
Digital Object Identifier (DOI) 10.1007/s00220-014-2046-5
Commun. Math. Phys. 331, 351–373 (2014) Communications in

Mathematical
Physics

Self-Dual Conformal Gravity

Maciej Dunajski1, Paul Tod2

1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road,
Cambridge CB3 0WA, UK. E-mail: M.Dunajski@damtp.cam.ac.uk

2 The Mathematical Institute, Oxford University, 24-29 St Giles, Oxford OX1 3LB, UK.
E-mail: paul.tod@sjc.ox.ac.uk

Received: 24 May 2013 / Accepted: 25 November 2013
Published online: 24 April 2014 – © Springer-Verlag Berlin Heidelberg 2014

Abstract: We find necessary and sufficient conditions for a Riemannian four-dimen-
sional manifold (M, g) with anti-self-dual Weyl tensor to be locally conformal to a
Ricci-flat manifold. These conditions are expressed as the vanishing of scalar and tensor
conformal invariants. The invariants obstruct the existence of parallel sections of a cer-
tain connection on a complex rank-four vector bundle over M . They provide a natural
generalisation of the Bach tensor which vanishes identically for anti-self-dual conformal
structures. We use the obstructions to demonstrate that LeBrun’s anti-self-dual metrics
on connected sums of CP

2s are not conformally Ricci-flat on any open set.
We analyze both Riemannian and neutral signature metrics. In the latter case we

find all anti-self-dual metrics with a parallel real spinor which are locally conformal
to Einstein metrics with non-zero cosmological constant. These metrics admit a hyper-
surface orthogonal null Killing vector and thus give rise to projective structures on the
space of β-surfaces.

1. Introduction

Let (M, g) be a Riemannian four-manifold, and let Cabcd and Rab be respectively the
Weyl tensor and the Ricci tensor1 of g. The field equations of conformal gravity are the
vanishing of the Bach tensor

Bbc =
(
∇a∇d − 1

2
Rad

)
Cabcd .

1 We use the abstract index notation [29]. Tensors with upper/lower indices a, b, · · · = 1, . . . , 4 are sections
of powers of tangent/cotanget bundle. We employ the summation convention, so |X |2 = gab Xa Xb denotes
the squared length of a vector Xa . The isomorphism T M ⊗ C ∼= S ⊗ S

′ identifies a vector index with a pair
of spinor indices a = AA′, where A, B, · · · = 0, 1 and A′, B′, · · · = 0, 1. The anti-self-dual Weyl tensor
Cabcd has a spinor decomposition Cabcd = ψABC DεA′ B′εC ′ D′ , where ψABC D = ψ(ABC D) is a section of

Sym4(S), and ε′ is a symplectic structure on S
′.
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These equations arise from the action given by the squared norm of the Weyl tensor.
They are invariant under the conformal rescalings of the metric gab → �2gab, and are
fourth order PDEs in the metric coefficients.

The condition Bbc = 0 is necessary for the metric g to be conformally related
to a Ricci-flat metric [4,15,19,26]. This condition is far from sufficient, and in any
signature there exist metrics which are Bach-flat but not conformal to vacuum (see,
e.g. [24] and [23]). In [25] (see also [1]) it was demonstrated that imposing a simple
Neumann boundary condition selects Einstein metrics out of other solutions to the Bach-
flat condition. One can instead look for additional local obstructions to the existence
of a Ricci-flat metric in a Bach-flat conformal class [g]. If the Weyl curvature of [g] is
algebraically general, then [g] contains an Einstein metric, possibly with non-zero scalar
curvature, iff the Eastwood–Dighton tensor vanishes, i.e. Eabc = 0, where

Eabc := ψABC D∇DD′
ψA′ B′C ′ D′ − ψA′ B′C ′ D′∇DD′

ψABC D,

and ψABC D and ψA′ B′C ′ D′ are anti-self-dual (ASD) and self-dual (SD) Weyl spinors
respectively.

If the Weyl tensor of [g] is anti-self-dual then both Bab and Eabc vanish identically.2

Therefore any conformally ASD metric is a solution to the conformal gravity equations.
In this paper we find necessary and sufficient conditions for a four-dimensional manifold
(M, g) with anti-self-dual Weyl tensor to be locally conformal to a Ricci-flat manifold.
These conditions are expressed as the vanishing of one scalar invariant, and one rank-
two tensor invariant constructed from the Schouten tensor, the conformal curvature and
its covariant derivatives. The invariants obstruct the existence of parallel sections of a
certain connection on a natural rank-four complex vector bundle E = S

′ ⊕ S over M ,
where S and S

′ are complex rank-two symplectic vector bundles (the spin bundles) over
M arising from the canonical isomorphism T M ⊗ C = S ⊗ S

′. Such local obstructions
arise because the conformal to ASD Ricci-flat problem leads to an over-determined
system of PDEs (2.8) of finite type [5].

In Proposition 2.1 we shall establish the relationship between existence of a Ricci-flat
metric in an ASD conformal class, and existence of a two-dimensional vector space of
parallel sections of a connection D on E given by

D
(
π

α

)
=

(∇π − α ⊗ ε

∇α + π P

)
. (1.1)

Here ∇ is the spin connection on S and S
′ induced by the Levi–Civita connection,

Pab = (1/12)Rgab −(1/2)Rab is the Schouten tensor, ε and ε′ are symplectic structures
on S and S

′ respectively such that g = ε ⊗ ε′ , and π ∈ �(S′), α ∈ �(S). Finally
denotes contraction with a section of S

′. The connection D will arise as the prolongation
connection for the twistor Eq. (2.8).

We shall analyze both the Riemannian and the neutral signature metrics. The em-
phasis is on the Riemannian case, where the complete characterization of conformal to
vacuum condition can be achieved by constructing a rank-two tensor Tab on M which

2 The vanishing of Eabc is obvious, as the ψA′ B′C ′ D′ = 0. The Bach tensor is equal to

Bab = 2(∇C
A′∇D

B′ +	C D
A′ B′ )ψABC D

= 2(∇C ′
A∇D′

B +	C ′ D′
AB )ψA′ B′C ′ D′ ,

where 	AB A′ B′ is the traceless Ricci spinor. Thus Bab = 0 in both SD and ASD cases.
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is conformally invariant, i.e., T → T when g → �2g, and vanishes for ASD metrics
conformal to vacuum. To formulate our main result define V ∈ �(T ∗M) by

Va = 4

|C |2 Cbcd
a∇eCbcde, (1.2)

where |C |2 = CabcdCabcd .

Theorem 1.1. Let g be a Riemannian metric with anti-self-dual conformal curvature.
Then the conformal class of g contains a Ricci-flat metric if and only if

4∇eCbcde∇ f Cbcd f − |V |2|C |2 = 0 (1.3)

and

Tab := Pab + ∇a Vb + Va Vb − 1

2
|V |2gab = 0. (1.4)

(In applications, and when implementing the calculation of obstructions on a computer,
one would clear denominators in these expressions). The scalar invariant (1.3) will be
constructed in Sect. 3 (Proposition 3.2) as the determinant of a four by four matrix3

whose kernel contains a parallel section of D. The tensor (1.4) will be constructed from
a covariant derivative of the curvature of D in Sect. 4, where we shall prove Theorem
(1.1). We shall also show thatD is a solution to the anti-self-dual Yang–Mills equations on
M , and thus, by Ward’s twistor transform [30], it corresponds to a rank-four holomorphic
vector bundle over the twistor space of (M, g).

