
, whereΛ2

21 andΛ
2
+
are eigenspaces of T with eigenvalues−1 and 3 respectively. The

21-dimensional spaceΛ2
21 can be identified with the Lie algebra spin(7) ⊂ so(8) ∼= Λ2(M8).

Let A be a one-form on R8 with values in a Lie algebra g of a gauge group G. The Spin(7) self-duality condition states that
the curvature two form

F = dA +
1
2
[A,A]

takes its values inΛ2
21. This leads to a system of seven first order equations

∗8(F ∧Ω) = −F, (2.2)

explicitly given by

F01 + F23 + F45 + F67 = 0,
F02 − F13 + F46 − F57 = 0,
F03 + F12 − F47 − F56 = 0,
F05 + F14 + F27 + F36 = 0,
F06 − F17 + F24 − F35 = 0,
F07 + F16 − F25 − F34 = 0,
F04 − F15 − F26 + F37 = 0.
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This is a determined system of PDEs as one of the eight components of A can be set to zero by a gauge transformation
A −→ ρAρ−1

− dρ ρ−1, where ρ ∈ Map(M8,G).
Eq. (2.2) were first investigated in [1], and some solutions were found in [11,2] for the gauge group Spin(7). If A is a solution
to (2.2), then it is a Yang–Mills connection because

D ∗8 F = −DF ∧Ω = 0, where D = d + [A, . . .]
by the Bianchi identities.1

2.1. Non-abelian Seiberg–Witten equations

2.1.1. Holonomy reduction
Eq. (2.2) are valid on curved eight-dimensional Riemannian manifolds with holonomy equal to, or contained in Spin(7),

as suchmanifolds are characterised by the existence of a parallel four-form given by (2.1). We shall consider the special case
of product manifolds [13]

M8 = M4 × M4, g8 = g4 + g̃4, (2.3)
whereM4 and M4 are hyper-Kähler manifolds. Let ψi

± span the spacesΛ2
+
(M4) andΛ2

−
(M4) of self-dual and anti-self-dual

two-forms respectively. Thus

g4 = (e0)2 + (e1)2 + (e2)2 + (e3)2, and ψi
±

= e0 ∧ ei ±
1
2
εijkej ∧ ek, (2.4)

where i, j, . . . = 1, 2, 3 with analogous expressions for g̃4. The Spin(7) four-form (2.1) is then given by

Ω = vol + vol + 3
i,j=1

ηijψi
+

∧ ψ̃+

j ,

where η = diag(1, 1,−1) and vol, vol are volume forms onM4 and M4 respectively. The self-dual four-formΩ is closed as a
consequence of the closure ofψi and ψ̃i which can always be achieved by a choice of the orthonormal frame on hyper-Kähler
manifolds.

2.1.2. Symmetry reduction
We shall now consider the self-duality equations (2.2) for a g-valued connection A over an eight-manifoldM8 of the form

(2.3), where M4 is an arbitrary hyper-Kähler four-manifold, and M4 = R4 is flat. We shall look for solutions A that admit a
four-dimensional symmetry group generated by the translations onR4. If xµ are local coordinates ofM8, then we denote the
coordinates ofM4 by xa and those of R̃4 by x̃a. The Greek indices run from 0 to 7 as Latin indices run from 0 to 3. We choose a
frame eµ in (2.1),/ where eµ (µ = 0, . . . , 3) is a frame (2.4) onM4 in whichψi are closed and eµ = dx̃µ−4 (µ = 4, . . . , 7).
We can then write

A =

7
µ=0

Aµ(xb)eµ

=

3
a=0

Aa(xb)ea + Φ0(xb)e4 − Φ1(xb)e5 − Φ2(xb)e6 + Φ3(xb)e7

= A + Φ ′ (2.5)
where we have re-labelled coefficients and consequently defined A, Aa, Φ ′ and Φa. Thus A is a g-connection on M4. Let F
denote the curvature of A, and let F± be the SD and ASD parts of F with respect to the Hodge operator ∗4 of g4. Furthermore,
we introduce the following notation: Let Φ = Φaea be a g-valued one-form and let ∇a be four vector fields dual to ea, i.e.
∇a y eb = δba . SetD = ea⊗∇a+[A, ·], andDaΦb = ∂aΦb+[Aa,Φb]. ThusDΦ = D[aΦb]ea∧eb captures the antisymmetric part
of DaΦb. Note that A, F , Φ and DΦ are su(2)-valued forms over M4. We are thus splitting up the connection and curvature
in various pieces. Note thatΦ ′

≠ Φaea due to the choice of indices and signs in (2.5).

