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Introduction

Integrable systems are nonlinear differential equations which ‘in principle’ can be solved analyt-
ically. This means that the solution can be reduced to a finite number of algebraic operations
and integrations. Such systems are very rare - most nonlinear differential equations admit
chaotic behaviour and no explicit solutions can be written down. Integrable systems never-
theless lead to a very interesting mathematics ranging from differential geometry and complex
analysis to quantum field theory and fluid dynamics. The main reference for the course is [6].
There are other books which cover particular topics treated in the course:

• Integrability of ODEs [4] (Hamiltonian formalism, Arnold–Liouville theorem, action–
angle variables). The integrability of ordinary differential equations is a fairly clear con-
cept (i.e. it can be defined) based on existence of sufficiently many well behaved first
integrals, or (as a physicist would put it) constant of motions.

• Integrability of PDEs [15], [5](Solitons, Inverse Scattering Transform). The universally
accepted definition of integrability does not exist in this case. The phase space is infinite
dimensional but having ‘infinitely many’ first integrals may not be enough - we could
have missed every second one. Here one focuses on properties of solutions and solutions
generation techniques. We shall study solitons - solitary non-linear waves which preserve
their shape (and other characteristics) in the evolution. These soliton solutions will be
constructed by means of an inverse problem: recovering a potential from the scattering
data.

• Lie symmetries [9], [16] (Group invariant solutions, vector fields, symmetry reduction,
Painlevé equations). The powerful symmetry methods can be applied to ODEs and
PDEs alike. In case of ODEs a knowledge of sufficiently large symmetry group allows a
construction of the most general solution. For PDEs the knowledge of symmetries is not
sufficient to construct the most general solution, but it can be used to find new solutions
from given ones and to reduce PDEs to more tractable ODEs. The PDEs integrable by
inverse problems reduce to equations with Painlevé property.
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Chapter 1

Integrability in classical mechanics

In this Chapter we shall introduce the integrability of ordinary differential equations. It is a
fairly clear concept based on existence of sufficiently many well behaved first integrals.

1.1 Hamiltonian formalism

Motion of a system with n degrees of freedom is described by a trajectory in a 2n dimensional
phase space M (locally think of an open set in R

2n but globally it can be topologically non-trivial
manifold - e.g. a sphere or a torus. See Appendix A) with local coordinates

(pj, qj), j = 1, 2, . . . , n.

The dynamical variables are functions f : M ×R −→ R, so that f = f(p, q, t) where t is called
‘time’. Let f, g : M × R −→ R. Define a Poisson bracket of f, g to be a function

{f, g} :=

n∑

k=1

∂f

∂qk

∂g

∂pk

− ∂f

∂pk

∂g

∂qk

. (1.1)

It satisfies
{f, g} = −{g, f}, {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0.

The second property is called the Jacobi identity. The coordinate functions (pj, qj) satisfy the
canonical commutation relations

{pj, pk} = 0, {qj, qk} = 0, {qj, pk} = δjk.

Given a Hamiltonian H = H(p, q, t) (usually H(p, q)) the dynamics is determined by

df

dt
=

∂f

∂t
+ {f,H}, for any f = f(p, q, t).

Setting f = pj or f = qj yields Hamilton’s equations of motion

ṗj = −∂H

∂qj

, q̇j =
∂H

∂pj

. (1.2)
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The system (1.2) of 2n ODEs is deterministic in a sense that (pj(t), qj(t)) are uniquely deter-
mined by 2n initial conditions (pj(0), qj(0)). Equations (1.2) also imply that volume elements
in phase space are conserved. This system is essentially equivalent to Newton’s equations of
motion. The Hamiltonian formulation allows a more geometric insight to classical mechanics.
It is also the starting point to quantisation.

Definition 1.1.1 A function f = f(pj, qj, t) which satisfies ḟ = 0 when equations (1.2) hold is
called a first integral or a constant of motion. Equivalently,

f(p(t), q(t), t) = const

if p(t), q(t) are solutions of (1.2).

In general the system (1.2) will be solvable if it admits ‘sufficiently many’ first integrals and the
reduction of order can be applied. This is because any first integral eliminates one equation.

• Example. Consider a system with one degree of freedom with M = R
2 and the Hamil-

tonian

H(p, q) =
1

2
p2 + V (q).

Hamilton’s equations (1.2) give

q̇ = p, ṗ = −dV

dq
.

The Hamiltonian itself is a first integral as {H,H} = 0. Thus

1

2
p2 + V (q) = E

where E is a constant called energy. Now

q̇ = p, p = ±
√

2(E − V (q)

and one integration gives a solution in the implicit form

t = ±
∫

dq√
2(E − V (q))

.

The explicit solution could be found if we can perform the integral on the RHS and invert
the relation t = t(q) to find q(t). These two steps are not always possible to take but
nevertheless we would certainly regard this system as integrable.

It is useful to adopt a more geometric approach. Assume that a first integral f does not
explicitly depend on time, and that it defines a hypersurface f(p, q) = const in M (Figure.1.1).
Two hypersurfaces corresponding to two independent first integrals generically intersect in a
surface of co–dimension 2 in M . In general the trajectory lies on a surface of dimension 2n−L
where L is the number of independent first integrals. If L = 2n − 1 this surface is a curve - a
solution to (1.2).
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Figure 1.1: Level surface

M

f(p, q)= constant

How to find first integrals? Given two first integrals which do not explicitly depend on
time their Poisson bracket will also be a first integral if it is not zero. This follows from
the Jacobi identity and the fact all first integrals Poisson commute with the Hamiltonian.
More generally, the Noether theorem gives some first integrals (they correspond to symmetries
Hamilton’s equation (1.2) may possess e.g. time translation, rotations) but not enough. The
difficulty with finding the first integrals has deep significance. For assume we use some existence
theorem for ODEs and apply it to (1.2). Now solve the algebraic equations

qk = qk(p
0, q0, t), pk = pk(p

0, q0, t),

for the initial conditions (p0, q0) thus giving

q0
k = q0

k(p, q, t), p0
k = p0

k(p, q, t).

This gives 2n first integrals as obviously (p0, q0) are constants which we can freely specify. One
of these integrals determines the time parametrisations and others could perhaps be used to
construct the trajectory in the phase space. However for some of the integrals the equations

f(p, q) = const

may not define a ‘nice’ surface in the phase space. Instead it defines a pathological (at least
from the applied mathematics point of view) set which densely covers the phase space. Such
integrals do not separate points in M .

One first integral - energy - always exist for Hamiltonian systems giving the energy surface
H(p, q) = E, but often it is the only first integral. Sufficiently complicated, deterministic,
systems may behave according to the laws of thermodynamics: probability that the system
is contained in some element of the energy surface is proportional to the normalised volume
of this element. This means that the time evolution covers uniformly the entire region of the
constant energy surface in the phase space. It is not known wether this ergodic postulate can
be derived from Hamilton’s equations.
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Early computer simulations in the 1960s revealed that some nonlinear systems (with in-
finitely many degrees of freedom!) are not ergodic. Soliton equations

ut = 6uux − uxxx, u = u(x, t), KdV

or
φxx − φtt = sin φ, φ = φ(x, t), Sine − Gordon

are examples of such systems. Both posses infinitely many first integrals. We shall study them
in Chapter 2.

1.2 Integrability and action–angle variables

Given a system of Hamilton’s equations (1.2) it is often sufficient to know n (rather than
2n − 1) first integrals as each of them reduces the order of the system by two. This underlies
the following definition of an integrable system.

Definition 1.2.1 An integrable system consists of a 2n-dimensional phase-space M together
with n independent functions (in a sense that the gradients ∇fj are linearly independent vectors
on a tangent space to any point in M) f1, . . . , fn : M → R such that

{fj , fk} = 0, j, k = 1, . . . , n. (1.3)

The vanishing of Poisson brackets (1.3) means that the first integrals are in involution. We
shall show that integrable systems lead to completely solvable Hamilton’s equations of motion.
Let us first explore the freedom in (1.2) given by a coordinate transformation of a phase-space

Qk = Qk(p, q), Pk = Pk(p, q).

This transformation is called canonical if it preserves the Poisson bracket
n∑

k=1

∂f

∂qk

∂g

∂pk

− ∂f

∂pk

∂g

∂qk

=
n∑

k=1

∂f

∂Qk

∂g

∂Pk

− ∂f

∂Pk

∂g

∂Qk

for all f, g : M −→ R. Canonical transformations preserve Hamilton’s equation (1.2).
Given a function S(q, P, t) such that

det
( ∂2S

∂qj∂Pk

)
6= 0

we can construct a canonical transformation by setting

pk =
∂S

∂qk

, Qk =
∂S

∂Pk

, H̃ = H +
∂S

∂t
.

The function S is an example of a generating function [4, 11, 19]. The idea behind the following
Theorem is to seek a canonical transformation such that in the new variables H = H(P1, . . . , Pn)
so that

Pk(t) = Pk(0) = const, Qk(t) = Qk(0) + t
∂H

∂Pk

.

Finding a generating function for such canonical transformation is in practise very difficult,
and deciding whether a given Hamiltonian system is integrable (without a priori knowledge of
n Poisson commuting integrals) is still an open problem.
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Theorem 1.2.2 (Arnold, Liouville) Let

(M, f1, . . . , fn)

be an integrable system with a Hamiltonian H = f1, and let

Mf := {(p, q) ∈ M ; fk(p, q) = ck}, ck = const, k = 1, . . . , n

be an n-dimensional level surface of first integrals fk. Then

• If Mf is compact and connected then it is diffeomorphic to a torus

T n := S1 × S1 × . . . × S1,

and (in a neighbourhood of this torus in M) one can introduce the ‘action-angle’ coordi-
nates

I1, . . . , In, φ1, . . . , φn, 0 ≤ φk ≤ 2π,

such that angles φk are coordinates on Mf and actions Ik = Ik(f1, . . . , fn) are first inte-
grals.

• The canonical equations of motion (1.2) become

İk = 0, φ̇k = ωk(I1, . . . , In), k = 1, . . . , n (1.4)

and so the integrable systems are solvable by quadratures (a finite number of algebraic
operations, and integrations of known functions).

Proof. We shall follow the proof given in [4], but try to make it more accessible by avoiding
the language of differential forms

• The motion takes place on the surface

f1(p, q) = c1, f2(p, q) = c2, . . . , fn(p, q) = cn

of dimension 2n − n = n. The first part of the Theorem says that this surface is a
torus1. For each point in M there exists precisely one torus T n passing through that
point. This means that M admits a foliation by n–dimensional leaves. Each leaf is a
torus and different tori correspond to different choices of the constants c1, . . . , cn.

Assume

det
(∂fj

∂pk

)
6= 0

so that the system fk(p, q) = ck can be solved for the momenta pi

pi = pi(q, c)

1This part of the proof requires some knowledge of Lie groups and Lie algebras. It is given in Appendix A.
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and the relations fi(q, p(q, c)) = ci hold identically. Differentiate these identities with
respect to qj

∂fi

∂qj

+
∑

k

∂fi

∂pk

∂pk

∂qj

= 0

and multiply the resulting equations by ∂fm/∂pj

∑

j

∂fm

∂pj

∂fi

∂qj

+
∑

j,k

∂fm

∂pj

∂fi

∂pk

∂pk

∂qj

= 0.

Now swap the indices and subtract (mi) − (im). This yields

{fi, fm} +
∑

j,k

(∂fm

∂pj

∂fi

∂pk

∂pk

∂qj

− ∂fi

∂pj

∂fm

∂pk

∂pk

∂qj

)
= 0.

