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a b s t r a c t

We establish an explicit correspondence between two-dimensional projective structures
admitting a projective vector field, and a class of solutions to the SU(∞) Toda equation.
We give several examples of new, explicit solutions of the Toda equation, and construct
their mini-twistor spaces. Finally we discuss the projective-to-Einstein correspondence,
which gives a neutral signature Einstein metric on a cotangent bundle T ∗N of any
projective structure (N, [∇]). We show that there is a canonical Einstein of metric on an
R∗-bundle over T ∗N , with a connection whose curvature is the pull-back of the natural
symplectic structure from T ∗N .

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this paper is two-fold:

(A) To associate a Lorentzian Einstein–Weyl structure in (2+ 1)-dimensions with any projective structure on a surface
which admits a one-parameter group of projective symmetries.

(B) To construct an explicit class of solutions of the SU(∞)-Toda equation

UXX + UYY = ϵ(eU )ZZ , where U = U(X, Y , Z), and ϵ = ±1 (1.1)

with no continuous group of point symmetries.

We shall see that (B) is an explicit coordinate realisation of (A), but we chose to separate the two constructions for
the benefit of readers interested in integrable systems and solutions to (1.1) but not necessarily willing to study the
relationships between the projective, conformal, and Weyl differential structures.

Eq. (1.1) has originally arisen in the context of complex general relativity [5,23,41], and then in Einstein–Weyl [49]
and (in Riemannian context, with ϵ = −1) scalar-flat Kähler geometry [32]. It belongs to a class of dispersion-
less systems integrable by the twistor transform [1,18,36,44], the method of hydrodynamic reduction [22], and the
Manakov–Santini approach [34]. The equation is nevertheless not linearisable and most known explicit solutions admit Lie
point or other symmetries (there are exceptions — see [8,11,35,42], as well as [3,31] where other general frameworks are
discussed). The solutions we find depend on two arbitrary functions of one variable, and arise from an essentially linear
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procedure, where no non-linear PDEs/ODEs have to be solved. An example of a solution in our class is given by an implicit
relation

4Y 2eU (eUX2
− Z2)3 + (2e2UX4

− 3eUX2Z2
+ Z4
+ 2Z2)2 = 0, (1.2)

where the level sets of U in R3 are real algebraic surfaces.
Now we move on to describe the construction (A), which is based on a combination of the Jones–Tod correspondence

[29], a theorem of Tod [46] which improved an earlier result of Przanowski [41], and two theorems from [33]. In [33] it
was shown that with any projective structure [∇] on a surface N one can associate a neutral signature Einstein metric
with non-zero scalar-curvature, and an anti-self-dual (ASD) Weyl tensor. If the projective structure is represented by an
affine connection ∇ ∈ [∇] (see Section 2 for definitions), then the metric is isometric to the following metric on T ∗N:

g = dzA ⊙ dxA − (Γ C
ABzC − zAzB − PAB)dxA ⊙ dxB, A, B, C = 0, 1, (1.3)

where xA are coordinates on N , zA are coordinates on the fibres of T ∗N , Γ C
AB are connection components of ∇ , and PAB is

the projective Schouten tensor of ∇ . The following theorem has been established in [33]

Theorem 1.1 ([33]). Let (M, g) be an ASD Einstein manifold with scalar curvature 24 admitting a parallel ASD totally null
distribution.

(1) Then (M, g) is conformally flat, or it is locally isometric to (1.3) for some torsion-free connection ∇ on a surface N.
(2) There is a one-to-one correspondence between projective vector fields of (N,∇), and Killing vector fields of (M, g) with

the metric g given by (1.3).

If the projective structure (N, [∇]) admits a projective vector field, then the connection with the Einstein–Weyl
geometry now follows from Theorem 1.1, and the neutral signature version of the Jones–Tod correspondence:

Theorem 1.2 ([29]). Let (M, g) be a four-manifold with a neutral signature metric with ASD Weyl tensor, and a conformal
Killing vector K . Let

h = |K |−2g − |K |−4K⊙ K, ω =
2
|K |2

⋆ (K ∧ dK), (1.4)

where |K |2 = g(K , K ), K = g(K , ·) and ⋆ is the Hodge operator defined by g. Then (h, ω) is a solution of the Einstein–Weyl
equations on the space of orbits W of K in M. All Lorentzian Einstein–Weyl structures arise from some anti-self-dual (M, g, K ).

The final step to realising (B) is the occurrence of the SU(∞)-Toda equation (1.1). This is a consequence of the following
result of Tod

Theorem 1.3 ([46]). Let (h, ω) be the Einstein–Weyl structure arising from Theorem 1.2, under the additional assumption that
the ASD conformal structure (M, g) is Einstein, and with non-zero Ricci scalar.

(1) The Einstein–Weyl structure admits a shear-free, twist-free geodesic congruence.
(2) There exist h ∈ [h], and coordinates (X, Y , Z) on an open set in W such that (assuming the signature of h is (2, 1) and

the congruence is time-like)

h = eU (dX2
+ dY 2)− dZ2, ω = 2UZdZ (1.5)

and the function U = U(X, Y , Z) satisfies the SU(∞)-Toda equation (1.1) with ϵ = 1.

The whole construction can now be summarised in the following diagram

Projective structure with symmetry
Theorem 1.1
−→ ASD Einstein with symmetry

↓ ↓ Theorem 1.2 (1.6)

Solution to SU(∞) Toda
Theorem 1.3
←− Einstein–Weyl

The paper is organised as follows. In the next section we summarise the basic facts and relevant formulae underlying
Theorems 1.1 and 1.2. In Proposition 3.1 of Section 3 we present the most general class of EW spaces arising from our
construction, and in the remainder of the section we show how to associate solutions of the SU(∞)-Toda equation with
this class. In Sections 4 and 5.5 we give several examples corresponding to SL(2,R) and SL(3,R) invariant projective
structures. In the latter case the four-manifold (M, g) of Theorem 1.1 is SL(3)/GL(2), and the mini-twistor space of
the SU(∞)-Toda equation can be constructed explicitly by quotienting the flag manifold F12(C3) by a C∗ action. In
Proposition 4.2 we give an explicit criterion, in terms of the representative metric h ∈ [h] and the one form ω for a vector
field that generate a symmetry of the Weyl structure. In Proposition 5.2 we show that the Einstein metric on SL(3)/GL(2)
is also pseudo-hyper-Hermitian, and its twistor space fibres holomorphically over CP1. In Section 6 we make contact with
the Cartan approach to Einstein–Weyl geometry via special 3rd order ODEs. In Section 7 we shall prove (Theorem 7.3)



M. Dunajski and A. Waterhouse / Journal of Geometry and Physics 147 (2020) 103523 3

that the 2n-dimensional analogue of the Einstein metric (1.3) canonically lifts to an Einstein metric of signature (n, n+1)
on the R∗ bundle Q over M with a connection whose curvature is the pullback of the symplectic form from M to Q. Some
calculations underlying the proof of Theorem 7.3 are relegated to Appendix A. In Appendix B we shall present a solution
to the elliptic SU(∞)-Toda equation corresponding to an ALH gravitational instanton.

2. Projective, Einstein, and Weyl geometries

Here we summarise basic facts about projective, Einstein–Weyl, and anti-self-dual geometries.

2.1. Projective structures

In this section we review projective differential geometry. In the applications to the SU(∞)-Toda equation we shall
focus on the surface case, where the dimension of the underlying manifold N is two. In Section 7 we shall consider the
general case where dim(N) = n.

Definition 2.1. A projective structure on a surface N is an equivalence class [∇] of torsion-free affine connections on TN
which share the same unparametrised geodesics.

Let ∇ ∈ [∇] be a connection in the projective equivalence class with connection symbols Γ C
AB. Any other connection

in [∇] can be obtained from ∇ in terms of a one-form Υ as

Γ C
AB → Γ C

AB + δ
C
AΥB + δ

C
BΥA, A, B, C = 1, 2, . . . , n. (2.1)

Let RAB be the (not necessarily symmetric) Ricci tensor of ∇ , and let PAB = 1/(n − 1)R(AB) + 1/(n + 1)R[AB] be the
projective Schouten tensor (here we give the formula for the general n-dimensional projective structure). The change
of representative connection (2.1) induces the following change

PAB → PAB + ΥAΥB −∇AΥB (2.2)

to the Schouten tensor. A two-dimensional projective structure is called flat if it is locally diffeomorphic to the real
projective plane with unparametrised geodesics given by projective lines. This happens if and only if the Cotton tensor
∇[APB]C vanishes for any choice of the representative connection.

Let (N,∇) be a manifold with an affine connection. A projective vector field k is a generator of a one-parameter group
of transformations mapping unparametrised geodesics of ∇ to unparametrised geodesics. At the infinitesimal level the
projective condition is

LkΓ
C
AB = δ

C
AΥB + δ

C
BΥA, (2.3)

where the Lie derivative of the connection components is defined as in [51]. In general no projective vector fields exist
on (N,∇). The possible Lie algebras of projective vector fields on a surface are sl(3,R), sl(2,R), a2 (the two-dimensional
affine Lie algebra) or R. See [6] for further details.

2.2. Einstein–Weyl structures

Definition 2.2. A Weyl Structure (W ,D, [h]) is a conformal equivalence class of metrics [h] on a manifold W along with
a fixed torsion-free affine connection D which preserves any representative h ∈ [h] up to conformal class. That is, for
some one-form ω,

Dh = ω ⊗ h.