1 TheDerrick scaling argument (see e.g. [12]) shows there are nonontrivial finite action solutions to the pure Yang–Mills equations onR8 . This obstruction
can be overcome if some dimensions are compactified. If (M8, g8) is a compact manifold with holonomy Spin(7), then the YM connections which satisfy
(2.2) are absolute minima of the Yang–Mills functional

E(A) =
1
4π


M8

|F|
2 volM8 .

To see this write F = F+ + F− , where F+ ∈ Λ2
+
, F− ∈ Λ2

21 , and verify that

F ∧ ∗8 F = F+ ∧ ∗8 F+ +Ω ∧ F ∧ F.

The integral of the trace of the second term on the RHS is independent of A.
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Now we shall investigate Eq. (2.2) on the chosen product background M8. Invoking translational symmetry along R̃4 as
explained, we find the following.

Proposition 2.1. For a connection of the form (2.5) Eq. (2.2) reduce to the following system of equations for the differential forms
A andΦ over M4:

F+ −
1
2
[Φ,Φ]+ = 0 (2.6)

[DΦ]− = 0 (2.7)
D ∗4Φ = 0, (2.8)

where the ± denote the SD (+) or ASD (−) part with respect to the Hodge operator ∗4.

Proof. This reduction has been performed before [4,6,14,8], but in a slightly different context.2 We shall present a proof
adapted to our setup. One obtains these equations by inserting the explicit expression for A = A +Φ ′ and the definition of
the curvature, F = dA +

1
2 [A,A] into the system (2.2). For the curvature, we find

F = dA +
1
2
[A,A]

= dA + dΦ ′
+

1
2
[A, A] + [A,Φ ′

] +
1
2
[Φ ′,Φ ′

]

= F + DΦ ′
+

1
2
[Φ ′,Φ ′

].

In the expression F =
1
2Fµνeµ∧eν , the two-form F accounts for coefficients Fµν with both indices in the range 0 ≤ µ, ν ≤ 3,

the term 1
2 [Φ

′,Φ ′
] for those coefficients Fµν with indices in the range 4 ≤ µ, ν ≤ 7 and DΦ ′ for coefficients with one index

each. This allows us to translate the components Fµν , e.g.

F01 = F01, F25 = (DΦ ′)25 = −D2Φ1, F67 =
1
2
[Φ ′,Φ ′

]67 = −
1
2
[Φ2,Φ3].

The sign and index changes are a result of the labelling of the components ofΦ ′. Applying this to the system (2.2), we find

F01 + F23 −
1
2
[Φ0,Φ1] −

1
2
[Φ2,Φ3] = 0,

F02 − F13 −
1
2
[Φ0,Φ2] +

1
2
[Φ1,Φ3] = 0,

F03 + F12 −
1
2
[Φ0,Φ3] −

1
2
[Φ1,Φ2] = 0,

−D0Φ1 + D1Φ0 + D2Φ3 − D3Φ2 = 0,
−D0Φ2 − D1Φ3 + D2Φ0 + D3Φ1 = 0,
D0Φ3 − D1Φ2 + D2Φ1 − D3Φ0 = 0,
D0Φ0 + D1Φ1 + D2Φ2 + D3Φ3 = 0.

This is exactly the system (2.6) with all components written out. �

The resulting system is a set of equations for a connection A and four non-abelian Higgs fieldsΦa overM4. In particular they
can be regarded as a non-abelian version [4,6,15,14,8] of the equations found by Seiberg and Witten [16]. We will call (2.6)
the non-abelian Seiberg–Witten equations.