The first term vanishes as the first integrals are in involution. Rearranging the indices in
the second term gives ∑

j,k

∂fi

∂pk

∂fm

∂pj

(∂pk

∂qj

− ∂pj

∂qk

)
= 0

and, as the matrices ∂fi/∂pk are invertible,

∂pk

∂qj

− ∂pj

∂qk

= 0. (1.5)

This condition implies that ∮ ∑

j

pjdqj = 0

for any closed contractible curve on the torus T n. This is a consequence of the Stokes
theorem. To see it recall that in n = 3∮

δD

p · dq =

∫

D

(∇× p) · dq

where δD is a boundary of a surface D and

(∇× p)m =
1

2
ǫjkm

(∂pk

∂qj

− ∂pj

∂qk

)
.

• There are n closed curves which can not be contracted down to a point, so that the
corresponding integrals do not vanish.

T

C
C 2

1

n

Cycles on a Torus
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Therefore we can define the action coordinates

Ik :=
1

2π

∮

Γk

∑

j

pjdqj, (1.6)

where the closed curve Γk is the k-th basic cycle (the term ‘cycle’ in general means
‘submanifold without boundary’) of the torus T n

Γk = {(φ̃1, . . . , φ̃n) ∈ T n; 0 ≤ φ̃k ≤ 2π, φ̃j = const for j 6= k},

where φ̃ are some coordinates2 on T n.

The Stokes theorem implies that the actions (1.6) are independent on the choice of Γk.

k k

Stokes Theorem

This is because
∮

Γk

∑

j

pjdqj +

∮

Γ̂k

∑

j

pjdqj =

∫ (∂pi

∂qj

− ∂pj

∂qi

)
dqj ∧ dqi = 0

where we have chosen Γ and Γ̂ to have opposite orientations.

• The actions (1.6) are also first integrals as
∮

p(q, c)dq only depends on ck = fk and fks
are first integrals. The actions are Poisson commuting

{Ii, Ij} =
∑

r,s,k

∂Ii

∂fr

∂fr

∂qk

∂Ij

∂fs

∂fs

∂pk

− ∂Ii

∂fr

∂fr

∂pk

∂Ij

∂fs

∂fs

∂qk

=
∑

r,s

∂Ii

∂fr

∂Ij

∂fs

{fr, fs} = 0

and in particular {Ik, H} = 0.

The torus Mf can be equivalently represented by

I1 = c̃1, . . . , I1 = c̃n.

for some constants c̃1, . . . , c̃n (We might have been tempted just to define Ik = fk but
then the transformation (p, q) → (I, φ) would not be canonical in general.)

2This is a non-trivial step. In practice it is unclear how to explicitly describe the n–dimensional torus and the
curves Γk in 2n dimensional phase space. Thus, to some extend the Arnold–Liouville theorem has a character
of the existence theorem.
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• We shall construct the angle coordinates φk canonically conjugate to the actions using a
generating function

S(q, I) =

∫ q

q0

∑

j

pjdqj,

where q0 is some chosen point on the torus. This definition does not depend on a path
joining q0 and q as a consequence of (1.5) and Stokes’s theorem. Choosing a different q0

just adds a constant to S thus leaving the angles

φi =
∂S

∂Ii

invariant.

• The angles are periodic coordinates with a period 2π. To see it consider two paths C and
C ∪ Ck (where Ck represents the kth cycle) between q0 and q and calculate

S(q, I) =

∫

C∪Ck

∑

j

pjdqj =

∫

C

∑

j

pjdqj +

∫

Ck

∑

j

pjdqj = S(q, I) + 2πIk

so

φk =
∂S

∂Ik

= φk + 2π.

�
�
�
�

�
�
�
�

T

C

n
C

q
q0

k Generating Function

• The transformations

q = q(φ, I), p = p(φ, I), and φ = φ(q, p), I = I(q, p)

are canonical (as they are defined by a generating function) and invertible. Thus

{Ij, Ik} = 0, {φj, φk} = 0, {φj, Ik} = δjk

and the dynamics is given by

φ̇k = {φk, H̃}, İk = {Ik, H̃},

where
H̃(φ, I) = H(q(φ, I), p(φ, I)).
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The Iks are first integrals, therefore

İk = − ∂H̃

∂φk

= 0

so H̃ = H̃(I) and

φ̇k =
∂H̃

∂Ik

= ωk(I)

where the ωks are also first integrals. This proves (1.4). Integrating these canonical
equations of motion yields

φk(t) = ωk(I)t + φk(0), Ik(t) = Ik(0). (1.7)

These are n circular motions with constant angular velocities.

2

The trajectory (1.7) may be closed on the torus or it may cover it densely. That depends on
the values of the angular velocities. If n = 2 the trajectory will be closed if ω1/ω2 is rational
and dense otherwise.

Interesting things happen to the tori under a small perturbation of the integrable Hamilto-
nian

H(I) −→ H(I) + ǫK(I, φ).

In some circumstances the motion is still periodic and most tori do not vanish but become
deformed. This is governed by the Kolmogorov–Arnold–Moser (KAM) theorem - not covered
in this course. Consult the popular book by Schuster [18], or read the complete account given
by Arnold [4].

• Example. All time-independent Hamiltonian system with two-dimensional phase spaces
are integrable. Consider the harmonic oscillator with the Hamiltonian

H(p, q) =
1

2
(p2 + ω2q2).

Different choices of the energy E give a foliation of Mf by ellipses

1

2
(p2 + ω2q2) = E.

For a fixed value of E we can take Γ = Mf . Therefore

I =
1

2π

∮

Mf

pdq =
1

2π

∫ ∫

S

dpdq =
E

ω

where we used the Stokes’s theorem to express the line integral in terms of the area
enclosed by Mf .
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The Hamiltonian expressed in the new variables is H̃ = ωI and

φ̇ =
∂H̃

∂I
= ω, φ = ωt + φ0.

To complete the picture we need to express (I, φ) in terms of (p, q). We already know

I =
1

2

( 1

ω
p2 + ωq2

)
.

Thus the generating function is

S(q, I) =

∫
pdq = ±

∫ √
2Iω − ω2q2dq

and (choosing a sign)

φ =
∂S

∂I
=

∫
ωdq√

2Iω − ω2q2
= arcsin

(
q

√
ω

2I

)
− φ0.

This gives

q =

√
2I

ω
sin (φ + φ0)

and finally we recover the familiar solution

p =
√

2E cos (ωt + φ0), q =
√

2E/ω2 sin (ωt + φ0).

• Example. The Kepler problem is another doable example. Here the four–dimensional
phase space is coordinatised by (q1 = φ, q2 = r, p1 = pφ, p2 = pr) and the Hamiltonian is

H =
pφ

2

2r2
+

pr
2

2
− α

r

where α > 0 is a constant. One readily verifies that

{H, pφ} = 0

so the system is integrable in the sense of Definition 1.2.1. The level set Mf of first
integrals is given by

H = E, pφ = µ

which gives

pφ = µ, pr = ±
√

2E − µ2

r2
+

2α

r
.

This leaves φ arbitrary and gives one constraint on (r, pr). Thus φ and one function of
(r, pr) parametrise Mf . Varying φ and fixing the other coordinate gives one cycle Γφ ⊂ Mf

and

Iφ =
1

2π

∮

Γφ

pφdφ + prdr =
1

2π

∫ 2π

0

pφdφ = pφ.
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Figure 1.2: Branch cut for the Kepler integral.

r               r− +
xxxxxxxxxxxxxxx

R

To find the second action coordinate fix φ (on top of H and pφ). This gives another cycle
Γr and

Ir =
1

2π

∮

Γr

prdr

= 2
1

2π

∫ r+

r−

√
2E − µ2

r2
+

2α

r
dr

=

√
−2E

π

∫ r+

r−

√
(r − r−)(r+ − r)

r
dr

where the periodic orbits have r− ≤ r ≤ r+ and

r± =
−α ±

√
α2 + 2µ2E

2E
.

The integral can be performed using the residue calculus and choosing a contour with a
branch cut from r− to r+ on the real axis 3. Consider a branch of

f(z) =
√

(z − r−)(r+ − z)

defined by a branch cut from r− to r+ with f(0) = i
√

(r+r−) on the top side of the cut.
We evaluate the integral over a large circular contour |z| = R integrating the Laurent

3The following method is taken from Max Born’s The Atom published in 1927. I thank Gary Gibbons for
pointing out this reference to me.
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expansion
∫

|z|=R

z−1f(z)dz =

∫ 2π

0

√
−1

(
1 − r−

R
e−iθ

)1/2(
1 − r+

R
e−iθ

)1/2

iReiθdθ

= π(r+ + r−) when R → ∞,

since all terms containing powers of exp (iθ) are periodic and do not contribute to the
integral. The same value must arise from a residue at 0 and collapsing the contour onto
the branch cut (when calculating the residue remember that z = 0 is on the left hand side
of the cut and thus

√
−1 = −i. Integration along the big circle is equivalent to taking a

residue at ∞ which is on the right side of the cut where
√
−1 = i). Thus

π(r+ + r−) = 2π
√

r+r− +

∫ r+

r−

√
(r − r−)(r+ − r)

r
dr −

∫ r−

r+

√
(r − r−)(r+ − r)

r
dr

a rational number (here it is equal to 1). The orbits are therefore closed - a remarkable
result known lue must arise from a residue at 0 and collapsing the contour onto the branch
cut (when calculating the residue remember that z = 0 is on the left hand side of the cut
and thus

√
−1 = −i. Integration along the big circle is equivalent to taking a residue at

∞ which is on the right side of the cut where
√
−1 = i). Thus

π(r+ + r−) = 2π
√

r+r− +

∫ r+

r−

√
(r − r−)(r+ − r)

r
dr −

∫ r−

r+

√
(r − r−)(r+ − r)

r
dr

and

Ir =

√
−2E

π

π

2
(r+ + r− − 2

√
r+r−)

= α

√
1

2|E| − µ.

The Hamiltonian becomes

H̃ = − α2

2(Ir + Iφ)2

and we conclude that the absolute values of frequencies are equal and given by

∂H̃

∂Ir

=
∂H̃

∂Iφ

=
α2

(Ir + Iφ)3
=

(r+ + r−
2

)−3/2√
α.

This is a particular case when the ratio of two frequencies is a rational number (here it
is equal to 1). The orbits are therefore closed - a remarkable result known to Kepler.

1.3 Poisson structures

There is a natural way to extend the Hamiltonian formalism by generalising the notion of
Poisson bracket (1.1). A geometric approach is given by symplectic geometry [4]. We shall take
a lower level (but a slightly more general ) point of view and introduce the Poisson structures.
The phase space M is m dimensional with local coordinates (ξ1, . . . , ξm). In particular we do
not distinguish between the positions and momenta.
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Definition 1.3.1 A skew–symmetric matrix ωab = ωab(ξ) is called a Poisson structure if the
Poisson bracket defined by

{f, g} =
m∑

a,b=1

ωab(ξ)
∂f

∂ξa

∂g

∂ξb
(1.8)

satisfies
{f, g} = −{g, f},

{f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0.

The second property is called the Jacobi identity. It puts restrictions on ωab(ξ) which can be
seen noting that

ωab(ξ) = {ξa, ξb}
and evaluating the Jacobi identity on coordinate functions.

Given a Hamiltonian H : M × R −→ R the dynamics is governed by

df

dt
=

∂f

∂t
+ {f,H}

and the Hamilton’s equations generalising (1.2) become

ξ̇a =
m∑

b=1

ωab(ξ)
∂H

∂ξb
. (1.9)

• Example. Let M = R
3 and ωab =

∑3
c=1 εabcξc, where εabc is the standard totally anti-

symmetric tensor. Thus

{ξ1, ξ2} = ξ3, {ξ3, ξ1} = ξ2, {ξ2, ξ3} = ξ1.