A pair (h, ω) uniquely defines the connection and hence the Weyl structure, but there is an equivalence class of such
pairs which define the same Weyl structure. These are related by transformations

h→ ρ2h, ω→ ω + 2dln(ρ), (2.4)

where ρ is a smooth, non-zero function on W .
If additionally the symmetric part of the Ricci tensor of D is a scalar multiple of h, then W is said to carry an Einstein-

Weyl structure. Physically, the Einstein–Weyl condition in Lorentzian signature corresponds to the statement that null
geodesics of the conformal structure [h] are also geodesics of the connection D. This condition is invariant under (2.4). In
three dimensions, the Einstein–Weyl equations give a set of five non-linear PDEs on the pair (h, ω). These equations are
integrable by the twistor transform of Hitchin [28], which (by Theorem 1.2) can be regarded as a reduction of Penrose’s
twistor transform [38] for ASD conformal structures. A trivial Einstein–Weyl structure is one whose one-form ω is closed,
so that it is locally exact and thus may be set to zero by a change of scale (2.4). Then D is the Levi-Civita connection of
some representative h ∈ [h], and this representative is Einstein.
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2.3. Anti-self-dual Einstein metrics

Let M be an oriented four-dimensional manifold with a metric g of signature (2, 2). The Hodge ∗ operator on the space
of two forms is an involution, and induces a decomposition [2]

Λ2(T ∗M) = Λ2
−
(T ∗M)⊕Λ2

+
(T ∗M) (2.5)

of two-forms into anti-self-dual (ASD) and self-dual (SD) components, which only depends on the conformal class of g .
The Riemann tensor of g can be thought of as a map R : Λ2(T ∗M) → Λ2(T ∗M) which admits a decomposition under
(2.5):

R =

⎛⎜⎜⎜⎜⎜⎝
C+ − 2Λ φ

φ C− − 2Λ

⎞⎟⎟⎟⎟⎟⎠ , (2.6)

where C± are the SD and ASD parts of the Weyl tensor, φ is the trace-free Ricci curvature, and−24Λ is the scalar curvature
which acts by scalar multiplication. The metric g is ASD and Einstein if C+ = 0 and φ = 0. In this case the Riemann tensor
is also anti-self-dual.

Locally there exist real rank-two vector bundles S, S′ called spin-bundles over M , equipped with parallel symplectic
structures ε, ε′ such that

TM ∼= S⊗ S′ (2.7)

is a canonical bundle isomorphism, and

g(v1 ⊗ w1, v2 ⊗ w2) = ε(v1, v2)ε′(w1, w2)

for v1, v2 ∈ Γ (S) and w1, w2 ∈ Γ (S′). A vector V ∈ Γ (TM) is called null if g(V , V ) = 0. Any null vector is of the form
V = λ⊗π where λ and π are sections of S and S′ respectively. An α-plane (respectively a β-plane) is a two-dimensional
plane in TpM spanned by null vectors of the above form with π (respectively λ) fixed, and an α-surface (β-surface) is
a two-dimensional surface in M such that its tangent plane at every point is an α-plane (β-plane). Penrose’s Nonlinear
Graviton Theorem [38] states that a maximal three dimensional family of α-surfaces exists in M iff C+ = 0.

2.3.1. ASD Einstein metrics from projective structures
A general ASD metric depends, in the real-analytic category, on six arbitrary functions of three variables. Theorem 1.1

gives an explicit subclass of such metrics which are additionally Einstein and carry a so-called parallel ASD totally null
distribution. These depend on two arbitrary functions of two variables. Any projective structure (N, [∇]) gives rise to
such an ASD Einstein metric. The explicit form (1.3) is the pull-back of the metric on M along the diffeomorphism
ϕ : T ∗N → M specified by the choice of connection ∇ ∈ [∇]. In [19] it is shown how to extend this metric to a c-projective
compactification.

There is an additional structure on four-manifolds described in Theorem 1.1: a para-Hermitian structure. The symplec-
tic form Ω of this para-Hermitian structure pulls back to

ϕ∗Ω = dzA ∧ dxA + PABdxA ∧ dxB, (2.8)

where (xA, zA) are canonical local coordinates on the cotangent bundle. The pair (g,Ω) is projectively invariant under the
changes (2.3) if zA → zA + ΥA.

If k is a projective vector field on (N,∇), then the corresponding Killing vector field on (M, g) is symplectic, and is
given in local coordinates by

K = k− zA
∂kB

∂xA
∂

∂zB
+ ΥA

∂

∂zA
. (2.9)

2.3.2. ASD β-foliation
It follows from the general construction of Calderbank [10] and West [50] that any ASD conformal structure arising

from Theorem 1.1 carries a foliation by β-surfaces defined by an ASD two-form Σab = ιAιBϵA′B′ , and such that the spinor
ιA satisfies

∇A′(AιB) = AA′(AιB) (2.10)

where dA is an ASD Maxwell field.
We shall call such foliations ASD β-surface foliations. In our coordinates Σ = dx0 ∧ dx1 and D = span{∂/∂z0, ∂/∂z1}.

We find that

∇Σ = 6A⊗Σ, (2.11)
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where dA = Ω , andΩ is the symplectic form on M , whose anti-self-duality implies (2.10) for a rescaling of A. In Section 5
we will consider the model case where M = SL(3)/GL(2), for which we can find the Ward transform of this ASD Maxwell
two-form to the twistor space F12(C3) explicitly, and we will find that there is a second ASD β-surface foliation with a
different two-form.

3. From projective structures to SU (∞) Toda fields

Recall (see, e.g. [7]) that a projective structure on a surface can be locally specified by a single 2nd order ODE: taking
coordinates (x, y) on the surface we find that geodesics on which ẋ ̸= 0 can be written as unparametrised curves y(x)
such that

y′′ + a0(x, y)+ 3a1(x, y)y′ + 3a2(x, y)(y′)2 + a3(x, y)(y′)3 = 0, (3.1)

where the coefficients {ai} are given by the projectively invariant formulae

a0 = Γ 1
00, 3a1 = −Γ 0

00 + 2Γ 1
01, 3a2 = −2Γ 0

01 + Γ
1
11, a3 = −Γ 0

11.

Consider the most general Einstein–Weyl structure arising from the combination of Theorems 1.1 and 1.2. Because
of the correspondence (Theorem 1.1, part 2.) between symmetries of (M, g) and symmetries of the projective surface
(N, [∇]), the construction must begin with the general projective surface with at least one symmetry. In this case, the
unparametrised geodesics can generically be written uniquely as integral curves of the ODE

y′′ = A(y)(y′)3 + B(y)(y′)2 + 1. (3.2)

This has been established in [21], and the argument justifying this normal form is as follows. We can locally choose the
coordinates so that the projective symmetry is generated by the translation k = ∂/∂x. The normalising coordinates for
∂
∂x are unique up to a change (x, y) → (x + φ(y), ψ(y)). As long as a0 is not everywhere zero (the generic case), we can
choose a0 = −1 using the freedom (x, y) → (x, ψ(y)), by taking ψ ′ = −1/a0. This removes the ψ freedom up to an
additive constant. Then we can choose a1 = 0 using a change (x, y)− > (x + φ(y), y), where φ′ = −a1. This preserves
a0 = −1, and removes the φ freedom up to an additive constant.

The projective structure resulting from (3.2) is flat iff both A and B are constant. By trial and error, we chose a
representative connection for (3.2) such that (1.3) had the simplest possible form. The choice of connection we took
was

Γ 0
11 = A(y), Γ 1

00 = −1, Γ 1
11 = −B(y)

with all other components vanishing. Note that this choice of connection has a symmetric Ricci tensor, so the Schouten
tensor is also symmetric and the symplectic form (2.8) pulls back to just dzA∧dxA. Thus we can write the Maxwell potential
A which is such that dA = Ω as A = zAdxA. Writing xA = (x, y), zA = (p, q), the resulting metric (1.3) is

g = (B(y)+ p2 + q)dx2 + 2(pq+ A(y))dxdy+ (−A(y)p+ B(y)q+ q2)dy2 + dxdp+ dydq. (3.3)

Factoring by K = ∂
∂x , and following the algorithm of Theorem 1.2 gives the following

Proposition 3.1. The most general Einstein–Weyl structure arising from the procedure (1.6) is locally equivalent to

h =
1
V

(
(Bq− Ap+ q2)dy+ dq

)
dy−

(
(pq+ A)dy+

1
2
dp
)2
, (3.4)

ω = V (4dq+ 2pdp), V = (B+ p2 + q)−1,

where (p, q, y) are local coordinates on W, and A, B are arbitrary functions of y.

3.1. Solution to the SU(∞)–Toda equation

The procedure for extracting the corresponding solution to the SU(∞)-Toda equation is given in [46] (see also [20,32]).
It involves finding the coordinates (X, Y , Z) that put the metric (3.4) in the form (1.5). Given an ASD Einstein metric (M, g)
with a Killing vector K

(1) The conformal factor c : M → R+ given by

c = |dK+ ∗gdK|g
−1/2

has a property that the rescaled self-dual derivative of K

Θ ≡ c3
(1
2
(dK+ ∗gdK)

)
is parallel with respect to ĝ = c2g . The metric ĝ is Kähler with self-dual Kähler form Θ , and admits a Killing vector
K , as LK (c) = 0.
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(2) Define a function Z : M → R to be the moment map:

dZ = K Θ. (3.5)

It is well defined, as the Kähler form is Lie-derived along K .
(3) Construct the Einstein–Weyl structure of Theorem 1.2 by factoring (M, ĝ) by K . Restrict the metric h to a surface

Z = Z0 = const, and construct isothermal coordinates (X, Y ) on this surface:

γ ≡ h|Z=Z0= eU (dX2
+ dY 2), U = U(X, Y , Z0).

To implement this step chose an orthonormal basis of one-forms such that γ = e12+ e22. Now (X, Y ) are solutions
to the linear system of 1st order PDEs

(e1 + ie2) ∧ (dX + idY ) = 0.

(4) Extend the coordinates (X, Y ) from the surface Z = Z0 to W . This may involve a Z-dependent affine transformation
of (X, Y ).

Implementing the steps 1–4 on MAPLE we find that if A = 0, and B = B(y) is arbitrary, then the SU(∞)-Toda solution is
given implicitly by

X = −
8e−2

∫
B(y)dyZ3p

(Z2p2 + 4)2
, Y =

∫
e−2

∫
B(y)dydy+

e−2
∫
B(y)dy(−2Z4p2 + 8Z2)
(Z2p2 + 4)2

.

U = ln
(
(Z2p2 + 4)3

64Z2

)
+ 4

∫
B(y)dy. (3.6)

We can check that this is indeed a solution using the fact that the SU(∞)-Toda equation is equivalent to d ⋆h dU = 0. We
have also checked by performing a coordinate transformation of (1.1) to the coordinates (y, p, Z).

3.1.1. Example 1
Consider the flat projective structure with A = B = 0, in which case the coordinate p can be eliminated between

eU =
(
(Z2p2 + 4)3

64Z2

)
, X = −

8Z3p
(Z2p2 + 4)2

by taking a resultant. This yields

eU (eUX2
− Z2)3 + Z4

= 0.

3.1.2. Example 2
To simplify the form of (3.6) set

G =
∫

exp
(
−2

∫
B(y)dy

)
, T =

2Z2

Z2p2 + 4
Then (3.6) becomes

eU =
Z4

8T 3(G′)2
, Y = G+ G′T

(4T
Z2 − 1

)
, X2

=
4T 4(G′)2

Z2

( 2
T
−

4
Z2

)
. (3.7)

Eliminating (T , y) between these three equations gives one relation between (X, Y , Z) and U - this is our implicit solution.
The elimination can be carried over explicitly if G = yk for any integer k, or if G = exp y. In the later case the solution is
given by (1.2).

3.2. Two monopoles

The Einstein–Weyl structures (3.4) we have constructed in Proposition 3.1 are special, as they belong to the
SU(∞)-Toda class, and so (as shown by Tod [43]) admit a non-null geodesic congruence which has vanishing shear and
twist. The general solution to the SU(∞)-Toda equation depends (in the real analytic category) on two arbitrary functions
of two variables, but the solutions of the form (3.4) depend on two functions of one variable. The additional constraints
on the solutions can be traced back to the four dimensional ASD conformal structures which give rise (by the Jones–Tod
construction) to (3.4). In addition to their being ASD and Einstein they are characterised [33] by a β-distribution which is
parallel with respect to the Levi-Civita connection and ASD in the sense of Calderbank [10]. The corresponding β-surfaces
do not generically intersect with a given α-surface, however if they do intersect then they will intersect in curves (null
geodesics) which descend to the Einstein–Weyl structures, and give rise to another (in addition to the Tod shear-free,
twist-free) geodesic congruence. In what follows we shall point out how some of this structure arises from a couple of
solutions to the Abelian monopole equation on EW backgrounds.
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Jones and Tod [29] show that there is a correspondence between conformally ASD four-metrics over an Einstein-Weyl
structure (W ,D, [h]), and solutions to the monopole equation on W . Hence the symmetry reduction of Theorem 1.2 gives
us a solution to the monopole equation. In fact, since we have an ASD Maxwell field on M , the reduction gives us a second
monopole. In this subsection we compute these explicitly. Given an EW structure (h, ω) in 2+1 dimension, the Abelian
monopole consists of a pair (V , α), where V is a function, and α is a one-form subject to the equation

dV +
1
2
ωV = ⋆hdα.

The inverse Jones–Tod correspondence [29] associates a neutral signature ASD conformal structure

g = Vh− V−1(dx+ α)2

with an isometry K = ∂/∂x with any solution of the monopole equation.
The conformal gauge in the EW geometry of Proposition 3.1 is chosen so that

α = V (pq+ A)dy+
V
2
dp.

Let us call this solution the Einstein monopole, as the resulting conformal class contains an Einstein metric (3.3). The
second solution (VM , αM ) (which we shall call the Maxwell monopole) arises as a symmetry reduction of the ASD Maxwell
potential

A = pdx+ qdy = −VMK + αV ,

where K = Kµdxµ is the Killing one-form, and we find

VM = −pV , αV = qdy− pα.

4. An example from the submaximally symmetric projective surface

The submaximally symmetric projective surface is the punctured plane N = R2
\0, with the symmetry group SL(2)

acting via its fundamental representation. Here we have a one parameter family of projective structures falling into three
distinct equivalence classes, with geodesics described by the differential equation

y′′ = −µ(y− xy′)3, (4.1)

where (x, y) are coordinates on R2 and µ is a constant parameter. The equivalence class that a given projective structure
falls into depends on the value of µ: those with µ > 0 form one of the classes, those with µ < 0 form another, and those
with µ = 0 form the third. Further details can be found in [6]. For simplicity, we choose µ = 1.

Choosing a representative connection from the projective class defined by (4.1), we obtain from (1.3) an Einstein metric

g = (p2 − xy2p− y3q+ 4y2)dx2 + 2(pq+ x2yp+ xy2q− 4xy)dxdy

+ (q2 − x3p− x2yq+ 4x2)dy2 + dxdp+ dydq
(4.2)

on M , again with z0 =: p, z1 =: q, having Killing vectors

K1 = x
∂

∂x
− p

∂

∂p
− y

∂

∂y
+ q

∂

∂q
, K2 = x

∂

∂y
− q

∂

∂p
, K3 = y

∂

∂x
− p

∂

∂q
.

These are lifts of the projective vector fields corresponding to the sl(2) elements

T1 =
(
ϵ 0
0 −ϵ

)
T2 =

(
0 0
ϵ 0

)
T3 =

(
0 ϵ

0 0

)
.

Factoring by K3 and choosing coordinates

u =
p2

y2
, v = 2 ln(y2), w = xp+ yq,

we obtain an Einstein-Weyl structure

h = −du2
− 2dudw − w(w2

+ u− 5w + 4)dv2 + 2(u− w + 4)dvdw, (4.3)

ω =
1

u− w + 4
du−

3w
u− w + 4

dv −
4

u− w + 4
dw.

The solution to the SU(∞)-Toda equation (1.1) which determines the Einstein-Weyl structure (4.3) is described by an
algebraic curve f (eU , X, Y , Z) = 0 of degree six in eU and degree twelve in the other coordinates. This solution has been
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found following th Steps 1–4 in Section 3.1, and is given by

64e6UX6(X + Y )3(X − Y )3 − 92e5UX4Z2(X + Y )3(X − Y )3

+ 48e4UX2Z2(5X6Z2
− 14X4Y 2Z2

+ 13X2Y 2Z2
− 4Y 4Z2

+ 9X4
+ 27X2)

+ 8e3UZ4(−20X6Z2
+ 48X4Y 2Z2

− 36X2Y 4Z2
+ 8Y 6Z2

− 81X4
− 243X2Y 2)

+ 3e2UZ4(20X4Z4
− 36X2Y 2Z4

+ 16Y 4Z4
+ 108X2Z2

+ 216Y 2Z2
+ 243)

+ 6eUZ8(−2X2Z2
+ 2Y 2Z2

− 9)+ Z12

= 0.

Note that the formulae (4.3) are independent of the coordinate v, and therefore have a symmetry. This was unexpected
because there is no other symmetry of (M, g) that commutes with K3. However, it is possible for symmetries to appear
in the Einstein-Weyl structure without a corresponding symmetry of the ASD conformal structure. This can be seen from
the general formula (1.4); the function V may depend on the coordinate v so that g depends on v even though h does
not. For example, the Gibbons-Hawking metrics [25] give a trivial Einstein–Weyl structure with the maximal symmetry
group, but the four-metric is in general not so symmetric. Our discovery of this unexpected symmetry motivated a more
concrete description of a symmetry of a Weyl structure.

Definition 4.1. An infinitesimal symmetry of a Weyl structure (W ,D, [h]) is a vector field K which is both an affine
vector field with respect to the connection1 D and a conformal Killing vector with respect to the conformal structure [h].

