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Abstract: We give a gauge invariant characterisation of the elliptic affine sphere equation
and the closely related Tzitzéica equation as reductions of real forms of SL(3,C) anti–
self–dual Yang–Mills equations by two translations, or equivalently as a special case of
the Hitchin equation.

We use the Loftin–Yau–Zaslow construction to give an explicit expression for a
six–real dimensional semi–flat Calabi–Yau metric in terms of a solution to the affine-
sphere equation and show how a subclass of such metrics arises from 3rd Painlevé
transcendents.

1. Introduction

Let X be a six real dimensional Calabi–Yau (CY) manifold - a complex Kähler three-fold
with covariantly constant holomorphic three-form�. Any such manifold admits a Ricci
flat Kähler metric with holonomy contained in SU (3).

We shall consider a subclass of CY manifolds which are fibred over a real three
dimensional manifold B, and the fibres are special Lagrangian tori T 3. This means that
there exists a projection

π : X −→ B

such that the restrictions of the Kähler form ω and the real part of the holomorphic
three-form Re(�) vanish on any fibre π−1(p) ∼= T 3 over a point p ∈ B.

The corresponding CY metric is called semi–flat if it is flat along the fibres. Consider
the Kähler form ω = i∂∂φ, where φ is the Kähler potential. A natural class of semi–
flat CY manifolds are the T 3 invariant manifolds. In this case the potential φ can be
chosen not to depend on the coordinates of the fibres of π. The Ricci–flat condition

det
(

∂2φ

∂z j ∂ z̄k

)
= 1 then reduces to the real Monge–Ampére equation

det

(
∂2φ

∂x j∂xk

)
= 1, (1.1)
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where x j , j = 1, 2, 3, are local coordinates on B. The work of Cheng and Yau [6] shows
that semi–flat CY metrics on compact complex three-fold are flat, so in what follows we
allow CY manifolds to be non–compact, and some fibres of π to be singular.

The conjecture of Strominger, Yau and Zaslow (SYZ) [28] states that near the large
complex structure limit both X and its mirror should be the fibrations over the moduli
space of special Lagrangian tori. More precisely, SYZ consider the moduli space of
special Lagrangian submanifolds admitting a unitary flat connection. They write down
a metric on X and compute the metric on the moduli space. In the tree level contribu-
tion this metric is derived from the Born–Infeld action for the brane, assuming that the
moduli parameters slowly vary in time and expanding the action up to second order in
time derivatives. The metric on the moduli space Y arises from the kinetic term in the
Born–Infeld action. This method is based on Manton’s moduli space approximation [21]
and was originally used by SYZ. The metric resulting on Y admits the T 3 action even
if the original metric on X does not. The full agreement between Y and the mirror of X
is therefore expected when instanton contribution from minimal area holomorphic discs
whose boundaries wrap the tori are taken into account. These corrections are suppressed
in the large complex structure limit.

One approach to a proof of the Strominger Yau Zaslow conjecture [28] would be
to describe Ricci-flat metrics on Calabi-Yau manifolds near large complex structure
limits. It is expected that in the large complex structure limit the base of the fibration
π : X −→ B admits an affine structure and a special metric of Hessian form. To test
this conjecture Loftin, Yau and Zaslow (LYZ) [20] aimed to prove the existence of the
metric of Hessian form1

gB = ∂2φ

∂x j∂xk
dx j ⊗ dxk, (1.2)

where φ is homogeneous of degree 2 in x j and satisfies (1.1). Given such a Hessian
metric on B, the semi–flat Calabi–Yau metric g on T B and the corresponding Kähler
form are given by

g = φ jk(dx j ⊗ dxk + dy j ⊗ dyk), ω = i

2
φ jkdz j ∧ dzk, (1.3)

where y j are coordinates on the fibres of T B and z j = x j + iy j .
LYZ constructed a candidate for such metric as a cone over the elliptic affine sphere

metric with three singular points. One consequence of Mirror Conjecture is that the base
metric gB should have singularities in codimension two, and LYZ were interested in a
local metric model near the trivalent vertex of a Y-shaped singularity. The monodromy
of the resulting affine structure has not been calculated, so it is not yet clear that the
metric coincides with the one predicted by Gross-Siebert [10] and Haase-Zharkov [12].

The LYZ construction of the metric comes down to looking for solutions of the
definite affine sphere equation [27]

ψzz̄ +
1

2
eψ + |U |2e−2ψ = 0, Uz̄ = 0, (1.4)

1 It follows from the work of Hitchin [13] that the natural Weil-Petersson metric on the space of special
Lagrangian submanifolds has this form. More precisely, it is shown in [13] that the Kähler potentials of X and
its mirror Y both satisfy the Monge-Ampére equation (1.1) and are related by a Legendre transform on the
base. The fibres of the special Lagrangian fibration of Y are dual (by a Fourier transform) tori to the fibres of
π : X −→ B.
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whereψ and U are real and complex functions respectively on an open set in C. LYZ set
U = z−2 to account for the singularity of the metric they considered. They then proved
the existence of the radially symmetric solution ψ of (1.4) with a prescribed behaviour
near the singularity z = 0, and established the existence of the global solution to the
coordinate-independent version of (1.4) on S2 minus three points.

In this paper, we study the integrability of Eq. (1.4). We show that the affine sphere
equation and a closely related equation called the Tzitzéica equation arise as reductions
of anti–self–dual Yang–Mills (ASDYM) system by two translations, and hence it admits
a twistor interpretation. Moreover, the ODE characterising its radial solutions gives rise
to an isomonodromy problem described by the Painlevé III ODE. The two-dimensional
group of translations reduces the Euclidean ASDYM equations to the Hitchin equations
[14] and Theorem 1.1 below gives an invariant characterisation of (1.4) as a special case
of the SU (2, 1) Hitchin equations.

Let A be an su(2, 1) valued connection on a rank 3 complex vector bundle E → C

with the curvature FA = d A + A ∧ A and let � be a one-form with values in adj(E).
Choose a local trivialisation of E and set

A = Azdz + (Az)
∗dz̄, � = Qdz̄, D = d + A,

where m∗ := −η−1m̄tη with η = diag(1, 1,−1), so that �∗ = Q∗dz.

Theorem 1.1. The Hitchin equations

FA −� ∧�∗ −�∗ ∧� = 0, D� = 0 (1.5)

hold with

Az =
⎛
⎜⎝

0 1√
2

e
ψ
2 0

0 − 1
2ψz −Ue−ψ

0 0 1
2ψz

⎞
⎟⎠ , Q =

⎛
⎜⎝

0 0 1√
2

e
ψ
2

0 0 0
0 0 0

⎞
⎟⎠ (1.6)

if the functions (ψ,U ) satisfy the affine sphere equation (1.4).
Conversely, any solution to the SU (2, 1) Hitchin equations such that

1. Q has minimal polynomial t2 and Tr(Q Q∗) �= 0,
2. Tr

(
(Dz Q∗)2

) = 0, Tr
(
(Dz Q∗)2(Dz̄ Q)2

) �= 0,
3. Tr [(Q Q∗)4 − (Q∗Q)2(Dz Q∗)(Dz̄ Q) + Q∗Q(Dz Q∗)Q Q∗(Dz̄ Q)] = 0

is equivalent to (1.6) by gauge and coordinate transformations.

The connection between solutions to the affine sphere equation (1.4) and the
Calabi–Yau metric (1.3) in six dimensions has not been made explicit in [20]. The
Lax representation of (1.4) will be used to prove the following

Proposition 1.2. Given a semi-flat Calabi–Yau metric (1.3), where φ(x) satisfies the
Monge–Ampére equation (1.1), and φ(cx) = c2φ(x), where c is a non–zero constant,
there exist complex coordinates {z, w, ξ} such that the metric g and the Kähler form ω

can be written as

g = e1ē1 + e2ē2 + e3ē3,

ω = i

2
(e1 ∧ ē1 + e2 ∧ ē2 + e3 ∧ ē3) ,

(1.7)
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where

e1 = dw − i

2
eψ(ξ̄dz + ξdz̄),

e2 = eψ/2√
2

(
(w + iξψz)dz + i(dξ + e−ψŪ ξ̄dz̄)

)
, (1.8)

e3 = eψ/2√
2

(
i(d ξ̄ + e−ψUξdz) + (w + i ξ̄ψz̄)dz̄

)
,

and ψ(z, z̄),U (z) are real and complex functions respectively defined on an open set in
C which satisfy the affine sphere equation (1.4).

The Hitchin equations (1.5) are integrable as they arise from ASDYM and their solutions
can be described by holomorphic twistor data. Therefore any ODE arising as reduction
of (1.4) by another symmetry must be of Painlevé type in agreement with an integrable
dogma [1,8,22].