This Poisson structure admits a Casimir - any function f(r) where

r =
√

(ξ1)2 + (ξ2)2 + (ξ3)2

Poisson commutes with the coordinate functions

{f(r), ξa} = 0.

This is independent on the choice of the Hamiltonian. With a choice

H =
1

2

((ξ1)2

a1

+
(ξ2)2

a2

+
(ξ3)2

a3

)

where a1, a2, a3 are constants, the Hamilton’s equations (1.9) become the equations of
motion of a rigid body fixed at its centre of gravity

ξ̇1 =
a3 − a2

a2a3

ξ2ξ3, ξ̇2 =
a1 − a3

a1a3

ξ1ξ3, ξ̇3 =
a2 − a1

a1a2

ξ1ξ2.
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Assume that m = 2n is even and the matrix ω is invertible with Wab := (ω−1)ab. The Jacobi
identity implies that the antisymmetric matrix Wab(ξ) is closed, i.e.

∂aWbc + ∂cWab + ∂bWca = 0, ∀a, b, c = 1, . . . ,m.

In this case Wab is called a symplectic structure. The Darboux theorem states that in this case
there locally exists a coordinate system

ξ1 = q1, · · · , ξn = qn, ξ
n+1 = p1, · · · , ξ2n = pn

such that

ω =

(
0 1n

−1n 0

)

and the Poisson bracket reduces to the standard form (1.1). A simple proof can be found in
[4]. One constructs a local coordinate system (p, q) by induction w.r.t half of the dimension of
M . Choose a function p1, and find q1 by solving the equation {q1, p1} = 1. Then consider a
level set of (p1, q1) in M which is locally a symplectic manifold. Now look for (p2, q2) etc.

• Example. The Poisson structure in the last example is degenerate as the matrix ωab

is not invertible. This degeneracy always occurs if the phase space is odd dimensional
or/and there exists a non-tivial Casimir. Consider the restriction of ωab =

∑3
c=1 εabcξc to

a two-dimensional sphere r = C. This gives a symplectic structure on the sphere given
by

{ξ1, ξ2} =
√

C2 − (ξ1)2 − (ξ2)2

or

W =
1√

C2 − (ξ1)2 − (ξ2)2

(
0 1
−1 0

)
.

This of course has no Casimir functions apart from constants. It is convenient to choose
a different parametrisation of the sphere: if

ξ1 = C sin θ cos φ, ξ2 = C sin θ sin φ, ξ3 = C cos θ

then in the local coordinates (θ, φ) the symplectic structure is given by {θ, φ} = sin−1 θ
or

W = sin θ

(
0 1
−1 0

)

which is equal to the volume form on the two–sphere. The radius C is arbitrary. Therefore
the Poisson phase space R

3 is foliated by symplectic phase spaces S2 as there is exactly one
sphere centred at the origin through any point of R3. This is a general phenomenon: fixing
the values of the Casimir functions on Poisson spaces gives the foliations by symplectic
spaces. The local Darboux coordinates on S2 are given by q = − cos θ, p = φ as then

{q, p} = 1.
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The Poisson generalisation is useful to set up the Hamiltonian formalism in the infinite–
dimensional case. Formally one can think of replacing the coordinates on the trajectory ξa(t)
by a dynamical variable u(x, t). Thus the discrete index a becomes the continuous independent
variable x (think of m points on a string versus the whole string). The phase space M = R

m is
replaced by a space of smooth functions on a line with appropriate boundary conditions (decay
or periodic). The whole formalism may be set up making the following replacements

ODEs −→ PDEs

ξa(t), a = 1, . . . ,m −→ u(x, t), x ∈ R

∑

a

−→
∫

R

dx

function f(ξ) −→ functional F [u]

∂

∂ξa
−→ δ

δu
.

The functionals are given by integrals

F [u] =

∫

R

f(u, ux, uxx, . . .)dx

(we could in principle allow the t derivatives but we will not for the reasons to become clear
shortly). Recall that the functional derivative is

δF

δu(x)
=

∂f

∂u
− ∂

∂x

∂f

∂(ux)
+

( ∂

∂x

)2 ∂f

∂(uxx)
+ . . .

and
δu(y)

δu(x)
= δ(y − x)

where the δ on the RHS is the Dirac delta which satisfies
∫

R

δ(x)dx = 1, δ(x) = 0 for x 6= 0.

The presence of the Dirac delta will constantly remind us that we have entered a territory which
is rather slippery from a pure mathematics perspective. We should rest reassured that the for-
mal replacements made above can nevertheless be given a solid functional-analytic foundation.
This will not be done in this course.

The analogy with finite dimensional situation (1.8) suggests a following definition of a
Poisson bracket

{F,G} =

∫

R2

ω(x, y, u)
δF

δu(x)

δG

δu(y)
dxdy

where the Poisson structure ω(x, y, u) should be such that the bracket is anti–symmetric and
the Jacobi identity holds. A canonical (but not the only) choice is

ω(x, y, u) =
1

2

∂

∂x
δ(x − y) − 1

2

∂

∂y
δ(x − y).

18



This is analogous to the Darboux form in which ωab is a constant and antisymmetric matrix
and the Poisson bracket reduces to (1.1). This is because the differentiation operator ∂/∂x is
anti–self–adjoint with respect to an inner product

< u, v >=

∫

R

u(x)v(x)dx

which is analogous to a matrix being anti–symmetric. With this choice

{F,G} =

∫

R

δF

δu(x)

∂

∂x

δG

δu(x)
dx (1.10)

and the Hamilton’s equations become

∂u

∂t
= {u,H[u]} =

∫

R

δu(x)

δu(y)

∂

∂y

δH

δu(y)
dy

=
∂

∂x

δH[u]

δu(x)
. (1.11)

• Example. The KdV equation mentioned earlier is a Hamiltonian system with the Hamil-
tonian given by the functional

H[u] =

∫

R

(1

2
u2

x + u3
)
dx.

It is assumed that u belongs to the space of functions decaying sufficiently fast at when
x → ±∞.
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Chapter 2

Soliton equations and Inverse
Scattering Transform

The universally accepted definition of integrability does not exist for partial differential equa-
tions. The phase space is infinite dimensional but having ‘infinitely many’ first integrals may
not be enough - we could have missed every second one. One instead focuses on properties
of solutions and solutions generation techniques. We shall study solitons - solitary non-linear
waves which preserve their shape (and other characteristics) in the evolution. These soliton
solutions will be constructed by means of an inverse problem: recovering a potential from the
scattering data.

2.1 History of two examples

Soliton equations originate in the 19th century. Some of them appeared in the study of non-
linear wave phenomena and other arose in differential geometry of surfaces in R

3

• The KdV equation

ut − 6uux + uxxx = 0, where u = u(x, t) (2.1)

has been written down, and solved in the simplest case, by Korteweg and de-Vires in
1895 to explain the following account of J. Scott Russell. Russell observed a soliton
while ridding on horseback beside a narrow barge channel. The following passage has
been taken from J . Scott Russell. Report on waves, Fourteenth meeting of the British
Association for the Advancement of Science, 1844. ‘I was observing the motion of a
boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat
suddenly stopped - not so the mass of water in the channel which it had put in motion;
it accumulated round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I followed
it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an
hour, preserving its original figure some thirty feet long and a foot to a foot and a half
in height. Its height gradually diminished, and after a chase of one or two miles I lost it
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in the windings of the channel. Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon which I have called the Wave of
Translation’.

• The Sine–Gordon equation

φxx − φtt = sin φ where φ = φ(x, t) (2.2)

locally describes the isometric embeddings of surfaces with constant negative Gaussian
curvature in the Euclidean space R

3. The function φ = φ(x, t) is the angle between two
asymptotic directions τ = (x + t)/2 and ρ = (x − t)/2 on the surface along which the
second fundamental form is zero. If the first fundamental form of a surface parametrised
by (ρ, τ) is

ds2 = dτ 2 + 2 cos φ dρdτ + dρ2, where φ = φ(τ, ρ)

then the Gaussian curvature is constant and equal to −1 provided that

φτρ = sin φ.

which is (2.2).

The integrability of the Sine–Gordon equation have been used by Bianchi, Bäcklund, Lie
and other classical differential geometers to construct new embeddings.

2.1.1 Physical derivation of KdV

Consider the linear wave equation

Ψxx −
1

v2
Ψtt = 0

where Ψxx = ∂2
xΨ etc. which describes a propagation of waves travelling with a constant

velocity v. Its derivation is based on three simplifying assumptions:

• There is no dissipation i.e. the equation is invariant with respect to time inversion t → −t.

• The amplitude of oscillation is small and so the nonlinear terms (like Ψ2) can be omitted.

• There is no dispersion, i.e. the group velocity is constant.

In the derivation of the KdV we follow [15] and relax these assumptions.
The general solution of the wave equation is a superposition of two waves travelling in

opposite directions
Ψ = f(x − vt) + g(x + vt)

where f and g are arbitrary functions of one variable. Each of these two waves is characterised
by a linear 1st order PDE, e.g.

Ψx +
1

v
Ψt = 0 −→ Ψ = f(x − vt).

To introduce the dispersion consider a complex wave

Ψ = ei(kx−ω(k)t)
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where ω(k) = vk and so the group velocity dω/dk equals to the phase velocity v. We change
this relation by introducing the dispersion

ω(k) = v(k − βk3 + . . .)

where the absence of even terms in this expansion guarantees real dispersion relations. Let us
assume that the dispersion is small and truncate this series keeping only the first two terms.
The equation satisfied by

Ψ = ei(kx−v(kt−βk3t))

is readily found to be

Ψx + βΨxxx +
1

v
Ψt = 0.

This can be rewritten in a form of a conservation law

ρt + jx = 0,

where the density ρ and the current j are given by

ρ =
1

v
Ψ, j = Ψ + βΨxx.

To introduce nonlinearity modify the current

j = Ψ + βΨxx +
α

2
Ψ2.

The resulting equation is
1

v
Ψt + Ψx + βΨxxx + αΨΨx = 0.

The non–zero constants (v, β, α) can be eliminated by a simple change of variables x → x− vt
and rescaling Ψ. This leads to the standard form of the KdV equation

ut − 6uux + uxxx = 0.

The simplest 1–soliton solution found by Korteweg and de-Vires is

u(x, t) = − 2χ2

cosh2 χ(x − 4χ2t − φ0)
. (2.3)

The KdV is not a linear equation therefore multiplying this solution by a constant will not
give another solution. The constant φ0 determines the location of the extremum at t = 0. We
should therefore think of a one–parameter family of solutions labelled by χ ∈ R.

The one–soliton (2.3) was the only regular solution of KdV such that u, ux → 0 as |x| → ∞
known until 1965 when Gardner, Green, Kruskal and Miura analysed KdV numerically. They
took two waves with different amplitudes as their initial profile. The computer simulations
revealed that the initially separated waves approached each-other distorting their shapes, but
eventually the larger wave overtook the smaller wave and both waves re-emerged with their
sizes and shapes intact. The relative phase shift was the only result of the non–linear in-
teraction. This behaviour resembles what we usually associate with particles and not waves.
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Thus Zabruski and Kruskal named these waves ‘solitons’ (like electrons, protons, barions and
other particles ending with ‘ons’). In this Chapter we shall construct more general N–soliton
solutions describing the interactions of 1–solitons.

To this end we note that the existence of a stable solitary wave is a consequence of cancel-
lations of effects caused by non–linearity and dispersion.