Proposition 4.2. Given an infinitesimal symmetry K of a Weyl structure (W ,D, [h]) in dimension N, and a representative
h ∈ [h] such that Dh = ω ⊗ h, there exists a smooth function f : W → R such that

LKh = fh, LKω =
1
N
d[K d(ln(det(h)))]. (4.4)

Proof. The first equation follows immediately from the fact that K is a conformal Killing vector of h. It remains to evaluate
the Lie derivative of the one-form ω along the flow of K given that LKh = fh and LKΓ

i
jk = 0, where Γ i

jk are the components
of the connection D. We do this by considering the Lie derivative of Dh:

LK(Dihjk) = LK(∂ihjk)− LK(Γ l
jihlk + Γ

l
kihjl)

= LK(∂ihjk)− f (Γ l
jihlk + Γ

l
kihjl).

Now

LK(∂ihjk) = Kl∂l∂ihjk + (∂iKl)∂lhjk + (∂jKl)∂ihlk + (∂kKl)∂ihjl

= ∂i[Kl∂lhjk + (∂jKl)hlk + (∂kKl)hjl] − (∂i∂jKl)hlk − (∂i∂kKl)hjl.

The term with square brackets is just

∂i(LKhjk) = ∂i(fhjk) = f ∂ihjk + ∂ifhjk,

so we have

LK(Dihjk) = fDihjk + ∂ifhjk − (∂i∂jKl)hlk − (∂i∂kKl)hjl.

Setting this equal to LK(ωihjk) = (LKωi)hjk + fωihjk and cancelling fωihjk with fDihjk, we find

(LKωi)gjk = ∂ifhjk − (∂i∂jKl)hlk − (∂i∂kKl)hjl

H⇒ LKωi = ∂if −
2
N
∂i∂jKj. (4.5)

Finally, we note that

∂i∂jKj
=

N
2
∂if −

1
2
∂i[K d(ln(det(h))].

This follows from tracing the expression LKhij = fhij:

LKhij = Kk∂khij + (∂iKk)hkj + (∂jKk)hik = fhij

H⇒ Kkhij∂khij + 2∂kKk
= Nf

H⇒ 2∂i∂kKk
= N∂if − ∂i(Kkhjl∂khjl)

and recalling that hjl∂khjl = ∂kln(det(h)). Substituting into (4.5) then yields the result. □

1 Recall that an affine vector field of a connection D is one which preserves its components, i.e. LKΓ
i
jk = 0.
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We can easily verify the invariance of (4.4) under Weyl transformations. Let (ĥ, ω̂) be a new metric and one-form
related to the old ones by (2.4). Then

LKω̂ = LKω + 2K dln(ρ)

from (2.4), and from (4.4) we have

LKω̂ =
1
N
d[K d(ln(ρ2Ndet(h)))]

=
1
N
d[K d(ln(det(h)))] +

2N
N

K dln(ρ)

= LKω + 2K dln(ρ),

as above. Note that the function f in (4.4) will change according to

f̂ = f + 2K dlnρ.

In the case of the Weyl structure (4.3), the infinitesimal symmetry is

K =
∂

∂v
.

Since we have chosen a scale such that K is in fact a Killing vector of h, we have that K d(ln(det(h)) = 0, so the one-form
ω is also preserved by K. This is consistent with the fact that it has no explicit v-dependence.

5. The model SL(3)/GL(2) and its reductions

In the following section we discuss the four-manifold (M, g) obtained from the maximally symmetric flat projective
surface N = RP2. In this case, g is the indefinite analogue of the Fubini–Study metric, and is not only bi-Lagrangian
but also para-Kähler, since the symplectic form Ω is parallel with respect to the Levi-Civita connection of g . Choosing a
representative connection with Γ C

AB = 0 gives g as

g = dzA ⊙ dxA + zAzBdxA ⊙ dxB. (5.1)

We begin by discussing the conformal structure of (5.1), both explicitly and in terms of twistor lines. We then note some
structure which is unique to the model case: hyper-Hermiticity and a second foliation by β-surfaces which is ASD in the
sense of Calderbank.

Finally, we present a classification of the Einstein–Weyl structures which can be obtained by Jones–Tod factorisation
of SL(3)/GL(2) and exhibit an explicit example of such a factorisation from the twistor perspective, reconstructing the
conformal structure on W from minitwistor curves.

5.1. Conformal structure

Let M ⊂ P2
× P2∗ be set of non-incident pairs (P, L), where P ∈ P2, and L ⊂ P2 is a line.

Proposition 5.1. Two pairs (P, L) and (̃P, L̃) are null-separated with respect to the conformal structure (5.1) if there exists a
line which contains three points (P, P̃, L ∩ L̃).

Proof. The null condition of Proposition 5.1 defines a co-dimension one cone in TN: generically there is no line through
three given points.

To find an analytic expression for the resulting conformal structure consider two pairs (P, L) and (̃P, L̃) of non-incident
points and lines. Let L+ t̃L be a pencil of lines. There exists t such that

P · (L+ t̃L) = 0, P̃ · (L+ t̃L) = 0. (5.2)

Eliminating t from (5.2) gives

(P · L)(̃P · L̃)− (̃P · L)(P · L̃) = 0.

Setting P̃ = P + dP, L̃ = L+ dL yields a metric g representing the conformal structure

g =
dP · dL
P · L

−
1

(P · L)2
(L · dP)(P · dL).

We can use the normalisation P · L = 1, so that P · dL = −L · dP , and

g = dP · dL+ (L · dP)2. (5.3)

We take affine coordinates

P = [xA, 1], L = [zA, 1− xAzA] (5.4)

with a normalisation P · L = 1 to recover the metric (1.3) which now takes the form (5.1). □
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5.2. Twistor space

Let F12(C3) ∈ P2
×P2∗ be set of incident pairs (p, l), so that p · l = 0. This is the twistor space of (M, g). A P1 embedding

corresponding to a point (P, L) consists of all lines l thorough P , and all points p = l ∩ L:

P · l = 0, p · L = 0, p · l = 0. (5.5)

Let (P, L) and (̃P, L̃) be null separated. The corresponding lines in F12 intersect at a point (p, l) given by

p = L ∧ L̃, l = P ∧ P̃,

where [L ∧ L̃]α = ϵαβγ Lα̃Lβ etc. The incidence condition p · l = 0 now gives the conformal structure (5.2). The contact
structure on F12 is 1/2(l · dp− p · dl) = p · dl.

We shall now give an explicit parametrisation of twistor lines, and show how the metric (5.3) arises from the Penrose
condition [38,48]. Let P ∈ P2. The corresponding l ∈ P2∗ is

l = P ∧ π, where π ∼ aπ + bP,

where a ∈ R∗, b ∈ R. Thus π parametrises a projective line P1, and by making a choice of b we can take π = [π0, π1, 0],
where πA

= [π0, π1
] ∈ P1. The constraint P · l = 0 now holds. To satisfy the remaining constraints in (5.5) we take

p = L ∧ l = (L · π )P − (L · P)π.

Substituting (5.4) gives the corresponding twistor line parametrised by [π ] ∈ P1

pα = [(z · π )xA − πA, z · π ], lα = [πA,−π · x], (5.6)

where the spinor indices are raised and lowered with ϵAB and its inverse, and z · x ≡ zAxA.
We shall now derive the expression for the conformal structure. According to the Nonlinear Graviton prescription of

Penrose [38] a vector V ∈ Γ (TmM) is null if the corresponding section of the normal bundle N(Lm) = O(1) ⊕ O(1) has
a single zero. To compute the normal bundle, let ([l(π, P, L)], [p(π, P, L)]) be the twistor line corresponding to a point
m = (P, L) in M . The neighbouring line is ([l+ δl], [p+ δp]), where

δl = δP ∧ π, δp = (δL · π )P + (L · π )δP − δ(L · P)π.

The lines (l+ δl, p+ δp) and (l, p) intersect at one point which correspond to some particular value of π . Therefore

l+ δl ∼ l, so π ∼ δP = [δx1, δx2, 0].

The other condition is p+ δp ∼ p which holds iff

0 = p ∧ δp = (L · π )2P ∧ δP − (L · P)(δL · π )π ∧ P − (L · π )δ(L · P)P ∧ π − (L · P)(L · π )π ∧ δP .

Substituting π ∼ δP , we find that all terms on the RHS are proportional to P ∧ δP = [0, 0, x · dx]. Therefore

(L · π )2 − (L · π )δ(L · P)+ (L · P)(δL · π ) = 0,

together with L · P = 1. This gives the conformal structure (5.3).

5.3. Hyper-Hermitian structure

A pseudo-hyper-complex structure on a four manifold M is a triple of endomorphisms I, S, T of TM which satisfy

I2 = −Id, S2 = T 2
= Id, IST = Id,

and such that aI+bS+ cT is an integrable complex structure for any point on the hyperboloid a2−b2− c2 = 1. A neutral
signature metric g on a pseudo-hyper-complex four-manifold is pseudo-hyper-Hermitian if

g(V , V ) = g(IV , IV ) = −g(SV , SV ) = −g(TV , TV )

for any vector field V on M . There is a unique conformal structure compatible with each pseudo-hyper-complex structure.
With a natural choice of orientation which makes the fundamental two-forms of I, S, T self-dual, this conformal structure
is anti-self-dual.

Proposition 5.2. The Einstein metric (5.1) on SL(3)/GL(2) is pseudo-hyper-Hermitian.