If U = zn, n ∈ Z, Eq. (1.4) admits rotational symmetry

z → eicz, c ∈ R. (1.9)

Therefore one can consider the group invariant solutions ψ and look for the ODE
characterising such reduction. For concreteness, let us consider U = z−2 following
LYZ.

Proposition 1.3. Solutions to (1.4) with U = z−2 invariant under a group of rotations
(1.9) are of the form

ψ(z, z̄) = log H(s)− 3 log (s), s = |z|1/2,
where H satisfies

Hss = (Hs)
2

H
− Hs

s
− 8H2

s
− 16

H
,

which is the Painlevé III equation with parameters (−8, 0, 0,−16).

In the next section we follow Leung [18] and review the semi–flat Calabi-Yau
manifolds. Then, in Sect. 3 we summarise the results about affine spheres which are
used in the LYZ construction [20]. In Sect. 4 we prove Theorem 1.1 and give a gauge
invariant characterisation of the definite affine sphere equation and the closely related
Tzitzéica equation as symmetry reductions of the anti–self–dual Yang–Mills equations.
As a byproduct, in Sect. 5 we shall obtain a characterisation of a reduction of the Hitchin
equations to the Z3 two dimensional Toda chain. In Sect. 6 we discuss other possible
gauge inequivalent reductions of the ASDYM equations to the affine sphere equation
and the Tzitzéica equation. In Sect. 7 we give a proof of Proposition 1.2 and recover the
toric Calabi–Yau metric in terms of the solutions of the affine sphere equation. Finaly
in Sect. 8 we establish Proposition 1.3 and demonstrate that the existence theorem for
Hessian metrics with prescribed monodromy comes down to the study of the Painlevé
III equation with special values of parameters, and obtain the corresponding 3 × 3 iso-
monodromic Lax pair.
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2. Semi–Flat Calabi–Yau Manifolds and the SYZ Conjecture

Let z j = x j + iy j be holomorphic coordinates on a Calabi–Yau three-fold X , and let
φ(z j , z̄ j ) be the Kähler potential such that ω = i∂∂φ. The Ricci–flat condition for the
corresponding Riemannian metric is

� ∧� = ω3,

where � = dz1 ∧ dz2 ∧ dz3 is the holomorphic three-form on X .
Now let us consider the T 3 invariant case. Assume that the potential φ is invariant

under translations in the imaginary directions y j . In this case the Riemannian metric and
the Kähler form are given by (1.3) where

φ jk := ∂2φ

∂x j∂xk

and the Ricci–flat condition reduces to the real Monge–Ampére equation (1.1) for
φ = φ(x1, x2, x3).

We shall regard the x j as local coordinates in an open set B ⊂ R
3. The freedom in

choosing the coordinates x j without changing Eq. (1.1) is given by affine transformations
x → Mx + b, where M ∈ SL(3,R), and b is a vector. The affine transformations induce
the change in the potential φ −→ (detM)2φ, thus φ should be regarded as a section of
the second power of the real determinant line bundle over B. Conversely, given a three
real dimensional affine manifold B with a metric of Hessian type (1.2), where φ satisfies
the Hessian condition (1.1) one can construct the Calabi–Yau metric on X = T B by
(1.3). We then compactify the fibres quotienting them by a lattice thus producing a T 3

invariant Calabi–Yau structure on the total space of a toric fibration π : X −→ B.
We are now ready to formulate the SYZ conjecture. If X,Y are mirror Calabi–Yau

manifolds (see [11] for a discussion of what it means) then there exists a compact real
three-manifold B such that

• π : X −→ B, ρ : Y −→ B are special Lagrangian fibrations by tori (the fibres
can be singular at some points of B).

• The fibres of π and ρ are dual tori.

The second condition only makes sense for flat tori, therefore the conjecture holds in
the large complex structure limit, where the volume of the fibres is small in comparison
to the volume of the base space and the metric on the fibres is approximately flat.

To understand the large complex structure limit consider a one parameter family of
complex structures J (t) given by the holomorphic coordinates

z j (t) = t−1x j + iy j ,

and the corresponding Calabi–Yau metrics rescaled by t2

g(t) = φi j (dx j dxk + t2dy j dyk).

Thus we get a one parameter family of special Lagrangian fibrations. In a limit t −→ 0
the Gromov–Hausdorff limit of metric g(t) is the Hessian metric (1.2) on B, and the
size of the fibres shrinks to zero. The SYZ conjecture predicts that such a limit exists
for any Calabi–Yau metric on a (not necessarily T 3 symmetric) toric special Lagrangian
fibration.
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3. Affine Geometry and Hessian Metrics

The Hessian equation (1.1) is known not to be integrable, at least in the sense of the
hydrodynamic reductions [9]. Its homogeneous solutions are however characterised by
an integrable PDE. We shall carry over the homogeneity analysis for a general Hessian
metric in (n + 1) dimensions, and then restrict our attention to n = 2 where there is a
direct connection with the semi–flat CY manifolds on one side and integrability on the
other.

The following proposition follows from combining results of Calabi [5] and
Baues-Cortés [2] about parabolic and elliptic affine spheres. Here, we give a direct
elementary proof not based on affine differential geometry. It has certain advantages
as it exhibits explicit coordinate transformations between solutions to various forms of
homogeneous Hessian equations.

Proposition 3.1. Let φ = φ(xi ) be a solution to the Hessian equation (1.1) on an open
ball B ⊂ R

n+1 such that φ(cx) = c2φ(x) for any non-zero constant c. Then there exists
a local coordinate system (p1, . . . , pn, r) on B such that the metric (1.2) is

gB = dr2 + r2 1

w

(
∂2w

∂pα∂pβ

)
dpαdpβ, α, β = 1, . . . , n, (3.1)

where w = w(pα) satisfies

det

(
∂2w

∂pα∂pβ

)
= 1

wn+2 . (3.2)

Proof. Consider the Hessian metric (1.2) with φ homogeneous of degree 2. Therefore
V = xi∂/∂xi is a homothety with LV gB = 2gB . Locally there exists a function r :
B −→ R such that V = r∂/∂r and

gB = γ (dr + rα)2 + r2h,

where h, α, γ are a metric, a one–form and a function respectively on the space of orbits
of V . The relation ∂i (x jφ j ) = 2φi gives

gB(V, . . .) = xiφi j dx j = dφ.

Thus d(γ (dr + rα)) = 0 and we can redefine r to set α = 0 and γ = 1. We also note
that |V |2 = xi x jφi j = 2φ, and recognise gB as a cone over h,

gB = dr2 + r2h, φ = r2

2
. (3.3)

Now let us consider the surface r = 1 given by a graph in R
n+1,

(x̃1, . . . , x̃n) 
−→ (x̃1, . . . , x̃n, v(x̃α)),

where x̃α, α = 1, . . . , n, parametrise the surface. We shall show that its induced metric
h is given by

h = ∂α∂βv

x̃γ ∂γ v − v
dx̃αdx̃β, (3.4)
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where ∂α := ∂/∂ x̃α. To prove it, restrict the function φ to the surface r = 1. This gives
an identity φ(x̃α, v(x̃α)) = 1/2. We differentiate this identity implicitly with respect to
x̃α and express the first and second derivatives of φ in terms of the derivatives of v,

0 = ∂αφ + ∂n+1φ ∂αv,

0 = ∂α∂βφ + ∂α∂n+1φ ∂βv + ∂β∂n+1φ ∂αv + ∂2
n+1φ ∂αv∂βv + ∂n+1φ ∂α∂βv,

2φ = x̃α∂αφ + v∂n+1φ = 1,

where the last relation is just the homogeneity condition restricted to the hypersurface
φ = 1/2. Substituting all that to gB gives (3.4).

Now if the function φ in the Hessian metric gB satisfies the Hessian condition (1.1)
then v satisfies

det
∂2v

∂ x̃α∂ x̃β
= (x̃α∂αv − v)n+2. (3.5)

To see it, let us write the coordinates xi on R
n+1 as (x1, . . . , xn, xn+1) =

(r x̃1, . . . , r x̃n, rv(x̃α)), that is, regard R
n+1 as the cone over the r = 1 surface. Now

consider the invariant volume element
√|gB | dx1 ∧ · · · ∧ dxn ∧ dxn+1 = √|g̃B | dx̃1 ∧ · · · ∧ dx̃n ∧ dr, (3.6)

where |gB | is the absolute value of the determinant of Hessian metric (1.2) written in the
coordinates xi and g̃B is the same metric expressed in the basis {dx̃α, dr}. We contract
both sides of (3.6) with V . On the LHS of (3.6) we use the form V = xi∂/∂xi and on
the RHS use V = r∂/∂r. We now set r = 1 and impose the Hessian equation (1.1),
det gB = det φi j = 1. This yields

v − x̃α∂αv = √|g̃B |.
On the surface r = 1, one has det g̃B = det h, where h is given by (3.4). Substituting
this in the above formula and taking squares of both sides yields (3.5). Note2 that we
have taken det h > 0 from the assumption that det gB = det φ jk = 1.