3. Ansatz for SU(2) solutions

To find explicit solutions to (2.6) and (2.2) with the gauge group SU(2) we shall proceed with an analogy to the t’Hooft
ansatz for the self-dual Yang–Mills equations on R4.

Let Ti, (i = 1, 2, 3) denote a basis of su(2) with commutation relations [Ti, Tj] = ϵijkTk and TiT i
:= TiTjδij = −

3
412. We

can then define two su(2)-valued two-forms σ and σ̃ such that ∗4 σ = σ and ∗4 σ̃ = −σ̃ by

σ =
1
2
σabea ∧ eb =


i

Ti ψi
+, σ̃ =

1
2
σ̃abea ∧ eb =


i

Ti ψi
−, (3.9)

2 In the approach of [8]M8 is the total space of the spinor bundle overM4 and Eqs. (2.7) and (2.8) are combined into the non-abelian Dirac equation.
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whereψi
± are given by (2.4). Thus the forms σab select the three-dimensional space of SD two-formsΛ2

+
(M4) from the six-

dimensional space Λ2(M4) and project it onto the three-dimensional subspace su(2) of so(4). An analogous isomorphism
betweenΛ2

−
(M4) and another copy of su(2) is provided by σ̃ . The following identities hold

σ̃abσ
ab

= 0, σabσ
b
c =

3
4
12δac + σac, σabσ

ab
= −312. (3.10)

We now return to Eq. (2.6) and make the following ansatz for the su(2)-valued one-forms A andΦ ,

A = ∗4(σ ∧ dG) = σab∇
bGea, Φ = ∗4(σ ∧ dH) = σab∇

bHea, (3.11)

where G,H : M4 → R are functions on M4 and ∇a are the vector fields dual to ea. Let � = ∗d ∗ d + d ∗ d∗ be the Laplacian
and ∇ be the gradient onM4, and let d(ea) = Ca

bceb ∧ ec . The following proposition will be proved in the Appendix.

Proposition 3.1. The non-abelian Seiberg–Witten equations (2.6) are satisfied by the ansatz (3.11) if and only if G and H satisfy
the following system of coupled partial differential equations:

�G + |∇G|
2
− |∇H|

2
= 0, (3.12)

(ϵea
bcCa

bcσ
ed

− σ abCd
ab)∇dG = 0, (3.13)

σ̃acσ
c
b(∇

a
∇

bH − 2∇aG∇
bH) = 0, (3.14)

σab(∇
a
∇

bH − 2∇aG∇
bH) = 0. (3.15)

Note that Eq. (3.15) is equivalent to the anti-self-duality of the antisymmetric part of

∇
a
∇

bH − 2∇aH∇
bG.

A similar interpretation of Eq. (3.14) is given by the following.

Lemma 3.2. Let Σab be an arbitrary tensor. Then

σ̃ abσ c
bΣac = 0 ⇔ Σ(ac) =

1
4
Σb

bδac . (3.16)

Proof. Starting from the left-hand side we first define a two-form (Σσ) = σ c
[bΣa]c ea ∧ eb. Therefore

σ̃ abσ c
bΣac = σ̃ abσ c

[bΣa]c = ∗[σ̃ ∧ (Σσ)] = 0,

and so (Σσ) is self-dual, i.e.

(Σσ)01 = (Σσ)23, (Σσ)02 = −(Σσ)13, (Σσ)03 = (Σσ)12. (3.17)

Using the definition (3.9) of σab in terms of the generators of su(2) this is equivalent to a system of nine linear equations for
the components ofΣac : six of them set off-diagonal terms to zero, threemore equate the four diagonal terms ofΣac . Solving
this system is straightforward: the only solution isΣ(ac) = Σδac for some scalar functionΣ . �

Thus Eqs. (3.14) and (3.15) together imply that∇a
∇

bH−2∇aH∇
bG is the sumof a (symmetric) pure-trace term and an (anti-

symmetric) ASD term. To continue with the analysis of (3.12) we need to distinguish between flat and curved background
spaces.