Proof. First a note about conventions. Our model metric is ASD, so it is the primed Weyl spinor which vanishes. This
makes all indices on both the EW space and the projective surface primed. Let us therefore swap the role of primed and
unprimed indices. The null frame for the 4-metric is

e0
′A
= dxA, e1

′A
= dzA + zA(z · dx), so that g = ϵA′B′ϵABeA

′AeB
′B.
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Thus the forms Σ = dx0 ∧ dx1 and Ω = dzA ∧ dxA are ASD. The basis of SD two forms is spanned by

dx ∧ dq+ q2dx ∧ dy, dx ∧ dp− dy ∧ dq+ 2pqdx ∧ dy, −dy ∧ dp+ p2dx ∧ dy

or, in a more compact notation, by ΣAB
= dx(A ∧ dzB) + zAzBΣ . We can verify that

dΣAB
+ 2A ∧ΣAB

= 0, (5.7)

where A = zAdxA is such that dA = Ω . The condition (5.7) is necessary and sufficient for (para) hyper-Hermiticity
[4,17]. Thus the ASD Maxwell fields arising from the para-Kähler structure on M , and the para hyper-Hermitian structure
coincide. To this end note that the twistor distribution form (M, g) is

L0′ = π ·
∂

∂x
+ (z · π )z ·

∂

∂z
, L1′ = π ·

∂

∂z
. (5.8)

It is Frobenius integrable, as [L0′ , L1′ ] = −(π · z)L1′ . It also does not contain the vertical ∂/∂π terms which again confirms
the hyper-Hermiticity of (M, g) (see Lemma 2 in [17] and Theorem 7.1 in [9]). The SD part of the spin connection is given
in terms of A as ΓA′ABC = −2AA′(BϵC)A. □

In the next section we shall show how to encode A in the twisted-photon Ward bundle over the twistor space of
(M, g).

5.4. The twisted photon

The twistor space F12 described in Section 5.2 is the projectivised tangent bundle T (P2)∗ of the minitwistor space of
the flat projective structure: a point in F12 consists of l ∈ P2, and a direction through l. Thus the twistor space of M is the
correspondence space of P2 and P2∗. There are many open sets needed to cover P(TP2), but it is sufficient to consider two:
U , where (l1, ̸= 0, p2 ̸= 0), and (l2/l1, l3/l1, p3/p2) are coordinates, and Ũ where (l1 ̸= 0, p3 ̸= 0), and (l2/l1, l3/l1, p2/p3)
are coordinates. Now consider the total space of TP2 (or perhaps it is TP2 tensored with some power of the canonical
bundle to make it trivial on twistor lines), and restrict it to the intersection of (pre-images in TP2 of) U and Ũ . The
coordinates on TP2 in these region are (l2/l1, l3/l1, p2/p1, p3/p1), and the fibre coordinates τ over U and τ̃ over Ũ are
related by2

τ̃ = exp(F )τ , where F = ln (p2/p3).

Now we follow the procedure of [47]: restrict F to a twistor line, and split it. The holomorphic splitting is F = H − H̃ ,
where H = ln (p2) is holomorphic in the pre-image of U in the correspondence space, and H̃ = ln (p3) is holomorphic in
the pre-image of Ũ . Note that F is a twistor function, but H, H̃ are not. Therefore LA′F = 0, where the twistor distribution
LA′ is given by (5.8). This, together with the Liouville theorem implies that

LA′H = LA′ H̃ = πAAA′A

for some one-form A on M , as the LHS is holomorphic on CP1 and homogeneous of degree one. To construct this one-form
recall the parametrisation of twistor curves (5.6). This gives

H = ln (z · π ), H̃ = ln ((z · π )x1 − π1)

and

L1′ (H) = L1′ (H̃) = 0, L0′ (H) = L0′ (H̃) = π · z.

Therefore A1′A = 0,A0′A = zA which gives A = zAdxA, and dA is indeed the ASD para-Kähler structure.

5.5. Factoring SL(3)/GL(2) to Einstein-Weyl

If a metric with ASD Weyl tensor has more than one conformal symmetry, then distinct Einstein–Weyl structures are
obtained on the space of orbits of conformal Killing vectors which are not conjugate with respect to an isometry [37].
We can thus classify the Einstein–Weyl structures obtainable from SL(3)/GL(2) by first classifying its symmetries up to
conjugation.

Proposition 5.3. The non-trivial Einstein–Weyl structures obtainable from SL(3)/GL(2) by the Jones–Tod correspondence
consist of a two-parameter family, and two additional cases which do not belong to this family.

2 Here we are following Ward [47], and thinking of a C∗ bundle.
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Proof. Since we have an isomorphism between the Lie algebra of projective vector fields on (N, [∇]) and the Lie algebra
of Killing vectors on (M, g), the problem of classifying the symmetries of M = SL(3)/GL(2) is reduced to a classification
of the infinitesimal projective symmetries of RP2, i.e. the near-identity elements of SL(3), up to conjugation. Non-singular
complex matrices are determined up to similarity by their Jordan normal form (JNF). While real matrices do not have
such a canonical form, all of the information they contain is determined (up to similarity) by the JNF that they would
have if they were considered as complex matrices. Thus we can still discuss the JNF of a real matrix, even if it cannot
always be obtained from the real matrix by a real similarity transformation. The possible non-trivial Jordan normal forms
of matrices in SL(3) are shown below.(

λ 0 0
0 µ 0
0 0 1/λµ

) ⎛⎝λ 0 0
0 λ 0
0 0 1/λ2

⎞⎠ ⎛⎝λ 1 0
0 λ 0
0 0 1/λ2

⎞⎠ (1 1 0
0 1 0
0 0 1

) (1 1 0
0 1 1
0 0 1

)
It is possible that two matrices in SL(3) with the same JNF may be related by a complex similarity transformation, and

thus not conjugate in SL(3). However, if the JNF is a real matrix, then the required similarity transformation just consists
of the eigenvectors and generalised eigenvectors of the matrix, which must also be real since they are defined by real
linear simultaneous equations. This means we only have to worry about matrices with complex eigenvalues, and since
these occur in complex conjugate pairs, they will only be a problem when we have three distinct eigenvalues.

In this case, we can always make a real similarity transformation such that the matrix is block diagonal, with the real
eigenvalue in the bottom right. Then we have limited choice from the 2 × 2 matrix in the top left. Let us parametrise
such a 2 × 2 matrix by a, b, c, d ∈ R as follows:(

1+ aϵ bϵ
cϵ 1+ dϵ

)
.

This has characteristic polynomial

χ (λ) = λ2 − (2+ ϵ(a+ d))λ+ 1+ (a+ d)ϵ + (ad− bc)ϵ2.

Evidently the important degrees of freedom are a + d and ad − bc , so we can use these to encode every near-identity
element of the class with three distinct eigenvalues. The bottom-right entry will be determined by our choice of a + d
and ad− bc .

Taking a projective vector field on RP2, we can find the corresponding Killing vector on SL(3)/GL(2) using (2.9), and
factor to Einstein–Weyl using (1.4). We find by explicit calculation that vector fields arising from the second and fourth
JNFs above give trivial Einstein–Weyl structures, so restricting to the non-trivial cases we have a two-parameter family of
Einstein–Weyl structures coming from the first class, and two additional Einstein–Weyl structures coming from the third
and fifth, as claimed. □

5.6. Mini-twistor correspondence

Below we investigate a one-parameter subfamily of the two-parameter family. We use the holomorphic vector field
on the twistor space F12 (see Section 5.2) corresponding to the chosen symmetry, and reconstruct the conformal structure
[h] on N using minitwistor curves (in the sense of [28]) on the space of orbits. Take a ∈ R and

K = P1 ∂

∂P1 − L1
∂

∂L1
+ aP2 ∂

∂P2 − aL2
∂

∂L2
, (5.9)

In order to preserve the relations

p · L = 0, P · l = 0, p · l = 0,

the corresponding holomorphic action on (p, l) must be p ↦→ Mp, l ↦→ M−1l, thus the holomorphic vector field K on F12 is

K = p1
∂

∂p1
− l1

∂

∂ l1
+ ap2

∂

∂p2
− al2

∂

∂ l2
.

In order to factor F12 by this vector field, we must find invariant minitwistor coordinates (Q , R). In addition to satisfying
K(Q ) = K(R) = 0, they must be homogeneous of degree zero in (P, L). We choose

Q =
p1l1
p2l2

, R =
(l1)a

l2(l3)a−1
.

Substituting in our parametrisation (5.6) and using the freedom to perform a Mobius transformation on π , we obtain

Q =
(λt − u− 1)λ
vλ+ λ− uv

t
(5.10)

R = λa
(
−λ−

v

t

)1−a
,
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where we have defined λ = π0/π1, and the Einstein-Weyl coordinates

u = xp, v = yq, t = xaq.

Note these are invariants of the Killing vector (5.9).
Next we wish to use these minitwistor curves to reconstruct the conformal structure of the Einstein-Weyl space. In

doing so we follow [37]. The tangent vector field to a fixed curve is given by

T =
∂Q
∂λ

∂

∂Q
+
∂R
∂λ

∂

∂R
,

Hence we can write the normal vector field as

N = dQ
∂

∂Q
+ dR

∂

∂R
mod T

=

(
∂R
∂λ

)−1(
dQ
∂R
∂λ
− dR

∂Q
∂λ

)
∂

∂Q
,

where

dQ =
∂Q
∂u

du+
∂Q
∂v

dv +
∂Q
∂t

dt

and similarly for dR. Calculating N using (5.10), we find

N ∝ (Aλ2 + Bλ+ C)
∂

∂Q
,

where

A = t2(v + 1)dt − t3dv,

B = −2tuvdt + t2(a+ 2u)dv − t2du,
C = uv(1+ u)dt − tu(1+ u)dv − atvdu.