To obtain the statement in the proposition, perform a Legendre transform

pα = ∂v

∂ x̃α
, w(pα) = x̃α

∂v

∂ x̃α
− v, x̃α = ∂w

∂pα
.

Using dpα = ∂α∂βv dx̃β yields

h = 1

w

∂2w

∂pα∂pβ
dpαdpβ (3.7)

and

∂2w

∂pα∂pβ
=

(
∂2v

∂ x̃α∂ x̃β

)−1

,

which implies (3.1) and (3.2). ��
2 If we started with det φi j = −1, which implies det h < 0, the analogous argument would lead to

det ∂2v
∂ x̃α∂ x̃β

= −(x̃α∂αv − v)n+2.



1004 M. Dunajski, P. Plansangkate

Now, let us consider a hypersurface� immersed in R
n+1 with the flat metric δ jk dx j dxk,

given by a graph

r = (x̃1, . . . , x̃n, v(x̃1, . . . , x̃n)). (3.8)

The first and second fundamental forms on � are given by

hI = dr · dr = (δαβ + ∂αv∂βv)dx̃αdx̃β,

hI I = −dr · dn = 1√
1 + (∂1v)2 + · · · + (∂nv)2

∂2v

∂ x̃α∂ x̃β
dx̃αdx̃β,

where n is the unit normal to�. Tzitzéica [29,30] has studied surfaces� in R
3 for which

the ratio of the Gaussian curvature K to the fourth power of a distance from a tangent
plane to some fixed point is a constant. If K �= 0, we can always rescale the coordinates
to set this constant to +1 or −1 depending on the sign of the Gaussian curvature. We
shall call this the Tzitzéica condition. The generalisation of the Tzitzéica condition to
hypersurfaces in R

n+1 is given by

K = ±Dn+2,

where D = r · n is the same as the distance up to sign. In the adapted coordinates, D
and the Gaussian curvature K are given by

D = v − x̃α∂αv√
1 + (∂1v)2 + · · · + (∂nv)2

,

K = 1

(
√

1 + (∂1v)2 + · · · + (∂nv)2)n+2
det

(
∂2v

∂ x̃α∂ x̃β

)
.

It follows that the Tzitzéica condition holds if and only if v satisfies

det
∂2v

∂ x̃α∂ x̃β
= ±(v − x̃α∂αv)

n+2, (3.9)

where plus and minus signs correspond to positive and negative Gaussian curvature
respectively.

It is well known in affine differential geometry that an immersed hypersurface � in
R

n+1 is an affine hypersphere with the origin as its centre if and only if the Tzitzéica
condition (3.9) holds [25]. It turns out that the metric (3.4), with v satisfying (3.5), is
the same as the Blaschke metric (or affine metric) of a proper affine hypersphere. The
Blaschke metric is conformally related to the second fundamental form, and is defined
as follows. Let N denote the transversal vector field of the surface � such that the unit
normal n is given by n = N

|N| , i.e. N = ∇(x̃n+1 − v(x̃1, . . . , x̃n)). Consider a bilinear
form

ĥ = −dr · dN = |N| hI I .

The Blaschke metric is then given by

h := | det ĥ|− 1
n+2 ĥ. (3.10)
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Therefore, for the surface � given by the graph (3.8), we have

h =
∣∣∣∣det

∂2v

∂ x̃α∂ x̃β

∣∣∣∣
− 1

n+2 ∂2v

∂ x̃α∂ x̃β
dx̃αdx̃β,

which coincides with the metric (3.4) if Eq. (3.5) holds.
In affine differential geometry, it is also known [5] that a Hessian metric (1.2) which

satisfies det φi j = 1 is a parabolic (improper) affine hypersphere metric. We have demon-
strated that Hessian equation (1.1) onφ implies (3.5) on v. Therefore, this is in agreement
with a result of Baues and Cortéz [2] that a parabolic affine hypersphere metric which
admits a homothety LV gB = 2gB is the metric cone over a proper affine hypersphere.

Let us now restrict our attention to n = 2, and consider the metric h (3.4). For n = 2,
det h > 0 implies that h is a definite metric. In the context of the Calabi–Yau manifolds,
the metric gB is Riemannian, hence one is interested in positive–definite h. Baues and
Cortés [2] have shown that in such case h is the Blaschke metric of a definite elliptic
affine sphere, with affine mean curvature 1. Since h is positive definite we can adopt
isothermal coordinates for the affine metric (which are asymptotic coordinates for the
second fundamental form hI I ) and write it as

h = eψdzdz, (3.11)

for some real valued function ψ = ψ(z, z̄). In this form, Simon and Wang [27] proved
that the structure equations3 of definite affine sphere imply that ψ necessarily satisfies
Eq. (1.4),

ψzz̄ +
1

2
eψ + |U |2e−2ψ = 0, Uz̄ = 0,

where Udz3 is the holomorphic cubic differential.
Conversely, given a solution of (1.4) one can construct an affine sphere with

h = eψdzdz as its Blaschke metric. We should note here that if the holomorphic cubic

3 The usual affine immersion in R
n+1 only assumes a flat connection D and a parallel volume element on

R
n+1, but not an ambient metric. In particular, the structure equations of a Blaschke hypersurface immersion

f : (�,∇) −→ (Rn+1, D) are given by

DX f∗(Y ) = f∗(∇X Y ) + h(X, Y )ξ, (3.12)

DX ξ = − f∗(SX), (3.13)

where ∇ is an affine connection on �, X, Y ∈ T�, ξ is a transversal vector field chosen uniquely up to sign
to satisfy certain properties, called the affine normal field, and h is the Blaschke metric defined by (3.12). This
definition turns out to be equivalent to (3.10) if one were to use the Euclidean metric on R

n+1. The operator
S : T� −→ T� is called the affine shape operator and H = 1

n Tr(S) the affine mean curvature. A proper
affine sphere is defined to be a Blaschke hypersurface with S = H I, I being the identity metric. Another
affine invariant quantity is a totally symmetric tensor called the cubic form Ĉ and is defined by

Ĉ(X, Y, Z) = h(C(X, Y ), Z),

where C is the difference tensor C = ∇̂ −∇ and ∇̂ is the Levi-Civita connection of h. Consider h as in (3.11)

and let Ci
jk , i, j, k ∈ {1, 1̄} be the components of C in the basis e1 = dz, e1̄ = dz̄. Then it can be shown

that the only nonvanishing components of C are C 1̄
11 and C1

1̄1̄
= C 1̄

11, and the function U in (1.4) is defined

by U = C 1̄
11eψ . It follows that the cubic form is Ĉ = Udz3 + Ūdz̄3. See [5,19,25,27] for details.
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differential U (z)dz3 is non-zero, we can choose the isothermal coordinates such that
U = 1. For example, defining ξ = ξ(z) by dξ = 2−1/3U 1/3dz transforms (1.4) into

ψ̂ξξ + eψ̂ + e−2ψ̂ = 0, (3.14)

where

ψ̂ = ψ − 1

3
log U − 1

3
log Ū − 1

3
log 2.

We will make use of such coordinate transformation in Sect. 4.4 Loftin, Yau and Zaslow
[20] proved the existence of a semi–flat Calabi–Yau metric (1.3) with the base metric
gB as the metric cone over an elliptic affine sphere

gB = φi j dxi dx j = dr2 + r2eψdzdz, (3.15)

with the prescribed singularity, by proving the existence of a radially symmetric solution
ψ of (1.4) for U (z) = z−2 and the corresponding global solution on S2 minus three
points.

Motivated by this work, we are interested in the integrability of the definite affine
sphere equation (1.4). The affine sphere equation is closely related to a well known
integrable equation, namely the Tzitzéica equation

uxy = eu − e−2u . (3.16)

In the context of affine spheres, the Tzitzéica equation arises if det h < 0. By writ-
ing the metric in isothermal coordinates as h = 2eu dxdy and considering the struc-
ture equations, Simon and Wang [27] also show that h is the Blaschke metric of the
indefinite affine sphere (with negative affine mean curvature) if and only if u satisfies
uxy = eu − r(x)b(y)e−2u, where r(x), b(y) are arbitrary non-vanishing functions of
one variable, which can be normalised by rescaling the isothermal coordinates. Thus,
we obtain

uxy = eu − εe−2u, (3.17)

where ε = ±1. The equation with ε = 1, (3.16), was first derived in [29,30] for the
Tzitzéica surface in R

3 with negative Gaussian curvature K = −D4,where the indefinite
second fundamental form is written in asymptotic coordinates as hI I = 2euD dxdy.

