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Abstract: Using twistor methods, we explicitly construct all local forms of
four–dimensional real analytic neutral signature anti–self–dual conformal structures
(M, [g]) with a null conformal Killing vector. We show that M is foliated by anti-
self-dual null surfaces, and the two-dimensional leaf space inherits a natural projective
structure. The twistor space of this projective structure is the quotient of the twistor
space of (M, [g]) by the group action induced by the conformal Killing vector.

We obtain a local classification which branches according to whether or not the con-
formal Killing vector is hyper-surface orthogonal in (M, [g]). We give examples of
conformal classes which contain Ricci–flat metrics on compact complex surfaces and
discuss other conformal classes with no Ricci–flat metrics.

1. Introduction

The anti–self–duality (ASD) condition in four dimensions seems to underlie the concept
of integrability of ordinary and partial differential equations [29]. Many lower dimen-
sional integrable models (KdV, NlS, Sine–Gordon, ...) arise as symmetry reductions of
the ASD Yang–Mills equations on a flat background, and various solution generation
techniques are reductions of the twistor correspondence [19]. Other integrable models
(dispersionless Kadomtsev–Petviashvili, SU (∞) Toda, ...) are reductions of the ASD
conformal equations which say that the self–dual Weyl tensor of a conformal class of
metrics vanishes [30, 7]. Generalisations to ASD Yang–Mills on ASD conformal back-
ground are also possible [27, 4].

In all cases the main interest is in conformal structures of signature + + −− which
are called neutral, as the reductions can lead to interesting hyperbolic and parabolic
equations. There are no non–trivial ASD structures in the Lorentzian signature + + +−,
and the reductions from Riemannian manifolds can only yield elliptic equations thus
ruling out interesting soliton dynamics.
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The main gap in the programme to classify the reductions of ASD neutral confor-
mal structures was understanding the reductions by a null conformal Killing vector. We
embarked on this project hoping to incorporate more integrable systems into the frame-
work of anti–self–duality, but we have found (Theorem 2) that the resulting geometry is
a completely solvable system.

Let (M, [g]) be a four dimensional real analytic neutral ASD conformal structure.
We say that K is a null conformal Killing vector if it satisfies

LK g = ηg, g(K , K ) = 0, (1.1)

for some g ∈ [g], where η is a function on M , and L is the Lie-derivative.
When studying conformal structures with non-null conformal Killing vectors, it is

natural to look at the space of Killing vector trajectories, since this will inherit a non-
degenerate conformal structure. In the case of a null conformal Killing vector, the situa-
tion is different. The space of trajectories inherits a degenerate conformal structure. We
find that it is necessary to go down one dimension more, and consider a two dimensional
space U of anti-self-dual totally null surfaces in M , called β–surfaces, containing K ,
which exist as a consequence of the conformal Killing equation. It turns out that there
is a naturally defined projective structure [�] on U . Moreover, we show that the twistor
spaces of (M, [g]) and (U, [�]) are related by dimensional reduction. Specifically, the
twistor space Z of (U, [�]) is the space of trajectories of a vector field on the twistor
space PT of (M, [g]) corresponding to K . Projective structures are just equivalence
classes of torsion-free connections, which do not need to satisfy any equations; this
underlies the complete solvability of null reductions, and contrasts with the non-null
case where one obtains Einstein-Weyl structures [13], and associated integrable systems
[30, 7, 6, 4].

In Sect. 2 we derive some elementary properties of null conformal Killing vectors.
Section 3 is an introduction to projective structures. In Sect. 4 we prove the following:

Theorem 1. Let (M, [g]) be a four dimensional real analytic neutral ASD conformal
structure with a null conformal Killing vector K . Let U be the two dimensional space
of β-surfaces containing K . Then there is a naturally defined projective structure on U,
whose twistor space is the space of trajectories of a distribution ̂K induced on PT by
the action of K on M.

In Sect. 5 we investigate the local form of ASD conformal structures with null Killing
vectors. This is expressed in the following theorem:

Theorem 2. Let (M, [g], K ) be a smooth neutral signature ASD conformal structure
with null conformal Killing vector. Then there exist local coordinates (t, x, y, z) and
g ∈ [g] such that K = ∂t and g has one of the following two forms, according to
whether the twist K ∧ dK vanishes or not (K := g(K , .)):

1. K ∧ dK = 0.

g = (dt + (z A3 − Q)dy)(dy − βdx)− (dz − (z(−βy + A1 + βA2 + β2 A3))dx

−(z(A2 + 2βA3) + P)dy)dx, (1.2)

where A1, A2, A3, β, Q, P are arbitrary functions of (x, y).
2. K ∧ dK �= 0.

g = (dt + A3∂zGdy + (A2∂zG + 2A3(z∂zG − G)− ∂z∂yG)dx)(dy − zdx)

−∂2
z Gdx(dz − (A0 + z A1 + z2 A2 + z3 A3)dx), (1.3)
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where A0, A1, A2, A3 are arbitrary functions of (x, y), and G is a function of (x, y, z)
satisfying the following PDE:

(∂x + z∂y + (A0 + z A1 + z2 A2 + z3 A3)∂z)∂
2
z G = 0. (1.4)

The functions Aα(x, y) in the metrics (1.2) and (1.3) determine projective structures
on the two dimensional space U in the following way. A general projective structure
corresponds to a second-order ODE,

d2 y

dx2 = A3(x, y)
(dy

dx

)3
+ A2(x, y)

(dy

dx

)2
+ A1(x, y)

(dy

dx

)

+ A0(x, y). (1.5)

In (1.3) all the Aα, α = 0, 1, 2, 3 functions occur explicitly in the metric. In (1.2) the
function A0 does not explicitly occur. It is determined by the following equation:

A0 = βx + ββy − βA1 − β2 A2 − β3 A3, (1.6)

as is shown in the proof of the theorem. If one interprets z as a fibre coordinate on the
projective tangent bundle of the (x, y) space, then (1.4) says that ∂2

z G is constant along
the projective structure spray (compare formula 3.4).

Note that in both cases the Killing vector is ∂t and is pure Killing (this comes from
choosing a suitable g ∈ [g]). The non-twisting case (1.2) is a natural conformal gen-
eralisation of Ricci–flat pp waves. The twisting case (1.3) is a neutral analog of the
Fefferman conformal class [10]. As special cases of (1.3) we recover some examples of
[20], where neutral metrics were related to second order ODEs.

The aim of Sect. 6 is to put our results into a broader context. We examine some
examples found by different means in the light of our results. We find necessary and
sufficient conditions on the underlying projective structure in order for there to exist
(pseudo) hyper–complex metrics with triholomorphic K within a conformal class. A
special case of the metric (1.2) yields a compact example of a Ricci–flat metric on a
Kodaira surface of a special type.

We consider how to construct conformal structure twistor spaces from projective
structure twistor spaces in Sect. 7. The more involved spinor calculations are moved to
the Appendix.

2. Null Conformal Killing Vectors

2.1. Spinors in neutral signature. We will denote by (M, [g]) a local patch of R
4

endowed with a neutral signature conformal structure [g]. That is, [g] is an equiva-
lence class of neutral signature metrics with the equivalence relation g ∼ ecg for some
function c on M .

Any neutral metric g on M can be put in the following form:

g = 2(θ00′ � θ11′ − θ01′ � θ10′
) = εABεA′ B′θ AA′ ⊗ θ B B′

, (2.1)

where εAB, εA′ B′ are antisymmetric matrices with ε01 = ε0′1′ = 1. The four (real) basis
one-forms θ AA′

for A = 0, 1, A′ = 0, 1 are called a tetrad. The algebraic dual vector
basis is denoted eAA′ , and is defined by θ AA′

(eB B′) = δA
Bδ

A′
B′ . Any vector V at a point

can be written V AA′
eAA′ , and this exhibits an isomorpism

T M ∼= S ⊗ S′, (2.2)
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where S, S′ are two-dimensional real vector bundles known as the unprimed spin bundle
and the primed spin bundle respectively. For a general manifold M there is a topological
obstruction to (2.2) but we are working locally so it always holds.

Using a particular choice of tetrad, a section µ of S is denoted µA, A = 0, 1. Simi-
larly νA is a section of S∗, κ A′

a section of S′ and τA′ a section of S′∗, where ∗ denotes
the dual of a bundle. The natural pairing S × S∗ → R is given by µAνA, using the sum-
mation convention, and similarly for primed spinors. We sometimes use the notation
µA′

νA′ = µ.ν. This product is not commutative; we have µ.ν = −ν.µ.
It follows from (2.1) that g(V, V ) = det V AA′

. If V is null, then this gives V AA′ =
µAκ A′

. Abstractly, if V is null then V = µ⊗ κ under the isomorphism (2.2), where µ
and κ are sections of S and S′ respectively.

The relation (2.1) can be written abstractly as

g = ε ⊗ ε′

under the isomorphism (2.2). ε and ε′ are symplectic structures on S and S′. These give
isomorphisms S ∼= S∗ and S′ ∼= S′∗ by µ → ε(µ, .), for µ a section of S, and similarly
for S′. Given a choice of tetrad, the spinors ε and ε′ are written εAB and εA′ B′ , where
we drop the prime on the latter because no confusion can arise due to the indices. Note
these are anti-symmetric in AB and A′ B ′. Then the isomorphism S ∼= S∗ is given in the
trivialization by µA → µBεB A := µA and similarly for primed spinors.

There are useful isomorphisms

�2
+

∼= Sym(S∗ ⊗ S∗), �2− ∼= Sym(S′∗ ⊗ S′∗), (2.3)

where�+,�− are the bundles of self-dual and anti-self-dual two-forms, using an appro-
priate choice of volume form for the Hodge-∗ operator. In the local trivialization, the
isomorphisms (2.3) are expressed by the following formula for a two-form F in spinors:

Fab = FAA′ B B′ = φA′ B′εAB + ψABεA′ B′ ,

where φA′ B′ , ψAB are symmetric. The φA′ B′ term is the self-dual component of F and
the ψAB is the anti-self-dual component.

The vector bundles S, S′ and their duals inherit connections from the Levi-Civita con-
nection of T M (see Appendix A). These are the unique torsion-free connections defined
so that the sections ε and ε′ are covariantly constant. Then covariant differentiation on
either side of (2.2) is consistent.

A primed spinor κ A′
at a point corresponds to a totally null self-dual two-plane

spanned by κ A′
eAA′ , A = 1, 2, whilst an unprimed spinor corresponds to an anti-self-

dual two-plane in a similar way. In twistor theory, these two-planes are called α-planes
and β-planes respectively.

2.2. Null conformal Killing vectors in neutral signature. Suppose g is a neutral metric
with a conformal Killing vector K . Then LK (ecg) = (K (ec) + ecη)g, so K is a con-
formal Killing vector for the conformally rescaled metric, and we can refer to K as a
conformal Killing vector for the conformal structure [g].

Now suppose g has a null conformal Killing vector K . We shall show (Lemma 1)
that M is foliated in two different ways, by self-dual and anti-self-dual surfaces, whose
leaves intersect tangent to K . This is a property of the conformal structure [g], since the
Hodge-∗ acting on 2-forms is conformally invariant.