3.1. Flat background

Our first choice for M4 is the flat space R4 with ea = dxa for Cartesian coordinates xa. Since the one-forms ea are closed
we have Ca

bc = 0 and the dual vector fields ∇a = ∂a commute. This implies that (3.13) is identically satisfied. Eq. (3.15)
implies that the simple two-form dG ∧ dH is ASD. Therefore this form is equal to zero, since there are no real simple ASD
two-forms in Euclidean signature and thus H and G are functionally dependent. Therefore we can set H = H(G). Thus the
tensor Σab = ∂a∂bH − 2∂aH∂bG is symmetric. Next, we turn our attention to (3.14). Applying Lemma 3.2 we deduce that
Σab is pure trace. Defining a one-form f = exp(−2G)dH we find that

∂afc = Σe−2Gδac (3.18)

for some Σ . Equating the off-diagonal components of (3.18) to zero shows that fc depends on xc only, and the remaining
four equations yield dH = e2Gdw,where

w =
1
2
γ xaxa + κaxa,

for some constants γ , κa. Thus G also depends only onw and, defining g(w) = expG(w), Eq. (3.12) yields

g ′′(2γw + κ2)+ 4γ g ′
− g5(2γw + κ2) = 0. (3.19)
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Fig. 1. Numerical plot of solutions to g ′′
= g5 .

There are two cases to consider

• Assume that γ = 0, in which case

g ′
= ±


1
3
g6 + γ1. (3.20)

To obtain an explicit solution we set the constant γ1 = 0. Using the translational invariance of (2.6) we can always put
w = x3. Reabsorbing the constant of integration and rescaling yields

G = −
1
2
ln |x3|, H =

√
3
2

ln |x3|. (3.21)

Using these functions in the ansatz (3.11) for the pair (A,Φ) will give rise to a curvature F such that (2.2) holds. Note
however that the connection is singular along a hyperplane in R4 and thus A is also singular along a hyperplane in R8

because of the translational symmetry. The curvature for this solution is singular along a hyperplane with normal κa, and
blows up like |x3|−2, thus the solution is singular. A numerical plot of solutions of (3.20) for different γ1 is displayed in
Fig. 1. Since the equation is autonomous, one can obtain the general solution by translating any curve in the x3 direction.
The red line corresponds to (3.21). Note that all other curves have two vertical asymptotes and do not extend to thewhole
range of x3.

• We will now present a second, radially symmetric solution. If γ ≠ 0 we translate the independent variable by
w → w −

κ2

2γ , then (3.19) is

g ′′w + 2g ′
− g5w = 0. (3.22)

Figs. 2 and 3 contain the numerical plots of two one-parameter families of solutions. An explicit analytical solution is
given by

g(w) =
1

1
3w

2 − 1
.

If we define the radial coordinate r := |


γ

2
√
3
(xa +

κa
γ
)|, thenw =

√
3r2 and

G(r) = −
1
2
ln(r4 − 1), H(r) =

√
3
2

ln

r2 − 1
r2 + 1


. (3.23)

The pair (A,Φ) in (3.11) is singular on the sphere r = 1 in R4. In R8 this corresponds to cylinders of a hypersurface type.
The curvature is given by

F =
K i
µνTi

(r4 − 1)2
eµ ∧ eν,

where K i
µν are quadratic polynomials in r2. The numerical results suggest that there are no regular solutions to (3.22)

and most solution curves do not even extend to the full range of r .
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Fig. 2. Solutions of ODE (3.22) I.

Fig. 3. Solutions of ODE (3.22) II.

This concludes the process of solving the initial system of coupled partial differential equations (3.12). We have shown
that the most general solution to this system is given by two functions of one variable, G and H with w :=

1
2γ xax

a
+ κaxa,

which are determined by an ordinary differential equation. We presented two classes of solutions in closed form.