• If the dispersive term were not present the equation would be

ut − 6uux = 0

and the resulting solution would exhibit a discontinuity of first derivatives at some t0 > 0
(shock, or ‘breaking the wave’). This solution can be easily found using the method of
characteristics.

t=0 t>0

Shock  

• If the nonlinear term were not present the initial wave profile would disperse in the
evolution ut + uxxx = 0.

t=0 t>0

Dispersion

• The presence of both terms allows smooth localised soliton solutions
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t=0 t>0

  
Soliton

of which (2.3) is an example (the plot gives −u(x, t)).

2.1.2 Bäcklund transformations for the Sine–Gordon equation

Let us consider the Sine–Gordon equation - the other soliton equation mentioned in the intro-
duction to this Chapter. The simplest solution generating technique is the Bäcklund transfor-
mation. Set τ = (x + t)/2, ρ = (x − t)/2 so that the equation (2.2) becomes

φτρ = sin φ.

Now define the Bäcklund relations

∂ρ(φ1 − φ0) = 2b sin
(φ1 + φ0

2

)
, ∂τ (φ1 + φ0) = 2b−1 sin

(φ1 − φ0

2

)
, b = const.

Differentiating the first equation w.r.t τ , and using the second equation yields

∂τ∂ρ(φ1 − φ0) = 2b ∂τ sin
(φ1 + φ0

2

)
= 2 sin

(φ1 − φ0

2

)
cos

(φ1 + φ0

2

)

= sin φ1 − sin φ0.

Therefore φ1 is a solution to the Sine–Gordon equation if φ0 is. Given φ0 we can solve the first
order Bäcklund relations for φ1 and generate new solutions form the ones we know. The trivial
solution φ0 = 0 yields 1–soliton solution of Sine–Gordon

φ1(x, t) = 4 arctan
(

exp
( x − vt√

1 − v2
− x0

))

where v is a constant with |v| < 1. This solution is called a kink (Figure 2.1). A static kink
corresponds to a special case v = 0.

One can associate a topological charge

N =
1

2π

∫

R

dφ =
1

2π

(
φ(x = ∞, t) − φ(x = −∞, t)

)

with any solution of the Sine Gordon equation. It is an integral of a total derivative which
depends only on boundary conditions. It is conserved if one insists on finiteness of the energy

E =

∫

R

(1

2

(
φ2

t + φ2
x

)
+ (1 − cos (φ))

)
dx.
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Figure 2.1: Sine–Gordon Kink

Kink

x

Note that the Sine–Gordon equations didn’t enter the discussion at this stage. Topological
charges, like N , are in this sense different form first integrals like E which satisfy Ė = 0 as a
consequence of (2.2). For the given kink solution N(φ) = 1 and the kink is stable as it would
take infinite energy to change this solution into a constant solution φ = 0 with E = 0.

There exist interesting solutions with N = 0: a soliton–antisoliton pair has N = 0 but is
non–trivial

φ(x, t) = 4 arctan
(v cosh x√

1−v2

sinh vt√
1−v2

)
.

At t → −∞ this solution represents widely separated pair of kink and anti–kink approaching
each-other with velocity v. A non–linear interaction takes place at t = 0 and as t → ∞ kink
and anti-kink reemerge unchanged.

2.2 Inverse scattering transform for KdV

One of the most spectacular methods of solving soliton equations comes from quantum me-
chanics. It is quite remarkable, as the soliton equations we have discussed so far have little to
do with the quantum world.

Recall that the mathematical arena of quantum mechanics is the infinite–dimensional com-
plex vector space H of functions [17]. Elements Ψ of this space are referred to as wave func-
tions, or state vectors. In case of one–dimensional quantum mechanics we have Ψ : R → C,
Ψ = Ψ(x) ∈ C. The space H is equipped with a unitary inner product

(Ψ,Φ) =

∫

R

Ψ(x)Φ(x)dx. (2.4)

The functions which are square integrable, i.e. (Ψ,Ψ) < ∞ like Ψ = e−x2

, are called bound
states. Other functions, like e−ix, are called the scattering states.

Given a real valued function u = u(x) called the potential, the time independent Schrödinger
equation

− ~
2

2m

d2Ψ

dx2
+ uΨ = EΨ
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determines the x–dependence of a wave function. Here ~ and m are constants which we shall not
worry about and E is the energy of the quantum system. The energy levels can be discrete for
bound states or continuous for scattering states. This depends on the potential u(x). We shall
regard the Schrödinger equation as an eigen–value problem and refer to Ψ and E as eigenvector
and eigenvalue respectively.

According to the Copenhagen interpretation of quantum mechanics the probability density
for the position of a quantum particle is given by |Ψ|2, where Ψ is a solution to the the
Schrödinger equation. The time evolution of the wave function is governed by a time dependent
Schrödinger equation

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ uΨ.

This equation implies that for bound states the quantum–mechanical probability is conserved
in a sense that

d

dt

∫

R

|Ψ|2dx = 0.

The way physicists discover new elementary particles is by scattering experiments. Huge
accelerators collide particles through targets and, by analysing the changes to momenta of
scattered particles, a picture of a target is built1. Given a potential u(x) one can use the
Schrödinger equation to find Ψ, the associated energy levels and the scattering data in the form
of so called reflection and transmission coefficients. Experimental needs are however different:
the scattering data is measured in the accelerator but the potential (which gives the internal
structure of the target) needs to be recovered. This comes down to the following mathematical
problem

• Recover the potential from the scattering data.

This problem was solved in the 1950s by the Gelfand, Levitan and Marchenko [8, 14] who gave
a linear algorithm for reconstructing u(x). Gardner, Green, Kruskal and Miura [7] used this
algorithm to solve the Cauchy problem for the KdV equation. Their remarkable idea was to
regard the initial data in the solution of KdV as a potential in the Schrödinger equation.

Set ~
2/(2m) = 1 and write the 1-dimensional Schrödinger equation as an eigenvalue problem

(
− d2

dx2
+ u(x)

)
Ψ = EΨ.

We allow u to depend on x as well as t which at this stage should be regarded as a parameter.
In the scattering theory one considers the beam of free particles incident from +∞. Some

of the particles will be reflected by the potential (which is assumed to decay sufficiently fast
as |x| → ∞) and some will be transmitted. There may also be a number of bound states with
discrete energy levels. The Gelfand–Levitan–Marchenko theory shows that given

• energy levels E,

• transmission probability T ,

1These kind of experiments will take place in the Large Hadron Collider LHC opened in September 2008 at
CERN. The LHC is located in a 27km long tunnel under the Swiss/French border outside Geneva. It is hoped
that the elusive Higgs particle and a whole bunch of other exotic form of matter will be discovered.
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Figure 2.2: Reflection and Transmission

x

u(x)

Incident

reflected

transmited

• reflection probability R,

one can find the potential u: Given u0(x) one finds the scattering data at t = 0. If u(x, t) is a so-
lution to the KdV equation (2.1) with u(x, 0) = u0(x) then the scattering data (E(t), T (t), R(t))
satisfies simple linear ODEs determining their time evolution. In particular E does not depend
on t. Once this has been determined, u(x, t) is recovered by solving a linear integral equation.
The Gardner, Green, Kruskal and Miura scheme for solving KdV is summarised in the following
table

t x xxxu  −  6uu +u     =0

0u(x, 0)=u (x)

u(x, t)

Scattering
at t=0

Scattering
at t>0

Schrodinger
equation

GLM 
equation

KdV,
Lax pair.

We should stress that in this method the time evolution of the scattering data is governed
by the KdV and not by the time dependent Schrd̈inger equation. In fact the time dependent
Schrod̈inger equation will not play any role in the following discussion.

2.2.1 Direct scattering

The following discussion summarises the basic one–dimensional quantum mechanics of a particle
scattering on a potential [17, 15].
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• Set E = k2 and rewrite the Schrödinger equation as

Lf :=
(
− d2

dx2
+ u(x)

)
f = k2f (2.5)

where L is called the Schrödinger operator. Consider the class of potentials u(x) such
that ∫

R

(1 + |x|)|u(x)|dx < ∞

which of course implies that |u(x)| → 0 as x → ±∞. This condition guaranties that there
exists only a finite number of discrete energy levels (thus it rules out both the harmonic
oscillator and the hydrogen atom).

• At x → ±∞ the problem (2.5) reduces to a ‘free particle’

fxx + k2f = 0

with the general solution
f = C1e

ikx + C2e
−ikx.

The pair of constants (C1, C2) is in general different at +∞ and −∞.

• For each k 6= 0 the set of solutions to (2.5) forms a 2–dimensional complex vector space
Gk. The reality of u(x) implies that if f satisfies (2.5) then so does f .

Consider two bases (ψ, ψ) and (φ, φ) of Gk determined by the asymptotic

ψ(x, k) ∼= e−ikx, ψ(x, k) ∼= eikx as x −→ ∞

and
φ(x, k) ∼= e−ikx, φ(x, k) ∼= eikx as x −→ −∞.

Any solution can be expanded in the first basis, so in particular

φ(x, k) = a(k)ψ(x, k) + b(k)ψ(x, k).

Therefore, if a 6= 0, we can write

φ(x, k)

a(k)
=

{
e−ikx

a(k)
, for x → −∞

e−ikx + b(k)
a(k)

eikx, for x → ∞.
(2.6)

• Consider a particle incident from ∞ with the wave function e−ikx (Figure 2.2). The
transmission coefficient t(k) and the reflection coefficient r(k) are given by

t(k) =
1

a(k)
, r(k) =

b(k)

a(k)
.

They satisfy
|t(k)|2 + |r(k)|2 = 1 (2.7)
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which is intuitively clear as the particle is ‘either reflected or transmitted’. To prove it
recall that given the Wronskian

W (f, g) = fgx − gfx

of any two functions we have

Wx = fgxx − gfxx = 0

if f, g both satisfy the Schrödinger equation (2.5). Thus W (φ, φ) is a constant which can
be calculated for x → −∞

W (φ, φ) = e−ikx(eikx)x − eikx(e−ikx)x = 2ik.

Analogous calculation at x → ∞ gives W (ψ, ψ) = 2ik. On the other hand

W (φ, φ) = W (aψ + bψ, aψ + bψ)

= |a|2W (ψ, ψ) + abW (ψ, ψ) + baW (ψ, ψ) − |b|2W (ψ, ψ)

= 2ik(|a|2 − |b|2).

Thus |a(k)|2 − |b(k)|2 = 1 or equivalently (2.7) holds.

2.2.2 Properties of the scattering data

Assume that k ∈ C. In scattering theory (see e.g.[15]) one proves the following

• a(k) is holomorphic in the upper half plane Im(k) > 0.

• {Im(k) ≥ 0, |k| → ∞} −→ |a(k)| → 1.

• Zeroes of a(k) in the upper half plane lie on the imaginary axis. The number of these
zeroes is finite if ∫

R

(1 + |x|)|u(x)| < ∞.

Thus a(iχ1) = · · · = a(iχN) = 0 where χn ∈ R can be ordered as

χ1 > χ2 > · · · > χN > 0.

• Consider the asymptotics of φ at these zeroes. Formula (2.6) gives

φ(x, iχn) =

{
e−i(iχn)x, for x → −∞
a(iχn)e−i(iχn)x + b(iχn)ei(iχn), for x → ∞.

Thus

φ(x, iχn) =

{
eχnx, for x → −∞
bne

−χnx, for x → ∞.

}
. (2.8)
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where bn = b(iχn). We should stress that this considerations apply to the discrete part
of the spectrum so bn should be regarded as independent from b which appears in the
reflection coefficient. One can show that bn ∈ R and that it satisfies

bn = (−1)n|bn|

and ia′(iχn) has the same sign as bn.

Moreover (
− d2

dx2
+ u(x)

)
φ(x, iχn) = −χ2

nφ(x, iχn)

so φ is square integrable with energy E = −χ2
n.