ASD Conformal Structures with Null Killing Vectors from Projective Structures 89

The spinor form of the conformal Killing equation is:

∇a Kb = φA′ B′εAB + ψABεA′ B′ +
1

2
ηεABεA′ B′ , (2.4)

where φA′ B′ , ψAB are the self-dual and anti-self dual parts of the 2-form ∇[a Kb], and η
is a function on M .

Since K is null, we have K = ι ⊗ o, where ι is a section of S and o a section of
S′. Choosing a null tetrad, and a trivialization of S and S′, we have K AA′ = ιAoA′

.
These spinors are defined up to multiplication by a non-zero function α, since K AA′ =
ιAoA′ = (αιA)(oA′

/α).

Lemma 1. Let K = ιAoA′
eAA′ be a null conformal Killing vector. Then

1. The following algebraic identities hold:

ιAιBψAB = 0, (2.5)

oA′
oB′

φA′ B′ = 0. (2.6)

2. ιA and oA′
satisfy

ιAιB∇B B′ ιA = 0, (2.7)

oA′
oB′∇B B′oA′ = 0. (2.8)

Remark. Equations (2.7), (2.8) are equivalent to the statement that the distributions
spanned by ιAeAA′ and oA′

eAA′ are Frobenius integrable (see the Appendix). Equations
of this type are often called ‘geodesic shear free’ equations, since in the Lorentzian case
they result in shear-free congruences of null geodesics.

Proof. Using K AA′ = ιAoA′ , the Killing equation (2.4) becomes

oA′∇B B′ ιA + ιA∇B B′oA′ = φA′ B′εAB + ψABεA′ B′ +
1

2
ηεABεA′ B′ . (2.9)

Contracting both sides with ιAoA′
gives

0 = oA′
ιBφA′ B′ + ιAoB′ψAB +

1

2
ηιBoB′ .

Multiplying by ιB and oB′
respectively leads to (2.5) and (2.6). To get (2.7) and (2.8),

multiply (2.9) by ιAιB and oA′
oB′

. �
We have found that M is foliated in two different ways by totally null surfaces. Those

determined by oA′
are self-dual and are called α-surfaces, and those determined by ιA

are anti-self-dual and are called β-surfaces. It is clear that the α-surfaces and β-surfaces
of Lemma 1 intersect on integral curves of K . Denote the β-surface distribution by Dβ ;
this will be used later.

It is appropriate here to recall the Petrov-Penrose classification [22] of the algebraic
type of a Weyl tensor. In split signature this applies separately to CABC D and CA′ B′C ′ D′ .
In our case CA′ B′C ′ D′ = 0 and we are concerned with the algebraic type of CABC D .
When we refer to the algebraic type we will be referring to the algebraic type of CABC D .
One can form a real polynomial of fourth order P(x) by definingµA = (1, x) and setting
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P(x) = µAµBµCµDCABC D . The Petrov-Penrose classification refers to the position
of roots of this polynomial, for example if there are four repeated roots then we say
CABC D is type N. If there is a repeated root the metric is called algebraically special.
There are additional complications in the split signature case [16] arising from the fact
that real polynomials may not have real roots.

The split signature version of the Goldberg-Sachs theorem together with (2.7) implies
that any Ricci-flat ASD space with null conformal Killing vector is algebraically special.
In fact the vacuum condition can be removed if K is non-twisting; we will discuss this
further in Sect. 6.5.

It also follows from the Killing equations and the fact that K is null that

K b∇b Ka = 1

2
ηKa .

Thus K is automatically geodesic, and if it is pure then its trajectories are parameterized
by an affine parameter.

3. Projective Structures

Let (U, [�]) be a local two dimensional real projective structure. That is, U is a local
patch of R

2, and [�] is an equivalence class of torsion-free connections whose unparam-
eterized geodesics are the same. Then in a local trivialization, equivalent torsion-free
connections are related in the following way:

�̃i
jk − �i

jk = a jδ
i
k + akδ

i
j , (3.1)

for functions ai on U , and i, j, k = 1, 2. Note that this is a tensor equation since the
difference between two connections is a tensor. The ai on the RHS are the components
of a one-form.

The geodesics satisfy the following ODE:

d2si

dt2 + �i
jk

ds j

dt

dsk

dt
= v

dsi

dt
,

where si are local coordinates of U , and t is a parameter, which is called affine if v = 0.
One can associate a second-order ODE to a projective structure by picking a connec-

tion in the equivalence class, choosing local coordinates si = (x, y) say, and eliminating
the parameter from the geodesic equations. The resulting equation determines the geode-
sics in terms of the local coordinates, without the parameter. The equation is as follows:

d2 y

dx2 = �x
yy

(dy

dx

)3
+ (2�x

xy − �
y
yy)

(dy

dx

)2
+ (�x

xx − 2�y
xy)

dy

dx
− �

y
xx . (3.2)

A general projective structure is therefore defined by a second-order ODE (1.5). In fact,
two of the four functions A0, A1, A2, A3 can be eliminated by a coordinate transforma-
tion (x, y) → (x̂(x, y), ŷ(x, y)) which introduces two arbitrary functions.

On T U , the horizontal lifts of ∂/∂si are defined by

Si = ∂

∂si
− �

j
ikv

k ∂

∂v j
,
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where vi , i = 1, 2 are the fibre coordinates of T U . The geodesics on U lift to integral
curves of the following spray on T U :

� = vi Si = vi ∂

∂si
− �i

jkv
jvk ∂

∂vi
. (3.3)

Now � is homogeneous of degree 1 in the vi , so it projects to a section of a one dimen-
sional distribution on PT U . PT U is the quotient of T U − {0-section} by the vector
field vi ∂

∂vi . If λ is a standard coordinate on one patch of the RP
1 factor,1 then the spray

has the form

� = ∂x + λ∂y + (A0(x, y) + λA1(x, y) + λ2 A2(x, y) + λ3 A3(x, y))∂λ. (3.4)

There is a unique curve in any direction through a point in U , which is why the curves
can be lifted to a foliation of the projective tangent bundle U × RP

1.
To obtain (3.1) we argue as follows. If �̃ is the spray corresponding to a different

connection �̃, then � and �̃ are in the same projective class if � and �̃ push down to
the same spray on PT U . This gives

�− �̃ ∝ vi ∂

∂vi
,

from which (3.1) follows, using the fact that the connections are torsion-free (i.e. sym-
metric in their lower indices).

3.1. The twistor space of a projective structure. Now suppose we have a holomorphic
projective structure on a local patch of C

2, which we still denote U . All of the above
is still valid, with real coordinates replaced by complex ones. The functions �i

jk are
now required to be holomorphic functions of the coordinates. Given a real-analytic pro-
jective structure, one can complexify by analytic continuation to obtain a holomorphic
projective structure that will come equipped with a reality structure (see below).

The space PT U is obtained from T U on quotienting by µi ∂
∂µi , which defines a

tautological line bundle O(−1) over PT U .
As the Si are weight zero in the µi coordinates, they push down to vector fields on

PT U , giving a two-dimensional distribution S. Since � is weight one in the µi , one
must divide by a homogeneous polynomial of degree one in the µi to get something that
pushes down to a vector field on PT U . The resulting vector field will have a singularity
at a single point on each fibre, where the degree one polynomial vanishes. Different
choices of polynomial will result in different vector fields on PT U , but they will always
be in the same direction. In other words,� defines a one dimensional distribution which
we shall call D�. Restricting to a CP

1 fibre, D� defines a line bundle over CP
1. A sec-

tion of this line bundle corresponds to a vector field in D�, i.e. a choice of polynomial
as described above, and has a pole at a single point. Therefore by the classification of
holomorphic line bundles over CP

1, it must be O(−1).2

1 By standard coordinates λ, λ̃ on RP
1 or CP

1, we mean the usual coordinates v1/v0 and v0/v1, where
v0, v1 are homogeneous coordinates.

2 Coordinatize CP
1 using two patches, U0 with coordinate λ ∈ C, and U1 with coordinate η ∈ C, and

transition function λ = 1/η. The holomorphic line bundle O(n) over CP
1 is defined by the transition function

a = λnb, where a ∈ C is the fibre coordinate over U0 and b(η) ∈ C is the fibre coordinate over U1. The
Birkhoff-Grothendieck theorem states that any holomorphic line bundle over CP

1 is O(n) for some n. A
global section of O(n) has |n| zeroes or poles, for n positive or negative respectively.
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Restricting to a CP
1 fibre, one obtains the following exact sequence of vector bundles

over CP
1:

0 → O(−1) → O ⊕ O → S/D� → 0, (3.5)

where the first bundle is D�, the second is S, and the last is the quotient. In fact, the
quotient is O(1), for the following reason. Consider for instance the push down of S0 to
PT U . This defines a subbundle of S that is different to� everywhere except at a single
point, the image of µ1 = 0. Hence it determines a section of S/� which vanishes at a
single point. Therefore, again using the classification of holomorphic line bundles over
CP

1, we have S/D�
∼= O(1).

The twistor space Z is the two dimensional quotient of PT U by D�. A point u ∈ U
corresponds to a twistor line û ⊂ Z corresponding to all the geodesics through u. The
normal bundle of an embedded û = CP

1 ⊂ Z is given by the quotient bundle in the
above sequence, i.e. O(1). This is summarized by a double fibration picture:

U × CP
1

↙ ↘
U Z

The left arrow denotes projection to U , and the right arrow denotes the quotient by D�.
The converse is also valid:

Theorem 3 [11, 17]. There is a 1-1 correspondence between local two dimensional
holomorphic projective structures and complex surfaces containing an embedded CP

1

with normal bundle O(1).

A vector V ∈ TuU corresponds to a global section of the normal bundle O(1) of û.
Such a section vanishes at a single point p ∈ Z . The geodesic of the projective structure
through this direction is given by points in U corresponding to twistor lines in Z that
intersect û at p. That there is a one-parameter family of such lines can be shown by
blowing up Z at the vanishing point and using Kodaira theory, see [11].

3.2. Flatness of projective structures. A projective structure is said to be flat if the
corresponding second order ODE (1.5) can be transformed to the trivial ODE

d2 y

dx2 = 0 (3.6)

by coordinate transformation (x, y) → (x̂(x, y), ŷ(x, y)). The terminology comes from
the fact that given any second order ODE one can construct a Cartan connection on a
certain G-structure [2], and when this connection is flat the equation can be transformed
to the trivial ODE (3.6). It turns out that a second order ODE must be of the form (1.5) to
be flat, and in addition the functions A0, A1, A2, A3 must satisfy some PDEs. Defining

F(x, y, λ) = A0(x, y) + λA1(x, y) + λ2 A2(x, y) + λ3 A3(x, y),

the following must hold [2]:

d2

dx2 F11 − 4
d

dx
F01 − F1

d

dx
F11 + 4F1 F01 − 3F0 F11 + 6F00 = 0, (3.7)
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where

F0 = ∂F

∂y
, F1 = ∂F

∂λ
,

d

dx
= ∂

∂x
+ λ

∂

∂y
+ F

∂

∂λ
.

This is a set of PDEs for the functions A0, A1, A2, A3.