The difference between the two equations (3.16) and (1.4) lies in the relative sign of
the two exponential terms on the RHS. For the Tzitzéica equation u = 0 is a solution
and other solutions may be constructed using Darboux and Bäcklund transformations,
for example see [4]. The definite affine sphere equation does not seem to have such
obvious solutions. However, Calabi [5] has shown that an elliptic affine hypersphere
with complete Blaschke metric is an ellipsoid. This is in agreement with the fact that
(1.4) admits solutions in term of elliptic functions, which can be found by making an
ansatz ψ(z, z̄) = f (z + z̄) in (3.14).

4 We note that the analytic continuation

ψ̂
ξξ

+ eψ̂ − e−2ψ̂ = 0

of Eq. (3.14) was used by McIntosh [23] to describe minimal Lagrangian immersions in CP
2 and special

Lagrangian cones in C
3.
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4. Reduction of ASDYM

It was shown in [7] that the Tzitzéica equation (3.16) can be obtained from a special an-
satz to the anti–self–dual Yang–Mills in R

2,2 with gauge group SL(3,R). In this section,
we shall give a gauge and coordinate invariant characterisation of the Tzitzéica equation
and the definite affine sphere equation as different real forms of a reduction of ASDYM
on C

4 with gauge group SL(3,C), via the holomorphic Hitchin equations on C
2.

4.1. Holomorphic Tzitzéica equation. Consider a holomorphic metric and volume
element on C

4,

ds2 = 2(dz dz̃ − dw dw̃), ν = dw ∧ dw̃ ∧ dz ∧ dz̃.

Let A = Azdz + Awdw + Az̃dz̃ + Aw̃dw̃ be a Lie algebra valued connection on a vector
bundle E → C

4. The anti–self–dual Yang–Mills equations are given by

Fzw = 0, Fzz̃ − Fww̃ = 0, Fz̃w̃ = 0.

These equations arise from a Lax pair

[Dz + λDw̃, Dw + λDz̃] = 0, (4.1)

where Dz = ∂z + Az, etc, are covariant derivatives, Fzz̃ = [Dz, Dz̃], and (4.1) is required
to hold for any value of the spectral parameter λ.

Choose a gauge group to be SL(3,C) and assume that A is invariant under the action
of two dimensional group of translations C

2 such that the metric restricted to the planes
spanned by the generators of the group is non-degenerate. Let X1, X2 be the generators
of the group, then the Higgs fields

P = X1 A, Q = X2 A

belong to the adjoint representation. We can always choose the coordinates so that the
group is generated by the two null vectors X1 = ∂/∂w̃ and X2 = ∂/∂w. The ASDYM
system reduces to the holomorphic form of the Hitchin equations [14]

Dz Q = 0, (4.2a)

Dz̃ P = 0, (4.2b)

Fzz̃ + [P, Q] = 0, (4.2c)

where

Fzz̃ = ∂z Az̃ − ∂z̃ Az + [Az, Az̃]
is a curvature of a holomorphic connection A = Azdz + Az̃dz̃ on C

2. The Hitchin
equations are invariant under the gauge transformations

A → g−1 Ag + g−1 dg, P → g−1 Pg, Q → g−1 Qg, (4.3)

and later we shall also make use of the following coordinate freedom:

z −→ ẑ(z), z̃ −→ ˆ̃z(z̃). (4.4)
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The Lax pair (4.1) for the ASDYM reduces to the following Lax pair for the holo-
morphic Hitchin equations:

[Dz + λP, Q + λDz̃] = 0. (4.5)

There are several gauge inequivalent ways to embed the Tzitzéica equation (3.16) as a
special case of the Hitchin equations. The gauge used in [7] is

Aw̃ = P =
⎛
⎝

0 0 1
0 0 0
0 0 0

⎞
⎠ , Aw = Q =

⎛
⎝

0 0 0
0 0 0
eu 0 0

⎞
⎠ , (4.6)

Az =
⎛
⎝

uz 0 0
1 −uz 0
0 1 0

⎞
⎠ , Az̃ =

⎛
⎝

0 e−2u 0
0 0 eu

0 0 0

⎞
⎠ , (4.7)

where u(z, z̃) is a complex valued function holomorphic in (z, z̃). With this ansatz the
Hitchin equations yield the holomorphic Tzitzéica equation

uzz̃ = eu − e−2u . (4.8)

Choosing the real form SL(3,R) of SL(3,C) and regarding u = u(x, y) as a real
function of real coordinates z = x, z̃ = y reduces (4.8) to (3.16).

On the other hand, performing the coordinate transformation

dẑ =
(

U (z)

2

)− 1
3

dz, d ˆ̃z =
(

Ũ (z̃)

2

)− 1
3

dz̃

and setting

u = ψ(z, z̃)− 1

3
log

(
U

2

)
− 1

3
log

(
Ũ

2

)
+ log

(
−1

2

)

for any branch of log
(− 1

2

)
puts (4.8) in the form

ψzz̃ +
1

2
eψ + U (z)Ũ (z̃)e−2ψ = 0, (4.9)

where we have dropped hats of the new variables. Equation (4.9) then reduces to the
affine sphere equation (1.4) under the Euclidean reality conditions z̃ = z̄ and reducing
the gauge group to SU (2, 1), which implies the constraint Ũ = Ū .

Now we shall establish a gauge invariant characterisation of the ansatz (4.6), (4.7) in
terms of the gauge and Higgs fields of the Hitchin equations. We will make use of the
following lemma.

Lemma 4.1. Consider 3 by 3 complex matrices P, Q such that

P2 = Q2 = 0, T r(P Q) = ω �= 0. (4.10)

There exists a gauge transformation such that P, Q are in the form (4.6) for some u.
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Proof. The conditions (4.10) are invariant under the gauge transformations

P −→ g−1 Pg, Q −→ g−1 Qg.

These conditions imply that the nullities (dimensions of the kernels of the associated
linear maps) satisfy n(Q P) < 3 and n(P) = 2. Thus

Ker(Q P) = Ker(P).

Also rank(Q P) = 1 and Im(Q P) is contained in the one-dimensional image of Q,
therefore

Im(Q P) = Im(Q). (4.11)

Choose a Jordan basis (v,u,w) of C
3 such that

P(w) = v, P(v) = 0, P(u) = 0. (4.12)

From (4.11) Im(Q) = span (Q(v)), thus Q(u) = aQ(v), Q(w) = bQ(v) for some a, b
so that Ker(Q) = span (u − av,w − bv). Use the freedom in the basis (4.12) to set

w′ = w − bv, u′ = u − av, v′ = v.

Now

P(w′) = v′, P(v′) = 0, P(u′) = 0,

Q(w′) = 0, Q(u′) = 0, Q(v′) = cu′ + ωw′,

where ω �= 0 as T r(P Q) = ω �= 0. There is still freedom in (4.12):

v′′ = v′, u′′ = u′, w′′ = w′ + (c/ω)u′

so that, dropping primes,

P(w) = v, P(v) = 0, P(u) = 0,

Q(w) = 0, Q(u) = 0, Q(v) = ωw.

Ordering the basis (v,u,w) yields the matrices in the desired form, i.e. P13 = 1,
Q31 = ω, and all other components vanish. The residual gauge freedom is

w → αw, v → αv, u → βu,

and the change of basis matrix gives the residual GL(3,C) gauge transformation. In
the SL(3,C) case we set β = α−2. The statement of the lemma now follows by setting
ω = eu . ��
We shall now give a set of necessary and sufficient conditions allowing solutions of the
Hitchin equations (4.2a, b, c) to be transformed into (4.6), (4.7) by gauge and coordinate
symmetries.

Proposition 4.2. Let (Q, P, A = Azdz+ Az̃dz̃) be a solution of the holomorphic Hitchin
equations (4.2a, b, c), with gauge group SL(3,C). Then, (Q, P, Az, Az̃) can be trans-
formed into (4.6),(4.7) by gauge symmetry and coordinate symmetry (4.4) if and only if
the following conditions hold:
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(i) P and Q have minimal polynomial t2, with Tr(P Q) �= 0.
(ii) Tr

(
(Dz P)2

) = 0 = Tr
(
(Dz̃ Q)2

)
and Tr

(
(Dz P)2(Dz̃ Q)2

) �= 0.
(iii) Tr M = 0, where

M = (P Q)4 + (P Q)2(Dz P)(Dz̃ Q)− P Q(Dz P)Q P(Dz̃ Q).