In Sect. 5 we give several examples of ASD conformal structures without Ricci-flat
metrics in the conformal class. For example, we show (Theorem 5.1) that LeBrun’s
metrics on connected sums of several copies of CP

2s are not conformally Ricci-flat on
any open set. We also show that the Taub-NUT metric with a negative mass is contained
in the conformal class of a limiting case of LeBrun’s scalar-flat Kähler metric on a line
bundle over CP

1 with a negative Chern number.
In Sect. 6 we shall characterize the anti-self-dual metrics in neutral signature which

admit a parallel real spinor and which are locally conformal to Einstein metrics with
non-zero cosmological constant. These metrics admit a hyper-surface orthogonal null
Killing vector and thus give rise to projective structures [11] on the space of β-surfaces.

2. The Twistor Equation

Let g be a (pseudo) Riemannian metric on an oriented four-dimensional manifold M ,
and let [g] = {�2g|� : M → R

+} be the conformal class of metrics containing g. We
shall assume that the Weyl tensor of g is anti-self-dual, i.e.

Cabcd = −1

2
εab

e f Ccde f .

3 Using the spinor notation we would define W ∈ �(S′ ⊗ Sym3(S)) and V ∈ �(T ∗M) by

WA′ ABC = ∇A′ DψABC D, VAA′ = 2

|ψ |2 ψ
BC D

A ∇E
A′ψBC DE ,

where ψABC D is the ASD Weyl spinor. The scalar invariant (1.3) then takes the form

2|W |2 − |ψ |2|V |2 = 0.

We note that the LHS is proportional to the total square of the Bailey–Eastwood invariant [3].
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The ASD property is conformally invariant, so the Weyl tensor of any metric in [g] is
also ASD. If the signature of g is Lorentzian, then (if [g] is ASD) the Weyl tensor is
necessarily zero and the conformal class [g] is flat. Therefore from now on we shall
assume that the signature of g is Riemannian, or neutral.

Riemannian signature. In the former case locally there exist complex rank two vector
bundles S and S

′ over M equipped with covariantly constant symplectic structures ε and
ε′ such that

C ⊗ T M ∼= S ⊗ S
′ (2.5)

is a canonical bundle isomorphism, and

g(v1 ⊗ w1, v2 ⊗ w2) = ε(v1, v2)ε
′(w1, w2)

for v1, v2 ∈ �(S) and w1, w2 ∈ �(S′). We use the conventions [29] where the spinor
indices are capital letters, unprimed for sections of S and primed for sections of S

′. For
exampleμA denotes a section of S

∗, the dual of S, and νA′
a section of S

′. The symplectic
structures εAB and εA′ B′ (such that ε01 = ε0′1′ = 1) are used to lower and raise the spinor
indices according to μA := μBεB A, μ

A = εABμB . In Riemannian signature, complex
conjugation maps S

′ (respectively S) to itself by πA′ = (p, q) → π
†
A′ = (−q, p) so that

the square of conjugation is minus the identity endomorphism. Thus there is no invariant
notion of real spinors in this case.

Neutral signature. If the signature of (M, g) is neutral there exists a notion of real
spinors, and the decomposition of the tangent bundle takes the form

T M = S ⊗ S
′,

where now S and S
′ are real rank-two symplectic vector bundles. One can of course also

introduce complex spinors (2.5) and define the fibres of the real spinor bundles as fixed
sets of the conjugation πA′ = (p, q) → π A′ = (p, q). We shall slightly abuse notation
and denote the complex and real spinor bundles by the same symbols.

Curvature decomposition and conformal transformations. The spinor decomposition
of the Riemann tensor of g is

Rabcd = ψABC DεA′ B′εC ′ D′ + ψA′ B′C ′ D′εABεC D

+	ABC ′ D′εA′ B′εC D +	A′ B′C DεABεC ′ D′

+2�(εACεB DεA′ B′εC ′ D′ − εABεC DεA′ D′εB′C ′), (2.6)

where ψABC D and ψA′ B′C ′ D′ are ASD and SD Weyl spinors which are symmetric in
their indices,	A′ B′C D = 	(A′ B′)(C D) is the traceless Ricci spinor and� = R/24 is the
cosmological constant. The spinor Ricci identities

∇ A
(A′∇B′)AαB +	A′ B′ ABα

A = 0,

∇ A′
(A∇B)A′βB′ +	A′ B′ ABβ

A′ = 0, (2.7)

∇ A′
(A∇B)A′αC + ψABC Dα

D − 2�α(AεB)C = 0,

∇ A
(A′∇B′)AβC ′ + ψA′ B′C ′ D′βD′ − 2�β(A′εB′)C ′ = 0,

hold for any α ∈ �(S) and β ∈ �(S′).
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Under conformal rescaling

ĝab = �2gab

we have

ε̂AB = �εAB, ε̂AB = �−1εAB

and

ψ̂ABC D = ψABC D, ψ̂ ABC D = �−4ψ ABC D

with analogous formulae for primed spinors. Setting ϒa = �−1∇a� we also find

∇̂A′ Bψ̂C DE A = ∇A′ BψC DE A − ϒA′CψB DE A − ϒA′ DψBC E A

−ϒA′ EψBC D A −ϒA′ AψBC DE .

The Ricci spinor does not have particularly ‘nice’ conformal properties, but its modifi-
cation (known as the Schouten tensor)

PAB A′ B′ = 	AB A′ B′ −�εABεA′ B′

transforms as

P̂ab = Pab − ∇aϒb +ϒaϒb − 1

2
gabϒcϒ

c.

The twistor equation. Our first result is a characterisation of conformal classes con-
taining Ricci-flat metrics in terms of solutions to the valence-one twistor equation. The
following Proposition applies to both Riemannian and neutral signatures.

Proposition 2.1. A metric g with ASD conformal curvature is conformal to a Ricci-flat
metric if and only if there exist two linearly independent solutions to the twistor equation

∇A(A′πB′) = 0. (2.8)

Proof. First assume that g is conformally equivalent to a Ricci-flat metric ĝ = �2g,
where� is a non-zero function on M . Therefore the Riemann tensor of ĝ is anti-self-dual
and thus the spinor connection on S

′ is flat. Therefore there exists a basis of covariantly
constant spinors, say π̂A′ and μ̂A′ , on S

′. The twistor equation is conformally invariant:
if π̂A′ = �πA′ then ∇̂A(A′ π̂B′) = �∇A(A′πB′). Thus (πA′ , μA′) is a pair of linearly
independent solutions to (2.8).