The discriminant of this quadratic in λ then gives a representative h ∈ [h] of our conformal structure:

h = 4(u2v + uv2 + uv)dt2 − 4tv(a(v + 1)+ u)dtdu+ 4tu(u− av + 2v + 1)dtdv

− t2du2
+ 2t2(2av + a+ 2u)dvdu− t2(a2 + 4u(a− 1))dv2.

(5.11)

This is the same conformal structure that we obtain by Jones-Tod factorisation of SL(3)/GL(2) by (5.9) using the formula
(1.4).

6. Einstein–Weyl from a third order ODE

Let

Y ′′ = F (X, Y , Y ′) (6.1)

be the second order ODE dual to the ODE (3.1) defining the projective structure on N . The integral curves of (6.1) are
twistor curves corresponding with normal bundle O(1) corresponding to points in N . The construction of [33] suggests
an implicit way of extending the ODE (6.1) to a system

Y ′′ = F (X, Y , Y ′), Z ′′ = G(X, Y , Z, Y ′, Z ′) (6.2)

with vanishing Wilczynski invariants [14,16,27] , such that the solution space to (6.2) carries an ASD structure. Assume that
this ASD Einstein structure admits a Killing vector K . This corresponds to a Lie point symmetry of the system (6.2) [14], and
(by Theorem 3.10 of [33]) to a Lie point symmetry of (6.1). Without loss of generality we can now choose the coordinates
(X, Y ) such that F = F (Y , Y ′) in (6.1). We shall now construct a third order ODE which, by a combination of the Cartan
correspondence [13] and the Jones–Tod construction [29] gives rise to an Einstein–Weyl structure on the space of orbits
of K . The third order ODE is obtained by differentiating the second equation in (6.2) with respect to X , eliminating Y ′′
using the first equation, and finally eliminating Y ′ using the second equation. This yields3

Z ′′′ = H(X, Z, Z ′, Z ′′) where H =
( ∂G
∂X
+
∂G
∂Y

Y ′ +
∂G
∂Y ′

F +
∂G
∂Z

Z ′ +
∂G
∂Z ′

G
)
|Y ′=Y ′(X,Z,Z ′,Z ′′). (6.3)

3 We are taking the point symmetry of (6.1) to be ∂/∂X . which lifts to a point symmetry of (6.2) of the form ∂/∂X + J(X, Y , Z)∂/∂Z , so that
there can be an explicit X-dependence in G and therefore in H .



14 M. Dunajski and A. Waterhouse / Journal of Geometry and Physics 147 (2020) 103523

6.1. Example 1

Consider the system of ODEs [14]

Y ′′ = 0, Z ′′ =
2(Z ′)2Y ′

ZY ′ − 1
(6.4)

It admits SL(3) as its group of point symmetries, and its solution space carries the conformal structure (5.2). The procedure
described above leads to the Schwartzian third order ODE

Z ′′′ =
3(Z ′′)2

2Z ′
.

The integral curves are of the form

Z =
aX + b
cX + d

, where ad− bc = 1

and the corresponding Einstein–Weyl structure is flat.
To this end we show how to derive the system (6.4) from the twistor curves (5.6). Let X = π1/π0 be the affine

coordinate on the P1 parametrising (5.6). Then

l = [1, X, Y ] = [1, X,−x0 − Xx1], so that Y ′′ = 0.

To recover the second ODE in (6.4) we need an explicit identification of F12 with P(TP2), which is

p = [p1, p2, p3], Z = −
p3

p2
=

z0 + Xz1

−1+ (z0 + Xz1)x1
.

The pair (Y (X), Z(X)) is the general solution to (6.4) so this ODE is indeed the right one for the twistor curves in F12.

6.2. Example 2

Another example is given by the system [14]

Y ′′ = 0, Z ′′ = −(Z ′ +
√
(Y ′)2 − 1)2.

The resulting ASD is not Einstein, and so does not fit into the scheme of [33] (it does however admit an ASD β-distribution
coming from a null Killing vector). The corresponding third order ODE (6.3) is

Z ′′′ = 2(Z ′′)3/2,

and the resulting Einstein–Weyl structure is the Lorentzian Nil structure on the Heisenberg group [45].

7. Kaluza–Klein lift to an S1-bundle over M

In this section we consider the generalisation of the four-manifold M to any even dimension 2n, starting with a
projective structure of dimension n. This is discussed in the appendix of [33]. The construction of [33] offers two different
perspectives on (M, g): one in terms of a gauge theory on (N, [∇]) and the other as a quotient of the Cartan bundle
of (N, [∇]). It is the latter approach that we will take here. The aim is to construct a principal circle bundle over the
2n-dimensional M with a metric on the 2n + 1-dimensional total space which we will prove to be Einstein. This metric
is interesting in the context of Kaluza–Klein theory.

7.1. The Cartan geometry of a projective structure

Our description follows [6,33]. A projective structure in dimension n admits a description as a Cartan geometry by
virtue of being modelled on RPn, since this can be viewed as a homogeneous space. Let H be the stabiliser subgroup of
the point [1, 0, . . . , 0] under the action of SL(n+1,R) on homogeneous coordinates [X0, . . . , Xn

] in RPn via its fundamental
representation. Then by the orbit stabiliser theorem RPn

= SL(n+ 1,R)/H . The elements of H take the general form(
det(a)−1 b

0 a

)
for any a ∈ GL(n,R) and b ∈ Rn.

Definition 7.1. The Cartan geometry (π : P ↦→ N, θ ) of a projective structure (N, [∇]) in dimension n consists of a
principal right H-bundle over N carrying an sl(n+ 1,R)-valued one-form θ with the following properties:
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(1) θ (Xv) = v for fundamental vector fields Xv on P corresponding to v ∈ h;
(2) θu : TuP → sl(n+ 1,R) is an isomorphism for all u ∈ P;
(3) R∗hθ = Ad(h−1)θ = h−1θh for all h ∈ H .

The form θ is called the Cartan connection.

We write the Cartan connection as

θ =

(
−tr(φ) η

ω φ

)
with the one-forms φ, η and ω taking values in gl(n,R), Rn and Rn respectively. The curvature two-form takes the general
form

Θ = dθ + θ ∧ θ =
(
0 L(ω ∧ ω)
0 W (ω ∧ ω)

)
, (7.1)

where L and W are curvature functions valued in Hom(Rn
∧ Rn,Rn) and Hom(Rn

∧ Rn,Rn ⊗ Rn) respectively.

7.2. Construction of (M, g) as quotient of the Cartan bundle

We can embed GL(n,R) as a subgroup of H via the map

GL(n,R) ∋ a ↦−→
(
det(a)−1 0

0 a

)
∈ H, (7.2)

finding that its adjoint action on θ preserves the natural contraction ηω :=
∑

i η(i) ⊗ ω
(i), where η(i) and ω(i) are the

one-forms denoting the components of η and ω in sl(n+ 1,R). We deduce that the quotient q : P ↦→ P/GL(n,R) carries
a natural metric g of signature (n, n) and a two-form Ω which are such that

q∗g = Sym(ηω)
q∗Ω = Ant(ηω),

where Sym and Ant denote the symmetric and anti-symmetric parts of the (0, 2) tensor ηω. It is shown in [33] that we
can choose local coordinates such that they take the forms (1.3) and (2.8) respectively, where the indices A, B now run
from 0 to n − 1. The pair (g,Ω) forms a so-called bi-Lagrangian structure on M . The fact that Ω is symplectic follows
from the Bianchi identity.

In fact, the metric and symplectic form turn out to belong to a one-parameter family, which can be written in local
coordinates as

gΛ = dzA ⊙ dxA − (Γ C
ABzC −ΛzAzB −Λ−1PAB)dxA ⊙ dxB (7.3)

ΩΛ = dzA ⊙ dxA +
1
Λ

PABdxA ∧ dxB, A, B = 0, . . . , n− 1

for Λ ̸= 0. Metrics of the form (7.3) are a subclass of so-called Osserman metrics. More details can be found in [12].
They are all Einstein with non-zero scalar curvature (calculated in Appendix A), but for Λ ̸= 1 the relation to projective
geometry is lost. For the remainder of this section we will consider the full family {gΛ}, although projective invariance
will only hold in the case Λ = 1.

7.3. Flat case

We first note that taking the flat projective structure on RPn results in a one-parameter family of 2n-dimensional
Einstein spaces M which are Kaluza–Klein reductions of quadrics in Rn+1,n+1. The metric and symplectic form on M reduce
to

gΛ = dxA ⊙ dzA +ΛzAzBdxA ⊙ dxB

ΩΛ = dzA ∧ dxA, A, B = 0, . . . , n− 1.

Proposition 7.2. The Einstein spaces M corresponding to RPn are projections from the 2n + 1-dimensional quadrics Q ⊂
Rn+1,n+1 given by XαYα = 1

Λ
, where X, Y ∈ Rn+1 are coordinates on Rn+1,n+1 such that the metric is given by

G = dXαdYα,

under the embedding

Xα =
{
xAeτ , α = A = 0, . . . , n− 1
eτ , α = n
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Yα =

{
zAe−τ , α = A = 0, . . . , n− 1

e−τ
(

1
Λ
− xCzC

)
, α = n

(7.4)

following Kaluza–Klein reduction by the vector ∂
∂τ

.