Proof. The proof of the necessary conditions is straightforward. It can be shown by
direct calculation that (4.6),(4.7) satisfy conditions (i), (ii), (iii). The three conditions
are gauge invariant by the cyclic property of the trace. Under the coordinate transforma-
tion (4.4), the connection (Az, Az̃) and the Higgs fields (P, Q) transform as

Âẑ =
(

dẑ

dz

)−1

Az, Â ˆ̃z =
(

d ˆ̃z
dz̃

)−1

Az̃,

Q̂ =
(

d ˆ̃z
dz̃

)−1

Q, P̂ =
(

dẑ

dz

)−1

P.

Thus, using condition (i), the square of the covariant derivative is given by

(D̂ẑ P̂)2 =
(

dẑ

dz

)−4

(Dz P)2

and similarly for (Dz̃ Q)2. Therefore, conditions (i) and (ii) are invariant under the coor-
dinate transformation. A similar calculation shows that (iii) is also invariant under (4.4).

Conversely, we shall now show that any solution to (4.2a, b, c) such that all the con-
ditions in Proposition 4.2 hold, can be gauge and coordinate transformed into the form
(4.6),(4.7).

Firstly, by Lemma 4.1, condition (i) implies that we can use gauge symmetry to put
the Higgs fields (Q, P) in the form (4.6). Equations (4.2a) and (4.2b) imply that Az, Az̃
are of the form

Az =
⎛
⎝

n 0 0
r uz − 2n 0
m t n − uz

⎞
⎠ , Az̃ =

⎛
⎝

p s h
0 −2p k
0 0 p

⎞
⎠ , (4.13)

where n, r,m, t, p, s, h, k are some functions of (z, z̃). Note that we have also used the
assumption that the fields are sl(3,C) valued, hence traceless. Next, to set the diag-
onal elements of (Az, Az̃) to be as in (4.7), we consider the residual gauge freedom.
Lemma 4.1 implies that the gauges preserving (Q, P) are given by

g(z, z̃) =
⎛
⎝

a 0 0
0 1

a2 0
0 0 a

⎞
⎠ (4.14)

for an arbitrary function a(z, z̃) �= 0. Thus, using (4.3), we have

Az −→
⎛
⎝

n + az
a 0 0

ra3 uz − 2n − 2 az
a 0

m t
a3 n − uz + az

a

⎞
⎠ ,

Az̃ −→
⎛
⎝

p + az̃
a

s
a3 h

0 −2p − 2 az̃
a ka3

0 0 p + az̃
a

⎞
⎠ .
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We choose a(z, z̃) such that

(ln a)z = uz − n, and (ln a)z̃ = −p.

This is allowed because the compatibility condition

∂z p + ∂z∂z̃u − ∂z̃n = 0 (4.15)

holds automatically as a consequence of condition (iii). To see it, note that Eq. (4.2c)
implies

∂z p + ∂z∂z̃u − ∂z̃n + mh + tk = eu .

Hence, condition (4.15) is equivalent to

mh + tk = eu,

which holds by (iii).
Note that at this point elements of (Az, Az̃) will be transformed, however, for

convenience we will label them with the same letters as in (4.13). Thus we have set n = uz
and p = 0. We now proceed to deal with r,m, t, s, h, k. Tr

(
(Dz P)2(Dz̃ Q)2

) �= 0 in
condition (ii) implies that r, t, s, k �= 0, and

Tr
(
(Dz P)2

)
= 0 = Tr

(
(Dz̃ Q)2

)

gives

m = 0 = h.

Hence (4.2c) becomes

uzz̃ + rs = eu,

sz + 2suz = 0,

rz̃ = 0,

kz − kuz = 0,

tz̃ = 0,

tk = eu .

Since r, t, s, k �= 0, we can solve the above equations. The last three equations imply
that t is a constant, and thus can be set to 1 by a constant gauge transformation of the form
(4.14) with a = t−1/3, and s is determined to be of the form b(z̃)e−2u . This results in

P =
⎛
⎝

0 0 1
0 0 0
0 0 0

⎞
⎠ , Q =

⎛
⎝

0 0 0
0 0 0
eu 0 0

⎞
⎠ ,

Az =
⎛
⎝

uz 0 0
r(z) −uz 0

0 1 0

⎞
⎠ , Az̃ =

⎛
⎝

0 b(z̃)e−2u 0
0 0 eu

0 0 0

⎞
⎠ . (4.16)
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Note that the gauge is now fixed. To get to ansatz (4.6),(4.7), we will now use the
coordinate symmetry. Define ẑ, ˆ̃z such that

dẑ = e j (z)dz, d ˆ̃z = el(z̃)dz̃,

and set

û := u − j (z)− l(z̃).

By choosing j (z), l(z̃) such that e3 j (z) = r(z) and e3l(z̃) = b(z̃), (4.16) becomes gauge
equivalent to (4.6),(4.7) in the new variables (ẑ, ˆ̃z, û).The gauge transformation we need
in the final step is given by (4.3) with

g(ẑ, ˆ̃z) =
⎛
⎝

e− j (z(ẑ)) 0 0
0 e j (z(ẑ)) 0
0 0 1

⎞
⎠ .

��
We note that substituting (4.16) to the Hitchin equations yields

uzz̃ = eu − r(z)b(z̃)e−2u . (4.17)

Therefore, the change of coordinates can, roughly speaking, be regarded as setting r(z)
and b(z̃) to constants such that r(z)b(z̃) = 1.

We shall now choose the Euclidean reality condition and select the real form SU (2, 1)
of SL(3,C) to deduce Theorem 1.1 from the last proposition.

Proof of Theorem 1.1. Consider the ansatz (4.16) and Eq. (4.17). By changing the depen-
dent variable from u to

ψ = u − log

(
−1

2

)

for any branch of log
(− 1

2

)
, Eq. (4.17) becomes

ψzz̃ +
1

2
eψ + U (z)Ũ (z̃)e−2ψ = 0, (4.18)

where U (z) = 2r(z), Ũ (z̃) = 2b(z̃). Then, after an SL(3,C) gauge transformation
with

g(z, z̃) =
⎛
⎜⎝

0 0 −√
2e−ψ

2

0 1√
2

e
ψ
2 0

1 0 0

⎞
⎟⎠ ,
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the ansatz (4.16) becomes

Aw = Q =
⎛
⎜⎝

0 0 1√
2

e
ψ
2

0 0 0
0 0 0

⎞
⎟⎠ ,

Aw̃ = P =
⎛
⎜⎝

0 0 0
0 0 0

− 1√
2

e
ψ
2 0 0

⎞
⎟⎠ ,

Az =
⎛
⎜⎝

0 1√
2

e
ψ
2 0

0 − 1
2ψz −U (z)e−ψ

0 0 1
2ψz

⎞
⎟⎠ ,

Az̃ =
⎛
⎜⎝

0 0 0

− 1√
2

e
ψ
2 1

2ψz̃ 0

0 −Ũ (z̃)e−ψ − 1
2ψz̃

⎞
⎟⎠ .

(4.19)

Impose the Euclidean reality conditions z̃ = z̄, w̃ = −w̄, resulting in a positive-definite
metric on R

4. The ASDYM equations with these reality conditions are

Fzw = 0, (4.20)

Fzz̄ + Fww̄ = 0. (4.21)

Take the gauge group to be SU (2, 1). A matrix M is in the Lie algebra su(2, 1) if it is
trace-free and satisfies

M̄t = −η M η−1, (4.22)

where

η = η−1 = diag(1, 1,−1).

Let z = p + iq, w = r + is, so (p, q, r, s) are standard flat coordinates on R
4. The

gauge fields Ap, Aq , Ar , As are su(2, 1) valued. The relations Az = (Ap − i Aq)/2,
Az̄ = (Ap + i Aq)/2 together with (4.22) imply that

Āz
t = −ηAz̄η

−1,

with a similar relation between Aw and Aw̄. Concretely, this means that

Az̄ =
⎛
⎝

a b c
d e f
g h k

⎞
⎠ , Az =

⎛
⎝

−ā −d̄ ḡ
−b̄ −ē h̄
c̄ f̄ −k̄

⎞
⎠ ,

where a + e + k = 0 (and of course Aw and Aw̄ are related in the same way).
Choosing a real form SU (2, 1) of SL(3,C) on restriction to the Euclidean slice

imposes a constraint Ũ = Ū and yields the affine sphere equation (1.4).
To sum up, one could achieve the characterisation of the ansatz (4.19), with z̃ = z̄,

Ũ = Ū , analogous to Proposition 4.2. Let us again choose the double null coordinates
such that the generators of the symmetry group of the ASDYM are given by ∂w̃, ∂w.