2.2.3 Inverse Scattering

We want to recover the potential u(x) from the scattering data which consists of the reflection
coefficients and the energy levels

r(k), {χ1, . . . , χN}
so that En = −χ2

n and

φ(x, iχn) =

{
eχnx, for x → −∞
bne

−χnx, for x → ∞.

The inverse scattering transform Gelfand–Levitan–Marchenko consist of the following steps

• Set

F (x) =
N∑

n=1

bne
−χnx

ia′(iχn)
+

1

2π

∫ ∞

−∞
r(k)eikxdk. (2.9)

• Consider the GLM integral equation

K(x, y) + F (x + y) +

∫ ∞

x

K(x, z)F (z + y)dz = 0 (2.10)

and solve it for K(x, y).

• Then

u(x) = −2
d

dx
K(x, x) (2.11)

is the potential in the corresponding Schrödinger equation.

These formulae are given in the t–independent way, but t can be introduced as a parameter. If
the time dependence of the scattering data is known, the solution of the GLM integral equation
K(x, y, t) will also depend on t and so will the potential u(x, t).
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2.2.4 Lax formulation

If the potential u(x) in the Schrödinger equation depends on a parameter t, its eigenvalues
will in general change with t. The inverse scattering transform is an example of an isospectral
problem, when this does not happen

Proposition 2.2.1 If there exist a differential operator A such that

L̇ = [L,A] (2.12)

where

L = − d2

dx2
+ u(x, t),

then the spectrum of L does not depend on t.

Proof. Consider the eigenvalue problem

Lf = Ef.

Differentiating gives
Ltf + Lft = Etf + Eft.

Note that ALf = EAf and use the representation (2.12) to find

(L − E)(ft + Af) = Etf. (2.13)

Take the inner product (2.4) of this equation with f and use the fact that L is self–adjoint

Et||f ||2 =< f, (L − E)(ft + Af) >=< (L − E)f, ft + Af >= 0.

Thus Et = 0. This derivation also implies that if f(x, t) is an eigenfunction of L with eigenvalue
E = k2 then so is (ft + Af).

2

What makes the method applicable to KdV equation (2.1) is that KdV is equivalent to
(2.12) with

L = − d2

dx2
+ u(x, t), A = 4

d3

dx3
− 3

(
u

d

dx
+

d

dx
u
)
. (2.14)

To prove this statement it is enough to compute both sides of (2.12) on a function and verify
that [L,A] is the multiplication by 6uux − uxxx (also L̇ = ut). This is the Lax representation
of KdV [12]. Such representations (for various choices of operators L,A) underlie integrability
of PDEs and ODEs.
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2.2.5 Evolution of the scattering data

We will now use the Lax representation to determine the time evolution of the scattering data.
Assume that the potential u(x, t) in the Schrödinger equation satisfies the KdV equation (2.1).
Let f(x, t) be an eigenfuction of the Schrödinger operator Lf = k2f defined by its asymptotic
behaviour

f = φ(x, k) −→ e−ikx, as x → −∞.

Equation (2.13) implies that if f(x, t) is an eigenfunction of L with eigenvalue k2 then so is
(ft + Af). Moreover u(x) → 0 as |x| → ∞ therefore

φ̇ + Aφ −→ 4
d3

dx3
e−ikx = 4ik3e−ikx as x → −∞.

Thus 4ik3φ(x, k) and φ̇ + Aφ are eigenfunctions of the Schrödinger operator with the same
asymptotic and we deduce that they must be equal: Their difference is in the kernel of L − k2

and so must be a linear combination of ψ and ψ. But this combination vanishes at ∞ so, using
the independence of ψ and ψ, it must vanish everywhere. Thus the ODE

φ̇ + Aφ = 4ik3φ

holds for all x ∈ R. We shall use this ODE and the asymptotics at +∞ to find ODEs for a(k)
and b(k). Recall that

φ(x, k) = a(k, t)e−ikx + b(k, t)eikx as x → ∞.

Substituting this to the ODE gives

ȧe−ikx + ḃeikx =
(
− 4

d3

dx3
+ 4ik3

)
(ae−ikx + beikx)

= 8ik3beikx.

Equating the exponentials gives
ȧ = 0, ḃ = 8ik3b

and
a(k, t) = a(k, 0), b(k, t) = b(k, 0)e8ik3t.

In the last Section we have shown that k does not depend on t and so the zeroes iχn of a
are constant. Using formula (2.8) and following the method given above it can be shown that
bn(t) = bn(0)e8χ3

nt. The evolution of the scattering data is thus given by the following

a(k, t) = a(k, 0),

b(k, t) = b(k, 0)e8ik3t,

r(k, t) =
b(k, t)

a(k, t)
= r(k, 0)e8ik3t,

χn(t) = χn(0),

bn(t) = bn(0)e8χ3
nt,

an(t) = 0,

βn(t) =
bn(t)

ia′(iχn)
= βn(0)e8χ3

nt. (2.15)
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2.3 Reflectionless potentials and solitons

The formula (2.15) implies that if the reflection coefficient is initially zero, it is zero for all t. In
this case the inverse scattering procedure can be carried out explicitly. The resulting solutions
are called N -solitons, where N is the number of zeroes iχ1, . . . , iχN of a(k). These solutions
describe collisions of 1–solitons (2.3) without any non-elastic effects. The 1-solitons generated
after collisions are ‘the same’ as those before the collision. This fact was discovered numerically
in the 1960s and boosted the interest in the whole subject.

Assume r(k, 0) = 0 so that (2.15) implies

r(k, t) = 0.

2.3.1 One soliton solution

We shall first derive the 1-soliton solution. The formula (2.9) with N = 1 gives

F (x, t) = β(t)e−χx.

This depends on x as well as t because β(t) = β(0)e8χ3t from (2.15). We shall suppress this
explicit t dependence in the following calculation and regard t as a parameter. The GLM
equation (2.10) becomes

K(x, y) + βe−χ(x+y) +

∫ ∞

x

K(x, z)βe−χ(z+y)dz = 0.

Look for solutions in the form
K(x, y) = K(x)e−χy.

This gives

K(x) + βe−χx + K(x)β

∫ ∞

x

e−2χzdz = 0,

and after a simple integration

K(x) = − βe−χx

1 + β
2χ

e−2χx
.

Thus

K(x, y) = − βe−χ(x+y)

1 + β
2χ

e−2χx
.

This function also depends on t because β does. Finally the formula (2.11) gives

u(x, t) = −2
∂

∂x
K(x, x) = − 4βχe−2χx

(1 + β
2χ

e−2χx)2

= − 8χ2

β̂−1eχx + β̂e−χx
, where β̂ =

√
β/(2χ)

= − 2χ2

cosh (χ(x − 4χ2t − φ0))
2 , φ0 =

1

2χ
log

( β0

2χ

)
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which is the 1-soliton solution (2.3).
The energy of the corresponding solution to the Schrödinger equation determines the ampli-

tude and the velocity of the soliton. The soliton is of the form u = u(x− 4χ2t) so it represents
a wave moving to the right with velocity 4χ2 and phase φ0.

2.3.2 N–soliton solution

There are N energy levels which we order χ1 > χ2 > . . . > χN > 0. The function (2.9) is

F (x) =
N∑

n=1

βne
−χnx

and the GLM equation (2.10) becomes

K(x, y) +
N∑

n=1

βne
−χn(x+y) +

∫ ∞

x

K(x, z)
N∑

n=1

βne
−χn(z+y)dz = 0.

The kernel of this integral equation is degenerate in a sense that

F (z + y) =
N∑

n=1

kn(z)hn(y),

so we seek solutions of the form

K(x, y) =
N∑

n=1

Kn(x)e−χny.

After one integration this gives

N∑

n=1

(Kn(x) + βne
−χnx)e−χny +

N∑

n=1

(
βn

N∑

m=1

Km(x)

χm + χn

e−(χn+χm)x
)
e−χny = 0.

The functions e−χny are linearly independent, so

Kn(x) + βne−χnx +
N∑

m=1

βnKm(x)
1

χm + χn

e−(χn+χm)x = 0.

Define a matrix

Anm(x) = δnm +
βne−(χn+χm)x

χn + χm

.

The linear system becomes

N∑

m=1

Anm(x)Km(x) = −βne−χnx,
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or
AK + B = 0,

where B is a column vector

B = [β1e
−χ1x, β2e

−χ2x, · · · , βne−χnx]T .

The solution of this system is
K = −A−1B.

Using the relation
dAmn(x)

dx
= −Bme−χnx

we can write

K(x, x) =

N∑

m=1

e−χmxKm(x) = −
N∑

m,n=1

e−χmx(A−1)mnBn

=
N∑

m,n=1

(A−1)mn
dAnm(x)

dx
= Tr

(
A−1dA

dx

)

=
1

det A

d

dx
det A.

Finally we reintroduce the explicit t-dependence to write the N–soliton solution as

u(x, t) = −2
∂2

∂x2
ln (det A(x)) where Anm(x) = δnm +

βne−(χn+χm)x

χn + χm

. (2.16)

2.3.3 Two-soliton asymptotics

Let us analyse a two-soliton solution with χ1 > χ2 in more detail. Set

τk = χkx − 4χ3
kt, k = 1, 2

and consider the determinant

det A =
(
1 +

β1(0)

2χ1

e−2τ1
)(

1 +
β2(0)

2χ2

e−2τ2
)
− β1(0)β2(0)

(χ1 + χ2)2
e−2(τ1+τ2).

We first analyse the case t → −∞. In the limit x → −∞ we have det A ∼ e−2(τ1+τ2) so

log (det A) ∼ const − 2(τ1 + τ2)

and u ∼ 0 which we already knew. Now move along the x axis and consider the leading term
in det A when τ1 = 0 and then when τ2 = 0. We first reach the point τ1 = 0 or

x = 4χ2
1t.

In the neighbourhood of this point τ2 = 4tχ2(χ
2
1 − χ2

2) ≪ 0 and

det A ∼ β2(0)

2χ2

e−2τ2
(
1 +

β1(0)

2χ1

(χ1 − χ2

χ1 + χ2

)2

e−2τ1
)
.
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Differentiating the logarithm of detA yields

u ∼ −2
∂2

∂x2

(
1 +

β1(0)

2χ1

(χ1 − χ2

χ1 + χ2

)2

e−2χ1(x−4χ2
1
t2)

)

which looks like a one soliton solution with a phase

(φ1)− =
1

2χ1

log
(β1(0)

2χ1

(χ1 − χ2

χ1 + χ2

)2)
.

We now move along the x axis until we reach τ2 = 0. Repeating the above analysis shows that
now τ1 = 4χ1(χ

2
2 − χ2

1)t ≫ 0 and around the point x = 4χ2
2t we have

det A ∼ 1 +
β2(0)

2χ2

e−2τ2.

Therefore the function u looks like a one–soliton solution with a phase

(φ2)− =
1

2χ2

log
(β2(0)

2χ2

)
.

As t approaches 0 the two solitons coalesce and the exact behaviour depends on the ratio χ1/χ2.
We perform analogous analysis as t → ∞. If x → ∞ then det A ∼ 1 and u ∼ 0. We move

along the x axis to the left until we reach τ1 = 0 where τ2 ≫ 0 and the profile of u is given by
one–soliton with the phase

(φ1)+ =
1

2χ1

log
(β1(0)

2χ1

)
.

Then we reach the point τ2 = 0, τ1 ≪ 0 where there is a single soliton with the phase

(φ2)+ =
1

2χ2

log
(β2(0)

2χ1

(χ1 − χ2

χ1 + χ2

)2)
.