3.3. Reality conditions for projective structures. A reality structure for Z is an anti-
holomorphic involution that leaves invariant a two real parameter family of twistor lines,
and fixes an equator of each line. Given a line in this real family, all the sections pointing
to nearby lines in the real family have a zero at some point, and the union of these points
gives an equator of the line; this equator must be fixed by the reality structure. The real
family of twistor lines then corresponds to a real manifold U with a projective structure.

In this paper all holomorphic projective structures have reality structures since they
occur as complexifications of real projective structures.

4. Null Killing Vectors and Twistor Space

4.1. The twistor space of an ASD conformal structure. In the following and for the
rest of the paper, ẽAA′ denote the horizontal lifts of eAA′ to S′, or their push-down to
P S′. Abstractly, the integral curves of these horizontal lifts define parallelly transported
primed spinors using the connection on S′ (see Appendix A).

We can abstractly define the two-dimensional twistor distribution on S′ as follows.
A point s ∈ S′ is determined by a primed spinor π at a point x ∈ M . The null vectors
π ⊗µ for all unprimed spinors µ span an α-plane at x . Define the twistor distribution at
s to be the subspace of horizontal vectors at s whose push-down to the base lies in this
α-plane.

Concretely, the twistor distribution is spanned by vectors L A (A = 0, 1) on S′,
defined with a choice of tetrad by

L A = π A′
ẽAA′ = π A′(

eAA′ − � C ′
AA′ B′ π B′ ∂

∂πC ′
)

, (4.1)

where π A′
are the local coordinates on the fibres of S′. In the Appendix it is shown that

the twistor distribution is integrable for ASD conformal structures, which is a seminal
result of Penrose [21]. In other words, given a neutral ASD conformal structure [g], each
self-dual two plane at a point is tangent to a unique α-surface through that point, which
is the push down of a leaf of the twistor distribution. In the holomorphic case, the space
of leaves of the twistor distribution (locally, over a suitably convex region of the base),
is a three dimensional complex manifold PT called the twistor space [21, 11].

The double fibration picture is very similar to the projective structure case discussed
in Sect. 3.1. The projective primed spin bundle P S′ is the quotient of S′ by the vector
field π A′ ∂

∂π A′ . P S′ is fundamental in the fibration picture, as each α-surface in M has a
unique lift, in the same way that each geodesic of a projective structure has a unique lift
to the projective tangent bundle. The horizontal vectors ẽAA′ are weight zero in the π A′

coordinates, so push down to vector fields on P S′, giving a four-dimensional distribution
� on P S′. The L A vectors (4.1) are weight one, so together define a two dimensional
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subdistribution L of�, which restricts to O(−1)⊕O(−1) on a CP
1 fibre; we also refer

to this as the twistor distribution. Over a CP
1 fibre, there is an exact sequence

0 → O(−1)⊕ O(−1) → O ⊗ C
4 → �/L → 0. (4.2)

The first term is L, the second is�. As in the projective structure case, one can show that
�/L is O(1)⊕O(1). The twistor space PT is the quotient of P S′ by L. The image of a
CP

1 fibre over x ∈ M is an embedded CP
1 ∈ PT , and has normal bundle O(1)⊕O(1),

the quotient bundle in (4.2). It corresponds to all the α-surfaces through x .
The twistor correspondence is summarized by the double fibration:

P S′
↙ ↘

M PT

Here the left arrow denotes projection to M , and the right arrow denotes the quotient by
L.

Again, there is a converse:

Theorem (Penrose [21]). There is a 1-1 correspondence between local four dimen-
sional holomorphic ASD conformal structures (M, [g]) and three dimensional complex
manifolds PT with an embedded CP

1 ⊂ PT , with normal bundle O(1)⊕ O(1).

The essential fact is that an embedded CP
1 with the above normal bundle belongs to a

family of embedded CP
1s parameterized by a complex 4-manifold M . Vectors at x ∈ M

correspond to sections of the normal bundle of x̂ , and null vectors are given by sections
with a zero. This defines a conformal structure, because a global section of O(1)⊕O(1)
is given by (aλ + b, cλ + d) for affine coordinate λ ∈ C, (a, b, c, d) ∈ C

4, and this can
only be (0, 0) when ad − bc = 0, which is a quadratic condition. In this case there is a
zero at a single point. The conformal structure is anti-self-dual, with α-surfaces defined
by families of twistor lines through a fixed point in PT .

In this picture, the α-surfaces are obtained as follows. Let x̂ ⊂ PT be the twistor line
corresponding to a point x ∈ M . Let V ∈ Tx M be a null vector. We want to show that V
lies in a unique α-surface through x . The corresponding section of the normal bundle of
x̂ has a zero at some point p ∈ PT because V is null. The α-surface corresponds to all
the twistor lines that intersect x̂ at p. There is a two-parameter family of such lines. It
is easy to see that there is a two-parameter family of sections that vanish at p. To show
that these are tangent to a two-parameter family of lines one must blow-up PT at p and
use Kodaira theory; see [11] for details.

4.1.1. Reality conditions for split signature. In order to obtain a real split signature met-
ric from a twistor space, we must be able to distinguish a four real parameter family of
twistor lines, whose parameter space will be the four real dimensional manifold. In addi-
tion we require that given a line in this real family, the sections of the normal bundle that
point to others in the family inherit a split signature conformal structure. As described
above, a section of O(1)⊕O(1) is defined by four complex numbers (a, b, c, d), with a
quadratic form defined by ad − bc. If we restrict (a, b, c, d) to be real we obtain a real
split signature conformal structure. The sections tangent to the real family are of this
type.

The zero of such sections occurs for real λ, that is, on an equator of CP
1. The con-

formal structure is thus invariant under an anti-holomorphic involution of the CP
1 that
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has the equator fixed. A split signature real structure on PT is an anti-holomorphic
involution that leaves invariant a four real parameter family of twistor lines, and when
restricted to one of these fixes an equator.

Not all holomorphic metrics have real structures, but all the holomorphic metrics in
this paper have obvious real ‘slices’ because they are complexifications of real metrics,
obtained by letting the real coordinates be complex.

4.2. Lift of K to P S′. Now given a null conformal Killing vector for an ASD conformal
structure, the fact that M is foliated by α-surfaces (Lemma 1) is not very illuminating,
since they must already exist by anti-self-duality. The foliation by β-surfaces is more
interesting, since these do not exist generically.

In this section we will prove that in the analytic case, the space of β-surfaces inherits
a natural projective structure. We then explain how this arises geometrically, due to the
presence of α-surfaces ensured by anti-self-duality.

Let K be a null conformal Killing vector for (M, [g]). We assume K is without fixed
points, which can always be arranged by restricting M to a suitable open set.

Since K preserves the conformal structure, the corresponding diffeomorphism maps
α-surfaces to α-surfaces, and hence it induces a vector field K on PT . We now translate
this fact into a statement on the projective primed spin bundle P S′. Each α-surface has
a unique lift and these lifts foliate P S′. The following proposition shows how to lift K
to P S′, giving a vector field that is Lie-derived along the lifts of the α-surfaces.

Proposition 1. Let K = K AA′
eAA′ be a conformal Killing vector for an ASD metric g.

Define a vector field K̃ on S′ by

K̃ := K AA′
ẽAA′ + πA′φA′ B′ ∂

∂π B′ +
1

2
ηπ A′ ∂

∂π A′ . (4.3)

Then this satisfies

[K̃ , L A] = (K B B′
� D

B B′ A − ψ D
A )L D +

3

4
(eAB′η)π B′

πC ′ ∂

∂πC ′ . (4.4)

Proof. See the Appendix. �
Remark. Since K̃ is weight zero in the π A′

coordinates, it defines a vector field on P S′,
which we will also refer to as K̃ by abuse of notation. The last term on the right-hand
side of (4.4) is proportional to the Euler vector field, so does not contribute to K̃ on P S′.
Hence (4.4) shows that K̃ commutes with the twistor distribution L on P S′. The vector
field K on PT is the push-forward of K̃ to PT , which is well defined because K̃ is
Lie-derived along L.

4.3. Projective structure from a quotient. In this section we assume that [g] is analytic,
so we can complexify by analytic continuation. Thus we are now working on a local
patch of C

4, with a holomorphic conformal structure. We assume that we have restricted
to a suitable open set on the base so that all the spaces of leaves involved are non-singular
complex manifolds.

As in Sect. 2, write K = ιAoA′
eAA′ , where now eAA′ is a holomorphic tetrad and ιA,

oA′
are complex spinor fields that vary holomorphically.
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When K is null, it is easy to see that K, the induced vector field on twistor space
PT , will vanish on a hypersurface H in PT , because K fixes a two-parameter family
of α-surfaces, which are those to which it is tangent. These are the ‘special’ α-surfaces
of Lemma 1. We now explain how this is seen from the lift K̃ to P S′.

On S′, K̃ from Proposition 1 is given by:

K̃ = ιAoA′
ẽAA′ + πA′φA′ B′ ∂

∂π B′ +
1

2
ηπ A′ ∂

∂π A′ .

Now when π A′ ∝ oA′
, one has πA′φA′ B′ ∝ oB′

from (2.5), so the second term on the
RHS is proportional to the Euler vector fieldϒ = π A′ ∂

∂π A′ . The last term is everywhere

proportional to the Euler vector field. To go from S′ to P S′ one quotients S′−{0-section}
by the integral curves ofϒ . So we have shown that on the section [π A′ ] = [oA′ ] of P S′,
K̃ is the push down of ιAoA′

ẽAA′ only. But this is in L, so K̃ pushes down to the zero
vector under the quotient of P S′ by L.

So there is a (complex) hypersurface in P S′, defined by the section [π A′ ] = [oA′ ],
on which K̃ lies in the twistor distribution. One can also define this hypersurface as the
image in P S′ of the hypersurface π.o = 0 in S′, under the quotient by ϒ . We will refer
to this hypersurface as H . It is easy to see by pushing down to the base that K̃ is linearly
independent of the twistor distribution everywhere else on P S′.

Define a vector field

V = ιA L A = ιAπ A′
ẽAA′

on S′. This is weight one in the π A′
coordinates, so gives a one dimensional distribu-

tion on P S′ which restricts to O(−1) on fibres. Together with span{K̃ }, we get a two
dimensional distribution on P S′ − H . On H , the distribution drops its rank from two to
one.

The two dimensional distribution defined by {V, K̃ } on P S′ − H pushes down to the
β-plane distribution Dβ on the base.

Lemma 2. The two dimensional distribution on P S′ − H determined by {V, K̃ } is inte-
grable.

Proof. We work on S′ for convenience, and push down to P S′ at the end. The distri-
bution span{K̃ , V } on S′ is two dimensional on S′ when π A′

oA′ �= 0. Multiples of the
Euler field ϒ are therefore irrelevant:

[V, K̃ ] = [K̃ , ιC LC ]
= ιC [K̃ , LC ] + K̃ (ιB)L B

= ιC ((K B B′
� D

B B′C − ψ D
C )L D +

3

4
(eC B′η)π B′

πC ′ ∂

∂πC ′ )

+K B B′
eB B′(ιC )LC

= (K B B′∇B B′ ιC − ιDψ C
D )LC + #ϒ

= (ιBoB′∇B B′ ιC − ιDψ C
D )LC + #ϒ.

