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a b s t r a c t

We find a general solution to the unique 7th order ODE admitting a ten-dimensional group
of contact symmetries. The integral curves of this ODE are rational contact curves in P3

which give rise to rational plane curves of degree six. The moduli space of these curves is a
real form of the homogeneous space Sp(4)/SL(2).

© 2011 Elsevier B.V. All rights reserved.

The 7th order ODE

10(y(3))3y(7)
− 70(y(3))2y(4)y(6)

− 49(y(3))2(y(5))2 + 280(y(3))(y(4))2y(5)
− 175(y(4))4 = 0, (1)

where y = y(x) and y(k)
= dky/dxk has recently appeared explicitly [1–4] or implicitly [5] in several different contexts. It is

the unique (up to contact transformations) equation admitting ten-dimensional algebra of contact symmetries [1], and the
aim of this note is to show that its general solution is given by a degree six rational curve of the form

y3 + α(x)y2 + β(x)y + γ (x) = 0, (2)
where (α, β, γ ) are a quadratic, a quartic, and a sextic respectively with the coefficients depending on seven parameters as
in formula (13).

In fact the symmetry algebra of (1) was known to Lie [6] who also proved that this is the maximal algebra of contact
vector fields on the plane. It is quite possible that Eq. (1) and its general solution were also known to Lie. We have been
unable to find it in any of Lie’s works, but we would be grateful to hear from anyone who has (the earliest reference to the
equation – but not its solution – that we are aware of is [7]).
Contact Lie algebras. Let U ⊂ R2 be an open set and let P(T ∗U) be a projectivized cotangent bundle with a contact one-form
ω. A curve γ ⊂ P(TU) is called contact ifω|γ = 0. A contact transformation is amap f : P(TU) → P(TU)which takes contact
curves into contact curves. Equivalently f ∗(ω) = λω for some function λ. Let (x, y) be the local coordinates on U and let z
parametrise the fibres ofP(TU), so thatwe can setω = dy−zdx. Consider a one parameter group of contact transformations.
Close to the identity, this is characterized by a contact vector field X such that the contact conditionLXω = cω holds, where
LX = d(Xy)+Xyd is the Lie derivative and c is some function. The contact condition implies that locally there exist a function
H = H(x, y, z) such that

XH = −(∂zH)∂x + (H − z∂zH)∂y + (∂xH + z∂yH)∂z . (3)
If H = a(x, y) + zb(x, y) then XH generates a prolongation of a family of point transformations f : U → U . Otherwise it
generates a proper contact flow.
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The symmetry. A remarkable result of Lie is that a maximum dimension of a Lie algebra of proper contact vector fields on the
plane is ten. This maximal, ten-dimensional Lie algebra is generated by vector fields (3) corresponding to functions

1, x, x2, y, z, xz, x2z − 2xy, z2, 2yz − xz2, 4xyz − 4y2 − x2z2. (4)

This algebra is isomorphic to so(5), or equivalently to sp(4) (this is, up to a choice of the real form, the maximal subalgebra
of the 11 dimensional symmetry algebra of the trivial 7th order ODE). The first seven generators correspond to prolonged
point vector fields and the last three are the proper contact vector fields.

The algebra (4) generates all contact symmetries of Eq. (1): if y(x) is a solution to (1) then so is ỹ(x̃), where

x̃ = x̃(x, y, z, ci), ỹ = ỹ(x, y, z, ci), z̃ = z̃(x, y, z, ci) =
∂xỹ + z∂yỹ
∂xx̃ + z∂yx̃

, ∂z ỹ = z̃∂z x̃

is the contact transformation generated by the vector fields (3) and c1, . . . , c10 are parameters of this transformation.
Equivalently, any of the generators (4) satisfies the linearisation of (1) when z = y′.