Conversely, assume that g admits two linearly independent solutions to (2.8). The
condition (2.8) is equivalent to

∇AA′πB′ = εA′ B′αA (2.9)

for some section αA of S. Given a solution, recall the conformal transformations:

ĝab = �2gab, π̂A′ = �πA′ , α̂A = αA +ϒAC ′πC ′
, (2.10)

where ϒa = �−1∇a�. Thus if ψA′ B′C ′ D′ = 0 and g is conformal to vacuum, there will
be a two-dimensional vector space of solutions to (2.9). This will turn out to be sufficient
as well. To see it commute derivatives on (2.9) to deduce

∇AA′αB = −PAB A′ B′π B′
, (2.11)
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where

PAB A′ B′ = 	AB A′ B′ −�εABεA′ B′

is the Schouten tensor. Now commute derivatives on (2.11). From ∇B
(A′∇B′)BαA we

get an identity after using the Bianchi identities

∇ A
(A′	B′)C ′ AB + ∇B(A′�εB′)C ′ = 0,

which in turn uses the vanishing of the SD Weyl spinor. However from ∇ A′
(A∇B)A′αC

we obtain a condition:

ψABC Dα
D − ∇ A′

(A	BC)A′ B′π B′ = 0. (2.12)

This can be rewritten using the Bianchi identity as

ψABC Dα
D − ∇F

A′ψABC Fπ
A′ = 0. (2.13)

This is a set of four linear equations in four unknowns and so has a solution provided
the determinant of the associated four by four matrix is zero. We shall investigate this
determinant condition in the next section. To justify the claim of sufficiency, suppose
(πA′ , αA) and (μA′ , βA) are two linearly independent solutions of (2.9) and (2.11).
Provided the inner product is nonzero (which readily follows from linear independence)
introduce

� = (πA′μA′
)−1. (2.14)

Then

−�−2∇a� = πA′βA − μA′αA = −�−1ϒa,

and differentiate again

∇a(−�−1ϒb) = ∇a(πB′βB − μB′αB)

= gabαCβ
C −�−1 Pab.

Now notice that

ϒcϒ
c = 2�αCβ

C ,

to conclude that

Pab − ∇aϒb +ϒaϒb − 1

2
gabϒcϒ

c = 0,

i.e. g is conformal to vacuum. 
�
In the real Riemannian case it is enough to have one solution of (2.9) as the Hermitian

conjugate then gives another. In the neutral case, where the signature of g is (2, 2) there
is an invariant notion of real spinors and (2.8) may have only one solution. We shall
analyze this situation in Sect. 6.
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3. Minors, Determinants and the Necessary Conditions

Set WA′ ABC = ∇A′ DψABC D and consider the 4 by 4 matrix

R =
⎛
⎜⎝
ψ0000 ψ0001 −W0′000 −W1′000
ψ0001 ψ0011 −W0′001 −W1′001
ψ0011 ψ0111 −W0′011 −W1′011
ψ0111 ψ1111 −W0′111 −W1′111

⎞
⎟⎠ . (3.15)

Equation (2.13) can be written as R 
 = 0, where 
 = (α0, α1, π0′
, π1′

)T = 0. We
find

det (R) = |ψ |2|W |2 − 2ψ E FG HψABC H W A′ ABC WA′ E FG

= 1

2
|ψ |2(2|W |2 − |ψ |2|V |2) = 0, (3.16)

where Va = 2|ψ |−2ψA
BC DWA′ BC D , or equivalently in the ASD case, Va is given by

(1.2). Proposition 2.1 implies that the determinant (3.16) must vanish for ASD conformal
structures containing a Ricci-flat metric. To have two linearly independent solutions the
matrix R must have rank at most two (we shall deal with the rank one case in Proposition
3.3). For that we need all sixteen 3 by 3 minors of R to vanish. Eight of these are

K A′ ABC := |ψ |2WA′ ABC − 2ψ E FG HψABC H WA′ E FG = 0. (3.17)

These are the Bailey–Eastwood invariants [3]. They can be derived directly from (2.13):
solve it for αA to find αA = V A

A′π A′
, and substitute it back to (2.13). This gives a linear

constraint K A′ ABCπ
A′ = 0 on the initial data for the twistor equation. The data should

be specifiable freely, so (3.17) follows.
The eight remaining minors are

L ABC D := |W |2ψABC D − 2ψE FG DW A′ E FG WA′ ABC = 0. (3.18)

Note that the RHS is a section of (S � S � S)⊗ S. Using

Sym3(C2)⊗ C
2 = Sym4(C2)⊕ Sym4(C2),

and Symk(C2) = C
k+1 we can decompose the invariants (3.18) in the representation

theoretic way into 5+3 irreducible conditions

SABC D := L(ABC D) = 0, NAB := ψE FG
DW A′ E FG WA′ AB D = 0.

So we have proved

Proposition 3.1. Necessary conditions for an ASD conformal class to contain a Ricci-
flat metric are (3.17) and (3.18) or

K = S = N = 0.

All these conditions are third order in the metric.

The spinor conditions from Proposition (3.1) correspond to tensors:

Nab = NABεA′ B′ , Kabc = −4K A′ ABCεB′C ′

and Sabcd = SABC DεA′ B′εC ′ D′ where

Kabc = |C |2∇dCabcd − 4Cef ghCabch∇dCef gd , Nab = Ceqcd∇ pC pqcd∇ f C f eab.
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Finally we verify by explicit calculation that the scalar invariant (3.16) is proportional
to the spinor (or tensor) norms of both K A′ ABC and L ABC D:

|K |2 = |ψ |2det (R), |L|2 = |W |2det (R).

3.1. Riemannian signature. We shall now consider Riemannian signature and show that
in this case all 3 by 3 minors from Proposition (3.1) vanish identically if det(R) = 0.
Equivalently, we shall show that if rank R is smaller than four, then it is at most two. It will
then follow from Proposition 3.3 that if det(R) = 0, the signature of g is Riemannian,
and g is not conformally flat, then rank R is exactly two.

Proposition 3.2. In the Riemannian case the sixteen conditions (3.17) and (3.18) hold
identically if det(R) = 0, i.e. if (3.16) holds.

Proof. Set

ψ0 = ψ0000, ψ1 = ψ0001, ψ2 = ψ0011, ψ3 = ψ0111, ψ4 = ψ1111. (3.19)

We can chose a basis of S which consists of a spinor together with its Hermitian conjugate,
and do the same for S

′. The Riemannian reality conditions on spinors then yield

ψ3 = −ψ1, ψ4 = ψ0, ψ2 = ψ2

and

W0′000 = W1′111, W0′001 = −W1′110, W0′011 = W1′100, W0′111 = −W1′000.

Set

w0 = −W0′000, w1 = −W0′001, w2 = −W0′011, w3 = −W0′111.

It is always possible to perform an SU (2) rotation on S to chose the unprimed spin frame
(a basis of S) such that ψ0 = 0, and perform an independent SU (2) rotation of S

′ to
chose the primed spin frame (a basis of S

′) such that W0′000 = 0. Then

R =

⎛
⎜⎜⎝

0 ψ1 0 −w3
ψ1 ψ2 w1 w2

ψ2 −ψ1 w2 −w1

−ψ1 0 w3 0

⎞
⎟⎟⎠ (3.20)

and the determinant is a sum of two non-negative numbers

det(R) = |ψ1 w1 + ψ1 w3|2 + |ψ2 w3 + ψ1 w2|2.
This vanishes if and only if four real quadratic conditions (which we write as two complex
equations) hold

ψ1 w1 + ψ1 w3 = 0, ψ2 w3 + ψ1 w2 = 0. (3.21)

We verify by explicit calculation that vanishing of these four quadratics is equivalent to
the vanishing of the sixteen cubics which give the minor conditions (3.17) and (3.18).