1014 M. Dunajski, P. Plansangkate

With the chosen reality condition the ASDYM equations reduce to the SU (2, 1)Hitchin
equations

Dz Aw = 0, (4.23)

Fzz̄ + [Aw, Aw̄] = 0, (4.24)

where

Az̄ = −η−1 Āz
t
η and Aw̄ = −η−1 Āw

t
η. (4.25)

We now consider the reduction of the system (4.23),(4.24). Theorem 1.1 arises as a
corollary of Proposition 4.2. ��

4.2. Tzizéica equation. The Tzitzéica equation (3.16) is a different real form of (4.8).
It arises from the ASDYM with the gauge group SL(3,R) on restriction to the ultrahy-
perbolic real slice R

2,2 in C
4 with

(w, w̃, x = z, y = z̃)

real. The Higgs fields are given by P = Aw̃, Q = Aw and the metric on the space of
orbits of X1 = ∂w̃ and X2 = ∂w has signature (1, 1).

The real version of the ansatz (4.6),(4.7) can be characterised analogously to the
holomorphic case treated in Proposition 4.2. However, one needs to take care of the fact
that eu(x,y) > 0 for real valued function u(x, y). There are two places where this needs
to be considered. First is where we use condition (i) in Proposition 4.2 to put (Q, P) in
the form (4.6),(4.7). To write Tr(P Q) = eu(x,y), we require that Tr(P Q) > 0. Assume
that this can be done at a point (x0, y0) (if not then change coordinates y → −y) and
restrict the domain of u to a neighbourhood of this point where the positivity still holds.

The second place where the problem of the sign arises is when we use the coordinate
symmetry to transform

uxy = eu − r(x)b(y)e−2u

to the Tzitzéica equation (3.16). This can only be done for r(x)b(y) > 0. The sign of
r(x)b(y) is governed by the quantity Tr

(
(Dx P)2(Dy Q)2

)
in condition (ii). To see it,

note that in the notation of (4.16),

Tr
(
(Dx P)2(Dy Q)2

)
= (sktr)e2u .

After we set t = 1, the condition (iii) implies that k = eu > 0.Hence, the sign of sr, and
thus the sign r(x)b(y) is the same as the sign of Tr

(
(Dx P)2(Dy Q)2

)
. However, this

cannot be changed by real coordinate transformation x → x̂(x), y → ŷ(y), because

Tr
(
(Dx P)2(Dy Q)2

)
−→

(
dx̂

dx

)−4 (
d ŷ

dy

)−4

Tr
(
(Dx P)2(Dy Q)2

)
,

where we have used Q2 = 0 = P2. Therefore, condition (ii) in Proposition 4.2 needs
to be replaced by Tr

(
(Dz P)2

) = 0 = Tr
(
(Dz̃ Q)2

)
and

Tr
(
(Dz P)2(Dz̃ Q)2

)
> 0

in the domain of u.
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We remark that Tr
(
(Dx P)2(Dy Q)2

)
< 0 corresponds to the equation

uxy = eu + e−2u,

whereas Tr
(
(Dx P)2(Dy Q)2

) = 0 yields Louiville equation

uxy = eu .

Therefore, the sign of Tr
(
(Dx P)2(Dy Q)2

)
corresponds to the sign of ε in (3.17).

5. Z3 Two Dimensional Toda Chain

As a byproduct of the proof of Proposition 4.2, we find that, dropping condition (iii)
in this proposition, the Hitchin equations can be reduced to a coupled system which
includes the Z3 two dimensional Toda chain [24] as a special case. Recall that a two
dimensional Toda chain is given by

(uα)xy − e(uα+1−uα) + e(uα−uα−1) = 0, (5.1)

where α ∈ Z. In this paper (5.1) is called the Z3 two dimensional Toda chain when

i) α ∈ Z/Z3 and
ii) u1 + u2 + u3 = 0.

We summarise the result in the following proposition.

Proposition 5.1. Let u1, u2 be functions of (x, y). The coupled system of equations

(u1)xy − ε1e(u2−u1) + e2u1+u2 = 0, (5.2)

(u2)xy + ε1e(u2−u1) − ε2e−2u2−u1 = 0,

where ε1, ε2 = ±1, is gauge equivalent to the SL(3,R) Hitchin equations (4.2a, b, c)
with z = x, z̃ = y real, and

(i) the Higgs fields P and Q have minimal polynomial t2, with Tr(P Q) �= 0,
(ii) Tr

(
(Dx P)2

) = 0 = Tr
(
(Dy Q)2

)
and Tr

(
(Dx P)2(Dy Q)2

) �= 0.

Proof. These conditions are the first two conditions in Proposition 4.2. Following the
proof and assuming condition (i) gives (4.13). However, now it is not possible to use
gauge symmetry to set the diagonal elements of both Ax and Ay to be the same as in (4.7)
without the compatibility condition. Instead, let us use only the gauge transformation
(4.14) to eliminate the diagonal elements of Ay, by choosing (ln a)y = −p.

As before, condition (ii) implies that m = h = 0 and sktr �= 0. The Hitchin equa-
tions (4.2a, b, c) imply that t is a function of x only. Hence, we can use the residual
gauge freedom (4.14) with a = a(x) to set t = 1. Equation (4.2c) then gives

ny + r(x)s = eu, (5.3)

2ny − uxy + r(x)s − k = 0, (5.4)

sx + 3ns − sux = 0, (5.5)

kx + 2kux − 3kn = 0. (5.6)
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Equations (5.5) and (5.6) imply that sk = c(y)e−u,where c(y) is some arbitrary function
which arises from the integration. Now, since s �= 0, let us write

k = c(y)

s
e−u and n = αx , s = ±eβ,

for some functions α(x, y) and β(x, y). Then, (5.5) becomes

eβ(βx + 3αx − ux ) = 0,

which can be integrated to give

s = b(y)eu−3α and n = αx

for some b = b(y) �= 0. Finally, (5.3) and (5.4) give a coupled system

αxy + r(x)b(y)eu−3α − eu = 0,

2αxy − uxy + r(x)b(y)eu−3α − c(y)b−1(y)e−2u+3α = 0.
(5.7)

Set u1 = α, u2 = −2α + u, and change the coordinate y → −y. The system (5.7)
becomes

(u1)xy − r(x)b(y)eu2−u1 + e2u1+u2 = 0,

(u2)xy + r(x)b(y)eu2−u1 − c(y)b−1(y)e−2u2−u1 = 0,

which can be transformed into (5.2) by the change of dependent variables and coordi-
nates. There are four distinct cases depending on the signs of ε1, ε2.Since the coordinates
are real, the signs of ε1, ε2 are the same as those of r(x)b(y) and c(y)b−1(y), respec-
tively. Similar to the real version of Proposition 4.2 for the Tzitzéica equation, r(x)b(y)
and c(y)b−1(y) can be related to some gauge invariant quantities. It can be shown that at
a given point (x0, y0) the signs of r(x)b(y) and c(y)b−1(y) are determined by the signs
of

(a) := Tr
(
(Dx P)2(Dy Q)2

)
,

(b) := Tr
(
(P Q)2(Dx P)(Dy Q)− P Q(Dx P)Q P(Dy Q)

)
.

We shall analyse these signs and then restrict the domains of (u1, u2) to a neighbourhood
of (x0, y0) where the signs remain constant. If (a) > 0, setting t = 1 gives skr > 0,
which gives r(x)c(y) > 0. This implies that r(x)b(y) and c(y)b−1(y) have the same
signs. Now if (b) > 0, then k > 0 meaning c(y)b−1(y) > 0, hence r(x)b(y) > 0.
Similarly if (b) < 0 then c(y)b−1(y) and r(x)b(y) < 0. On the other hand, (a) < 0
implies that r(x)b(y) and c(y)b−1(y) have opposite signs. Then, the sign of (b) deter-
mines the sign of c(y)b−1(y). The important point is that the signs of (a) and (b) cannot
be changed by real coordinate transformations. This completes the proof. ��
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6. Other Gauges

There are several gauge inequivalent ways to reduce the ASDYM equations to the
Tzitzéica equation or to the definite affine sphere equation. The reductions are relatively
easy to obtain, but their gauge invariant characterisation requires much more work. Here
we shall mention one other possibility which is not gauge equivalent to (4.6, 4.7).