3.2. Curved backgrounds

The solutions we have found in the last subsection have extended singularities resulting in an unbounded curvature and
infinite action. While we could argue that the former is an artefact resulting from the form of our ansatz, there is no hope to
cure the latter. The existence of the finite action solutions to pure Yang–Mills theory on R8 or to Yang–Mills–Higgs theory
on R4 is ruled out by the Derrick scaling argument [12].

To evade Derrick’s argument we shall now look at curved hyper-Kähler manifoldsM4 in place of R4. The one-forms ea in
the orthonormal frame (2.4) are no longer closed and the vector fields ∇a do not commute, as C c

ab ≠ 0. Eqs. (3.14) and (3.15)
imply that ∇a∇bH − 2∇aG∇bH is a sum of a pure-trace term and an ASD term, but examining the integrability conditions
shows that the trace term vanishes unless the metric g4 is flat. Thus

∇aH = δae2G, (3.24)

where δa are some constants of integration. We shall analyse two specific examples of M4. The first class of solutions on
the Eguchi–Hanson manifold generalises the spherically symmetric solutions (3.23), which were singular at r = 1. In the
Eguchi–Hanson case the parameter in the metric can be chosen so that r = 1 does not belong to the manifold. The second
class of solutions on the domain wall backgrounds generalises the solutions (3.21).
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Fig. 4. Solutions of ODE (3.27) I.

3.2.1. Eguchi–Hanson background
Consider (M4, g4) to be the Eguchi–Hanson manifold [17], with the metric

g4 =


1 −

a4

r4

−1

dr2 +
1
4
r2


1 −

a4

r4


σ 2
3 +

1
4
r2(σ 2

1 + σ 2
2 ).

Here σi, i = 1, 2, 3 are the left-invariant one-forms on SU(2)
σ1 + iσ2 = e−iψ (dθ + i sin θdφ), σ3 = dψ + cos θdφ

and to obtain the regular metric we take the ranges
r > a, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π. (3.25)

Choose an orthonormal frame

e0 =
1

1 −
a4
r4

dr, e1 =
r
2


1 −

a4

r4
σ3, e2 =

r
2
σ2, e3 =

r
2
σ1. (3.26)

Computing the exterior derivatives d(ea) explicitly we can evaluate (3.13) and find that it is trivially zero. Furthermore, we
know that Eqs. (3.14) and (3.15) are equivalent to (3.24). The integrability conditions d2H = 0 imply

df = 2f ∧ dG, where f = δaea.
The condition dG ≠ 0 implies δi = 0. Then

f =
δ0dr
1 −

a4
r4

,

and df = 0. Thus f ∧ dr = dH ∧ dr = dH ∧ dG = 0 and consequently H and G depend on r only and satisfy the following
relation:

dH
dr

=
δ0e2G
1 −

a4
r4

.

Using this in Eq. (3.12) and substituting g :=
eG

√
δ0

yields
1 −

a4

r4


g ′′

+
1
r


3 +

a4

r4


g ′

− g5
= 0. (3.27)

The numerical results (Figs. 4 and 5, where a = 1) indicate that yet again there are no regular functions among the solutions.
Analysing the limits r → a and r → ∞ we find that the solution curves either blow up for r → a or, if they intersect with
the line r = a in the (r, g) plane, they will satisfy g ′

= (a/4)g5. For the second limit (3.27) tends to g ′′
= g5 which we have

investigated in the previous section. Thus the behaviour for r → ∞ is determined by Fig. 1. In the flat limit a → 0, in which
the Eguchi–Hanson manifold becomes R4, Eq. (3.27) does not reduce to the one we found for the ansatz over R4. This is to
be expected, since the frame ea we are working with will not reduce to an integrable coordinate frame even in the flat limit.
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Fig. 5. Solutions of ODE (3.27) II.