�
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3.2. Neutral signature. Vanishing of (3.17) and (3.18) guarantees that the rank of the
matrix R is at most two. Now we shall consider the rank-one case, and show that in this
case the signature of g is necessarily neutral, and the conformal curvature is of type N ,
i.e. the homogeneous quartic ψABC Dz AzB zC zD has a root of multiplicity four [29].

Proposition 3.3. Let R be the four by four matrix (3.15). If rank (R) = 1 then the
signature of g is (2, 2) and the ASD Weyl tensor is of type N.

Proof. Assume that rank (R) = 1. In this case the first two columns of R have to be
linearly dependent. Therefore

ψ1 = λψ0, ψ2 = λψ1, ψ3 = λψ2, ψ4 = λψ3,

and, using oA, ιA as a basis of �(S∗),

ψABC D = (ιAιB ιC ιD − 4λι(AιB ιC oD) + 6λ2ι(AιBoC oD)

−4λ3ι(AoBoC oD) + λ4oAoBoC oD)ψ0.

Now change the spin frame by ι̂A = ιA −λoA, ôA = oA so thatψABC D = ι̂A ι̂B ι̂C ι̂D ψ0,
and the ASD Weyl spinor is of Petrov–Penrose type N . This can only happen in signature
(2, 2). In Riemannian signature the roots of the Weyl quartics are distinct, or come in
two pairs of repeated roots (type D). 
�

This result combined with Proposition 3.2 gives the following

Corollary 3.4. Let g be a Riemannian metric with ASD conformal curvature which is
not conformally flat, and such that det (R) = 0, where R is given by (3.15). Then
rank(R) = 2.

4. Twistor Curvature and Sufficient Conditions

The conditions K = 0 and L = 0, given by (3.17) and (3.18) are clearly necessary for
the existence of a Ricci-flat metric in the ASD conformal class. They are however not
sufficient, and in this section we shall establish sufficient conditions in the Riemannian
signature. Our method follows the approach of [6] to the metrisability problem in projec-
tive geometry. Let us recall that the necessary conditions arise from imposing a rank-2
condition on a four by four matrix R given by (3.15). If the rank of this matrix is two
(which in the Riemannian signature is guaranteed by the vanishing of the determinant
(3.16)—see Corollary 3.4) then the linear system of Eq. (2.13) admits two linearly in-
dependent solutions. We do however need to make sure that these solutions satisfy the
linear system of PDEs (2.9) and (2.11). To do this, we differentiate (2.13) covariantly,
and eliminate the derivatives ∇π , and ∇α using (2.9) and (2.11). This leads to more
linear homogeneous equations on (α0, α1, π0′ , π1′). These equations must be satisfied
identically as a consequence of (3.17) and (3.18) [or, in Riemannian signature as a con-
sequence of (3.16)] as otherwise there would be more than two independent equations
on four unknowns, and two independent solutions to (2.9) and (2.11) would not exist.
This, by Proposition 2.1, would imply that the ASD conformal structure does not contain
a Ricci-flat metric.

In the construction below we shall first reformulate (2.9) and (2.11) in terms of a
connection on a rank four vector bundle over M , and then implement the differentiation
procedure/adding new homogeneous equations in terms of restrictions on the holonomy
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of this connection. Moreover we shall restrict ourselves to Riemannian signature, as
there the analysis of the sufficient conditions is particularly simple: if the necessary
conditions hold then the rank of the matrix (3.15) is two, so there are exactly two
independent conditions on πA′ and αA. If one differentiation of (2.13) does not give new
conditions (which will be the case if the obstructions from Theorem 4.1 vanish), then the
rank of the matrix constructed by all homogeneous linear constraints is still two. This
means that no new conditions would be added by subsequent differentiations, and we
can stop the process of adjoining equations. The space of solutions to (2.9) and (2.11)
is then, by the Frobenius theorem, two-dimensional.4

Using the method outlined above we shall establish

Theorem 4.1. Let g be a Riemannian metric with ASD conformal curvature. Then the
conformal class of g contains a Ricci-flat metric if and only if det(R) given by (3.16)
vanishes, and

�E ′ E ABC D V D
A′ −�ABC E E ′ A′ = 0, (4.22)

where WA′ ABC = ∇A′ DψABC D, VAA′ = 2|ψ |−2ψA
BC DWA′ BC D, and (�,�) are given

by (4.27, 4.28) respectively.

Before giving a proof of this result, we shall develop some formalism. Consider the
rank-four complex vector bundle over E → M

E = S
′ ⊕ S (4.23)

with sections 
α which under conformal rescalings of the metric transform like 
α →

̂α , where


̂α :=
(
π̂A′
α̂A

)
=

(
�πA′

αA +ϒAB′π B′
)
. (4.24)

Our approach is very much in the spirit of [2]. We shall call E the dual twistor bundle,
and refer to its sections as dual twistors. Define a derivative D on this vector bundle by

Da
β :=
( ∇AA′πB′ − εA′ B′αA

∇AA′αB + PAB A′ B′π B′
)
. (4.25)

This connection, together with the conformal transformation properties (4.24), is recog-
nisable as local twistor transport for a dual twistor (given for twistors in [29], p 113).

Proposition 4.2. 1. There is a correspondence between non-zero parallel sections of
the connection (4.25) on the bundle E over a Riemannian four manifold (M, g) and
Ricci-flat metrics in an ASD conformal class [g]; if the section is multiplied by a
complex constant α, then the metric is multiplied by |α|−2. Conversely given a Ricci-
flat metric in the ASD conformal class, there is a two-dimensional vector space of
parallel sections spanned by one solution and its Hermitian conjugate.

2. The curvature of (4.25) is an ASD Yang–Mills field on (E,M).

4 The analysis would not be so simple if we allowed neutral signature, as then the rank of the matrix
(3.15) could be one if [g] were of type N as in Proposition 3.3. The rank could then go up to two after one
differentiation, and we would need to differentiate once more to ensure that the rank does not increase. Thus,
in the neutral signature case the sufficient conditions are given by expressions which are third order in the
conformal curvature, and so fifth order in the metric.
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Proof. The first part of the Proposition is an immediate consequence of Proposition 2.1
and the form of the system (2.9) and (2.11).

We now calculate the curvature of the connection (4.25) from the general formula

D[cDa]
β = 1

2
Rca β

δ
δ =
(

0
ψC AB Dα

DεC ′ A′ − WD′ ABCπ
D′
εC ′ A′

)

and find that it is anti-self-dual on the first pair of indices. This should be contrasted
with the result of Merkulov [26], where the Bach equations are shown to arise as full
Yang–Mills equations on a connection on E .

More explicitly we obtain5

Rcaβ
δ = εC ′ A′RC Aβ

δ + εC ARC ′ A′β
δ

where RC ′ A′β
δ = 0, and

RC AB′ D′ = 0, RC AB
D′ = WC AB

D′
, RC AB′ D = 0, RC AB

D = ψC AB
D.