Thus the larger soliton has overtaken the smaller one. This asymptotic analysis shows that the
solitons have preserved their shape but their phases have changed

∆φ1 = (φ1)+ − (φ1)− = − 1

χ1

log
χ1 − χ2

χ1 + χ2

,

∆φ2 = (φ2)+ − (φ2)− = − 1

χ2

log
χ1 − χ2

χ1 + χ2

.

The only result of the interaction can be measured by

− log
χ1 − χ2

χ1 + χ2

which is large if the difference between the velocities χ1 and χ2 is small.
The figures show the two–soliton solution at t = −1, t = 0 and t = 1 (for the chosen param-

eters t = −1 is considered to be a large negative time when the two solitons are separated). It
should be interpreted as a passing collision of fast and slow soliton. The larger, faster soliton
has amplitude 8, and the slower, smaller soliton has amplitude 2. Its velocity is one half of that
of the fast soliton. The solitons are separated at t = −1. At t = 0 the collision takes place. The
wave amplitude becomes smaller than the sum of the two waves. At t = 1 the larger soliton
has overtaken the smaller one. The amplitudes and shapes have not changed.
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2-soliton solution at t = −1.
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2-soliton solution at t = 0. The total amplitude is smaller than the sum of the two
amplitudes.
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2-soliton solution at t = 1. Amplitudes and shapes preserved by the collision.
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This picture generalises to N > 2. The general solution (2.16) asymptotically represents N
separate solitons ordered accordingly to their speed. The tallest (and therefore fastest) soliton
is at the front, followed by the second tallest etc. At t = 0 the ‘interaction’ takes place and
then the individual solitons re-emerge in the opposite order as t → ∞. The total phase–shift
is the sum of pairwise phase–shifts [15].

The number of the discrete eigenvalues N in the Schrödinger operator is equal to the number
of solitons at t → ±∞. This number is of course encoded in the initial conditions. To see it
consider

u(x, 0) = u0(x) = −N(N + 1)

cosh2 (x)
, N ∈ Z

+.

Substituting ξ = tanh (x) ∈ (−1, 1) in the Schrödinger equation

−d2f

dx2
+ u0(x)f = k2f

yields the associated Legendre equation

d

dξ

(
(1 − ξ2)

df

dξ

)
+

(
N(N + 1) +

k2

1 − ξ2

)
f = 0.

Analysis of the power series solution shows that the square integrable solutions exist if k2 = −χ2

and χ = 1, 2, . . . , N . Therefore F (x) in the GLM equation is given by

F (x) =
N∑

n=1

βne
−χnx,

and the earlier calculation applies leading to a particular case of the N–soliton solution (2.16).
See the more complete discussion of this point in [5].
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Chapter 3

Hamiltonian formalism and the zero
curvature representation

3.1 First integrals

We shall make contact with the Definition 1.2.1 of finite–dimensional integrable systems and
show that KdV has infinitely many first integrals. Rewrite the expression (2.6)

φ(x, k) =

{
e−ikx, for x → −∞
a(k, t)e−ikx + b(k, t)eikx, for x → ∞,

when the time dependence of the scattering data has been determined using the KdV equation.
The formula (2.15) gives

∂

∂t
a(k, t) = 0, ∀k

so the scattering data gives infinitely many first integrals provided that they are non–trivial
and independent. We aim to express these first integrals in the form

I[u] =

∫

R

P (u, ux, uxx, . . .)dx

where P is a polynomial in u and its derivatives.
Set

φ(x, t, k) = e−ikx+
R x

−∞
S(y,t,k)dy.

For large x the formula (2.6) gives

eikxφ ∼= a(k) + b(k, t)e2ikx.

If we assume that k is in the upper half plane Im(k) > 0 the second term on the RHS goes to
0 as x → ∞. Thus

a(k) = lim
x→∞

eikxφ(x, t, k) = lim
x→∞

e
R x

−∞
S(y,t,k)dy

= e
R

∞

−∞
S(y,t,k)dy, (3.1)

39



where the above formula also holds in the limit Im(k) → 0 because of the real analyticity. Now
we shall use the Schrödinger equation with t regarded as a parameter

−d2φ

dx2
+ uφ = k2φ

to find an equation for S. Substituting

dφ

dx
= (−ik + S(x, k))φ,

d2φ

dx2
=

dS

dx
φ + (−ik + S(x, k))2φ

gives the Riccati type equation
dS

dx
− 2ikS + S2 = u, (3.2)

(we stress that both S and u depend on x as well as t). Look for solutions of the form

S =

∞∑

n=1

Sn(x, t)

(2ik)n .

Substituting this to (3.2) yields a recursion relation

S1(x, t) = −u(x, t), Sn+1 =
dSn

dx
+

n−1∑

m=1

SmSn−m (3.3)

which can be solved for the first few terms

S2 = −∂u

∂x
, S3 = −∂2u

∂x2
+ u2, S4 = −∂3u

∂x3
+ 2

∂

∂x
u2,

S5 = −∂4u

∂x4
+ 2

∂2

∂x2
u2 +

(∂u

∂x

)2

+ 2
∂2u

∂x2
u − 2u3.

Now using the time independence (2.15) of a(k) for all k and combining it with (3.1) implies
that ∫

R

Sn(x, t)dx

are first integrals of the KdV equation. Not all of these integrals are non-trivial. For example S2

and S4 given above are total x derivatives so they integrate to 0 (using the boundary conditions
for u). The same is true for all even terms S2n. To see it set

S = SR + iSI

where SR, SI are real valued functions and substitute this to (3.2). Taking the imaginary part
gives

dSI

dx
+ 2SRSI − 2kSR = 0

which integrates to

SR = −1

2

d

dx
log (SI − k).
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The even terms
S2n(x)

(2ik)2n , n = 1, 2, . . .

in the expansion of a are real. Comparing this with the expansion of SR in k shows that S2n

are all total derivatives and therefore
∫

R

S2ndx = 0.

Let us now concentrate on the remaining non–trivial first integrals. Set

In−1[u] =
1

2

∫

R

S2n+1(x, t)dx, n = 0, 1, 2, · · · . (3.4)

Our analysis shows
dIn

dt
= 0.

The first of these is just the integral of u itself. The next two are known as momentum and
energy respectively

I0 =
1

2

∫

R

u2dx, I1 = −1

2

∫

R

(u2
x + 2u3)dx,

where in the last integral we have isolated the total derivative in

S5 = − ∂4

∂x4
u + 2

∂2

∂x2
u2 + 2

∂

∂x

(
u
∂u

∂x

)
−

(∂u

∂x

)2

− 2u3

and eliminated it using the integration by parts and boundary conditions. These two first
integrals are associated, via Noether’s theorem, with the translational invariance of KdV: if
u(x, t) is a solution then u(x + x0, t) and u(x, t + t0) are also solutions. The systematic way of
constructing such symmetries will be presented in Chapter 4.

3.2 Hamiltonian formalism

We can now cast the KdV in the Hamiltonian form with the Hamiltonian functional given by
the energy integral H[u] = −I1[u]. First calculate.

δI1[u]

δu(x)
= −3u2 + uxx,

∂

∂x

δI1[u]

δu(x)
= −6uux + uxxx.

Recall that the Hamilton canonical equations for PDEs take the form (1.11)

∂u

∂t
=

∂

∂x

δH[u]

δu(x)
.

Therefore
∂u

∂t
= − ∂

∂x

δI1[u]

δu(x)
, (3.5)
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is the KdV equation. With some more work (see [15]) it can be shown that

{Im, In} = 0

where the Poisson bracket is given by (1.10) so that KdV is indeed integrable in the Arnold–
Liouville sense. For example

{In, I1} =

∫

R

δIn

δu(x)

∂

∂x

δI1

δu(x)
dx = −

∫

R

δIn

δu(x)
ut dx

= −1

2

∫

R

2n∑

k=0

(−1)k
(( ∂

∂x

)k ∂S2n+1

∂u(k)

)
ut dx

=
1

2

∫

R

2n∑

k=0

∂S2n+1

∂u(k)

∂

∂t
u(k) dx

=
d

dt
In[u] = 0

where we used integration by parts and the boundary conditions.

3.2.1 Bi–Hamiltonian systems

Most systems integrable by the inverse scattering transform are Hamiltonian in two distinct
ways. This means that for a given evolution equation ut = F (u, ux, . . .) there exist two Poisson
structures D and E and two functionals H0[u] and H1[u] such that

∂u

∂t
= D δH1

δu(x)
= E δH0

δu(x)
. (3.6)

One of these Poisson structures can be put in a form D = ∂/∂x and corresponds to the standard
Poisson bracket (1.10), but the second structure E gives a new Poisson bracket.

In the finite–dimensional context discussed in Section 1.2 this would correspond to having
two skew-symmetric matrices ω,Ω which satisfy the Jacobi Identity. The Darboux theorem
implies the existence of a local coordinate system (p, q) in which one of these, say ω, is a
constant skew-symmetric matrix. The matrix components of second structure Ω will however
be non–constant functions of (p, q). Using (1.9) we write the bi–Hamiltonian condition as

ωab ∂H1

∂ξa
= Ωab ∂H0

∂ξa
,

where ξa, a = 1, . . . , 2n are local coordinates on the phase space M , and H0, H1 are two distinct
functions on M . The matrix valued function

Ra
c = Ωbc(ω−1)ab

is called a recursion operator. It should be thought of as an endomorphism R = Ω ◦ω−1 acting
on the tangent space TpM , where p ∈ M . This endomorphism smoothly depends on a point
p. The existence of such recursion operator is, under certain technical assumptions, equivalent
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to Arnold–Liouville integrability in a sense of Theorem 1.2.2. This is because given one first
integral H0 the remaining (n − 1) integrals H1, . . . , Hn−1 can be constructed recursively by

ωab ∂Hi

∂ξa
= Ri

(
ωab ∂H0

∂ξa

)
i = 1, 2, . . . , n − 1.

The extension of this formalism to the infinite dimensional setting provides a practical way
of constructing first integrals. In the case of KdV the first Hamiltonian formulation (3.5) has
D = ∂/∂x and

H1[u] =

∫

R

(1

2
ux

2 + u3
)
dx.

The second formulation can be obtained taking

H0[u] =
1

2

∫

R

u2dx, E = −∂3
x + 4u∂x + 2ux.

In general it is required that a pencil of Poisson structures D + cE is also a Poisson structure
(i.e. satisfies the Jacobi identity) for any constant c ∈ R. If this condition is satisfied, the
bi–Hamiltonian formulation gives an effective way to construct first integrals. The following
result is proved in the book of Olver [16]

Theorem 3.2.1 Let (3.6) be a bi–Hamiltonian system, such that the Poisson structure D is
non–degenerate1, and let

R = E ◦ D−1

be the corresponding recursion operator. Assume that

Rn
(
D δH0

δu(x)

)

lies in the image of D for each n = 1, 2, . . . . Then there exists conserved functionals

H1[u], H2[u], . . .

which are in involution, i. e.

{Hm, Hn} :=

∫

R

δHm

δu(x)
D δHn

δu(x)
dx = 0.

The conserved functionals Hn[u] are constructed recursively from H0 by

D δHn

δu(x)
= Rn

(
D δH0

δu(x)

)
, n = 1, 2, . . . . (3.7)

In the case of the KdV equation the recursion operator is

R = −∂2
x + 4u + 2ux∂x

−1, (3.8)

where ∂x
−1 is formally defined as integration with respect to x, and formula (3.7) gives an

alternative way of constructing the first integrals (3.4).