Proof. We find the basis of coordinate 1-forms {dXα, dYα} to be

dXα =
{
eτ (dxA + xAdτ ), α = A = 0, . . . , n− 1
eτdτ , α = n

dYα =

⎧⎨⎩e−τ (dzA − zAdτ ), α = A = 0, . . . , n− 1

−e−τ
[(

1
Λ
− xCzC

)
dτ + xCdzC + zCdxC

]
, α = n.

The metric is then given by

G = eτ (dxA + xAdτ )e−τ (dzA − zAdτ ) − eτdτe−τ
[( 1
Λ
− xCzC

)
dτ + xCdzC + zCdxC

]
= dxAdzA + (xAdzA − zAdxA)dτ − (xAzA)dτ 2 − dτ

[( 1
Λ
− xCzC

)
dτ + xCdzC + zCdxC

]
= dxAdzA −

1
Λ

dτ 2 − 2zAdxAdτ

= dxAdzA + Λ(zAdxA)2 − Λ

(dτ
Λ
+ zAdxA

)2
,

which is clearly going to give gΛ under Kaluza–Klein reduction by ∂
∂τ

. □

Note that the symplectic form Ω is the exterior derivative of the potential term zAdxA, implying a possible generalisa-
tion to the curved case.

7.4. Curved case

We now return to a general projective structure (N, [∇]). Since the symplectic form picks out the antisymmetric part
of the Schouten tensor, it has the fairly simple form

ΩΛ = dzA ∧ dxA −
∂[AΓ

C
B]C

Λ(n+ 1)
dxA ∧ dxB.

By inspection, this can be written ΩΛ = dA, where

A = zAdxA −
Γ C
AC

Λ(n+ 1)
dxA.

This is a trivialisation of the Kaluza–Klein bundle which we are about to construct. Note that for Λ = 1, Ω and A remain
unchanged under a change of projective connection (2.1).

Motivated by the Kaluza–Klein reduction in the flat case, we consider the following metric.

Theorem 7.3. Let gΛ be the Einstein metric (7.3) corresponding to the projective structure (N, [∇]). The metric

GΛ = gΛ −Λ
(dt
Λ
+ A

)2
(7.5)

on a principal circle bundle σ : Q ↦→ M is Einstein, with Ricci scalar 2n(2n+ 1)Λ.

Proof. We prove this using the Cartan formalism. Our treatment parallels a calculation by Kobayashi [30], who considered
principal circle bundles over Kähler manifolds in order to study the topology of the base. Note that we temporarily
suppress the constant Λ, writing G ≡ GΛ and g ≡ gΛ, since the proof applies to any choice Λ ̸= 0 within this family.
Consider a frame

ea =
{
dxA, a = A = 0, . . . , n− 1
dzA − (Γ C

ABzC −ΛzAzB −Λ−1PAB)dxB, a = A+ n = n, . . . , 2n− 1,
(7.6)

and in this basis the metric takes the form

g = e0 ⊙ en + · · · + en−1 ⊙ e2n−1. (7.7)
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We are interested in the metric

G = g − et ⊙ et ,

where

et =
√
Λ

(
dt
Λ
+ A

)
.

We reserve Roman indices a, b, . . . for the 2n-metric components 0, . . . , 2n− 1 and allow greek indices µ, ν, . . . to take
values 0, 1, . . . , 2n. The dual basis to {eµ} will be denoted {Eµ} and will act on functions as vector fields in the usual way.
We wish to find the new connection 1-forms ψ̂µ

ν (defined by deµ = −ψ̂µ
ν ∧ eν) in terms of the old ones ψa

b (defined by
dea = −ψa

b ∧ eb). Hence we examine4 det to find ψ̂ t
a.

det =
√
ΛdA =

√
ΛΩabea ∧ eb = −ψ̂ t

a ∧ ea H⇒ ψ̂ t
a =
√
ΛΩ[ab]eb =

√
ΛΩabeb, ψ̂a

t =
√
ΛΩa

be
b.

Since dea is unchanged, we have that

ψ̂a
t ∧ et + ψ̂a

b ∧ eb = ψa
b ∧ eb,

thus

ψ̂a
b ∧ eb = ψa

b ∧ eb −
√
ΛΩa

be
b
∧ et H⇒ ψ̂a

b = ψ
a
b +
√
ΛΩa

be
t .

We now calculate the curvature 2-forms Ψ̂ µ
ν = dψ̂µ

ν + ψ̂
µ
ρ ∧ ψ̂

ρ
ν =

1
2R

µ
ρσν eρ ∧ eσ in terms of Ψ a

b = dψa
b+ψ

a
c ∧ψ

c
b,

where R µ
ρσν is the Riemann tensor of Q. Note that we use the notation ψa

b = ψ
a
bce

c

Ψ̂ a
b = dψ̂a

b + ψ̂
a
c ∧ ψ̂

c
b + ψ̂

a
t ∧ ψ̂

t
b

= dψa
b +
√
Λd(Ωa

be
t )+ ψa

c ∧ ψ
c
b +
√
ΛΩa

ce
t
∧ ψ c

b +
√
ΛΩc

bψ
a
c ∧ et +ΛΩa

[cΩ|b|d]e
c
∧ ed

= Ψ a
b +
√
ΛEc(Ωa

b)e
c
∧ et +Λ(Ωa

bΩcd +Ω
a
[cΩ|b|d])e

c
∧ ed +

√
Λ(Ωc

bψ
a
cd −Ω

a
cψ

c
bd)e

d
∧ et

= Ψ a
b +
√
Λ∇cΩ

a
be

c
∧ et +Λ(Ωa

bΩcd +Ω
a
[cΩ|b|d])e

c
∧ ed.

Ψ̂ t
a = dψ̂ t

a + ψ̂
t
b ∧ ψ̂

b
a

=
√
ΛE[c(Ω|a|b])θ c ∧ θb −

√
ΛΩabψ

b
c ∧ ec +

√
ΛΩbcec ∧ (ψb

a +
√
ΛΩb

ae
t )

=
√
Λ(E[d(Ω|a|b])−Ωacψ

c
[bd] +Ωc[dψ

c
|a|b])e

d
∧ eb +ΛΩbcΩ

b
ae

c
∧ et

=
√
Λ∇[cΩ|a|d]ec ∧ ed +ΛΩbcΩ

b
ae

c
∧ et .

Hence we have that

R a
cdb = R a

cdb + 2Λ(Ωa
bΩcd +Ω

a
[cΩ|b|d])

R a
ctb =

√
Λ∇cΩ

a
b

R t
cda = 2

√
Λ∇[cΩ|a|d]

R t
cta = ΛΩbcΩ

b
a,

and thus, using Rµν = R ρ
ρµν ,

Rtt = ΛΩbcΩ
bc
= −2nΛ = 2nΛGtt

Rbt =
√
Λ∇cΩ

c
b = 0

Rdb = Rdb + 2Λ(Ωc
bΩcd +

1
2
Ωc

cΩbd −
1
2
Ωc

dΩbc)−ΛΩcdΩ
c
b

= Rdb + 2ΛΩ c
b Ωdc

= 2(n+ 1)Λgdb − 2Λgdb = 2nΛgdb = 2nΛGdb.

Note that we have used the facts that g is Einstein with Ricci scalar 4n(n + 1)Λ and that the symplectic form Ω is
divergence-free; these are justified in the appendix. Since Gat = 0, we conclude that

Rµν = 2nΛGµν =
R

2n+ 1
Gµν,

i.e. G is Einstein with Ricci scalar 2n(2n+ 1)Λ. □

4 Note that our conventions are (dω)ab...c = ∂[aωb...c] , (η ∧ ω)a...d = η[a...bωc...d] , ω = ωa...bdxa ∧ · · · ∧ dxb , and Fabdxa ∧ dxb = F[ab]dxa ⊗ dxb implying
dxa ∧ dxb = 1

2 (dx
a
⊗ dxb − dxb ⊗ dxa).
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Physically, this is a Kaluza–Klein reduction with constant dilation field and where the Maxwell two-form is related
to the reduced metric by Ω c

a Ωcb = gab. This is what allows both the reduced and lifted metric to be Einstein. A more
general discussion can be found in [40].

From the Cartan perspective, GΛ=1 can be thought of as a metric on the 2n+ 1-dimensional space obtained by taking
a quotient q̃ : P ↦→ P/SL(n,R) of the Cartan bundle, where we embed SL(n,R) ⊂ GL(n,R) in H as in (7.2) but with a now
denoting an element of SL(n,R) (so that det(a)−1 = 1). This new subgroup acts adjointly on θ as(

1 0
0 a

)(
−tr(φ) η

ω φ

)(
1 0
0 a−1

)
=

(
−tr(φ) ηa−1
aω φ

)
,

so not only is the inner product ηω invariant but also the (0, 0)-component θ00 = −trφ, which is a scalar one-form whose
exterior derivative is constrained by (7.1) to be dθ00 = −θ

0
i ∧ θ

i
0 = −Ant(η ∧ ω). Thus, denoting by A the object on

Q = P/SL(n,R) which is such that q̃∗A = trφ, we have that dA = Ω (where we are now taking Ω and g to be defined on
Q by q̃∗Ω = Ant(η ∧ ω) and q̃∗g = Sym(η ∧ ω) respectively, or equivalently redefining Ω̃ = σ ∗Ω and g̃ = σ ∗g).