From (2.5) we have ιDψ C
D ∝ ιC , and from (2.7) we have ιBoB′∇B B′ ιC ∝ ιC . Hence

the RHS is proportional to V , ignoring the irrelevant Euler vector field part. �
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Next we will show that it is possible to continue this distribution over the hyper-
surface H so it is rank two on the whole of P S′, and that the resulting distribution
commutes on the hypersurface. It will then be possible to quotient P S′ by the leaves of
this distribution.

Lemma 3. There is a two-dimensional integrable distribution D over P S′, which on
P S′ − H is determined by {K̃ , V }. Let � be the projection P S′ → M. Then for every
p ∈ P S′, we have �∗(D |p) = Dβ .

Remark. Intuitively one can think of D as a lift of the β-surfaces to P S′, where each
β-surface has a CP

1 of lifts.

Proof. Choose a spinor ιA
′
satisfying oA′

ιA′ = 1. Define the following (singular) vector
field on S′:

W = 1

πC ′oC ′
(V − (πD′

ιD′)K̃ ). (4.5)

This is weight zero in the π A′
, so defines a vector field on P S′ by push-forward, which

we shall also call W . We will now show that W is well defined even over H ⊂ P S′,
despite the 1/(πC ′

oC ′) factor in (4.5).
Without loss of generality, choose a tetrad such that

K = ιAoA′
eAA′ = e00′ .

That is, ιA = (1, 0), oA′ = (1, 0). Define λ = π1′
/π0′

to be the coordinate on the
π0′ �= 0 patch of CP

1, and extend this to a patch of P S′; we call the patch U . Then H
lies entirely within U at λ = 0. We have the following expression for K̃ , obtained by
‘projectivizing’ (4.3):

K̃ = ẽ00′ + (φ 1′
0′ + λ(φ 1′

1′ − φ 0′
0′ ) + λ2φ 0′

1′ )
∂

∂λ

= ẽ00′ + (λ(φ 1′
1′ − φ 0′

0′ ) + λ2φ 0′
1′ )

∂

∂λ
,

where φ 1′
0′ = 0 due to (2.6).

In the above conventions, we have V = π A′
ẽ0A′ . On U ⊂ P S′, the push forward of

1
πC ′ oC ′

V is

1

λ
ẽ00′ + ẽ01′,

which is singular at H , corresponding to λ = 0. Choosing ιA
′ = (0,−1), we then obtain

the following expression for W on U :

W = 1

λ
ẽ00′ + ẽ01′ − 1

λ
K̃ = ẽ01′ − ((φ 1′

1′ − φ 0′
0′ ) + λφ 0′

1′ ))
∂

∂λ
.

This is a non-singular vector field on U . By construction, away from H this lies in
span{K̃ , Ṽ }. Define D on U to be span{K̃ ,W }. This is clearly non-degenerate every-
where on U . Note that W is also well defined over the other patch (i.e. at λ = ∞) so we
can define D as span{K̃ ,W } over the whole of P S′.
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We now want to show that D is integrable over H . We know (Lemma 2) that D is
integrable away from H . Therefore on U we have

[K̃ ,W ] = f K̃ + gW + Y,

where f, g are holomorphic functions on U and Y is a holomorphic vector field vanishing
on U − H . But such a vector field must vanish, otherwise it is not even continuous, so
is certainly not holomorphic.

The last part of the lemma is obvious, just from inspecting the coordinate expressions
of K̃ , W . �

We now have a three dimensional integrable distribution L+D. It is three dimensional
because at each point L and D have a direction in common, which is the one-dimensional
distribution defined on P S′ by the push-forward of V on S′. From Lemma 3, D is an
integrable subdistribution. Note that D consists of a CP

1 of lifts of each β-surface in
the base. If we pick a suitably convex set on the base so that the space of β-surfaces U
intersecting it is a Hausdorff complex manifold, then the quotient P S′/D will also be
a Hausdorff complex manifold. A point in this quotient is a point in U together with a
choice of lift.

In fact we can canonically identify P S′/D with PT U , the projective tangent bun-
dle of U , as follows. Using the conventions of Lemma 3, the tangent planes to the
β-surfaces in the base are spanned at each point by e00′ , e01′ . Now L1 has the form
e10′ + λe11′ + (. . .)∂λ, so at each point in the fibre above a point x ∈ M , L1 pushes down
to a different null direction transverse to the β-plane at x . Now suppose we take a lift of
a β-surface�, i.e. a leaf of D that projects down to�. Push down L1 at each point over
this lift. This will give a vector field � = e10′ + λe11′ over �, where λ is now a function
on the M .

We want to show that this determines a projective vector at the point s ∈ U cor-
responding to S. This means we require [e00′ ,�] ∝ � mod{e00′, e01′ }, [e01′,�] ∝
� mod{e00′ , e01′ }. But it is easy to show that this is satisfied, using the fact that the
distribution spanned by K̃ ,W, L1 commutes. Hence to determine the projective vector
corresponding to a leaf of D, just choose a point on the leaf and push down L1. Because
of the above considerations, this direction will be independent of the choice of point on
the leaf.

Proof of Theorem 1. Define Z as the quotient of P S′ by L∪D. Equivalently, this is the
quotient of PT by a one-dimensional distribution which on PT − H is span{K}. The
image of a CP

1 fibre of P S′ under the quotient is a twistor line in Z .
On a CP

1 fibre, the horizontal part of D defines a subbundle O⊗C
2 of the horizontal

distribution � = O ⊗ C
4, corresponding to the horizontal parts of the vectors K̃ and

W . Choosing a spinor oA such that ιAoA = 1, we can form the vector field oA L A on S′,
which pushes down to a horizontal distribution on P S′ that is always linearly indepen-
dent of D. Since the L A are weight one, this is O(−1) when restricted to a CP

1 fibre.
Because L ∪ D is integrable (Lemma 3), this distribution determines a one dimensional
distribution D� on PT U = P S′/D. The spray � of a projective structure is a section
of D� ⊗ O(1) where here O(1) is dual to the tautological line bundle over PT U . The
situation is described by the following commuting diagram:

0 → O(−1)⊕ O(−1) → O ⊗ C
4 → O(1)⊕ O(1) → 0

↓V ↓D ↓
0 → O(−1) → O ⊗ C

2 → O(1) → 0
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PS’

M

U

PTU
PT

Z

K

L

Dβ

D

DΘ

Fig. 1. Relationship between foliation spaces

where these are bundles over a CP
1 fibre of P S′. The vector field oA L A on S′ constructed

above corresponds to the O(−1) in the bottom row after quotienting by V , and gives the
projective structure spray. The bottom row is the sequence (3.5) on PT U = P S′/D,
where U is the space of β-surfaces in M . Thus there is a projective structure on U . �
Remark. The real space of β-surfaces has a system of curves that comes from the quoti-
enting operations described above but with real spaces instead of complex. These real
curves are described by the holomorphic projective structure with a reality structure.

Figure 1 illustrates the situation. Here p and q are the obvious projections. Dβ repre-
sents the β-surface distribution on M . The ̂K labelling the map from PT to Z requires
some explanation. The vector field K̃ over P S′ commutes with the twistor distribution
(Lemma 1), so determines a vector field K on PT . This vector field vanishes on a hyper-
surface H ⊂ PT , corresponding to the α-surfaces to which K is tangent; these are
the α-surfaces appearing in Lemma 1. Now K on PT only depends on K̃ modulo L.
Lemma 3 shows that we can multiply K̃ modulo L by a meromorphic function (1/λ)
and obtain a vector field W commuting with the twistor distribution. This means that
there is a one-dimensional distribution ̂K over the whole of PT that never degenerates,
and which agrees with span {K} on PT − H. The quotient of PT by this distribution
gives Z , as illustrated in the diagram.

One can rephrase this in terms of divisor line bundles. That is, there is a holomorphic
line bundle E over PT defined by the property that it has a meromorphic section ζ with
a pole of order one on H. Then ζ ⊗ K defines a non-vanishing section of E ⊗ T PT .
This is equivalent to the one dimensional distribution ̂K over PT described above. To
obtain the distribution one simply finds trivializations of E and T PT over a patch, and
expresses ζ in this trivialization. Its direction will be independent of the trivialization of
E , and defines the distribution over the patch.

4.4. Relationship of the twistor spaces. Here we discuss the relationship between the
twistor spaces without the foliation space picture. Incidence relation between various
objects in M and PT is represented by Fig. 2.

First one must understand what a β-surface corresponds to in PT . The answer is
a two-parameter family of twistor lines, each of which intersects any other at a single
point. This is because all points on a β-surface are null separated. However, unlike the
case of an α-surface, there is not just a single point of intersection of the whole family. To
construct the family, pick a point on the β-surface, say x . Then x̂ is a twistor line in PT .
Now K determines a section of the normal bundle with a zero. Twistor lines intersecting
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α

α

β
p3

p1

p2

p2

p1
p3

β

M
PT

K

Fig. 2. The α and β surfaces in M intersect along a trajectory of K which is a null geodesic. This corresponds
to a point α lying on a surface β in PT . Points p1, p2, p3 in M correspond to projective lines in PT

x̂ at this zero are on the β-surface, and correspond to those along the trajectory of K
through x . In fact this is a null geodesic, since null Killing vector fields have geodesic
integral curves. Now pick another section of the normal bundle with a zero at a different
point, such that all linear combinations of this with the section determined by K also
have a zero. The resulting two dimensional distribution in M at x is a β-plane. Doing
this for each x ∈ M gives a β-plane distribution which is integrable.

The diagram (Fig. 3) illustrates the situation. In M , a one parameter family of
β-surface is shown, each of which intersects a one parameter family of α-surfaces,
also shown. The β-surfaces correspond to a projective structure geodesic in U , shown
at the bottom left.

The β-surfaces in M correspond to surfaces in PT , as discussed above. These sur-
faces intersect at the dotted line, which corresponds to the one parameter family of

Fig. 3. Relationship between M , U , PT and Z
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α-surfaces in M . When we quotient PT by K to get Z , the surfaces become twistor
lines in Z , and the dotted line becomes a point at which the twistor lines intersect; this is
shown on the bottom right. This family of twistor lines intersecting at a point corresponds
to the geodesic of the projective structure.

5. Local Classification

The second theorem stated in the Introduction gives a local expression for any smooth
neutral signature ASD conformal structure. We now prove this theorem. In the proof we
continue to work in the holomorphic category for continuity, but all the arguments work
when the variables are real rather than complex, CP

1 is replaced by RP
1, and functions

are smooth rather than holomorphic. The smooth generalization of Theorem 1 could
perhaps be established using techniques introduced in [18]. In the proof we will often
use the following shorthand for coordinate transformations: t → F(t, x, y, z) means
define a new coordinate t̃ = F(t, x, y, z) and then relabel it t again. This avoids having
to introduce new symbols for new coordinates. We will denote partial derivatives by
subscripts, for example Fz := ∂z F .