1A differential operator D is degenerate is there exists a non–zero differential operator D̂ such that the
operator D̂ ◦ D is identically zero.
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3.3 Zero curvature representation

We shall discuss a more geometric form of the Lax representation where integrable systems
arise as compatibility conditions of overdetermined system of matrix PDEs. Let U(λ) and
V (λ) be matrix valued functions of (ρ, τ) depending on the auxiliary variable λ called the
spectral parameter. Consider a system of linear PDEs

∂

∂ρ
v = U(λ)v,

∂

∂τ
v = V (λ)v (3.9)

where v is a column vector whose components depend on (ρ, τ, λ). This is an overdetermined
system as there are twice as many equations as unknowns. The compatibility conditions can
be obtained by cross–differentiating and commuting the partial derivatives

∂

∂τ

∂

∂ρ
v − ∂

∂ρ

∂

∂τ
v = 0

which gives

∂

∂τ
(U(λ)v) − ∂

∂ρ
(V (λ)v) =

( ∂

∂τ
U(λ) − ∂

∂ρ
V (λ) + [U(λ), V (λ)]

)
v = 0.

This has to hold for all characteristic initial data so the linear system (3.9) is consistent iff the
nonlinear equation

∂

∂τ
U(λ) − ∂

∂ρ
V (λ) + [U(λ), V (λ)] = 0 (3.10)

holds. The whole scheme is known as the zero curvature representation2. Most non-linear
integrable equation admit a zero–curvature representation analogous to (3.10).

• Example. If

U =
i

2

(
2λ φρ

φρ −2λ

)
, V =

1

4iλ

(
cos (φ) −i sin (φ)
i sin (φ) − cos (φ)

)
(3.11)

where φ = φ(ρ, τ) then (3.10) is equivalent to the Sine–Gordon equation

φρτ = sin (φ).

• Example. Consider the zero curvature representation with

U = iλ

(
1 0
0 −1

)
+ i

(
0 φ
φ 0

)
, (3.12)

V = 2iλ2

(
1 0
0 −1

)
+ 2iλ

(
0 φ
φ 0

)
+

(
0 φρ

−φρ 0

)
− i

(
|φ|2 0
0 −|φ|2

)
.

The condition (3.10) holds if the complex valued function φ = φ(τ, ρ) satisfies the non-
linear Schrödinger equation

iφτ + φρρ + 2|φ|2φ = 0.

This is another famous soliton equation which can be solved by inverse scattering trans-
form.

2The terminology, due to Zaharov and Shabat, comes from differential geometry where (3.10) means that
the curvature of a connection Udρ + V dτ is zero.
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There is a freedom in the matrices U(λ), V (λ) known as the gauge invariance. Let g = g(τ, ρ)
be an arbitrary invertible matrix. The transformation

Ũ = gUg−1 +
∂g

∂ρ
g−1, Ṽ = gV g−1 +

∂g

∂τ
g−1 (3.13)

maps solutions to the zero curvature equation into new solutions: if the matrices (U, V ) satisfy

(3.10) then so do the matrices (Ũ , Ṽ ). To see it assume that v(ρ, τ, λ) is a solution to the linear

system (3.9), and demand that ṽ = g(ρ, τ)v be another solution for some (Ũ , Ṽ ). This leads to
the gauge transformation (3.13).

One can develop a version of inverse scattering transform which recovers U(λ) and V (λ)
from a linear scattering problem (3.9). The representation (3.10) can also be an effective direct
method of finding solutions if we know n linearly independent solutions v1, . . . , vn to the linear
system (3.9) at the first place. Let Φ(ρ, τ, λ) be a fundamental matrix solution to (3.9). The
columns of Φ are the n linearly independent solutions v1, . . . , vn. Then (3.9) holds with v
replaced by Φ and we can write

U(λ) =
∂Φ

∂ρ
Φ−1, V (λ) =

∂Φ

∂τ
Φ−1.

In practice one assumes a simple λ dependence in Φ, characterised by a finite number of poles
with given multiplicities. One general scheme of solving (3.10), known as the dressing method,
is based on the Riemann–Hilbert problem which we shall review next.

3.3.1 The Riemann–Hilbert problem

Let λ ∈ C = C+{∞} and let Γ be a closed contour in the extended complex plane. In particular
we can consider Γ to be a real line −∞ < λ < ∞ regarded as a circle in C passing through ∞.
Let G = G(λ) be a matrix valued function on the contour Γ. The Riemann–Hilbert problem
is to construct two matrix valued functions G+(λ) and G−(λ) holomorphic respectively inside
and outside the contour such that on Γ

G(λ) = G+(λ)G−(λ). (3.14)

In the case when Γ is the real axis G+ is required to be holomorphic in the upper half–plane
and G− is required to be holomorphic in the lower half–plane. If (G+, G−) is a solution of the
Riemann–Hilbert problem, then

G̃+ = G+ g−1, G̃− = g G−

will also be a solution for any constant invertible matrix g. This ambiguity can be avoided by
fixing a values of G+ or G− at some point in their domain, for example by setting G−(∞) = I. If
the matrices G± are everywhere invertible then this normalisation guarantees that the solution
to (3.14) is unique.

Solving a Riemann–Hilbert problem comes down to an integral equation. Choose a normal-
isation G+(λ0) = I and set G−(λ0) = g for some λ0 ∈ C. Assume that the Riemann–Hilbert
problem has a solution of the form

(G+)−1 = h +

∮

Γ

Φ(ξ)

ξ − λ
dξ
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inside the contour Γ, and

G− = h +

∮

Γ

Φ(ξ)

ξ − λ
dξ

outside Γ, where h is determined by the normalisation condition to be

h = g −
∮

Γ

Φ(ξ)

ξ − λ0

dξ.

The Plemelj formula [3] can be used to determine (G+)−1 and G− on the contour: If λ ∈ Γ
then

(G+)−1(λ) = h +

∮

Γ

Φ(ξ)

ξ − λ
dξ + πiΦ(λ)

G−(λ) = h +

∮

Γ

Φ(ξ)

ξ − λ
dξ − πiΦ(λ),

where the integrals are assumed to be defined by the principal value. Substituting these ex-
pressions to (3.14) yields the integral equation for Φ = Φ(λ). If the normalisation is canonical,
so that h = g = 1, the equation is

1

πi

(∫

Γ

Φ(ξ)

ξ − λ
dξ + I

)
+ Φ(λ)(G + I)(G − I)−1 = 0.

The simplest case is the scalar Riemann–Hilbert problem where G,G+, G− are ordinary
functions. In this case the solution can be written down explicitly as

G+ = exp
(
−

( 1

2πi

∫ ∞

−∞

log G(ξ)

ξ − λ
dξ

))
, Im(λ) > 0

G− = exp
( 1

2πi

∫ ∞

−∞

log G(ξ)

ξ − λ
dξ

)
, Im(λ) < 0.

This is verified by taking a logarithm of (3.14)

log G = log (G−) − log (G+)−1

and applying the Cauchy integral formulae.

3.3.2 Dressing method

We shall assume that the matrices (U, V ) in the zero curvature representation (3.10) have
rational dependence on the spectral parameter λ. The complex analytic data for each of
these matrices consist of a set of poles (including poles at λ = ∞) with the corresponding
multiplicities. Define the divisors to be the sets

SU = {αi, ni, n∞}, SV = {βj ,mj ,m∞}, i = 1, . . . , n, j = 1, . . . ,m
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so that

U(ρ, τ, λ) =
n∑

i=1

ni∑

r=1

Ui,r(ρ, τ)

(λ − αi)r
+

n∞∑

k=0

λkUk(ρ, τ)

V (ρ, τ, λ) =
m∑

j=1

mi∑

r=1

Vj,r(ρ, τ)

(λ − βj)r
+

m∞∑

k=0

λkVk(ρ, τ). (3.15)

The zero curvature condition (3.10) is a system of non–linear PDEs on coefficients

Ui,r, Uk, Vj,r, Vk

of U and V . Consider a trivial solution to (3.10)

U = U0(ρ, λ), V = V0(τ, λ)

where U0, V0 are any two commuting matrices with divisors SU and SV respectively.
Let Γ be a contour in the extended complex plane which does not contain any points from

SU ∪SV , and let G(λ) be a smooth matrix–valued function defined on Γ. The dressing method
[20] is a way of constructing a non–trivial solution with analytic structure specified by divisors
SU , SV out of the data

(U0, V0, Γ, G).

It consists of the following steps

1. Find a fundamental matrix solution to a linear system of equations

∂

∂ρ
Ψ0 = U0(λ)Ψ0,

∂

∂τ
Ψ0 = V0(λ)Ψ0. (3.16)

This overdetermined system is compatible as U0, V0 satisfy (3.10).

2. Define a family of smooth functions G(ρ, τ.λ) parametrised by (ρ, τ) on Γ

G(ρ, τ, λ) = Ψ0(ρ, τ, λ)G(λ)Ψ0
−1(ρ, τ, λ). (3.17)

This family admits a factorisation

G(ρ, τ, λ) = G+(ρ, τ, λ)G−(ρ, τ, λ) (3.18)

where G+(ρ, τ, λ) and G−(ρ, τ, λ) are solutions to the Riemann–Hilbert problem described
in the last subsection, and are holomorphic respectively inside and outside the contour Γ.

3. Differentiate (3.18) with respect to ρ and use (3.16) and (3.17). This yields

∂G+

∂ρ
G− + G+

∂G−
∂ρ

= U0G+G− − G+G−U0.

Therefore we can define

U(ρ, τ, λ) :=
(∂G−

∂ρ
+ G−U0

)
G−

−1 = −G+
−1

(∂G+

∂ρ
− U0G+

)
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which is holomorphic in C/SU . The Liouville Theorem (stating that every bounded
holomorphic function is constant) applied to the extended complex plane implies that
U(ρ, τ, λ) is rational in λ and has the same pole structure as U0.

Analogous argument leads to

V (ρ, τ, λ) :=
(∂G−

∂τ
+ G−V0

)
G−

−1 = −G+
−1

(∂G+

∂τ
− V0G+

)

which has the same pole structure as V0.

4. Define two matrix valued functions

Ψ+ = G+
−1Ψ0, Ψ− = G−

−1Ψ0.

Equations (3.16) and the definitions of (U, V ) imply that these matrices both satisfy the
overdetermined system

∂

∂ρ
Ψ± = U(λ)Ψ±,

∂

∂τ
Ψ± = V (λ)Ψ±.

We can therefore deduce that U(ρ, τ, λ) and V (ρ, τ, λ) are of the form (3.15) and satisfy
the zero curvature relation (3.10).

This procedure is called ‘dressing’ as the bare, trivial solution (U0, V0) has been dressed by an
application of a Riemann–Hilbert problem to a non-trivial (U, V ). Now, given another matrix
valued function G = G′(λ) on the contour we could repeat the whole procedure and apply it
to (U, V ) instead of (U0, V0). This would lead to another solution (U ′, V ′) with the same pole
structure. Thus dressing transformations act on the space of solutions to (3.10) and form a
group. If G = G+G− and G′ = G′

+G′− then

(G ◦ G′) = G+G′
+G′

−G−.

The solution to the Riemann–Hilbert problem (3.18) is not unique. If G± give a factorisation
of G(ρ, τ, λ) then so do

G̃+ = G+g−1, G̃− = gG−

where g = g(ρ, τ) is a matrix valued function. The corresponding solutions (Ũ , Ṽ ) are related
to (U, V ) by the gauge transformation (3.13). Fixing the gauge is therefore equivalent to fixing
the value of G+ or G− at one point of the extended complex plane, say λ = ∞. This leads to
a unique solution of the Riemann–Hilbert problem with G±(∞) = G(∞) = I.

