Mathematical Tripos Part II - C Course

Further Complex Methods, Examples sheet 1

Lent term 2014 Dr Maciej Dunajski

Comments and corrections: e-mail to m.dunajski@damtp.cam.ac.uk.

(i)
$$\int_0^\infty \frac{dx}{(x^2+1)^2(x^2+4)} = \frac{\pi}{18} ;$$

(ii)
$$\int_{-\infty}^\infty \frac{\cos x \, dx}{x^2+a^2} = \frac{\pi}{a} e^{-a} \quad \text{where } a > 0 ;$$

(iii)
$$\int_{-\infty}^\infty \frac{x-\sin x}{x^3} \, dx = \frac{\pi}{2} ;$$

2 Write down the range of values of α (real) or β (complex) for which the following integrals converge.

(i)
$$\int_{\gamma} e^{z^2} dz \quad \text{where} \quad \{\gamma : z = se^{i\alpha} , -\infty < s < \infty\}$$

(ii)
$$\int_{\gamma} e^{1/z} dz \quad \text{where} \quad \{\gamma : z = se^{i\alpha}, 0 \le s \le 1\}$$

(iii)
$$\int_{0}^{\infty} \frac{x^{\beta} dx}{1+x}$$

(iv)
$$\int_{\gamma} (1 + \tanh z) dz, \quad \text{where} \quad \{\gamma : z = se^{i\alpha}, 0 \le s < \infty\}$$

3 Let f(t) be analytic at t = 0 with f(0) = 0 and $f'(0) \neq 0$. Let C be a circle centred on the origin, with interior D, such that f is analytic in D and the inverse of f exists on f(D).

For a fixed point z within C, let w = f(z). Assuming that w is small, show (using the residue theorem) that

$$z = \frac{1}{2\pi i} \int_C \frac{tf'(t)}{f(t) - w} dt,$$

and hence that $z = \sum_{n=1}^{\infty} b_n w^n$, where

$$b_n = \frac{1}{2\pi i} \int_C \frac{tf'(t)}{(f(t))^{n+1}} dt = \frac{1}{2\pi i n} \int_C \frac{1}{(f(t))^n} dt = \frac{1}{n!} \lim_{t \to 0} \frac{d^{n-1}}{dt^{n-1}} \left(\frac{t}{f(t)}\right)^n.$$

Show that the equation $w = ze^{-z}$ has a solution, for sufficiently small w (how small?),

$$z = \sum_{n=1}^{\infty} \frac{n^{n-1}}{n!} w^n$$

Find also one solution of the equation $w = 2z - z^2$.

4 Let $\phi(x, y)$ be a harmonic function. Show that ϕ is the real part of any analytic function f(z) of the form

$$f(z) = 2\phi((z+1)/2, (z-1)/2i) - \phi(1,0) + ic$$

where c is a real constant (provided ϕ is such that the right hand side exists). Use this formula to find analytic functions whose real parts are (i) $x/(x^2 + y^2)$ and (ii) $\tan^{-1} y/x$.

5 Let $f_1(z)$ be the branch of $(z^2 - 1)^{\frac{1}{2}}$ defined by branch cuts in the z-plane along the real axis from -1 to $-\infty$ and from 1 to ∞ , with $f_1(z)$ real and positive just above the latter cut. Let $f_2(z)$ be the branch of $(z^2 - 1)^{\frac{1}{2}}$ defined by a cut along the real axis from -1 to +1, with $f_2(x)$ real and positive for (x - 1) real and positive. Show that $f_1(z) = f_1(-z)$ but $f_2(z) = -f_2(-z)$.

6 Let P(z) be a polynomial of degree n, with n simple roots, none of which lie on a simple close contour L. Show that

$$\frac{1}{2\pi i} \int_{L} \frac{P'(z)}{P(z)} dz = \text{number of roots lying within } L.$$

7 By integrating the function

$$\frac{(\ln z)^2}{z^2 + 1}$$

around an appropriate contour, compute the following integrals:

$$\int_0^\infty \frac{(\ln x)^m}{x^2 + 1} dx, \quad m = 1, 2.$$

8 Evaluate

$$\int_0^\infty \frac{x^{m-1}}{x^2 + 1} dx, \quad 0 < m < 2.$$

Why is it necessary for m to satisfy the above restrictions?