Proof of Theorem 2. In what follows, we will use coordinates (x, y) for the two-
dimensional space of β-surfaces U . We will always work on a single patch of P S′,
with λ a standard coordinate on one patch of the CP

1 fibre. The projectivization of (4.1)
is

L0 = e00′ + λe01′ + ( f0 + λ f1 + λ2 f2 + λ3 f3)∂λ, (5.1)

L1 = e01′ + λe11′ + (A0 + λA1 + λ2 A2 + λ3 A3)∂λ, (5.2)

where the fα and Aα are functions on M derived from primed connection coefficients.
We can trivialize PT U by first choosing a two dimensional surface in M , transverse

to the β-surfaces, and trivializing P S′ over this, using the standard two patch coordi-
nates for CP

1. Then define a trivialization over the rest of P S′ by requiring constant
coordinate on each leaf of D (this will be a base dependent Möbius transformation of
any other trivialization of P S′ using a standard two patch trivialization of CP

1, since any
two standard trivializations of CP

1 are related by a Möbius transformation). This gives
a trivialization PT U ∼= U × CP

1. The special feature of this particular trivialization is
that K̃ and W will have no vertical terms, because it was defined by saying that the fibre
coordinate is constant along them.

We will use the conventions of Lemma 3, that is we choose a tetrad with K = e00′ ,
and the tangent planes to the β-surfaces are spanned by K and e01′ . Now choose a coor-
dinate system (t, x, y, z) such that K = ∂t , and a conformal factor so that K is pure
Killing. Any tetrad can then be written in these coordinates without any t dependence.
Then [e00′ , e01′ ] = 0 and we can in addition choose the z coordinate such that e01′ = ∂z .
Then we have

K̃ = ∂t ,

L0 = ∂t + λ∂z + f (x, y, z, λ)∂λ.

Note that f does not depend on t because it is composed from connection coefficients,
which do not depend on t since it does not occur in the metric. Also note that K̃ = ∂t
because L0, L1 do not contain functions of t so it commutes with both. As vector fields
on the base, ∂x and ∂y are transverse to the β-surfaces, and so are coordinates on U .
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Now we will alter the λ coordinate, using a trivialization as described above, so
that L0 has no ∂λ terms. This is achieved by a Möbius transformation, λ → (β +
δλ)/(α + γ λ), where α, β, γ, δ are functions on M . Now the new λ coordinate satisfies
K̃ (λ) = L0(λ) = 0. Therefore α, . . . , δ do not depend on t , from the first of these. This
gives the following general form:

K̃ = ∂t , (5.3)

L0 = α ∂t + β ∂z + λ(γ ∂t + δ ∂z). (5.4)

Now from Theorem 1, we know that L1 must define a projective structure on U , the
space ofβ-surfaces. In fact this can be seen directly using our coordinate choices. Clearly
U has coordinates (x, y), since the β-surfaces are spanned by (∂t , ∂z). Also, λ is a fibre
coordinate on PT U , since D is defined by constant λ. Since {L0, L1} is an integrable
distribution, one can find a non-zero function f on P S′ such that [L0, f L1] ∝ L0.
We may therefore assume we have chosen an L1 such that [L0, L1] ∝ L0. It follows
from (5.4) that the coefficients in front of the ∂x , ∂y, ∂λ terms in L1 do not depend on z.
Therefore L1 must have the following form:

L1 := J0(x, y)∂x + J1(x, y)∂y + λ(J2(x, y)∂x + J3(x, y)∂y)

+(A0(x, y) + λA1(x, y) + λ2 A2(x, y) + λ3 A3(x, y))∂λ
+(C(x, y, z) + λD(x, y, z))∂t + (E(x, y, z) + λF(x, y, z))∂z, (5.5)

where J0 J3− J1 J2 �= 0. One now observes that the ∂x , ∂y, ∂λ terms precisely correspond
to a projective structure spray on PT U . Since D is spanned by ∂t , ∂z , the quotient of L1
by D gives a projective structure.

To put the projective structure spray occurring in (5.5) into the more standard form
(3.4) (i.e. J0 = J3 = 1, J1 = J2 = 0) it is necessary to perform a Möbius transforma-
tion of λ depending on (x, y). Since this does not depend on t or z, the general form
(5.4) of L0 is unchanged by this, and we can assume that the projective structure spray
in L1 is of the form (3.4), which we shall do from now on.

We have found a general form that any {K̃ , L A} can be put into. For it to give an ASD
conformal structure, the L A must commute modulo L A. Imposing this gives equations
for the unknown functions, which will lead us to the metrics appearing in Theorem 2.

First, it is convenient to change coordinates yet again, because together with confor-
mal rescaling we can elimate three of the four functions in L0. We may assume δ �= 0
(if δ = 0 then β �= 0, in which case perform the coordinate change λ → 1/λ).

Now change coordinates by (t, x, y, z) → (t + j (x, y, z), x, y, k(x, y, z)), where
kz �= 0. A suitable choice of j and k, and conformal rescaling, simplifies L0 so that
finally

K̃ = ∂t , (5.6)

L0 = ∂t − β(x, y, z)∂z + λ∂z, (5.7)

L1 = ∂x + λ∂y + (A0(x, y) + λA1(x, y) + λ2 A2(x, y) + λ3 A3(x, y))∂λ (5.8)

+(C(x, y, z) + λD(x, y, z))∂t + (E(x, y, z) + λF(x, y, z))∂z .

One can read off a metric g ∈ [g] corresponding to the twistor distribution given
by (5.7) and (5.8) by comparing with (5.1) and (5.2) and reading off a null tetrad. One
finds that K ∧ dK = βzdx ∧ dy ∧ dz, where K = g(∂t , .). Thus the twist of the Killing
vector ∂t vanishes iff β does not depend on z. Since existence of twist is a conformally
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invariant property, the cases βz = 0 and βz �= 0 are genuinely distinct, not an artefact
of our coordinate choices. We now analyse each in turn.

Twist-free case. βz = 0. Calculating the commutator of L0 and L1 we obtain

[L0, L1] = (−β + λ)(Cz + λDz)∂t + (βx + λβy − βEz − λβFz + λEz + λ2 Fz

−(A0 + λA1 + λ2 A2 + λ3 A3))∂z . (5.9)

Since we require {L0, L1} to be integrable, this must be a multiple of L0. We deduce
that 3

[L0, L1] = (−β + λ)(Cz + λDz)L0. (5.10)

Now comparing the ∂z coefficients of (5.9) and (5.10) we get four equations, one for
each power of λ. We can solve three of them, and use L1 → L1 − C L0 which does not
change the conformal structure. This yields

L1 = ∂x + λ∂y + (A0 + λA1 + λ2 A2 + λ3 A3)∂λ

+λ(−z A3 + Q)∂t + (z(−βy + A1 + βA2 + β2 A3) + λ(z(A2 + 2βA3) + P))∂z,

(5.11)

where P and Q are arbitrary functions of (x, y) and we have eliminated one arbitrary
function by translating the z coordinate. There is one remaining equation to solve, cor-
responding to the λ0 coefficient of ∂z . This equation is as follows:

βx + ββy − A0 − βA1 − β2 A2 − β3 A3 = 0. (5.12)

The metric (1.2) in Theorem 2 corresponds to the twistor distribution given by L0, with
βz = 0, and (5.11). If β(x, y) is regarded as defining a section of PT U , then (5.12) says
that this section is tangent to lifted geodesics of the projective structure. In terms of the
base, a solution is given by a congruence of geodesics.

Twisting case. βz �= 0. We may perform a coordinate transformation z → β(x, y, z).
This does not affect the general form (5.8) of L1. Performing the coordinate change and
dividing by βz gives the following form for L0:

L0 = H(x, y, z)∂t − z∂z + λ∂z, (5.13)

where H is a non-zero arbitrary function. Calculating the commutator gives

[L0, L1] = ((−z + λ)(Cz + λDz)− (E + λF)Hz)∂t

+((−z + λ)(Ez + λFz)− (E + λF)− (A0 + λA1 + λ2 A2 + λ3 A3))∂z .

We require [L0, L1] = αL0 for some function α(x, y, z, λ), which is at most quadratic
in λ, since otherwise αL0 will contain powers of λ greater than three, and such terms
do not occur in the commutator above. We make a replacement L1 → L1 − F L0, and
analyze equations obtained from comparing coefficients of ∂z, ∂t . This puts L1 in the
form

L1 = ∂x + λ∂y + (A0 + λA1 + λ2 A2 + λ3 A3)∂λ

+(C + λD)∂t + (A0 + z A1 + z2 A2 + z3 A3)∂z,

3 In [3] the resulting equations are interpreted as a special case of a gauge theory defined on a projective
surface. A solution is called a projective Higgs pair. This also applies to the twisting case.
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where C(x, y, z), D(x, y, z), H(x, y, z) satisfy

Cz − 2zDz = −H A2 + Hy, (5.14)

Dz = −H A3, (5.15)

and

(∂x + z∂y + (A0 + z A1 + z2 A2 + z3 A3)∂z)H = 0. (5.16)

The only things remaining now are to find expressions for C and D and construct the
metric. In order to integrate Eqs. (5.14) it is convenient to express H(x, y, z) as the
second derivative of another function G(x, y, z), i.e. we set

H(x, y, z) = ∂2G

∂z2 (x, y, z).

Then Eqs. (5.14) integrate to give

C = −Gz A2 − 2A3(zGz − G) + Gzy + ρ(x, y),

D = −Gz A3 + σ(x, y),

where ρ and σ are arbitrary functions. Notice that G has a ‘gauge freedom’ G →
G + zγ (x, y) + δ(x, y), since (1.4) will still be satisfied. Using this and a coordinate
change t → t +ξ(x, y), one can set the functions ρ and σ to zero. The twistor distribution
{L0, L1} is now fully determined:

L0 = Gzz∂t − z∂z + λ∂z,

L1 = ∂x + λ∂y + (A0 + λA1 + λ2 A2 + λ3 A3)∂λ

+(−Gz A2 − 2A3(zGz − G) + Gzy)− λ(Gz A3))∂t

+(A0 + z A1 + z2 A2 + z3 A3)∂z .

The distribution is integrable iff G satisfies (1.4). Calculating the corresponding null
tetrad gives the conformal structure (1.3) in Theorem 2. �

6. Examples

6.1. Neutral Fefferman conformal metrics. If Gzz is simply a constant, then (1.4) is
satisfied. So given any projective structure and setting Gzz = 1 we obtain a family of
conformal structures with twist which reduce to the given projective structure. Solving
for G gives

G = z2

2
+ zγ (x, y) + δ(x, y).

The corresponding metric takes the form

(dt + ((z + γ )A3 + σ)dy + ((z + γ )A2 + 2A3(
z2

2
− δ)− γy + ρ)dx)(dy − zdx)

−(dz − (A0 + z A1 + z2 A2 + z3 A3)dx)dx, (6.17)
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where we have chosen not to eliminate σ and ρ. By direct calculation one can show that
the ASD Weyl tensor has Petrov-Penrose type III or N, and it is type N precisely when
the following hold:

γ A3 + σ = 1

3
A2,

γ A2 − 2A3δ − γy + ρ = 2

3
A1.

One can always choose ρ, σ, γ, δ so that these are satisfied. In this case, the metric is
the same as (31) in [20], with their Q cubic in p. These are neutral signature analogues
of Fefferman metrics.