Another result of Lie [6] is that a maximal dimension of the contact symmetry algebra of an ODE of order n > 3 is (n+4),
withmaximal symmetry occurring if only if the ODE is contact equivalent to a trivial equation y(n)

= 0. Therefore Eq. (1) is of
submaximal type [2]—it is not equivalent to the trivial equation and its symmetry algebra has the largest possible dimension.
Up to the contact equivalence (1) is the unique 7th order ODE with this property.
The solution. We verify that the algebraic curve y2 + x(x − 1)3 = 0 solves (1). This curve is parametrised by

x(t) =
1

t2 + 1
, y(t) = −

t3

(t2 + 1)2
. (5)

The 7-dimensional subalgebra of (4) consisting of prolonged point symmetries integrates to

y → c4y + c1 + c2x + c3x2, x → c5x + c6, and y →
y

(1 + c7x)2
, x →

x
1 + c7x

. (6)

The contact transformations generated by (3) with H8 = z2,H9 = 2yz − xz2 and H10 = 4xyz − 4y2 − x2z2 respectively are
given by

x̃ = x − 2c8z, ỹ = y − c8z2, z̃ = z (7)

x̃ =
x(1 + c9z) − 2c9y

1 − c9z
, ỹ =

y(1 − 2c9z) + c9xz2

(1 − c9z)2
, z̃ =

z
1 − c9z

, and

x̃ =
x

1 + 4c10y − 2c10xz
, ỹ =

y + 4c10y2 − 4c10xyz + c10x2z2

(1 + 4c10y − 2c10xz)2
, z̃ =

z
1 + 4c10y − 2c10xz

where c8, c9, c10 ∈ R.
Applying the group of point transformations to the given solution yields the six parameter family of solutions to (1) given

by a family of algebraic curves of degree four

(y + Q )2 + P = 0 (8)

where Q = Q (x) is an arbitrary quadratic, and P = P(x) is a quartic with one simple and one triple root.
Recall [8] that a point p on an algebraic curve f (x, y) = 0 in CP2 is singular if the partial derivatives fx and fy vanish at p.

Moreover p has multiplicitym if all (m− 1)st derivatives of f vanish at p but at least onemth derivative does not. A singular
point is called ordinary if the tangents to all branches at the point are distinct. Any singular point characterised by a triple of
integers (m, δ, r), wherem is the multiplicity, r is the number of branches and δ is the number of multiplicity two ordinary
singular points concentrating at p. The arithmetic genus of a curve is given by

g =
(d − 1)(d − 2)

2
−

−
δ,

where d is the degree of the curve, and the summation is taken over all singular points. The curves in the family (8) have
two singularities: a cusp of type (2, 1, 1) at (x, y) = (x0, −Q (x0)), where x0 is the triple root of P and a point at ∞ of type
(2, 2, 2). Calculating the genus of curves in this family yields

g =
3 · 2
2

− 1 − 2 = 0.

Therefore the family is rational. Applying the point transformations in (6) to the parametrisation (5) and redefining the
constants c1, . . . , c6 we find that the rational parametrisation is given by

x(t) =
b5 + b6t2

b0 + t2
, y(t) =

b4t4 + b3t2 + b2t + b1
(b0 + t2)2

.
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The six parameters in (8) are algebraic expressions in the seven parameters (b0, . . . , b6) one of which is irrelevant and arises
only in the parametrisation.

The family of curves (8) can also be obtained applying H9 and the point transformations to the trivial solution y = x2. It
is not the general solution to (1) as it depends on six parameters rather than seven. To introduce the additional parameter,
and construct the general solution we use the contact transformation (7) generated by (3) with H8 = z2

x̃(t) = x(t) − 2bz(t), ỹ(t) = y(t) − bz(t)2, z̃(t) = z(t), (9)
where

z(t) =
ẏ(t)
ẋ(t)