�
We have therefore deduced thatψABC D and WA′ ABC are components of the dual twistor
curvature. We can thus identify the 4 by 4 matrix (3.15) in the system (2.13) with the
dual twistor curvature. We shall now prove Theorem 4.1, and find conditions which
guarantee that the leading spinor part πA′ of a dual twistor (πA′ , αA) can be chosen
arbitrarily at a point p in M and propagated parallelly with no obstructions to all points
in a neighbourhood of p. This will guarantee the existence of a two-dimensional solution
space to the twistor Eq. (2.8).

Proof of Theorem 4.1. We differentiate the four equations (2.13) and use the parallel
condition on sections D
 = 0 to produce a sequence of algebraic matrix equations

R
 = 0, (DR)
 = 0, (D2R)
 = 0, . . . ,

where R is the four by four matrix (3.15). We stop the process once the differentiation
does not produce new equations. This, in the Riemannian signature, happens after just
one differentiation. The rank of R is two if the necessary conditions K = 0 and L = 0
from Proposition 3.2 hold. This, in Riemannnian signature, is equivalent to the condi-
tion (1.3)—we have shown this in Proposition 3.2. The rank should not go up, or the
dimension of the solution space is smaller than two. Therefore all 3 by 3 minors of the
4 by 20 matrix (R,DR) have to vanish. If they do, then we do not need to differentiate
any more, as subsequent derivatives would only reproduce the homogeneous equations
R
 = 0. Thus vanishing of the minors will give sufficient conditions for the existence
of a parallel section of D.

To construct the minors explicitly differentiate (2.13) and eliminate the derivatives
using (2.9) and (2.11). This will give a system of equations DR = 0. The result is

�E ′ E ABC Dα
D −�ABC E E ′ A′π A′ = 0, (4.26)

5 The dual twistor bundle indices α, β, · · · = 1, . . . , 4 are identified with the spinor indices via the isomor-
phism (4.23). Using the abstract index notation we write α = A + A′. The vector indices a, b, · · · = 1, . . . , 4
are identified with the spinor indices by (2.5), i. e. a = AA′.
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where

�E ′ E ABC D = ∇E ′ EψABC D − WE ′ ABC εDE , (4.27)

and

�ABC E E ′ A′ = ψABC D P D
E E ′ A′ + ∇E E ′ WA′ ABC . (4.28)

Consider the combined system of linear homogeneous Eqs. (2.13) and (4.26). Only
two equations in (2.13) are independent as we are assuming that the necessary conditions
from Proposition 3.1 hold. We solve these two equations for αA = VAA′π A′

, where VAA′
is given by (4.29), and substitute αA into the remaining Eq. (4.26) which we insist hold
identically. This gives vanishing of the obstruction (4.22). 
�

4.1. Main theorem. The sufficient conditions (4.22) are expressed as the vanishing of a
section of

Sym3(S)⊗ S ⊗ S
′ ⊗ S

′.

A general section of this bundle has 32 independent components, and it is not clear from
the proof of Theorem 4.1 which of these components are independent. In this section
we shall establish our main result and show that vanishing of the 32 conditions (4.22) is
a consequence of vanishing of one rank-two tensor on M .

Multiplying (2.13) by ψABC E and using ψABC Dψ
ABC E = (1/2)|ψ |2δD

E we find

αA = VAA′π A′
,

with

VAA′ = 2

I
ψ BC D

A ∇E
A′ψBC DE , (4.29)

and I = ψ ABC DψABC D assuming I 
= 0 (which is always the case in Riemannian
signature6). Note that (4.29) is the spinor form of (1.2). Now (2.9) becomes constancy
in a modified connection:

DAA′πB′ := ∇AA′πB′ − εA′ B′ VAC ′πC ′
,

with VAA′ as in (4.29). We extend this connection to a connection on unprimed spinors so
that the resulting connection on vectors is torsion-free. For g to be conformal to vacuum
this connection must be flat, as only then the initial data πA′ |p at a point can be parallelly
propagated. This leads to a set of conformally invariant obstructions summarised in
Theorem 1.1.

Proof of Theorem 1.1. The necessity of (1.3) was shown in Proposition 3.1 and Propo-
sition 3.2. Note that (1.3) is the tensor form of (3.16).

Contracting ∇AA′πB′ = εA′ B′ VAC ′πC ′
with ∇ A′

B and using the spinor Ricci identi-
ties yields

(PAB A′ B′ + ∇AA′ VB B′ + VB A′ VAB′)π B′ = 0.

6 If signature of g is neutral, and I = 0 then we solve for αA using the cubic invariant J . If that is also
zero then the conformal curvature is of Petrov–Penrose type N or type I I I .
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This puts constraints on the initial data for DAA′πB′ = 0 unless the expression in bracket
vanishes. This is true, as long asπB′ 
= 0, so we require that (3.16) [or equivalently (1.3)]
holds.

Rearranging the unprimed indices in VB A′ VAB′ gives

Tab = 0, (4.30)

where Tab is given by (1.4), and in particular

∇[a Vb] = 0, 4� = ∇a Va − V a Va .

To prove the conformal invariance of (4.30) use the rules for conformal transformation
of the covariant derivative of spinors with ψ̂ABC D = ψABC D

∇̂AA′ψ̂BC DE = ∇AA′ψ̂ABC D − 4∇A′(EψBC D)A

to show that

ŴA′ ABC = �−1(WA′ ABC −ϒA′ Eψ
E

ABC ) and consequently V̂a = Va +ϒa .

(4.31)

Now use the conformal transformation of the covariant derivative of one-forms

∇̂a V̂b = ∇a V̂b −ϒa V̂b − ϒbV̂a + gabϒ
cV̂c

to find

∇̂a V̂b +V̂a V̂b− 1

2
V̂cV̂ cĝab = ∇a Vb + Va Vb− 1

2
VcV cgab +∇aϒb−ϒaϒb +

1

2
gabϒcϒ

c.

The result now follows by applying the formula for conformal transformation of the
Schouten tensor

P̂ab = Pab − ∇aϒb +ϒaϒb − 1

2
gabϒcϒ

c.

We also note that no further conditions arise from contracting ∇AA′πB′ = εA′ B′ VAC ′πC ′

with ∇ A
C ′ .

Conversely, if (4.30) holds then ∇[a Vb] = 0 and Va is locally a gradient. Thus, by
(4.31) it can be set to zero by a conformal rescaling of the metric. Now α̂A in (2.10)
vanishes and so Proposition 2.1 implies that gab is conformal to an ASD Ricci-flat metric.


�
Finally we demonstrate that vanishing of the tensor (1.4) arises directly from condition

(4.22) in Theorem 4.1. Contracting (4.22) with ψ ABC
F and integrating by parts yields

(1

2
∇E E ′(|ψ |2εF D)− ψABC D∇E E ′ψ ABC

F

)
V D

A′ − 1

2
|ψ |2VF E ′ VE A′

−1

2
|ψ |2 PF E E ′ A′ − 1

2
∇E E ′(VF A′ |ψ |2) + WA′ ABC∇E E ′ψ ABC

F ) = 0.