6.2. ASD pp-waves. Notice that the metric (1.2) does not explicitly contain the func-
tion A0(x, y) of the projective structure. The metric is always ASD for any choice of
β, A1, A2, A3; one can regard (5.12) as giving A0(x, y) in terms of these functions. On
the other hand, if one wants to specify A0, then one must choose a solution of (5.12)
for β. In the special case A0 = 0, we have the solution β = 0. One then obtains the
following metric:

g = (dt + (P + z A2)dx + (Q + z A3dy))dy − (dz + z A1dx)dx . (6.18)

Different choices of function β(x, y) in (1.2) can give rise to different metrics. Sup-
pose we choose the flat projective structure. Then β(x, y) must satisfy Eq. (1.6) with
Aα = 0. By direct calculation one can show that the metric (1.2) is type III iff βyy �= 0,
otherwise it is type N. So the conformal structures with βyy = 0 and βyy �= 0 are
genuinely distinct.

6.3. Pseudo-hyper-Kähler metrics. We will find some examples of neutral ASD metrics
with null conformal Killing vectors by independent means, and interpret them using our
results. We will use Plebański’s method [23] adapted to neutral signature, which con-
verts the problem of finding Ricci-flat ASD neutral metrics, or pseudo-hyper-Kähler, to
the problem of solving a non-linear second order PDE. He showed that such metrics are
locally of the form

g = dY (dT −�X X dY −�T X d Z)− d Z(d X +�T T d Z +�T X dY ), (6.19)

where �(T, X,Y, Z) satisfies the ‘second Heavenly Equation’:

�Y T −�Z X +�T T�X X −�2
XT = 0. (6.20)

The primed connection coefficients vanish when using the tetrad indicated in (6.19), so
there is a basis of covariantly constant primed spinors oA′ = (1, 0), ιA

′ = (0,−1). There
is therefore also a basis �A′ B′

of covariantly constant null self-dual two forms, written
in spinors as follows:

�0′0′ = 1

2
ιA′ ιB′εAB θ

AA′ ∧ θ B B′
, (6.21)

�0′1′ = �1′0′ = 1

2
o(A′ ιB′)εABθ

AA′ ∧ θ B B′
, (6.22)

�1′1′ = 1

2
oA′oB′εAB θ AA′ ∧ θ B B′

. (6.23)
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Using the identification between two-forms and endomorphisms given by g, we can
write

R = �0′0′ −�1′1′
, I = �0′0 +�1′1, S = �0′1′

.

As endomorphisms, these satisfy

−I 2 = R2 = S2 = Id, I RS = Id, (6.24)

which is easy to check using their spinor forms. There is a hyperboloid’s worth of almost
complex structures, aI + bR + cS, where a2 −b2 − c2 = 1, which are parallel and hence
integrable. This is a pseudo-hyper-Kähler structure.

Now writing (A.2) using spinors by means of (2.4) and (A.1) gives

ιAoA′
CABC DεA′ B′εC ′ D′ = ∇B B′(φC ′ D′εC D + ψC DεC ′ D′ +

1

2
ηεC DεC ′ D′),

where we have used Ricci flatness and anti-self-duality. For a pure Killing vector or a
homothety (η constant), it follows that

∇AA′φB′C ′ = 0. (6.25)

Therefore φB′C ′ is actually constant in the basis shown in (6.19). Now let us suppose we
have a null Killing vector which preserves the α–plane distribution spanned by oA′

eAA′ .
Then K = ιAoA′

eAA′ , for some ιA and using (2.6) and (6.25) we get

φB′C ′ = a1 oB′oC ′ + a2 o(B′ ιC ′),

for constant a1, a2. Consider the three distinct cases: φB′C ′ vanishing (a1 = a2 = 0),
non-vanishing but degenerate (a1 �= 0, a2 = 0), and non-degenerate (a1 = 0, a2 �= 0).
For K = ∂T we get the first case, K = Y ∂X + Z∂T the second, and T ∂T + X∂X the third,
and with some effort it can be shown that these choices are canonical (the first two cases
were analysed in [8]). In order for any of these to be Killing, an equation for � coming
from the Killing equation must be satisfied. In fact we were only able to fully solve for
the first two cases.

• K = ∂T
Since ∂T has no twist we expect this to be of the form (1.2). It is a neutral signature ver-
sion of a tri-holomorphic Killing vector; i.e. it Lie-derives I, R, S. Solving the Killing
equations in conjunction with (6.20) results in the following metric:

g = dY dT − d Zd X − Q(X,Y )dY 2, (6.26)

where Q is an arbitrary function. This is simply the split-signature pp-wave metric, and
is a special case of (6.18). Here K is a self-dual Killing vector in the sense of Gibbons
et al. [1].

The local expression (6.26) in this example corresponds to a class of global neu-
tral metrics on compact four–manifolds. To see this we compactify the flat projective
space R

2 to the two–dimensional torus U = T 2 with the projective structure coming
from the flat metric. Both T and Z in (6.26) are taken to be periodic, thus leading
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to π̂ : M −→ U , the holomorphic toric fibration over a torus. Assume the suitable
periodicity on the function Q : U −→ R. This leads to a commutative diagram

M

T 2 ↓ ↘ π̂∗Q

U
Q−→ R.

This example can be put into the framework of [15] and [9], where M is regarded
as a primary Kodaira surface C

2/G and G is the fundamental group of M represented
injectively in the group of complex affine transformations of C

2. In this framework the
Kähler structure on M is given by� f lat + i∂∂(π̂∗Q), where (∂,� f lat ) is the flat Kähler
structure on the Kodaira surface induced from C

2.
• K = Y ∂X + Z∂T

Again, this is twist-free and we expect the metric to be of the form (1.2). Solving the
Killing equations in conjunction with (6.20) results in the following metric:

g = dY dT − d Zd X − H( Y
Y T −Z X ,

Z
Y T −Z X )

(Y T − Z X)3
(Y d Z − ZdY )2, (6.27)

where H is an arbitrary analytic function of two variables. This is a generalization of the
Sparling-Tod metric [24]. It is easy to show that the arguments of H are in fact constant
on the special β-surfaces, so serve as coordinates on U .

Using the following coordinate transformation:

t = −1

2

( X

Y
+

T

Z

)

,

z = (Y Z)−
1
2 ,

x = Y T − X Z

(Y Z)
1
2

,

y = log
( Z

Y

)

,

the metric (6.27) takes the following form:

g = 1

z2 (dydt − dzdx + z A3(x, y)dy2),

where now the Killing vector is ∂t . Multiplying by the conformal factor z2, we get a spe-
cial case of (6.18). The projective structure is non-trivial, unlike for the pp-wave above.
The projective structure is special in that it depends on only one arbitrary function.

• T ∂T + X∂X
In this case we were not able to fully solve the Killing equations in conjunction with
(6.20). This Killing vector is twisting, so the answer must be of the form (1.3).

6.4. Pseudo-hyper-hermitian conformal structures. This is a generalization of the
pseudo-hyper-Kähler case discussed in the last section. We will refer to a neutral metric
g as pseudo-hyper-hermitian (also called hyper-para—hermitian [12]) when there exist
endomorphisms I, R, S satisfying the algebra (6.24), such that any complex structure
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J(a,b,c) = aI + bR + cS is integrable for a2 − b2 − c2 = 1, and g is hermitian with
respect to any of these complex structures. For g to be hermitian with respect to a com-
plex structure J means g(J X,J Y ) = g(X,Y ). Note that for pseudo-hyper-Kähler, the
endomorphisms I, R, S must also be covariantly constant with respect to the Levi-Civita
connection of g.

In [5], it is shown that one can always find a tetrad for a pseudo-hyper-hermitian
metric such that the twistor distribution has no ∂λ terms. Equivalently, the twistor space
fibres over CP

1. Now let us suppose that we have a null conformal Killing that is
tri-holomorphic, i.e. it preserves I , R and S and so it preserves the holomorphic fibra-
tion PT → CP

1. All such cases are classified by the following

Proposition 2. All pseudo-hyper-hermitian ASD metrics with triholomorphic null con-
formal Killing vectors are of the form (1.2) or (1.3) up to a conformal factor, where the
corresponding ODE (1.5) is point equivalent to a derivative of a first order ODE.

Proof. Let g be a pseudo-hyper-hermitian ASD metric, and K be a triholomorphic
conformal Killing vector. Since g is ASD, it follows from Theorem 2 that there are
coordinates such that, up to a conformal factor, g is of the form (1.2) or (1.3). From [5],
it is possible to find a tetrad such that the twistor distribution has no ∂λ terms. Now a
change in tetrad corresponds to a Möbius transformation of λ. Since K is triholomor-
phic, its lift will have no ∂λ terms in the tetrad where the twistor distribution has no ∂λ
terms. Therefore the Möbius transform does not depend on t , otherwise ∂t will no longer
Lie-derive the twistor distribution (one would have to add ∂λ terms). Furthermore, the
Möbius transformation does not depend on z, otherwise ∂λ terms will be introduced into
L0. Hence there is a Möbius transformation of λ, depending only on (x, y), such that
the ∂λ terms in L1 are eliminated.

After this change in λ, the projective structure spray in L1 will be of the following
form:

� = a∂x + b∂y + λ(c∂x + e∂y),

where a, b, c, e are functions of (x, y) with ae − bc �= 0. Coordinate freedom (x, y) →
(x̂(x, y), ŷ(x, y)) and scaling freedom (the projective structure is unchanged if � is
multiplied by a non-zero function) allows us to set a = 1, c = 0, e = 1, giving
� = ∂x + (b + λ)∂y . Now perform another Möbius transformation λ → b + λ, which
gives the following spray:

∂x + λ∂y + (bx + λby)∂λ. (6.28)

This corresponds to the second-order ODE

d2 y

dx2 = A1(x, y)
(dy

dx

)

+ A0(x, y), (6.29)

where A1 = ∂b
∂y , A0 = ∂b

∂x for a function b(x, y). This is the derivative of the general
first-order ODE

dy

dx
= b(x, y). (6.30)

Hence the original projective structure is point-equivalent to the one corresponding to
(6.29). �
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Note that if a (holomorphic) projective structure spray contains no ∂λ terms, its twis-
tor space fibres over CP

1, since each integral curve can be labelled by the λ coordinate.
So a by-product of the proof of the above proposition and Theorem 3 is the following

Proposition 3. There is a one to one correspondence between holomorphic 2D pro-
jective structures s.t. the corresponding second order ODE is point equivalent to the
derivative of a first order ODE, and complex surfaces which contain a holomorphic
curve with normal bundle O(1) and fiber holomorphically over CP

1.

This is of interest purely as a statement about projective structures. Note that although
all first order ODEs can be transformed to the trivial first order ODE dy/dx = 0 by
coordinate transformation, this does not mean that the derivative of any such equation
is flat, in the sense of Sect. 3.2. This can be shown by calculating the invariant (3.7) for
(6.29) and showing that it does not necessarily vanish.

6.5. Conformal structures containing no Ricci-flat metrics. In this section we show that
there are conformal structures of the form (1.2) which do not contain Ricci-flat metrics.
Before doing so we discuss the Petrov-Penrose classification for the conformal structures
(1.2) and (1.3).