=
(4b4b0 − 2b3)t3 − 3b2t2 + (2b3b0 − 4b1)t + b2b0

2(b5 − b0b6)(b0t + t3)
,

and (b, b0, . . . , b6) are constant parameters. The relation (9) gives a seven-dimensional family of rational contact curves in
P3. The connected component of the symplectic group Sp(4) acts on P3 and preserves the family (9). The symmetry group
of any fixed rational curve in this family is SL(2), and so the seven-dimensional space of solutions to (1) is the symmetric
space Sp(4)/SL(2). In the holomorphic category, a rational curve in P3 can be characterised by a normal bundle, which in our
case is N = O(5) ⊕ O(5). The contact modification of the Kodaira theorem described in [9] can be applied to deduce that
we have constructed a complete analytic family of contact curves: an infinitesimal contact deformation of any fixed curve
in the family (9) also belongs to this family.

Alternatively, the general solution to (1) can be given by an implicit relation
u(x, y, z) = 0, v(x, y, z) = 0 (10)

where (x, y, z) are coordinates on an open set in P3. Using (8) and (9) we find
u = (y + bz2 + Q (X))2 + P(X), v = 4P(z + Q ′)2 + (P ′)2

where Q = Q (X) is a quadratic, P = P(X) is a quartic with one simple and one triple root, and X = x + 2bz. To find an
explicit formula for y(x) pick a real root z of the cubic v = 0, substitute this in u = 0 and solve the resulting quadratic for y.
Alternatively we use the resultant to produce a planar curve birationally equivalent to (10) by eliminating z between u and
v. Recall [10] that a resultant of two polynomials

u(z) = u0 + u1z + · · · + umzm, v(z) = v0 + v1z + · · · + vnzn

is the determinant of the matrix

um um−1 · · · · · · u0
um um−1 · · · · · · u0

. . .
. . .

um um−1 · · · · · · u0
vn vn−1 · · · · · · v0

vn vn−1 · · · · · · v0
. . .

. . .

vn vn−1 · · · · · · v0


.

The resultant vanishes if u, v admit a common root. To obtain a manageable formula consider (10) with Q = 0 and
P = X(X − 1)3, and find the resultant of u and v. This resultant factorises into two terms, each giving a rational curve
of degree six. We choose one of these two curves (The second curve is not a solution to the ODE (1). It arises because the
expressions in (10) are squares of actual solutions and contain the term z2. Only one of the roots satisfies z = y′).

64b + 1024b3

y3 +


768b2 + 16


x2 − 768xb2 + 288b2


y2

+

264x2b − 108b3 + 192x4b − 72 xb − 384x3b


y

+

48x4 − 27b2 + 54 xb2 − 16x3 − 27x2b2 − 48x5 + 16x6


= 0. (11)

This curve does not belong to the class (8): it has two (2, 1, 1) cusps and one non-ordinary (2, 2, 2) singularity at ∞ whereas
(8) has one cusp (apart from the singularity at ∞). The curve (11) possesses the following property: its discriminant is a
cube of a quartic Q (x) in xwith two real roots. These roots correspond to the positions of the finite cusps, as in Fig. 1. For any
such curve (2) the cross-ratio ρ of the roots of Q is an invariant with respect to transformations (6). It is possible to verify
that for (11) we have ρ = ε, where ε = exp

 iπ
3


. To bring the curve (11) to a canonical form we first set the coefficient of

y2 to zero by a transformation of the form y → y + c1 + c2x + c3x2. After that the remaining Möbius transformations can
be used to set Q (x) = x(x − 1)(x − ρ). This, up to a scaling of y, yields

y3 − 3y

x − (1 − ε)


x − (1 + ε)


x −

1
3
(1 + ε)


x − (−1 + ε)


+ 2


x − (1 − iε)


x − (1 + iε)


x − (i − iε)


x − (−i + iε)


x − (i + ε)


x − (−i + ε)


= 0.

The discriminant Q (x) of this curve is proportional to x3(x − 1)3(x − ε)3.
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Fig. 1. Curve (11) with b = 1/2 and curve (8) with Q = 0, P = x(x − 1)3 .