Dividing this expression by |ψ |2/2 and rearranging the remaining terms gives

PF E E ′ A′ + ∇E E ′ VF A′ + VF E ′ VE A′ − 2

|ψ |4 K A′ ABC∇E E ′ψ ABC
F = 0,

where K A′ ABC is the Bailey–Eastwood invariant (3.17) which vanishes as a consequence
of (1.3) and Proposition 3.2. Rearranging the unprimed indices on VF E ′ VE A′ gives
Tab = 0, where Tab is given by (1.4).
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5. Examples

LeBrun’s anti-self-dual orbifolds. Consider a two-parameter family of Riemannian met-
rics

g = f −1dr2 +
1

4
r2(σ 2

1 + σ 2
2 + f σ 2

3 ), where f = 1 +
A

r2 +
B

r4 , (5.32)

A, B are real constants, and σ1, σ2, σ3 are the left invariant one-forms on the group
manifold SU (2) such that

dσ1 = σ2 ∧ σ3, dσ2 = σ3 ∧ σ1, dσ3 = σ1 ∧ σ2.

These metrics are Kähler, with vanishing scalar curvature (therefore they are ASD [9])
for any constants (A, B). They arise from the spherically symmetric ansatz on a Kähler
potential on an open ball in C

2. If the ratio of the roots of the quadratic x2 + Ax + B is
a negative integer k, then g is a metric on a holomorphic line bundle O(k − 1) → CP

1

with negative Chern class. One-point compactifications of these asymptotically locally
flat manifolds are compact ASD orbifolds which arise as limits of LeBrun’s ASD metrics
on connected sums of CP

2s, where all points in LeBrun’s hyperbolic ansatz coincide
[22].

To look for Ricci-flat metrics in the conformal class of g we shall examine the
invariants of Theorem 1.1 for any value of the constants A, B. We find that the one-form
V is exact and given by

V = d(ln(Ar2 + 2B)).

The scalar invariant (1.3) vanishes, but the second order obstruction (1.4) is not identi-
cally zero, and is proportional to the metric:

T = A(4B − A2)

(Ar2 + 2B)2
g. (5.33)

This obstruction vanishes when A = 0. In this case V = 0, and g is the Ricci-flat
Eguchi–Hanson ALE gravitational instanton. This was already noted in [21]. However
T also vanishes when

B = A2/4.

In this case the quartic f has a repeated root. The form of V and formula (4.31) gives
a conformal factor which makes ĝ = �2 g Ricci-flat, and therefore hyper-Kähler. We
find

ĝ = 1

(2r2 + A)2
g. (5.34)

Thus both g and ĝ are scalar-flat and Kähler, and yet they are conformally related with
non-constant conformal factor. The complex structure of g does not belong to the two-
sphere of complex structures of ĝ. A coordinate transformation

R = 1

8r2 + 4A
≤ 1

4A
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yields

ĝ = U
(

d R2 + R2(σ 2
1 + σ 2

2 )
)

+ U−1σ 2
3 , where U = 1

R
− 4A

which we recognize as the ASD Taub-NUT metric written in the Gibbons-Hawking form
[13], with the single-centered harmonic function on R

3 given by U .
More precisely, this is the ASD Taub-NUT metric with negative mass. In general the

Kähler form of g given by (5.32) is Y = d(r2σ3). If B = A2/4 the rescalled two-form

Ŷ := �3Y = 64 R3 d
(1 − 4R A

8R
σ3

)

is a conformal Killing–Yano form of ĝ = �2g, i.e. ∇̂aŶbc = μ̂abc + 2ĝa[b K̂c] for
some three-form μ̂ and one-form K̂ . Moreover ∗̂dŶ is the one-form generating the
tri-holomorphic U (1) isometry of the Taub-NUT space7

Fubini-Study metric. The Fubini-Study metric on CP
2 is Einsten, ASD and Kähler,

albeit with reversed orientation. The ASD Weyl curvature is constant, and therefore
the one-form V , and the spinor WA′ ABC both vanish, and so the scalar invariant (1.3)
vanishes. The tensor invariant (1.4) reduces to the Schouten tensor which is a non-zero
constant multiple of the metric. Thus

T 
= 0,

and there are no Ricci-flat metrics in the Fubini-Study conformal class.

Conformally hyper-Kähler homogeneous metric. Consider the left-invariant metric

g = σ0
2 + σ1

2 + σ2
2 + σ3

2

on a four-dimensional nilpotent Lie group, with the Lie algebra specified by the Maurer–
Cartan relations

dσ0 = 2σ0 ∧ σ3 − σ1 ∧ σ2, dσ1 = σ1 ∧ σ3, dσ2 = σ2 ∧ σ3, dσ3 = 0.

Using these relations we find that the Weyl tensor is ASD, but the Ricci tensor is non-
zero. Calculating the obstructions of Theorem 1.1 shows that both the scalar and the
tensor invariant vanish. Thus the metric is conformal to Ricci-flat. We also find

V = −3

2
σ3.

To find the conformal factor introduce the function z on the Lie group such that σ3 =
d ln(z). The formula (4.31) implies that V can be set to zero if the conformal factor z3

is used. Thus the conformally rescaled metric

ĝ = z3 g (5.35)

7 In [14] it was shown that the Taub-NUT space also admits a Killing–Yano tensor Y . This structure is
different to the one we have unveiled as our Ŷ is self-dual but Y does not have a definite duality. However
there is a relation between both structures as dŶ = dY . Therefore Y = Ŷ + d B, where B is a one-form such
that d B is a closed conformal Killing–Yano form.
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is ASD and Ricci-flat. We claim that this metric arises from the Gibbons–Hawking ansatz
[13] with the linear potential. To see this, introduce local coordinates (τ, x, y, z) such
that

σ0 = z−2(dτ + ydx), σ1 = z−1dx, σ2 = z−1dy.

Then the resulting ASD Ricci-flat metric is of the form

ĝ = U (dx2 + dy2 + dz2) + U−1(dτ + α)2,

where the harmonic function U = z, and the one-form α = ydx satisfy the monopole
equation on R

3

∗3dU = dα.

Conformally Kähler ASD example. Let

g = dx2 + dy2 + dz2 +
1

y2z2 (dτ + 2xydy − xzdz)2. (5.36)

This ASD metric arises from a particular choice of the Abelian monopole over the
hyperbolic 3-space with its Einstein–Weyl structure [18]. The scalar invariant (1.3) does
not vanish and is given by

9

16z2(z4 + z2 y2 + 4y4)
.

Thus g is not conformal to a Ricci-flat metric. The second order obstruction (1.4) also
does not vanish. Its anti-symmetric part T[ab] = ∇[a Vb] is

dV = 3yz3(z2 + 8y2)

(z4 + z2 y2 + 4y4)2
dy ∧ dz.

We note that the metric g is nevertheless conformal to a Kähler metric, as can be verified
by computing the obstructions of [12].

The hyperbolic ansatz and ASD metrics on connected sums of CP
2s. Examples (5.32)

with B = 0, and (5.36) fall into the class governed by LeBrun’s hyperbolic ansatz. Any
scalar-flat Kähler metric with U (1) symmetry is locally of the form

g = P(eu(dx2 + dy2) + dz2) +
1

P
(dτ + α)2 (5.37)

where u = u(x, y, z) is a solution of the SU (∞) Toda equation

uxx + uyy + (eu)zz = 0, (5.38)

the function P satisfies the linearised SU (∞) Toda equation

Pxx + Pyy + (Peu)zz = 0, (5.39)
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and the one-form α satisfies

dα = −Px dy ∧ dz − Pydz ∧ dx − (Peu)zdx ∧ dy. (5.40)

Here the U (1) action is generated by the Killing vector K = ∂/∂τ , and (x, y, z) are
coordinates on the space of orbits of K in M , z is the moment-map generating K , and
x + iy is the holomorphic coordinate on the leaf space in M of the foliation by J K + i K ,
where J is the complex structure on M . There is one particular solution to Eq. (5.39)
given by P = uz for which g is Ricci-flat.