We then have a natural way of constructing a metric G on Q as a linear combination of g and et ⊙ et , where et is A up
to addition of some exact one-form. It turns out that the choice of linear combination such that G is Einstein is

G = g − et ⊙ et .

The fact that this metric is exactly (7.5) can be verified by constructing the Cartan connection of (S, [∇]) explicitly in
terms of a representative connection ∇ ∈ [∇].
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Appendix A. Ricci scalar of (M, g) and divergence of Ω

We calculate these using the Cartan formalism, again using the basis (7.6). In this basis we have g as above (7.7) and

Ω =

n−1∑
A=0

eA ∧ eA+n H⇒ Ωab =

n−1∑
A=0

δA
[aδ

A+n
b] .

Note that from now on we will omit the summation sign and use the summation convention regardless of whether
A, B-indices are up or down. As in Section 7.4, we look for ψa

b by considering dea (recall that A, B = 0, . . . , n − 1 and
a, b = 0, . . . , 2n− 1):

deA = 0
deA+n = −(ED(Γ C

AB)zC −Λ
−1ED(PAB))dxD ∧ dxB − (Γ C

AB − 2Λz(AδCB))dzC ∧ dxB

= −(ED(Γ C
AB)zC −Λ

−1ED(PAB))eD ∧ eB

− (Γ C
AB − 2Λz(AδCB))(e

C+n
+ (Γ D

CEzD −ΛzCzE −Λ−1PCE)eE) ∧ eB

=
[
Λ−1EE(PAB)− EE(Γ C

AB)zC +Λ
−1Γ C

ABPCE − Γ
C
ABΓ

D
CEzD +ΛΓ

C
ABzEzC

+ 2Λz(A(Γ D
B)EzD −ΛzB)zE −Λ−1PB)E)

]
eE ∧ eB + (2Λz(AδCB) − Γ

C
AB)e

C+n
∧ eB

=
[
Λ−1DEPAB − (DEΓ

C
AB)zC − 2z(APB)E

]
eE ∧ eB + (2Λz(AδCB) − Γ

C
AB)e

C+n
∧ eB

Note that we have used D to denote the chosen connection on S with components Γ A
BC . Next we wish to read off the spin

connection ψa
b such that dea = −ψa

b ∧ eb and the following index symmetries are satisfied:

ψA
B =

1
2
ψA+n B = −

1
2
ψB A+n = −ψ

B+n
A+n

ψA
B+n =

1
2
ψA+n B+n = −

1
2
ψB+n A+n = −ψ

B
A+n

ψA+n
B =

1
2
ψA B = −

1
2
ψB A = −ψ

B+n
A

We find that

ψA+n
C+n = (2Λz(AδCB) − Γ

C
AB)e

B
= −ψC

A

ψA+n
B =

[
2(D[AΓ D

B]C )zD − 2Λ−1D[APS
B]C −Λ

−1DCPA
AB + 2z(BPC)A − 2z(APC)B

]
eC =: AABCeC

ψA
B+n = 0.
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One can check that these satisfy both the index symmetries above and are such that dea = −ψa
b ∧ eb, and we know from

theory that there is a unique set of ψa
b that have both of these properties. Note that we have used PS and PA to denote

the symmetric and antisymmetric parts of P in order to avoid too much confusion from having multiple symmetrisation
brackets in the indices.

We are now ready to calculate the divergence of Ω . Since it is also covariantly constant in this basis, we obtain

∇cΩab = −ψ
d
acΩdb − ψ

d
bcΩad = −ψ

d
acΩdb + ψ

d
bcΩda = 2Ωd[aψ

d
b]c .

We can split the right hand side into

Ωdaψ
d
bc = ΩCaψ

C
bc +ΩC+n aψ

C+n
bc

= δA
[Cδ

A+n
a] ψ

C
bc + δ

A
[C+nδ

A+n
a] ψ

C+n
bc

=
1
2

(
−δC+na δAb δ

B
c (2Λz(AδCB) − Γ

C
AB)− δ

C
a δ

D+n
b δBc (2Λz(CδDB) − Γ

D
CB)− δ

C
a δ

D
b δ

E
c ACDE

)
.

The first two terms are the same but with a↔ b, so are lost in the antisymmetrisation. Thus

∇cΩab = −δ
C
[aδ

D
b]δ

E
c ACDE .

Tracing amounts to contracting this with gac :

∇
cΩcb = −δ

C
[aδ

D
b]g

acδEc ACDE = −δ
C
[aδ

D
b]g

aEACDE,

but gaE is non-zero only when a = E+n > n and δC
[aδ

D
b] is non-zero only when a = C ≤ n or a = D ≤ n. We can therefore

conclude that the right hand side is zero and Ω is divergence-free.
Finally, we calculate the Ricci scalar of g (given that it is Einstein) via the curvature two-forms Ψ a

b = dψa
b+ψ

a
c∧ψ

c
b =

1
2R

a
cdb ec ∧ ed. We are only interested in non-zero components of the Ricci tensor such as RA B+n = R c

cA B+n . In fact, we will
calculate only RE+n B, for which we need to consider R A

D E+n B and R A+n
D+n E+n B , i.e. we need only calculate Ψ A

B and Ψ A+n
B .

Ψ A
B = d

(
(Γ A

BC − 2Λz(BδAC))e
C
)
+ ψA

C ∧ ψ
C
B + ψ

A
C+n ∧ ψ

C+n
B .

The last term vanishes since ψC+n
B = 0, and the middle term only has components that look like 1

2R
A

DEB eD ∧ eE , so the
only term we are interested in is

−2Λdz(BδAC)e
C
= −2ΛδA(C (e

B)+n
+ (Γ D

B)EzD −ΛzB)zE −Λ−1PB)E)eE) ∧ eC .

Again, discarding the eE ∧ eC term gives

−Λ(eB+n ∧ eC + δABe
C+n
∧ eC ) =

1
2
R A
D E+n B eD ∧ eE+n +

1
2
R A
E+nD B eE+n ∧ eD,

so we conclude

R A
D E+n B = Λ(δABδ

E
D + δ

A
Dδ

E
B ).

The other Riemann tensor component we need to know to calculate RE+n B = R c
c E+n B is R A+n

D+n E+n B , so we examine

Ψ A+n
B = dψA+n

B + ψ
A+n
C ∧ ψ

C
B + ψ

A+n
C+n ∧ ψ

C+n
B ,

but none of these terms have eD+n ∧ eE+n components, so R A+n
D+n E+n B = 0. Hence

RE+n B = δ
A
DR

A
D E+n B = Λ(δEB + nδEB ) = Λ(n+ 1)δEB .

Setting this equal to R
2ngE+n B =

R
4nδ

E
B we find

R = 4n(n+ 1)Λ,

as required.

Appendix B. SU (∞) Toda from an ALH instanton

Consider the Hyper-Kähler metric in the Gibbons–Hawking class [24], where the harmonic potential on R3 is a linear
function, i.e.

g = z
(
dx2 + dy2 + dz2

)
+ z−1

(
dt +

1
2
(xdy− ydx)

)2
. (B.1)

It admits a 4-dimensional group of isometries generated by the Killing vectors

∂t , x∂y − y∂x, ∂x −
y
2
∂t , ∂y +

x
2
∂t .
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Introducing the radial coordinate r by z = (9/4)1/3r2/3 we find the volume growth r4/3, so the metric is ALH in the sense
of [15] (although it is not complete, as it is singular at r = 0). For the ALH behaviour we need to identify (x, y) with
coordinates on a two-torus (see [26] for another interpretation of this solutions in terms of BPS domani walls).

Reduction by K = x∂y − y∂x.

This Killing vector is not compatible with the toric topology of the (x−y) space, but it will lead to a non-trivial solution
to (1.1) with ϵ = −1.

Set x = (2/3)1/3ρ cos θ, y = (2/3)1/3ρ sin θ, τ = (3/2)1/3X . The Kähler form is

ω = r−1/3dr ∧ (dX +
1
3
ρ2dθ )+ r2/3ρdρ ∧ dθ.

It is preserved by the Killing vector K = ∂/∂θ . Formula (3.5) yields the moment map

Z =
1
2
r2/3ρ2.

We eliminate ρ in terms of Z and r and define

Y =
1
3

Z
r2/3
−

3
4
r4/3.

The resulting solution of the Toda equation (1.1) with ϵ = −1 is given by eU = 2r−2/3Z . It is constant on a parabolic
cylinder (eU/6− Y )e2U = 3Z2. It is given by

eU =
3
√
8 Y 3 + 9 Z2 + 3

√
16 Z2Y 3 + 9 Z4 +

4Y 2

3
√
8 Y 3 + 9 Z2 + 3

√
16 Z2Y 3 + 9 Z4

+ 2 Y .

(See [39] for other solutions constant on cylinders).

Reduction by K = ∂x + ∂y + 1
2 (x− y)∂t

This Killing vector is compatible with the toric structure. Following the procedure above, then one finds the solution
to (1.1) to be u = 0. This is because K is a tri-holomorphic Killing vector.
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