3.2.2. Non-abelian Seiberg–Witten equations on Bianchi II domain wall
In this subsection we shall prove Theorem 1.1. Consider the Gibbons–Hawking [18] class of hyper-Kähler metrics

characterised by the existence of a tri-holomorphic isometry. The metric is given by

g4 = V ((dx1)2 + (dx2)2 + (dx3)2)+ V−1(dx0 + α)2. (3.28)

The function V and the one-form α = αidxi depend on xj and satisfy

∗3 dV = −dα,

where ∗3 is the Hodge operator on R3. Thus the function V is harmonic.
Choose the orthonormal frame

e0 =
1

√
V
(dx0 + α), ei =

√
Vdxi,

and the dual vector fields ∇0 and ∇i. In comparison to the Eguchi–Hanson background, for the Gibbons–Hawking case
Eq. (3.13) is no longer trivially satisfied. It only holds if dG ∧ dV = 0. Thus, in particular ∇0G = 0. Eqs. (3.14) and (3.15)
are equivalent to (3.24). The integrability conditions force δ0 = 0. Setting w = δixi, we can determine H from the relation
dH =

√
Ve2Gdw. Thus H and

√
Ve2G are functions of w only. We claim that

√
Ve2G ≠ C for any constant3 C . Therefore

dV ∧ dw = dG ∧ dw = 0, since dV ∧ dG = 0, and we must have V := V (w), G := G(w). Furthermore V (w) is harmonic, so
the potential must be linear inw, i.e. without loss of generality

V = x3, α = x2dx1.

The resulting metric admits a Bianchi II (also called Nil) group of isometries generated by the vector fields

X0 =
∂

∂x0
, X1 =

∂

∂x1
, X2 =

∂

∂x2
− x1

∂

∂x0

with the Heisenberg Lie algebra structure

[X0, X1] = 0, [X0, X2] = 0, [X2, X1] = X0.

There is also a homothety generated by

D = 2x0
∂

∂x0
+ x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
,

3 Suppose the opposite. Using V = C2e−4G in (3.12) we find ∂i∂ iG + ∂iG∂ iG = C2δiδ
i. The Laplace equation on V implies ∂i∂ iG = 4∂iG∂ iG, and

∂i∂
iG = 4c2, ∂iG ∂ iG = c2, where c :=

C2δiδ
i

√
5
.

Differentiation of the first relation reveals that all derivatives of G are harmonic. Two partial differentiations of the second relation and contracting the
indices then yields |∂i∂jG|

2
= 0. This implies c = 0 and thus ∂iG = 0, which rules out this special case.
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Fig. 6. Solutions of ODE (3.2) I.

such that

LDg4 = 3g4.

The conformally rescaled metric ĝ = (x3)−3g4 admits D as a proper Killing vector. Thus {X0, X1, X2} span the Bianchi II
algebra of isometries of ĝ and {X0, X1,D} span the Bianchi V group of isometries of ĝ . Setting x3 = exp(ρ) puts g4 in the
form

g4 = e3ρ(dρ2
+ e−2ρ((dx1)2 + (dx2)2)+ e−4ρ(dx0 + x2dx1)2).

This metric is singular at ρ → ±∞ but we claim that this singularity is only present in an overall conformal factor, and
g4 is a conformal rescaling of a regular homogeneous metric on a four-dimensional Lie group with the underlying manifold
H = Nil × R+ generated by the right-invariant vector fields {X0, X1, X2,D}. To see it, set

σ0 = e−2ρ(dx0 + x2dx1), σ1 = e−ρdx1, σ2 = e−ρdx2, σ3 = dρ.

Then

g4 = e3ρ ĝ where ĝ = σ0
2
+ σ1

2
+ σ2

2
+ σ3

2, (3.29)

and the left-invariant one-forms satisfy

dσ0 = 2σ0 ∧ σ3 − σ1 ∧ σ2, dσ1 = σ1 ∧ σ3, dσ2 = σ2 ∧ σ3, dσ3 = 0. (3.30)

Thus the metric ĝ is regular.
In [9] the singularity of g4 at ρ = −∞ has been interpreted as a single side domain wall in the space–time

M4 × Rp−3,1

with its product metric. This domain wall is a p-brane: either a nine-brane of 11D supergravity if p = 6 or a three-brane
of the (4 + 1)-dimensional space–time g4 − dt2. In all cases the direction ρ is transverse to the wall. In the approach of [9]
the regions x3 > 0 and x3 < 0 are identified. In this reference it is argued that (M4, g4) with such identification is the
approximate form of a regular metric constructed in [19] on a complement of a smooth cubic curve in CP2.