Proposition 4. Let K AA′ = ιAoA′
be a null conformal Killing vector for ASD conformal

structure. Then ιA is a principal direction, that is

ιAιB ιC ιDCABC D = 0. (6.31)

Moreover if the twist of K vanishes the conformal structure is of type I I I or N, that is

ιAιBCABC D = 0. (6.32)

Proof. From (2.5) we have

∇AA′(ιC ιDψC D) = 0.

Expanding this out we obtain

ιB ιC∇AA′ψBC = −2ψBC ι
C∇AA′ ιB = ιAµA′ , (6.33)

for some spinor µA′ . The last equality follows from (2.5) and (2.7).
Now pick a conformal frame in which K is a pure Killing vector. The well known

identity ∇a∇b Kc = Rbcad K d implies

∇ A′
AψBC = −2C D

ABC K A′
D − 2K B′

(A�
A′
BC)B′ +

1

6
RεA(B K A′

C) − 4

3
εA(B�

DD′ A′
C) K DD′ .

On contracting both sides by ιAιB ιC and using (6.33), all terms vanish except the term
involving C D

ABC , giving (6.31).
Now let us assume that K is non–twisting, i. e. K∧dK = 0, where K := g(K , ). The

Frobenius theorem implies the existence of functions P and Q such that K = Pd Q. We
can now choose a conformal factor such that dK = 0. Then K is covariantly constant
(∇a Kb = 0), and we deduce

∇AA′ ιB = AAA′ ιB, (6.34)

∇AA′oB′ = −AAA′oB′ , (6.35)
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for some one-form AAA′ . Consider the spinor Ricci identity [22]

�A′ B′oC ′ = (CA′ B′C ′ D′ − 1

12
RεD′(A′εB′)C ′)oD′

,

where �A′ B′ = ∇A(A′∇ A
B′). Substituting (6.35) into this and using CA′ B′C ′ D′ = 0 gives

oC ′∇A(A′ AA
B′) = − 1

12
Ro(A′εB′)C ′ .

By contracting with oC ′
we find R = 0. Now consider the Ricci identity

�AB ιC = (CABC D − 1

12
RεD(AεB)C )ι

D.

Substituting R = 0 and (6.34) into this gives

ιC∇A′(A AA′
B) = CABC Dι

D.

Contracting this with ιC gives (6.32), from which it follows that the curvature is type III
or N. �

In the twisting case the algebraic type of the Weyl spinor can be general. This can be
shown by using the following two scalar invariants [22]:

I = CABC DC ABC D, J = C C D
AB C E F

C D C AB
E F .

The condition for type III is I = J = 0, and for type II that I 3 = 6J 2. Now consider
the metric (1.3), with the flat projective structure Ai = 0, i = 0, . . . , 3. The function
Gzz satisfies

(∂x + z∂y)Gzz = 0,

which is solved in general when Gzz is an arbitrary function of (zx − y). Suppose G is
given by:

G(x, y, z) = ezx−y

x2 + zB(x, y),

where B(x, y) is arbitrary, so Gzz = ezx−y . Then the two scalar invariants are as follows:

I = −3

2
x Byye−3(zx−y), (6.36)

J = 3

8
x(x Byyx + 3Byy + xzByyy)e−4(zx−y). (6.37)

Therefore, from the conditions above, the metric is neither type II nor type III.
To find metrics that are not conformally Ricci-flat we use results of Szekeres [25].

Although these were derived for Lorentzian signature, they can also be applied to our
ASD neutral signature case, essentially because the Weyl curvature is still made up of
a single spinor Cabcd = CABC DεA′ B′εC ′ D′ as in the Lorentzian case (of course in the
Lorentzian case it is complex hermitian, not real).

Consider the metric (6.18) with A1 = 0. By direct calculation, one finds that CABC D
is type N iff (A2)x = 0, otherwise it is type III. Now suppose (1.2) is type III, i.e.
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(A2)x �= 0. The reason for this is that we can apply a result of Szekeres to obtain an
obstruction to Ricci-flatness. It is shown in [25] that for types I, II, D or III, a necessary
condition for existence of a Ricci-flat metric in the conformal class is the following
tensor equation:

−1

2
C pq f hC f h

rs C d
abc ;d + (C d f

pq C h
rs f ;h + C d f

rs C h
pq f ;h) = 0.

This is just the tensor version of the spinor identity (3.1), p. 209 [25]. Calculating this one
finds that (A2)xx is an obstruction to its vanishing (we used MAPLE for the calculation).
Therefore we have a class of non-conformally vacuum type III neutral ASD conformal
structures with non-twisting null conformal Killing vectors.

7. Twistor Reconstruction

We have shown that when a conformal structure [g] has a null conformal Killing vector,
the twistor space PT fibres over the twistor space of a projective structure, and we have
classified the possible local forms for such conformal structures.

The twistor lines in a projective structure twistor space Z have normal bundle O(1).
The twistor lines in a conformal structure twistor space have normal bundle O(1)⊕O(1).
Let B be a holomorphic fibre bundle over Z with one dimensional fibres. Let û be a twis-
tor line in Z . Then if we want B to be a conformal structure twistor space, the normal
bundle of û in B|û must be O(1). Given a projective structure twistor space, one way
of forming a fibre bundle with the correct property is to take a power of the canonical
bundle κ , which reduces to O(−3) on twistor lines. The bundle κ−1/3 reduces to O(1)
on twistor lines, and exists provided we take Z to be a suitably small neighbourhood of
a twistor line. So the total space of κ−1/3 is a conformal structure twistor space.

Consider the simplest possible case, where Z is the total space of O(1), correspond-
ing to a flat projective structure. In this case κ−1/3 is the total space of O(1)⊕O(1), the
twistor space of the flat conformal structure. To go further, note that given a line bundle
A over Z which reduces to O(1) on twistor lines, any affine bundle modelled on A will
also have the correct property on twistor lines. In the simplest case described above,
taking affine bundles modelled on κ−1/3 results in the the twistor space of the pp-wave
metric (6.26). In fact, this is precisely the first case discussed by Ward in [28], although
he does not phrase it in this way. We will now show how this works.

7.1. Example 1. PP-waves. First we will give a twistorial demonstration of a fact shown
in Sect. 6.3, namely that for a pseudo-hyper-Kähler metric with triholomorphic null
Killing vector K = ιAoA′

eAA′ with oA′
covariantly constant, the resulting projective

structure is flat. The twistor space of an analytic pseudo-hyper-Kähler metric fibres over
CP

1, σ : PT → CP
1 [21, 11]. There is a section� of�2PT ×σ ∗O(2). This is a sym-

plectic form of ‘degree 2’ on the fibres. In the spin bundle picture,� is the push forward
to PT of the symplectic form � = �A′ B′

πA′πB′ on S′, where �A′ B′
are defined as in

Sect. 6.3. This form is Lie-derived over the twistor distribution as a consequence of the
�A′ B′

being covariantly constant, and is homogeneous in the πA′ , so the push-forward
is well defined.

As explained in Sect. 4, K vanishes on a hypersurface H in PT , where H is the
projection to PT of the hypersurface π.o = 0 in S′. For oA′

covariantly constant, the
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function 1/(π.o) on S′ gives a section ζ of σ ∗O(−1) on PT , which blows up on H. Then
ζ ⊗ K is a non-vanishing ‘σ ∗O(1)-valued’ vector field. Now in a local trivialization,
ζ ⊗ K Lie derives the symplectic form � , so it is Hamiltonian,

ζ ⊗ K = ∂h

∂ωA

∂

∂ωA
,

where � = ω0 ∧ ω1. Now the ωA should be regarded as coordinates of ‘degree 1’,
that is they are coordinate functions multiplied by a section of σ ∗O(1). Therefore for
the weights to agree, h must be a section of κ∗O(1), rather than a bona fide function.
This gives a projection PT → Z = O(1), with fibres the trajectories of ζ ⊗ K, so the
projective structure twistor space is the total space of O(1), which corresponds to the
flat projective structure.

Now suppose we start with the total space of O(1) as the minitwistor space Z . The
twistor lines are global holomorphic sections of O(1) → CP

1.
We will use a homogeneous coordinate description of Z = O(1). Let πA′ be homo-

geneous coordinates for the base CP
1 of Z = O(1), and let ω be a homogeneous

coordinate for the fibre of Z = O(1). That is, O(1) = {[π0′, π1′ , ω] : [cπ0′ , cπ1′ , cω],
c ∈ C

∗, [π0′ , π1′ ] �= [0, 0]}.
Now cover the base CP

1 in PT with two open sets (U0,U1), and lift this covering
to PT . Use homogeneous coordinates (πA′ , ω, ζi ) on Ui .

The flat twistor space O(1)⊕O(1) can be formed as follows. Consider the projection
τ : O(1) → CP

1. Then O(1)⊕O(1) is the pull-back bundle τ ∗O(1) over the total space
of O(1). It is easy to check that this is the same as taking κ−1/3, where κ is the canonical
bundle of Z = O(1). To obtain curved twistor spaces, we can take affine bundles over
O(1) modelled on τ ∗O(1). To form these we use the following transition functions:

ζ0 = ζ1 + f (πA′ , ω),

where f ∈ [ f ] ∈ H1(Z , τ ∗O(1)), where Z is O(1). The cohomology elements f
classify affine bundles over Z modelled on τ ∗O(1).

Global holomorphic sections of Z → CP
1 are defined by ω = P(πA′) = πA′ x A′

,
with x A′ = (X,Y ) say.

The sections of PT → CP
1 are constructed by putting ζi = πA′ t A′

+ fi , where
t A′ = −(T, Z) say, and f = f0 − f1. The reason f can be split in this way is that
when restricted to a twistor line in Z , f becomes an element of H1(CP

1,O(1)), and
this group vanishes. To realise a splitting of f we divide it by (πA′oA′

)2 for some
constant oA′

, to get an element of H1(Z , τ ∗O(−1)). Then we can use the fact that
H0(CP

1,O(−1)) = H1(CP
1,O(−1)) = 0, so any element can be written as a differ-

ence of coboundaries, and the splitting is unique. These sections are the CP
1 twistor

lines in PT ; we will refer to these as x̂ , where x is the point in M with coordinates
(t A′

, x A′
).

Let ρA′ be homogeneous coordinates on CP
1. The splitting is given by the Sparling

formula:

f (π, P)

(π.o)2
=

∮

�0

f (ρ, P)

(ρ.o)2π.ρ
ρ.dρ −

∮

�1

f (ρ, P)

(ρ.o)2π.ρ
ρdρ,

where we are using Cauchy’s integral formula, and �i ⊂ x̂ ∼= CP
1 are contours that

bound a region containing the point ρA′ = πA′ . The measure ρ.dρ means εA′ B′ρA′
dρB′

.
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Therefore

fi =
∮

�i

(π.o)2

(ρ.o)2
f (ρ, P)

π.ρ
ρ.dρ.