Using this complex canonical form, we easily can find a real one. To do that we find four roots of the sextic in x in the
complex canonical form such that their cross-ratio is −1. Using Möbius transformations, we move these roots to ±1 ± i.
The result (up to scaling of x and y) is given by

y3 + 3(3x4 − 6x2 − 1)y + 12x(3x4 + 1) = 0 (12)

which can be parametrised by

x(t) =
t(t2 − 3)
3(t2 + 1)

, y(t) = −
4t(t4 + 3)
3(t2 + 1)2

.

To get the general solution for the 7th order ODE (1) we apply the point transformations (6)–(12). The resulting degree
six rational curve of the form (2) is given by

c4y + c1 + c2x + c3x2
3

+ 3

3 (c5x + c6)4 − 6 (c5x + c6)2 (1 − c7x)2 − (1 − c7x)4

 
c4y + c1 + c2x + c3x2


+ 12 (c5x + c6)


3 (c5x + c6)4 (1 − c7x) + (1 − c7x)5


= 0. (13)

The formula (2) is the general solution as the generic initial data

{y(0), y′(0), . . . , y(6)(0)}

can be chosen arbitrarily by choosing the coefficients c1, . . . , c7 in the solutions. There exist additional singular solutions
corresponding to submanifolds of the initial datamanifoldwhich cannot be obtained by any choice of coefficients in (13). An
example of such a singular solution with a co-dimension one initial data set is the curve (8). The leading term in this curve
is y2 and this cannot arise in (13). This type of behaviour should not be confused with the singular orbits of the symmetry
group. The connected component of the group Sp(4) is transitive on the solution space, and thus (13) and (8) are related by
a contact transformation. This is indeed how we found (13).
Conclusions. We have found the general solution of the 7th order ODE (1). This equation is submaximal as its symmetry
algebra is ten-dimensional, wheres the algebra of the trivial 7th order ODE is eleven-dimensional. The general solution to
(1) is given by the seven-dimensional orbit of the point transformations (6) acting on the canonical solution (12). There
also exists a six-dimensional submanifold in the space of solutions given by degree four curves (8). For each contact
transformations generated by H8,H9 and H10 in (4) there exists a point transformation such that the composition of the
two fixes (12). This gives a stabiliser SL(2) of (12) and finally the solution space Sp(4)/SL(2).

The analogous, submaximal 5th order ODE characterises conics in RP2. In the inhomogeneous coordinates (x, y) the five
parameter family of conics is

y2 = c1x2 + c2xy + c3y + c4x + c5.

Eliminating the parameters (c1, . . . , c5) between this equation and its fourth derivatives and substituting in the fifth
derivative yields the ODE

9(y(2))2y(5)
− 45y(2)y(3)y(4)

+ 40(y(3))3 = 0.

This construction goes back to Halphen [11] who wrote the equation as ((y(2))−2/3)(3) = 0.
The seven-dimensional space of solutions M to (1) carries a GL(2, R) structure in the sense of [12,3]: TM has

a point-wise identification with a vector space of homogeneous degree six polynomials in two variables. The five
Wünschmann–Doubrov–Wilczynski invariants vanish on the ODE (1) which implies [13] that the linearisation of (1) is
equivalent to a trivial ODE δy(7)

= 0. Moreover [4],M also admits a conformal structure of signature (3, 4). The null vectors
of this structure correspond to the six order polynomials

a1x6 + 6a2x5 + 15a3x4 + 20a4x3 + 15a5x2 + 6a6x + a7

with vanishing quadratic invariant [10]

a1a7 − 6a2a6 + 15a3a5 − 10a24.
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In [4] it was shown that the conformal structure associated to (1) contains a metric with weak holonomy G̃2: there exists a
three-form φ onM such that

dφ = Λ ∗ φ, d ∗ φ = 0

where Λ is a constant, and ∗ is the Hodge operator. Taking an analytic continuation of this structure to the Riemannian
signature yields the homology seven–sphereM = SO(5)/SO(3) with its canonical weak G2 structure originally constructed
by Bryant [5].
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