Consider a solution to (5.38) given by u = 2 log z where z > 0, and introduce the
coordinate q = √

2z. Then (5.37) takes the form

g = q2(Uh + U−1(dτ + α)2), (5.41)

where

h = 1

q2

(
dx2 + dy2 + dq2

)

is the hyperbolic metric, and Eq. (5.39) implies that U = q2 P belongs to the kernel of
the hyperbolic Laplacian of h. The metric (5.32) with B = 0 (called the Burns metric)
is of the form (5.41), where U is the fundamental solution of the hyperbolic Laplace
equation

U = 1 +
1

exp (2ρ)− 1
,

and ρ is the hyperbolic distance between the point (x, y, q) and a fixed point (0, 0, q0)

in the hyperbolic three-space:

ρ = cosh−1
( x2 + y2 + q2 + q0

2

2qq0

)
.

Our analysis leading to (5.33) shows that in this case the metric (5.41) does not contain
a Ricci-flat metric in its conformal class. This metric is conformal to the Fubini-Study
metric on CP

2, so in a sense the non-vanishing of the obstruction T for the Fubini-Study
metric follows from (5.33).

In [22] LeBrun has demonstrated that taking U to be a superposition of the funda-
mental solutions corresponding to n distinct points in the hyperbolic space gives rise
to scalar-flat Kähler asymptotically flat metric (5.41) on the blow-up of C

2 at n-points
along a complex line. Moreover a conformal class of g contains an ASD metric on a
connected sum of n copies of CP

2 with reversed orientation. For a given collection of
n points p1, . . . , pn ∈ H

3, let U j = (exp (2ρ j )− 1)−1, where ρ j is the hyperbolic dis-
tance from p j to a point with coordinates (x, y, q). Then the conformal class containing
the ASD metric on a connected sum of n copies of CP

2s is represented by (5.41) with
U = 1 +

∑n
j=1 U j .

Theorem 5.1. LeBrun’s metrics on connected sums of CP
2 are not conformally Ricci-

flat on any open set.
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Proof. This can be seen by explicitly computing the obstruction T for the given U - it
does not vanish, but the resulting formulae are unilluminating. The MAPLE documen-
tation of the proof is available from the authors on request.

Instead we give an heuristic argument based on continuity: close to any of the points
p j the metric (5.41) can be approximated by the Burns metric, and (5.33) implies that
the obstruction (1.4) is approximately

T ∼= − A

r4 g.

Thus g does not contain a Ricci-flat metric, at least in the open sets containing the
points p j . 
�
A related result has been established in [27], where it was shown that LeBrun’s conformal
class does not contain an Einstein metric with � 
= 0 unless n = 1, or all points p j
coincide. It is not clear wether the results in [27] apply in the limit when � = 0. An
anonymous referee has pointed out an elegant alternative proof of Theorem 5.1. His
global argument hinges on the fact that LeBrun manifolds are not spin.

6. Neutral Signature and Null-Kähler Structures

If the signature of g is neutral, the Proposition (3.2) does not hold, and all sixteen con-
ditions (3.17) and (3.18) have to vanish if there exist two linearly independent solutions
to the twistor equation (2.8), and g is conformal to a Ricci-flat metric. In this section we
shall analyze the case where there exists only one real solution to the twistor equation.
Let us first make the following definition [10]

Definition 6.1. A null-Kähler structure on a 2n-dimensional manifold M is a pair (g, N )
where g is a metric of signature (n, n) and N : T M −→ T M is a rank-n endomorphism
such that

N 2 = 0, g(N X,Y ) + g(X, NY ) = 0, ∇N = 0

for all vector fields X, Y on M.

If n = 2 a null-Kähler structure can be equivalently defined by the existence of a real
spinor ιA

′
which is covariantly constant with respect to the Levi–Civita connection of

g. Given such a spinor the endomorphism N is represented by N a
b = ιA

′
ιB′εA

B . The
isomorphism Sym2(S′) ∼= �2

+ associates a two-form � to the spinor ιA
′
. This form is

explicitly given by �(X,Y ) = g(N X,Y ). Therefore � is simple, i.e. � ∧ � = 0, and
parallel. The following result was established in [10] under an additional assumption
that g is ASD. Here we give a general proof.

Proposition 6.2. A neutral signature metric g is conformal to a null-Kähler metric if
and only if there exist a real spinor ιA′ which satisfies the twistor equation

∇A(A′ ιB′) = 0. (6.42)

Proof. Dropping the symmetrisation yields

∇AA′ ιB′ = εA′ B′αA (6.43)
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for some spinor αA as in (2.9). We aim to construct a conformal factor, but the ideas
behind the proof of Proposition 2.1 have to be modified as the formula (2.14) does not
make sense if there is only one real solution to the twistor equation. First note that (6.43)
implies

ιA
′
ιB

′∇AA′ ιB′ = 0

so that the rank-two distribution < δ0, δ1 >= Ker(�) ⊂ T M is integrable. We claim
that this is sufficient to satisfy the integrability conditions for the existence of a functionφ
such that αA = δAφ. Indeed, consider the overdetermined system α0 = δ0φ, α1 = δ1φ.
The Frobenius theorem gives

δ0α1 − δ1α0 = β AαA (6.44)

for some β A. On the other hand from (6.43) ∇ A
A′αA = 2�ιA′ which implies

ιA
′∇A′ AαA = 0. Therefore δAαA = ιA

′
�AA′ ACαC which is (6.44) withβC = ιA

′
�AA′ AC .

From (2.10) it follows that under conformal rescallings α̂A = αA +�−1ιA
′∇AA′�. Thus

we chose the conformal factor � = exp (−φ) to set α̂A = 0. 
�

6.1. Null Kähler structures conformal to Einstein. It is known that in four dimensions
an ASD Einstein metric with� 
= 0 is conformally equivalent to a Kähler metric if and
only if it admits an isometry [12]. We shall establish an analogue of this result in the
null-Kähler context.

Proposition 6.3. Let g be an Einstein metric with a non-zero cosmological constant
which is conformally equivalent to a null-Kähler metric. Then g admits a hyper-surface-
orthogonal null Killing vector K such that the self-dual derivative of K is proportional
to the null-Kähler two-form �. Morevover the conformal factor relating the Einstein
and the null-Kähler metrics is constant along this Killing vector.

