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1 Let wy,n = mwi + nwe, where (m,n) are integers not both zero, and let
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be the Weierstrass elliptic function with periods (wy,ws) such that w;/wy is not real. Show
that, in a neighbourhood of z = 0,
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where

g2 = 60 Z(wm,n)%, g3 = 140 Z(wmm)*(ﬁ.
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Deduce that P satisfies a 1st order nonlinear ODE

(P")? = 4P? — goaP — g3.

2 By using a contour consisting of the boundary of a quadrant, indented at the origin,
show that (for a range of z to be stated)
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Hence evaluate (again, for ranges of z to be stated)
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Use your results to evaluate / —=dt, / —— dt and / ——=dt.
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3 Derive the formula B(p,q) = 2 fog sin??~1 @ cos?4=1 6 df and prove that
B(z, z) = 21 7%*B(z, 3).
For which values of z does this result hold?

4  Show, using properties of the B function, that
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Using the change of variable x = ¢(2 — t2)_%, deduce that
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where K(k) is the complete elliptic integral /
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5 By using the infinite product representation of the Gamma function (Weierstrass canon-
ical product), prove that
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is a constant independent of z. Then, by letting z — 0 evaluate the relevant constant and
thus establish the following identity:

1
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Furthermore, show that for m = 1,2, 3, ..., the following identity is valid:
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6 Using t = s7, s > 0, it follows that

F(Z) — /OO eisTTZ71dT.
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Letting z = 1 and integrating the resulting formula with respect to s from 1 to ¢, show that
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Using this formula in the expression for I(z), prove that
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7  Starting with the infinite product representation of the Gamma function and using the
definition of «y, derive Euler’s product representation, i.e.

Hence, deduce that
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8 (a) Prove that for Rez > 1,
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where v denotes the Hankel contour. Hence, deduce that the RHS of the above equation
provides the analytic continuation of Riemann’s zeta function.
(b) The Bernoulli numbers B,, are defined by

1 o0 tmfl
et —1 :n;)Bm m!’

and Bp =1, B; = %, Bopr1=0form=1,2,....
Use (a) and the residue theorem to compute ((—n), n = 0,1,2,... in terms of B,,. Hence,
deduce that the negative even integers are zeros of ((z).

9 Show that
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Hint:



