Further Complex Methods, Examples sheet 3

Dr Maciej Dunajski

Comments and corrections: e-mail to m.dunajski@damtp.cam.ac.uk.

1 Let $\omega_{m,n} = m\omega_1 + n\omega_2$, where (m,n) are integers not both zero, and let

$$\mathcal{P}(z) = \frac{1}{z^2} + \sum_{m,n}^{\infty} \frac{1}{(z - \omega_{m,n})^2} - \frac{1}{\omega_{m,n}^2}$$

be the Weierstrass elliptic function with periods (ω_1, ω_2) such that ω_1/ω_2 is not real. Show that, in a neighbourhood of z = 0,

$$\mathcal{P}(z) = \frac{1}{z^2} + \frac{1}{20}g_2z^2 + \frac{1}{28}g_3z^4 + O(z^6)$$

where

$$g_2 = 60 \sum_{m,n} (\omega_{m,n})^{-4}, \quad g_3 = 140 \sum_{m,n} (\omega_{m,n})^{-6}.$$

Deduce that \mathcal{P} satisfies a 1st order nonlinear ODE

$$(\mathcal{P}')^2 = 4\mathcal{P}^3 - g_2\mathcal{P} - g_3.$$

2 By using a contour consisting of the boundary of a quadrant, indented at the origin, show that (for a range of z to be stated)

$$\int_0^\infty t^{z-1}e^{-it}\,dt = e^{-\frac{1}{2}\pi iz}\Gamma(z).$$

Hence evaluate (again, for ranges of z to be stated)

$$\int_0^\infty t^{z-1}\cos t\,dt \quad \text{ and } \quad \int_0^\infty t^{z-1}\sin t\,dt.$$

Use your results to evaluate $\int_0^\infty \frac{\cos t}{t^{1/2}} dt$, $\int_0^\infty \frac{\sin t}{t} dt$ and $\int_0^\infty \frac{\sin t}{t^{3/2}} dt$.

3 Derive the formula $B(p,q) = 2 \int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta \ d\theta$ and prove that

$$B(z, z) = 2^{1-2z}B(z, \frac{1}{2}).$$

For which values of z does this result hold?

4 Show, using properties of the B function, that

$$\int_0^1 \frac{dx}{\sqrt{1-x^4}} = \frac{1}{\sqrt{32\pi}} \left(\Gamma(\frac{1}{4})\right)^2$$

Using the change of variable $x = t(2 - t^2)^{-\frac{1}{2}}$, deduce that

$$K(\frac{1}{\sqrt{2}}) = \frac{4}{\sqrt{\pi}} \left(\Gamma(\frac{5}{4})\right)^2$$

where K(k) is the complete elliptic integral $\int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}$.

5 By using the infinite product representation of the Gamma function (Weierstrass canonical product), prove that

$$\frac{2^{2z}\Gamma(z)\Gamma(z+\frac{1}{2})}{\Gamma(2z)}$$

is a constant independent of z. Then, by letting $z \to 0$ evaluate the relevant constant and thus establish the following identity:

$$2^{2z-1}\Gamma(z)\Gamma(z+\frac{1}{2})=\sqrt{\pi}\Gamma(2z).$$

Furthermore, show that for m = 1, 2, 3, ..., the following identity is valid:

$$\Gamma(z)\Gamma(z+\frac{1}{m})\Gamma(z+\frac{2}{m})\dots\Gamma(z+\frac{m-1}{m})=m^{\frac{1}{2}-mz}(2\pi)^{\frac{m-1}{2}}\Gamma(mz).$$

6 Using $t = s\tau$, s > 0, it follows that

$$\frac{\Gamma(z)}{s^z} = \int_0^\infty e^{-s\tau} \tau^{z-1} d\tau.$$

Letting z = 1 and integrating the resulting formula with respect to s from 1 to t, show that

$$\ln t = \int_0^\infty \left(e^{-\tau} - e^{-t\tau} \right) \frac{d\tau}{\tau}.$$

Using this formula in the expression for $\Gamma'(z)$, prove that

$$\frac{\Gamma'(z)}{\Gamma(z)} = \int_0^\infty \left(e^{-\tau} - \frac{1}{(1+\tau)^z} \right) \frac{d\tau}{\tau}.$$

Hence, deduce that

$$\gamma = -\int_0^\infty \left(e^{-\tau} - \frac{1}{1+\tau} \right) \frac{d\tau}{\tau} \ .$$

7 Starting with the infinite product representation of the Gamma function and using the definition of γ , derive Euler's product representation, i.e.

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! \ n^z}{z(1+z)(2+z)\dots(n+z)} \ .$$

8 (a) Prove that for Rez > 1,

$$\frac{1}{\Gamma(z)} \int_0^\infty \frac{t^{z-1}}{e^t-1} \ dt = \frac{\Gamma(1-z)}{2i\pi} \int_\gamma \frac{t^{z-1}}{e^{-t}-1} \ dt,$$

where γ denotes the Hankel contour. Hence, deduce that the RHS of the above equation provides the analytic continuation of Riemann's zeta function.

(b) The Bernoulli numbers B_n are defined by

$$\frac{1}{e^t - 1} = \sum_{m=0}^{\infty} B_m \frac{t^{m-1}}{m!},$$

and $B_0 = 1$, $B_1 = \frac{1}{2}$, $B_{2m+1} = 0$ for $m = 1, 2, \dots$

Use (a) and the residue theorem to compute $\zeta(-n)$, $n = 0, 1, 2, \ldots$ in terms of B_n . Hence, deduce that the negative even integers are zeros of $\zeta(z)$.

9 Show that

$$E_1(k) = \int_k^\infty \frac{e^{-t}}{t} dt = -\gamma - \ln k + k - \frac{k^2}{4} + O(k^3), \quad k \to 0^+.$$

Hint:

$$E_1(k) = \int_k^\infty \frac{dt}{t(t+1)} + \int_0^\infty \left(e^{-t} - \frac{1}{t+1} \right) \frac{dt}{t} - \int_0^k \left(e^{-t} - \frac{1}{t+1} \right) \frac{dt}{t}.$$