Proof. We shall work in the Einstein scale, where 	AB A′ B′ = 0 and (2.11) yields

∇aιB′ = εA′ B′αA, ∇aαB = �εAB ιA′

where αA 
= 0, and ψABC Dα
A = 0 so that ψABC D is of type N . We also find that

Ka = αAιA′

is a null Killing vector because |K |2 = (αAα
A)(ιA′ ιA

′
) = 0 and

∇a Kb = �εAB ιA′ ιB′ + εA′ B′αAαB,

so the RHS is a two-form. This Killing vector is twist-free (i. e. it is orthogonal to a
hyper-surface) as

Ka∇b Kc = �εBC ιB′ ιC ′ ιA′αA + εB′C ′αAαBαC ιA′

and (�(K ∧ d K ))a = εa
bcd Kb∇c Kd = 0 as εabcd involves contraction over a pair of

primed and unprimed indices.
Finally we shall demonstrate that the conformal factor in the ASD Einstein metric is

Lie derived along the null Killing vector, and thus the null-Kähler metric also admits a null
Killing vector (rather than a conformal null Killing vector). Indeed, if αA = ιA

′∇AA′φ,
where exp (−2φ) is the conformal factor then

LK (φ) = ιA
′
αA∇AA′φ = αAαA = 0.


�
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6.1.1. ASD cosmological plane waves. We shall now construct a class of examples
of ASD Einstein metrics conformal to null-Kähler metrics. Any null-Kähler metric is
locally given by

g = dwdz + dydz −�xx dz2 −�yydw2 + 2�xydwdz, (6.45)

where � = �(x, y, z, w) is an arbitrary function of four variables with continuous
4th derivatives [10]. The null-Kähler structure is given by a parallel simple two-form
� = dw ∧ dz. The Weyl tensor is anti-self-dual if � satisfies a 4th order PDE

f := �wx +�zy +�xx�yy −�2
xy,

fwx + fzy +�yy fxx +�xx fyy − 2�xy fxy = 0. (6.46)

Now impose the HSO null Killing vector condition from Proposition (6.3)

LK g = 0, g(K , K ) = 0, LK (dw ∧ dz) = 0, K ∧ d K = 0.

One example of such null Killing vector is given by K = ∂/∂y. The most general
null-Kähler metric which admits this Killing vector is conformally equivalent to

ĝ = 2

x2 (dwdx + dzdy +�dw2 − Fdz2).

It is a rescaling, by a factor of x−2 of the metric (6.45) with

�yy = −�, �xy = 0, �xx = F,

where F = F(x, w, z). The conformal factor has been chosen to make the metric ĝ
Einstein with cosmological constant given by�. Imposing the anti-self-duality condition
(6.46) on the Weyl spinor gives

F = f (x +�w, z)− 1

2
x ḟ (x +�w, z)

where dot denotes the differentiation w.r.t the first argument. Change coordinates y =
ỹ, x = x̃ −�w so that8 (dropping tildes)

ĝ = 2

(x −�w)2

(
dwdx + dzdy −

(
f (x, z)− 1

2
(x −�w)∂x f (x, z)

)
dz2

)
.

(6.47)

In the limit � = 0 we obtain an ASD Ricci-flat plane wave. If the function f in (6.47)
does not depend on the coordinate z, then g admits a non-null Killing vector ∂/∂z in
addition to the null Killing vector. The metric ĝ corresponding to this case has been
found by Hoegner [17]. Hoegner has shown that the Einstein–Weyl structure [18] on
the space of orbits of ∂/∂z in ĝ is the most general Einstein–Weyl structure which is
simultaneously of dKP and SU (∞) Toda type.

8 We have been informed by Adam Chudecki and Maciej Przanowski that (6.47) is the most general local
form of ASD Einstein metric with � 
= 0 which admits a null Killing vector [8]. This provides a converse to
Proposition to (6.3): An ASD Einstein metric is conformal to a null-Kähler metric if and only if it admits a
null Killing vector.
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6.1.2. Connection with projective structures. The null Killing vector from Proposition
6.3 defines a pair of totally null foliations of M , one by α-surfaces and one by β-surfaces.
These foliations intersect along integral curves of K which are null geodesics. The β-
plane distribution is spanned by αA, and it follows from the Killing equation that it is
integrable. In [11] it was shown that there exists a canonically defined projective structure
on the two-dimensional space of β-surfaces U which arises as a quotient of M by the
β-plane rank-two distribution Ker(�) ⊂ T M . Here�ab = αAαBεA′ B′ is the ASD two-
form corresponding to the spinor α ∈ �(S) under the isomorphism �2−(M) ∼= S � S.
Recall that a projective structure is an equivalence class of connections, where two
connections are equivalent if they have the same unparameterized geodesics. In two
dimensions projective structures are locally the same as second order ODEs of the form

d2Y

d X2 = A3(X,Y )
( dY

d X

)3
+ A2(X,Y )

( dY

d X

)2
+ A1(X,Y )

( dY

d X

)
+ A0(X,Y ).

(6.48)

The ODE is obtained by selecting local coordinates (X,Y ) on U and eliminating the
affine parameter from the geodesic equation. The functions Ai (X,Y ) can be expressed
in terms of combinations of connection coefficients.

The normal form of the ASD conformal structure on M with a null Killing vector
depends on whether the null vector is twisting or not. In the non-twisting case (which is
relevant here) it is given by

g =
(

dT + (Z A3 − Q)dY
)(

dY − βd X
)
−

(
d Z − (Z(−βY + A1 + βA2 + β2 A3))d X

−(Z(A2 + 2βA3) + P)dY
)

d X, (6.49)

where (X,Y, T, Z) are local coordinates on M such that the null Killing vector is ∂/∂T .
The arbitrary functions A1, A2, A3, β, Q, P depend on (X,Y ) and the function A0 is
given by

A0 = βX + ββY − βA1 − β2 A2 − β3 A3.

To read off the projective structure from (6.47) we disregard the conformal factor (the
projective structure depends only on the conformal structure) and set

T = y, Z = −w, Y = z, X = x .

The resulting metric is of the form (6.49) with A1 = A2 = β = P = 0. The 2nd order
ODE defining this projective structure is

d2Y

d X2 = �

2
∂X f (X,Y )

( dY

d X

)3
.

The projective curvature [2,6] is

�

2

∂3 f

∂X3 dY ⊗ (d X ∧ dY ).
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6.2. Outlook. We have constructed a rank four vector bundle E → M with connection
D such that the parallel sections of this connection correspond to Ricci-flat metrics in
an anti-self-dual conformal class. This has lead to a complete set of obstructions to the
existence of a Ricci-flat metric in a given ASD conformal class (Theorem 1.1).

The curvature of the connection D is ASD (Proposition 4.2) , so it can be regarded
as an ASD Yang–Mills field. Thus, by the Ward transform [30] (or its generalisation
to backgrounds with ASD conformal curvature), E corresponds to some holomorphic
vector bundle over the twistor space [28] which is holomorphically trivial on the twistor
curves. This holomorphic vector bundle can be also constructed directly from the twistor
data following the related constructions of LeBrun [20] and Merkulov [26]. In (2, 2)
signature there is an alternative approach [16], where the twistor curves arise as integral
curves of systems of second order ODEs with vanishing Wilczynski invariants. The
tensor obstructions from Theorem 1.1 should have their counterparts as point invariants
of the corresponding system of ODEs. Some invariants of this type under more restrictive
fibre preserving transformations have been found in [7]. An outstanding and interesting
open problem is to generalise Theorem 1.1 to the case of ASD Einstein metrics with
non-zero scalar curvature.

Acknowledgements. We are grateful to Gary Gibbons for helpful discussions, and to the anonymous referees
for remarks which have resulted in improvements of the manuscript.
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