Using this linear potential V = w = x3 in (3.12) and setting g(w) := eG(w) yields

g ′′
− wg5

= 0.

This equation changes its character as w changes from positive to negative sign; we find infinitely many singularities for
G(w) for w < 0. We thus focus on the region w > 0, which is in agreement with the identification of these two regions
proposed by Gibbons and Rychenkova [9]. Numerical plots for solutions of this equation are given in Figs. 6 and 7. One
explicit solution is given by

g(w) = ±
1
2

4√21w−
3
4 . (3.31)

If we choosew = x3, the curvature for this solution blows up like (x3)−3. This is singular only on the domain wall.
Explicitly, the solution (3.31) gives

G = −
3
4
ρ +

1
4
ln 21 − ln 2, H = −

√
21
3

G
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Fig. 7. Solutions of ODE (3.2) II.

and

A =
3
4
(σ2 ⊗ T1 − σ1 ⊗ T2 + σ0 ⊗ T3), Φ = −

√
21
3

A, (3.32)

F =


9
16
σ0 ∧ σ1 +

3
4
σ2 ∧ σ3


⊗ T1 +


9
16
σ0 ∧ σ2 −

3
4
σ1 ∧ σ3


⊗ T2 +


3
2
σ0 ∧ σ3 −

3
16
σ1 ∧ σ2


⊗ T3.

Weclaim that (A,Φ) is a regular solution to the non-abelian Seiberg–Witten equations on the Lie group corresponding to the
Lie algebra (3.30) with its left-invariant metric ĝ given by (3.29). To justify this claim, we need to consider the invariance of
the non-abelian Seiberg–Witten equations under the conformal rescalings of the underlying metric. The first two Eqs. (2.6)
and (2.7) are clearly invariant, which follows from the conformal invariance of the Hodge operator acting on two-forms in
four dimensions. The third Eq. (2.8) is not invariant in general, but it still holds in our case with g4 replaced by ĝ4, as the
conformal factor depends only on ρ and dρ ∧ ∗4Φ = 0 for the Higgs fields (3.32). We should stress that this solution does
not lift to a solution of Yang–Mills equations in eight dimensions, as the product metric ĝ4 + g̃4 on H ×R4 is not Spin(7).

4. Conclusions and outlook

In this paper we have used the identification of R8 with R4
× R4, or the curved analogue when one of the R4 factors

is replaced by a hyper-Kähler four-manifold (M4, g4) to construct explicit solutions of the ‘self-duality’ equations in eight
dimensions with a gauge group SU(2). The solutions all admit four-dimensional symmetry group along the R4 factor, and
thus they give rise to solutions of the non-abelian Seiberg–Witten equations onM4.

We have analysed three cases, whereM4 isR4 with the flatmetric, the Eguchi–Hanson gravitational instanton, and finally
the cohomogeneity one hyper-Kählermetricwith Bianchi II group acting isometricallywith three-dimensional orbits. In this
last case the singularity of the gauge field is regular on a conformally rescaled four-manifold. Alternatively, the singularity
is present only on a domain wall in the space–time with the metric g4 − dt2.

The symmetry reduction to four dimensions was based on the holonomy reduction SU(2) × SU(2) ⊂ Spin(7). An
analogous reduction from R8 with split signature metrics may provide a source of Lorentz invariant gauged solitons in
3+ 1 dimensions. Moreover, there are other special realisations of Spin(7) in terms of Lie groups G2, SU(3) and SU(4). Each
realisation leads to some symmetry reduction [20,21], and picks a preferred gauge group, where the ansatz analogous to
(3.11) can be made.

Witten [22] considered a complex-valued connection A = A + iΦ on bundles over four-manifolds of the form
M4 = R × M3 with the product metric g4 = dw2

+ g3, where (M3, g3) is a three-dimensional Riemannian manifold.
He showed that the gradient flow equation

dA
dw

= −∗3
δI

δĀ

for the holomorphic Chern–Simons functional I yields Eqs. (2.6) and (2.7). In this setup neither A nor Φ have a dw
component.