It can be shown that the holomorphic Tzitzéica equation (4.8) also arises from the
Hitchin equations with

P =
⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠ , Q =

⎛
⎝

0 e−2u 0
0 0 eu

eu 0 0

⎞
⎠ ,

Az =
⎛
⎝

uz 0 0
0 −uz 0
0 0 0

⎞
⎠ , Az̃ = 0.

(6.1)

The real version of this ansatz was implicitly used by E. Wang [31].
Let us comment on how this formulation is related to (4.6), (4.7). First note that the

Lax pairs (4.5) with (4.6),(4.7) and (6.1) are equal for λ = 1. Now consider the ansatz
(4.6),(4.7) and set λ = 1 in the Lax pair (4.5). Introduce the new spectral parameter by
exploiting the Lorentz symmetry and rescaling the coordinates

(z, z̃) −→ (λ̂z, λ̂−1 z̃)

and read off new Az, Az̃, P, Q from (4.5) with λ replaced by λ̂. This yields the
ansatz (6.1).

Choosing the Euclidean reality conditions and reducing the gauge group to SU (2, 1)
we find another reduction of ASDYM to the affine sphere equation. Take the following
ansatz, in which the gauge fields are independent of w and w̄, ψ = ψ(z, z̄) is a real
function, and U (z, z̄) is a complex function:

Aw =
⎛
⎜⎝

0 0 1√
2

eψ/2

Ūe−ψ 0 0
0 1√

2
eψ/2 0

⎞
⎟⎠ ,

Aw̄ =
⎛
⎜⎝

0 −Ue−ψ 0
0 0 1√

2
eψ/2

1√
2

eψ/2 0 0

⎞
⎟⎠ ,

Az =
⎛
⎝

− 1
2ψz 0 0
0 1

2ψz 0
0 0 0

⎞
⎠ ,

Az̄ =
⎛
⎝

1
2ψz̄ 0 0
0 − 1

2ψz̄ 0
0 0 0

⎞
⎠ .

(6.2)

Recall that Aw = Q and Aw̄ = −P. The equation Fzw = 0 is satisfied provided that

Uz̄ = 0,

i.e. U must be holomorphic. The second ASDYM equation Fzz̄ + Fww̄ = 0 is satisfied
if and only if (1.4) holds.
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7. Semi–Flat Calabi–Yau Metric

In this section we consider the semi–flat Calabi–Yau metric constructed by Loftin, Yau
and Zaslow, and obtain the local expression of the metric explicitly in terms of solution
of the definite affine sphere equation.

Let us first recall the Simon–Wang approach to affine spheres [27]. Consider the
parametrisation of an elliptic affine sphere

(z, z̄) 
→ f = ( f 1(z, z̄), f 2(z, z̄), f 3(z, z̄)) ∈ R
3.

The structure equations5 defining the affine sphere can be written as a linear first order
system of PDEs in f, fz and fz̄

∂

∂z

⎛
⎝

f
fz
fz̄

⎞
⎠ =

⎛
⎝

0 1 0
0 ψz Ue−ψ

− 1
2 eψ 0 0

⎞
⎠

⎛
⎝

f
fz
fz̄

⎞
⎠ ,

∂

∂ z̄

⎛
⎝

f
fz
fz̄

⎞
⎠ =

⎛
⎝

0 0 1
− 1

2 eψ 0 0
0 Ūe−ψ ψz̄

⎞
⎠

⎛
⎝

f
fz
fz̄

⎞
⎠ ,

(7.1)

where we have set the affine mean curvature to 1. The compatibility condition for this
over-determined system is the affine sphere equation (1.4).

Therefore, given a solution ψ, one can find f and hence the cone over the sphere

(z, z̄, r) 
−→ (x1 = r f 1(z, z̄), x2 = r f 2(z, z̄), x3 = r f 3(z, z̄)). (7.2)

This expression can be inverted locally to give r = r(x).

Proof of Proposition 1.2. The metric cone over an elliptic affine sphere is given by (3.15)
with φ(x) = r2/2 and the corresponding semi-flat metric (1.3).

The matrix φ jk in (1.3) can be obtained by contracting the metric (3.15) with
∂/∂x j , ∂/∂xk . Given a solution of the affine sphere equation ψ, we know gB in the
basis (dr, dz, dz̄), thus we want to express ∂/∂x j in terms of ∂/∂r, ∂/∂z, ∂/∂ z̄. Now,
from (7.2), we have that

⎛
⎝
∂/∂x1

∂/∂x2

∂/∂x3

⎞
⎠ = N−1

⎛
⎝

∂/∂r
r−1∂/∂z
r−1∂/∂ z̄

⎞
⎠ , where N =

⎛
⎜⎝

f 1 f 2 f 3

f 1
z f 2

z f 3
z

f 1
z̄ f 2

z̄ f 3
z̄

⎞
⎟⎠ .

Moreover, N is the matrix solution of the linear system (7.1), whose existence and the
existence of its inverse N−1 are guaranteed by the affine sphere equation. Writing

N−1 =
⎛
⎝

p1 q1 q̄1
p2 q2 q̄2
p3 q3 q̄3

⎞
⎠ ,

5 For the elliptic affine sphere with affine mean curvature set to 1, the shape operator is S = I. Now,
with the affine metric (3.11), the affine normal chosen to point inward from the surface is given by minus the
position vector − f, and the structure equations (3.12) and (3.13) become

DX f∗(Y ) = f∗(∇X Y ) + h(X, Y )(− f ),

DX (− f ) = − f∗(X).
Note that we have abused the notation so that f also denotes the immersion.
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one calculates φ jk and thus the metric on the fibre to be

φ jkdy j dyk = (p j pk + eψq j q̄k)dy j dyk .

Now, let us introduce new coordinates

τ := piy
i , ξ := qiy

i , ξ̄ := q̄iy
i

and write pi dyi = dτ − yi dpi etc. Denote the two matrices of coefficients in the linear
system (7.1) by −A(z) and −A(z̄) respectively, so that (7.1) is

∂z N + A(z)N = 0, ∂z̄ N + A(z̄)N = 0.

Then, by considering the corresponding equation for N−1, the one–forms
yi dpi , y

i dqi , y
i dq̄i can be written in terms of coordinates τ, ξ, ξ̄ and components of

A(z) and A(z̄), which are known in terms of ψ .
Finally, we can write the metric (1.3) as

g = dr2 + r2eψ |dz|2 + |dτ + α|2 + eψ |dξ + β|2,
where

α = −1

2
eψ(ξ̄dz + ξdz̄), β = (τ + ξψz)dz + e−ψŪ ξ̄dz̄.

By similar calculation, the Kähler form can be written as

ω = dr ∧ (dτ + α) +
r

2
eψ(dz̄ ∧ (dξ + β) + dz ∧ (d ξ̄ + β̄)).

Using the relation between the metric, the Kähler form and the complex structure, we
find holomorphic basis {e1, e2, e3} (1.8) and write g and ω as in Proposition 1.2, where
we have introduced a complex coordinate w = r + iτ. ��
Remark 1. The Ricci flat condition for the metric (1.7) reduces to the affine sphere equa-
tion (1.4) for ψ(z, z̄) and U (z). Equation (1.4) is invariant under the transformations
∂/∂z → ∂/∂ ẑ, ψ → ψ̂, U → Û , where

∂/∂ẑ = e− j (z)∂/∂z, ψ̂ = ψ − j (z)− j (z), and Û = e−3 j (z)U.

This can be understood geometrically, as eψdzdz̄ and Udz3 are the affine metric and the
cubic differential respectively of the affine sphere. The metric (1.7) is invariant under
the above transformations, together with ξ → ξ̂ = e j (z)ξ.

Remark 2. One expects the linear system associated with the structure equations of affine
spheres (7.1) to be equivalent to the Hitchin Lax pair (4.5) giving rise to the affine sphere
equation. The matrices A(z) and A(z̄) in (7.1) are unique up to gauge transformations

A(z) −→ g−1 A(z)g + g−1∂zg, A(z̄) −→ g−1 A(z̄)g + g−1∂z̄g.

If we write

A(z) = (Az + λP), A(z̄) = (Az̄ + λ−1 Q) (7.3)
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for some value of λ, then it follows that (Az, Az̄, Q, P)will satisfy the Hitchin equations
(4.2a, b, c), with reality condition z̃ = z̄. Conversely, given a solution (Az, Az̄, Q, P)
to the Hitchin equations, we should be able to find a value of spectral parameter λ such
that (Az +λP) and (Az̄ +λ−1 Q) can be gauge transformed to A(z) and A(z̄) respectively.