The symplectic form� discussed above is given by by� = dω∧dζi on Ui . Restricting
� to a section and taking exterior derivatives keeping πA′ constant, we obtain a formula
for �, the pull-back of � to S′:

� = d(πA′ x A′
) ∧ d(πB′ t B′

+ f0)

= πA′πB′dx A′ ∧ dt B′
+ πA′dx A′ ∧ d f0,

where we are working over U0. Now

d f0 = dx B′ ⊗ ∂

∂x B′

∮

�0

(π.o)2

(ρ.o)2
f (ρ, ρA′ x A′

)

π.ρ
ρ.dρ

= dx B′
∮

�0

ρ′
B(π.o)

2

(ρ.o)2(π.ρ)

∂ f

∂P
ρ.dρ,

where we have used ∂

∂x A′ → ρA′ ∂
∂P . Using this we get

� = πA′πB′dx A′ ∧ dt B′
+

(

∮

�0

πA′ρB′(o.π)2

(o.π)2(π.ρ)

∂ f

∂P
ρ.dρ

)

dx A′ ∧ dx B′

= πA′πB′dx A′ ∧ dt B′
+

1

2

(

∮

�0

(o.π)2

(o.ρ)2
∂ f

∂P
ρ.dρ

)

dY ∧ d X

= πA′πB′dx A′ ∧ dt B′
+ (o.π)2 Q(X,Y )dY ∧ d X,

where

Q(X,Y ) = 1

2

∮

�0

1

(o.ρ)2
∂ f

∂P
ρ.dρ.

Putting oA′ = (1, 0), we get the following formula for � pulled back to M × C
2:

�=π2
0′(dT ∧ d X+Q(X,Y )dY ∧ d X)+π0′π1′(dT ∧ dY − d X ∧ d Z)+π2

1′d Z ∧ dY.
(7.1)

Calculating � in the Plebanski formalism from (6.21), (6.22) and (6.23) gives

� = π2
0′(dT −�X X dY −�T X d Z) ∧ (d X +�T T d Z +�T X dY ) +

π0′π1′(dT ∧ dY − d X ∧ d Z) + π2
1′d Z ∧ dY.

Comparing gives the forms �A′ B′
and hence the metric (6.26). The arbitrary function

Q corresponds to some arbitrary cohomology element f .
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7.2. Example 2. Flat conformal structure. Here we show that given a conformal Killing
vector for the flat conformal structure, the underlying projective structure is also flat. By
the results of [26], we need only consider the conformal Killing vectors ∂T (non-twisting)
and T ∂T + X∂X (twisting), where the flat metric is

g = dT dY − d Xd Z .

The non-twisting case is covered by the example of the last section, with Q(X,Y ) = 0,
so we know the projective structure is flat and Z = O(1).

The twisting case is slightly more complicated. One can use the spray picture, but
instead we will analyse the twistor space PT and show that the space of trajectories
of K is the flat projective structure twistor space CP

2. We work on the non–projective
twistor space T = C

4 with coordinates (ωA, πA′). The projective twistor space PT is
a quotient of T , and the Euler homogeneity vector field ϒ = ωA/∂ωA +πA′/∂πA′ . The
flat conformal class on the complexified R

2,2 and the conformal twisting Killing vector
are represented by

g = εABdpBdq A, K = pA ∂

∂pA
,

where x AA′ := pAoA′
+ q AιA

′
are coordinates on M . The point (pA, q A) corresponds

to a two–plane in T given by solutions to the twistor equation ωA = x AA′
πA′ . The lift

of K to S′ is

K̃ = K + π1′
∂

∂π1′
,

and the orbits of the induced group action on the non–projective twistor space are

ωA → cωA, π1′ −→ cπ1′ , π0′ −→ π0′ .

The holomorphic vector field on T

K = ωA ∂

∂ωA
+ π1′

∂

∂π1′
,

vanishes on the projective twistor space when it is proportional to the Euler vector field.
This happens on a set B = {{ωA = 0, π1′ = 0} ∪ {π0′ = 0}} ⊂ T which is a union of
the line and a hyperplane C

3 ⊂ T . The set B descends to a union of a hypersurface and
a point in the projective twistor space (Fig. 4). The minitwistor space Z corresponding
to the projective structure U is the factor space of PT /B by the trajectories of K. Each
trajectory in T is parametrised by its intersection with the singular surface C

3 given
by π · o = 0 in T so the space of trajectories in PT is Z = CP

2. Two CP
1s in CP

2

intersect in a point so the normal bundle of each CP
1 is O(1) and we have a projective

structure. To obtain the explicit parametrisation of these CP
1s eliminate π0′ from the

twistor equation to get π1′ = ωAu A, where, u A := pA/(pBq B) parametrise the twistor
lines in Z and are coordinates on U . The flat metric in M is conformal to (1.3) with
Aα,G = z2/2 and conformal factor et .
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π

π

ωA

0í

1’

K

CP1

PTT=C
4

0 ι

Fig. 4. Quotient of the non–projective twistor space by the Euler vector field showing the singular set of K

8. Outlook

We have locally classified neutral signature ASD conformal structures with null Killing
vectors. Some of these are defined on compact manifolds. It would be interesting to
investigate the global properties of other conformal structures we have found.

It would also be interesting to understand in more detail which conformal structures
admit special types of metric, for example Ricci-flat or Einstein (in this case the pure
Killing vectors must be twist–free [14]). So far the only results we have in this direc-
tion are given in Sect. 6.5. The existence of these special metrics should be related to
invariants of the corresponding projective structure.

The recent work of Calderbank [3] extended many of the results obtained in this paper.
In particular Calderbank gave a twistor characterisation of ASD conformal structures
which admit a geodesic shear free congruence ιA. Not all such congruences give rise to
null conformal Killing vectors K such that ιA K AA′ = 0, and Calderbank characterised
those which do.

Acknowledgements. We wish to thank Helga Baum, David Calderbank, Claude LeBrun, Lionel Mason, George
Sparling and Paul Tod for helpful discussions. S.W. thanks the EPSRC for financial support.

A. Appendix

Here we summarise the required spinor notation and present the calculations leading
to a proof of (4.3). We use similar conventions to Penrose and Rindler [22] adapted to
neutral signature, but our indices are concrete.

Spin connection and curvature decomposition. As usual, we denote the Levi-Civita con-
nection of the metric by ∇. The ‘spin connection coefficients’ are defined by

∇(eCC ′) = θDD′ ⊗ (� E
DD′C eEC ′ + � E ′

DD′C ′ eC E ′),

together with the symmetry requirement �DD′C E = �DD′ EC , �DD′C ′ E ′ = �DD′ E ′C ′ .
These conventions result in the following expressions for differentiation of spinor com-
ponents, where ιA is a two-component spinor field over the manifold:

∇B B′ ιA = eB B′(ιA) + � A
B B′C ι

C ,

∇B B′ ιA = eB B′(ιA)− � C
B B′ A ιC ,
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and similarly for a primed spinor field. These are the concrete expressions for the covar-
iant differentiation of spinors using the connections on S and S′ inherited from the
Levi-Civita connection, mentioned in Sect. 2.1. One can extend the above expressions
to multi-component objects in the obvious way, allowing covariant differentiation of
tensors, which agrees with covariant differentiation using the Levi-Civita connection.

The Riemann tensor has the following spinor decomposition ([22], p. 236):

Rabcd = CABC DεA′ B′εC ′ D′ + C̃A′ B′C ′ D′εABεC D

+�ABC ′ D′εA′ B′εC D +�A′ B′C DεABεC ′ D′

+2�(εACεBCεA′C ′εB′ D′ − εADεBCεA′ D′εB′C ′). (A.1)

The Weyl spinors CABC D, C̃A′ B′C ′ D′ are completely symmetric, and the traceless Ricci
tensor �ABC ′ D′ is symmetric on each pair of indices. The C, C̃ spinors make up the
self-dual and anti-self dual parts of the Weyl tensor. In the language of representation
theory, this is the decomposition of Rabcd into irrreducible representations under the
action of SL(2,R)× SL(2,R) (with R replaced by C for the holomorphic case).

Note that in + + −−, spinor components are real. For analytic metrics, we can ana-
lytically continue, which amounts to allowing the spinors to be complex. The remaining
calculations in this appendix are valid in both cases.

Integrability of α and β surfaces. We now show that (2.7) and (2.8) are equivalent to the
fact that the two-plane distributions defined by oA′

and ιA are integrable. The leaves are
called α-surfaces and β-surfaces respectively. The argument is well-known in twistor
theory. We will do the calculation for the oA′

case; the ιA case is identitical.
Let X = αAoA′

eAA′ , Y = β AoA′
eAA′ be vector fields, which by definition are in the

α-planes determined by oA′
. Then if they commute we have:

[X,Y ]AA′ = ( f αA + gβA)oA′ ,

for some functions f, g. Multiplying by oA′
gives

oA′ [X,Y ]AA′ = oA′
(X B B′∇B B′YAA′ − Y B B′∇B B′ X AA′) = 0.

Substituting the spinor expressions for X AA′
and Y AA′

results in

oA′
oB′∇B B′oA′ = 0,

which is (2.8), and it is easy to show this is sufficient as well as necessary.

Twistor distribution and ASD. Locally, the primed spin bundle S′ is isomorphic to M×C
2.

We choose the coordinates on the C
2 to be π A′

for A′ = 0, 1. This vector bundle has
a connection inherited from the Levi-Civita connection of the metric, and therefore we
can find the horizonal lifts ẽAA′ of the eAA′ , defined by covariantly constant sections.
These lifts are as follows:

ẽAA′ = eAA′ − � C ′
AA′ B′ π B′ ∂

∂πC ′ .

Using the following formula ([22], p. 247) relating curvature quantities to the deriv-
atives of � D′

AA′C ′ : and the spinor decomposition of the curvature (A.1) we find

[π A′
ẽAA′ , π B′

ẽB B′ ] = (� D
AA′ B − � D

B A′ A )π
A′
π B′

ẽDB′

+π A′
π B′

εABε
F ′ Q′

C̃A′ B′ E ′ Q′π E ′ ∂

∂π F ′ .
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One can see from this that if C̃A′ B′C ′ D′ = 0 then π A′
ẽAA′ , A = 0, 1, forms an integrable

distribution. The projection of a leaf of this distribution to M gives an α-surface. We
have demonstrated that if the metric is anti-self-dual, then given any point p ∈ M and
an α-plane at p, there is a unique α-surface through p tangent to this α-plane . This was
first shown by Penrose [21], although without using the primed spin bundle. For our
purposes the above formulation will be most useful.

Proof of Proposition 1. We have the following identity:

K a Rabcd = ∇b∇c Kd − 1

2
(η,bgcd − η,cgbd + η,d gbc), (A.2)

where η is the conformal factor appearing in (2.4). Using the curvature decomposition
(A.1) to convert this into spinor form, one can calculate

[K AA′
ẽAA′ , π B′

ẽB B′ ] = (K AA′
� D

AA′ B − ψ D
B )L D

−π B′
(φ A′

B′ ε A
B +

1

2
ηε A′

B′ ε A
B ) ẽAA′

+π B′
π E ′(

eB B′φ F ′
E ′ − � G ′

B B′ E ′ φ F ′
G ′ + � F ′

B B′G ′ φ G ′
E ′

−1

4
(eB E ′η)εF ′

B′
) ∂

∂π F ′ . (A.3)

We wish to add a vertical term to K AA′
ẽAA′ which will cancel all the non-L A terms

on the RHS of (A.3). We don’t mind multiples of the Euler vector field since this gets
quotiented out on projectivizing. A simple calculation shows that K̃ as defined in (4.4)
does the trick. �
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