The example (3.21) fits into this framework: g3 is the flat metric on R3, and the corresponding ODE is the reduction of the
gradient flow equations. In all other examples in our paper the underlying four-manifold is also of the form M4 = R × M3,
where M3 is a three-dimensional Lie group with left-invariant one-forms σi. Moreover in all cases there exists a gauge
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such that neither A nor Φ have components in the R direction orthogonal to the group orbits. However the Riemannian
metric g4 = dw2

+ hij(w)σiσj on M4 is not a product metric unless hij does not depend on w. It remains to be seen
whether the gradient flow formulation of the non-abelian Seiberg–Witten equations can be achieved in this more general
setup.
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Appendix

Proof of Proposition 3.1. Rewrite Eq. (2.6) using the two-forms σ and σ̃ :

∗


σ ∧


F −

1
2
[Φ,Φ]


= σ ab(Fab − Φa ∧ Φb) = 0, (A.1)

∗(σ̃ ∧ [DΦ]) = −σ̃ abDaΦb = 0, (A.2)

DaΦa = 0. (A.3)

Now, substituting (3.11) and using (3.10) in Eq. (A.1) yields

0 =
1
2
σ ab


Fab −

1
2
[Φa,Φb]


=

3
4
∇a∇

aG + σac∇
a
∇

cG + σcd∇
dGσ abd(ec)ab +

3
4
|∇G|

2
−

3
4
|∇H|

2.

The term σcd∇
dGσ abd(ec)ab decomposes as

σcd∇
dGσ abd(ec)ab =

1
4
[Ca

da + ϵda
bcCa

bc]∇
dG 12 + ϵea

bcCa
bc∇

dGσ e
d.

The closure condition dσ = 0 yields σa[bCa
cd] = 0,which is a system of 12 linear equations. These equations imply the four

relations ϵdabcCa
bc = 2Ca

da. Then the identity-valued part of (A.1) becomes

3
4
∇a∇

aG +
3
4
Ca

ba∇
bG +

3
4
|∇G|

2
−

3
4
|∇H|

2
= 0.

The first two terms of these combine to give �G, as can be seen by computing

�G = ∗d ∗ dG = ∗d


1
3!
ϵabcd∇aGeb ∧ ec ∧ ed


= ∗(∇a∇

aG + Cb
ab∇

aG) = (∇a∇
a
+ Cb

ab∇
a)G.

The other components of (A.1) are given by4

(ϵea
bcCa

bcσ
ed

− σ abCd
ab)∇dG = 0.

We nowmove to Eq. (A.2),

σ̃ab(DaΦb) = σ̃ab(∇
aΦb

+ AaΦb
− ΦbAa)

= σ̃abσ
bc

∇
a
∇cH + 2σ̃abσ adσ bc

∇(cG∇d)H

= σ̃abσ
b
c(∇

a
∇

cH − 2∇aH∇
cG).

4 Using the spinor decomposition [12]

Ca
bc = εA

′

B′Γ A
BCC ′ + εABΓ

A′

B′CC ′

with the anti-self-duality conditions dσ = 0 equivalent to Γ A′

B′CC ′ = 0 gives

Γ AB
AC ′σ C ′B′

∇BB′G = 0,

where σ A′B′

= σ (A
′B′) and σ ab

= σ A′B′

εAB . Thus the three-dimensional distribution Γ AB
A(C ′∇B′)B is integrable and G is in its kernel.
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Here we had to explicitly evaluate and symmetrise a product of three σ -matrices to obtain the last line. And finally, for
Eq. (A.3) we obtain

DaΦ
a

= (∇aΦ
a
+ [Aa,Φ

a
])

= ∇a(σ
ab

∇bH)+ σabσ
a
c∇

bG∇
cH − σacσ

a
b∇

bG∇
cH

= σab(∇
a
∇

bH − 2∇aG∇
bH) = 0. �
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