For example, we can obtain A(z) and A(z̄) in (7.1) from the ansatz (4.19), with z̃ = z̄
and Ũ = Ū , by gauge transformation with

g =
⎛
⎝

1 0 0
0 −√

2e−ψ/2 0
0 0 −√

2e−ψ/2

⎞
⎠ ,

and choosing the value of spectral parameter in (7.3) to be λ = 1. Note that we need
det g �= 1, since A(z) and A(z̄) are not traceless.

8. Painlevé III

One of the main results of Loftin, Yau and Zaslow [20] is the existence of radially sym-
metric solutions of the affine sphere equation (1.4) for U (z) = z−2, with prescribed
behaviour near the singularity z = 0. In this section we shall show that the radially
symmetric solutions of (1.4) are Painlevé III transcendents.

Proof of Proposition 1.3. Set U = z−2, and look for solutions of (1.4) of the form
ψ = ψ(ρ), where ρ = |z|. Making a substitution ψ(ρ) = log (ρ−3/2 H(ρ)) and intro-
ducing a new independent variable by ρ = s2 yields the following ODE for H = H(s):

Hss = (Hs)
2

H
− Hs

s
− 8H2

s
− 16

H
. (8.1)

This is the celebrated Painlevé III equation [15]

Hss = (Hs)
2

H
− Hs

s
+
αH2 + β

s
+ γ H3 +

δ

H

with special values of parameters

(α, β, γ, δ) = (−8, 0, 0,−16).

In the classification of Okamoto [26] it falls in the type D7. ��
Remarks. • One can consider the radial symmetry reduction of the affine sphere equa-

tion (1.4) with U = z−n for general n ∈ Z.

n �= 3. Changing the independent variable to

s = (zz̄)
3−n

4

and usin the ansatz

ψ = log

(
s
−

(
1+n
3−n

)
H(s)k

)

with k = ±1 reduces (1.4) to the Painlevé III equation with parame-

ters (α, β, γ, δ) =
( −8
(3−n)2

, 0, 0, −16
(3−n)2

)
and (α, β, γ, δ) =

(
0, 8

(3−n)2
,

16
(3−n)2

, 0
)

for k = 1 and k = −1, respectively. In both cases, the Painlevé

III equations are of type D7 in Okamoto’s classification.
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n=3. Setting ψ = ψ(s) where s = (zz̄)
1
2 in Eq. (1.4) yields

ψss +
ψs

s
+

4e−2ψ

s6 + 2eψ = 0, (8.2)

which, under multiplication by
(
ψs
2 + 1

s

)
, gives a first-order ODE

ψs
2

4
+
ψs

s
+ eψ − e−2ψ

s6 +
c

s2 = 0, (8.3)

where c is a constant of integration. Hence any solution to (8.3) such that
sψs �= −1/2 gives rise to a solution to (8.2), and conversely all solutions to
(8.2) arise from (8.3). Equation (8.3) is integrable by quadratures in terms
of the elliptic functions.

• In general, a Painlevé III equation may have two types of special (i.e.
non–transcendental) solutions: the finite number of rational solutions and a one
parameter family of Riccati type solutions expressible by special functions [15].
For the values of parameters in (8.1) the Riccati solutions do not exist, and there
exists a unique algebraic solution

H = −(2s)1/3.

This corresponds to

ψ = 1

3
log (2)− 4

3
log (|z|) + log (−1)

which is not real. There are Bäcklund transformations leading to new solutions, but
they change the value of the parameters. This shows that the desired radial solution to
the affine sphere equation (1.4) is transcendental. In [3,17] it has been shown that the
radial solutions of the Tzitzéica equation (3.16) also satisfies Painlevé III of type D7.

8.1. Lax pair for Painlevé III. The standard isomonodromic approach to Painlevé III
identifies this equation with SL(2,C) isomonodromic problem with two double poles.
The connection with affine differential geometry and its underlying isospectral Lax pair
suggests that there is an alternative isomonodromic Lax pair for PIII given in terms of 3
by 3 matrices, as opposed to the standard Lax pair with 2 by 2 matrices [16]. (See also
[22] where SL(2,C) ASDYM has been reduced to PIII.)

Let us now return to the holomorphic setting, and consider the Lax pair for ASDYM
in C

4 with gauge group SL(3,C),

(Dw + λDz̃)� = 0, (Dz + λDw̃)� = 0,

where � is a vector-valued function of w, w̃, z, z̃ and λ. We require that the connec-
tion is invariant under the 3 dimensional subgroup of the conformal group PGL(4,C)
generated by

{∂w, ∂w̃, z∂z − z̃∂z̃}, (8.4)



1022 M. Dunajski, P. Plansangkate

and introduce coordinates (ρ, θ) ∈ C
2 such that z = ρeiθ , z̃ = ρe−iθ , and z∂z − z̃∂z̃ =

−i ∂
∂θ
. Then the ASDYM Lax pair becomes

(
−ζ∂ρ + ρ−1ζ 2∂ζ + 2(Aw − ζe−iθ Az̃)

)
� = 0,

(
∂ρ + ρ−1ζ∂ζ + 2(eiθ Az − ζ Aw̃)

)
� = 0,

where the gauge fields are in an invariant gauge; (Aw, Aw̃, eiθ Az, e−iθ Az̃) are functions
of ρ only, and ζ = −λeiθ is an invariant spectral parameter6. Taking linear combinations
of these two linear PDEs gives a Lax pair of the form

∂�

∂ζ
= L̂ �,

∂�

∂ρ
= M̂ �, (8.5)

where

L̂ = ρζ−2
(
ζ 2 Aw̃ − Aw + ζ(e−iθ Az̃ − eiθ Az)

)
,

M̂ = ζ−1
(

Aw + ζ 2 Aw̃ − ζ(eiθ Az + e−iθ Az̃)
)
.

The calculation leading to Painlevé III (8.1) implies that if we gauge transform ansatz
(4.19) with U (z) = z−2, Ũ (z̃) = z̃−2 into an invariant gauge and substitute it into (8.5),
then in the new coordinate s = ρ1/2 the system (8.5) becomes Lax pair of the Painlevé
III with special values of parameters (8.1). We shall now present this calculation:

An invariant gauge of (4.19) can be obtained using the gauge transformation with

g =
⎛
⎝

eiθ/3 0 0
0 e−i2θ/3 0
0 0 eiθ/3

⎞
⎠ ,

which does not change Aw and Aw̃, but gives

eiθ Az =

⎛
⎜⎜⎝

1
6ρ

1√
2

e
ψ
2 0

0 −
(

1
4ψρ + 1

3ρ

)
− 1
ρ2 e−ψ

0 0 1
4ψρ + 1

6ρ

⎞
⎟⎟⎠ ,

e−iθ Az̃ =

⎛
⎜⎜⎝

− 1
6ρ 0 0

− 1√
2

e
ψ
2 1

4ψρ + 1
3ρ 0

0 − 1
ρ2 e−ψ −

(
1
4ψρ + 1

6ρ

)

⎞
⎟⎟⎠ .

Then, in terms of s = ρ1/2 and H(s) = s3eψ, the system (8.5) gives a Lax pair for the
Painlevé III equation (8.1) as

∂�

∂ζ
= L �,

∂�

∂s
= M �, (8.6)

6 The spectral parameter λ is not constant along the lift of the generators (8.4) to C
4×CP

1 ∈ (w, w̃, z, z̃, λ)
where � is defined. However, the invariant spectral parameter ζ is constant along the lift, and hence we are
allowed to express � as a function of ρ and ζ only.
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where

L = − 1

ζ 2

⎛
⎜⎜⎝

ζ
3

1√
2
ζ(s H)1/2 1√

2
(s H)1/2

1√
2
ζ(s H)1/2 ζ

(
1

12 − s Hs
4H

)
−ζ s

H
1√
2
ζ 2(s H)1/2 ζ s

H ζ
(

s Hs
4H − 5

12

)

⎞
⎟⎟⎠ ,

M = √
2

(
H

s

)1/2

⎛
⎜⎜⎜⎝

0 −1 1
ζ

1 0
√

2
(

s
H3

)1/2

−ζ √
2

(
s

H3

)1/2
0

⎞
⎟⎟⎟⎠ .

The matrix L has two double poles as expected for Painlevé III [16], at ζ = 0 and
ζ = ∞.

We note here that a different (i.e. gauge inequivalent) 3 × 3 isomonodromic Lax
pair for Painlevé III of type D7 was used by Kitaev in [17]. The Lax pair can also be
derived from the ASDYM Lax pair, from a solution to Hitchin equations which is gauge
equivalent to (6.1).
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