The dressing method leads to a general form of U and V with prescribed singularities, but
more work is required to make contact with specific integrable models when additional algebraic
constraints need to be imposed on U and V . For example in the Sine–Gordon case (3.11) the
matrices are anti-Hermitian. The anti-Hermticity condition gives certain constraints on the
contour Γ and the function G. Only if these constraints hold, the matrices resulting from the
dressing procedure will be given (in some gauge) in terms of the solution to the Sine–Gordon
equation.
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3.3.3 From Lax representation to zero curvature

The zero curvature representation (3.10) is more general than the scalar Lax representation
but there is a connection between the two. First similarity is that the Lax equation (2.12)
also arises as a compatibility condition for two overdetermined PDEs. To see it take f to be
an eigenfunction of L with a simple eigenvalue E = λ and consider the relation (2.13) which
follows from the Lax equations. If E = λ is a simple eigenvalue then

∂f

∂t
+ Af = C(t)f

for some function C which depends on t but not on x. Therefore one can use an integrating
factor to find a function f̂ = f̂(x, t, λ) such that

Lf̂ = λf̂ ,
∂f̂

∂t
+ Af̂ = 0, (3.19)

where L is the Schrödinger operator and A is some differential operator (for example given by
(2.14)). Therefore the Lax relation

L̇ = [L,A]

is a compatibility of an overdetermined system (3.19).
Consider a general scalar Lax pair

L =
∂n

∂xn
+ un−1(x, t)

∂n−1

∂xn−1
+ . . . + u1(x, t)

∂

∂x
+ u0(x, t)

A =
∂m

∂xm
+ vm−1(x, t)

∂m−1

∂xm−1
+ . . . + v1(x, t)

∂

∂x
+ v0(x, t)

given by differential operators with coefficients depending on (x, t). The Lax equations

L̇ = [L,A]

(in general there will be more than one) are non–linear PDEs for the coefficients

(u0, . . . , un−1, v0, . . . , vm−1).

The linear nth order scalar PDE
Lf̂ = λf̂ (3.20)

is equivalent to the first order matrix PDE

∂F

∂x
= ULF

where UL = UL(x, t, λ) is an n by n matrix

UL =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
... ... ... . . . ... ...
... ... ... . . . ... ...
0 0 0 . . . 0 1

λ − u0 −u1 −u2 . . . −un−2 −un−1



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and F is a column vector

F = (f0, f1, . . . , fn−1)
T , where fk =

∂kf̂

∂xk
.

Now consider the second equation in (3.19)

∂f̂

∂t
+ Af̂ = 0

which is compatible with (3.20) if the Lax equations hold. We differentiate this equation with
respect to x and use (3.20) to express ∂n

x f̂ in terms of λ and lower order derivatives. Repeating
this process (n − 1) times gives an action of A on components of the vector F . We write it as

∂F

∂t
= VAF

using the method described above. This leads to a pair of first order linear matrix equations
with the zero curvature compatibility conditions

∂UL

∂t
− ∂VA

∂x
+ [UL, VA] = 0.

These conditions hold if the operators (L,A) satisfy the Lax relations L̇ = [L,A].

• Example. Let us apply this procedure to the KdV Lax pair (2.14). Set

f0 = f̂(x, t, λ), f1 = ∂xf̂(x, t, λ).

The eigenvalue problem Lf̂ = λf̂ gives

(f0)x = f1, (f1)x = (u − λ)f0.

The equation ∂tf̂ + Af̂ = 0 gives

(f0)t = −4(f0)xxx + 6uf1 + 3uxf0

= −ux(f0) + (2u + 4λ)f1.

We differentiate this equation with respect to x and eliminate the second derivatives of
f̂ to get

(f1)t = ((2u + 4λ)(u − λ) − uxx)f0 + uxf1.

We now collect the equations in the matrix form ∂xF = ULF, ∂tF = VAF where F =
(f0, f1)

T and

UL =

(
0 1

u − λ 0

)
, VA =

(
−ux 2u + 4λ

2u2 − uxx + 2uλ − 4λ2 ux

)
. (3.21)

We have therefore obtained a zero curvature representation for KdV.
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3.4 Hierarchies and finite gap solutions.

We shall end our discussion of the KdV equation with a description of KdV hierarchy. Recall
that KdV is a Hamiltonian system (3.5) with the Hamiltonian given by the first integral −I1[u].
Now choose a (constant multiple of) a different first integral In[u] as a Hamiltonian and consider
the equation

∂u

∂tn
= (−1)n ∂

∂x

δIn[u]

δu(x)
(3.22)

for a function u = u(x, tn). This leads to an infinite set of equations known as higher KdVs.
The first three equations are

ut0 = ux,

ut1 = 6uux − uxxx,

ut2 = 10uuxxx − 20uxuxx − 30u2ux − uxxxxx.

Each of these equations can be solved by inverse scattering method we have discussed, and
the functionals Ik, k = −1, 0, · · · are first integrals regardless which one of them is chosen as
a Hamiltonian. In the associated Lax representation L stays unchanged, but A is replaced by
a differential operator of degree (2n + 1). One can regard the higher KdVs as a system of
overdetermined PDEs for

u = u(t0 = x, t1 = t, t2, t3, · · ·),
where we have identified t0 with x using the first equation in (3.22).

This system is called a hierarchy and the coordinates (t2, t3, · · ·) are known as higher times.
The equations of the hierarchy are consistent as the flows generated by time translations com-
mute

∂

∂tm

∂

∂tn
u − ∂

∂tn

∂

∂tm
u = (−1)n ∂

∂tm

∂

∂x

δIn[u]

δu(x)
− (−1)m ∂

∂tn

∂

∂x

δIm[u]

δu(x)

= {u, ∂mIn − ∂nIm + {Im, In}} = 0

where we used the Jacobi identity and the fact that In[u] Poisson commute.
The concept of the hierarchy leads to a beautiful method of finding solutions to KdV with

periodic initial data, i.e.
u(x, 0) = u(x + X0, 0)

for some period X0. The method is based on the concept of stationary (i.e. time independent)
solutions, albeit applied to a combination of the higher times.

Consider the first (n + 1) higher KdVs and take (n + 1) real constants c0, . . . , cn. Therefore

n∑

k=0

ck
∂u

∂tk
=

n∑

k=0

(−1)kck
∂

∂x

δIk[u]

δu(x)
.

The stationary solutions correspond to u being independent on the combination of higher times
on the LHS. This leads to an ODE

n∑

k=0

(−1)kck
δIk[u]

δu(x)
= cn+1, cn+1 = const. (3.23)
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The recursion relations (3.3) for Sks imply that this ODE is of order 2n. Its general solution
depends on 2n constants of integration as well as (n + 1) parameters c as we can always divide
(3.23) by cn 6= 0. Altogether one has 3n + 1 parameters. The beauty of this method is
that the ODE is integrable in the sense of Arnold–Liouville theorem and its solutions can be
constructed by hyper–elliptic functions. The corresponding solutions to KdV are known as
finite–gap solutions. Their description in terms of a spectral data is rather involved and uses
Riemann surfaces and algebraic geometry - see Chapter 2 of [15].

We shall now present the construction of the first integrals to equation (3.23) (we stress
that (3.23) is an ODE in x so the first integrals are functions of u and its derivatives which do
not depend on x when (3.23) holds). The higher KdV equations (3.22) admit a zero curvature
representation

∂

∂tn
U − ∂

∂x
Vn + [U, Vn] = 0

where

U =

(
0 1

u − λ 0

)

is the matrix obtained for KdV in section (3.3.3) and Vn = Vn(x, t, λ) are traceless 2 by 2
matrices analogous to VA which can be obtained using (3.22) and the recursion relations for
(3.2). The components of Vn depend on (x, t) and are polynomials in λ of degree (n + 1). Now
set

Λ = c0V0 + . . . + cnVn

where ck are constants and consider solutions to

∂

∂T
U − ∂

∂x
Λ + [U,Λ] = 0,

such that
∂

∂T
U = 0, where

∂

∂T
= c0

∂

∂t0
+ . . . + cn

∂

∂tn
.

This gives rise to the ODE
d

dx
Λ = [U,Λ]

which is the Lax representation of (3.23). This representation reveals existence of many first
integrals for (3.23) . We have

d

dx
Tr(Λp) = Tr(p[U,Λ]Λp−1) = pTr(−ΛUΛp−1 + UΛp) = 0, p = 2, 3, . . .

by the cyclic property of trace. Therefore all the coefficients of the polynomials Tr(Λ(λ)p) for
all p are conserved (which implies that the whole spectrum of Λ(λ) is constant in x). It turns
out [15] that one can find n independent non-trivial integrals in this set which are in involution
thus guaranteeing the integrability of (3.23) is a sense of the Arnold–Liouville theorem 1.2.2.

The resulting solutions to KdV are known as ‘finite gap’ potentials. Let us justify this
terminology. The spectrum of Λ does not depend on x and so the coefficients of the characteristic
polynomial

det (1µ − Λ(λ)) = 0
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also do not depend on x. Using the fact that Λ(λ) is trace free we can rewrite this polynomial
as

µ2 + R(λ) = 0 (3.24)

where

R(λ) = λ2n+1 + a1λ
2n + . . . + a2nλ + a2n+1

= (λ − λ0) . . . (λ − λ2n).

Therefore the coefficients a1, . . . , a2n+1 (or equivalently λ0, . . . , λ2n) do not depend on x. How-
ever (n + 1) of those coefficients can be expressed in terms of the constants ck and thus the
corresponding first integrals are trivial. This leaves us with n first integrals for an ODE (3.23)
of order 2n.

It is possible to show [15] that

• All solutions to the KdV equation with periodic initial data arise from (3.23).

• For each λ the corresponding eigenfunctions of the Schrödinger operator Lψ = λψ can
be expanded in a basis ψ± such that

ψ±(x + X0) = e±ipX0ψ±(x)

for some p = p(λ) (ψ± are called Bloch functions). The set of real λ for which p(λ) ∈ R is
called the permissible zone. The roots of the polynomial R(λ) are the end-points of the
permissible zones

(λ0, λ1), (λ2, λ3), . . . , (λ2n−2, λ2n−1), (λ2n,∞).

The equation (3.24) defines a Riemann surface Γ of genus n. The number of forbidden zones
(gaps) is therefore finite for the periodic solutions as the Riemann surface (3.24) has finite
genus. This justifies the name ‘finite gap’ potentials.

• Example. If n = 0 the Riemann surface Γ has topology of the sphere and the corre-
sponding solution to the KdV is a constant. If n = 1 Γ is called an elliptic curve (it
has topology of a two-torus) and the ODE (3.23) is solvable by elliptic functions: the
stationary condition

c0
∂u

∂t0
+ c1

∂u

∂t1
= 0

yields
c0ux + c1(6uux − uxxx) = b, b = const

where we used the fist two equations of the hierarchy. We can set c1 = 1 redefining the
other two constants. This ODE can be integrated and the general solution is a Weierstrass
elliptic function ∫

du√
2u3 + c0u2 − 2bu + d

= x − x0.

The stationary condition implies that u = u(x−c0t) where we have identified t0 = x, t1 =
t. Thus x0 = c0t. These solutions are called cnoidal waves because the corresponding
elliptic function is often denoted ‘cn’.

If n > 1 the Riemann surface Γ is a hyper-elliptic curve and the corresponding KdV potential
is given in terms of Riemann’s Theta function [15].
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Chapter 4

Lie symmetries and reductions

4.1 Lie groups and Lie algebras

Phrases like ‘the unifying role of symmetry in . . . ’ feature prominently in the popular science
literature. Depending on the subject, the symmetry may be ‘cosmic’, ‘Platonic’, ‘perfect’,
‘broken’ or even ‘super’1.

The mathematical framework used to define and describe the symmetries is group theory.
Recall that a group is a set G with a map

G × G → G, (g1, g2) → g1g2

called the group multiplication which satisfies the following properties:

• Associativity
(g1g2)g3 = g1(g2g3) ∀g1, g2, g3 ∈ G.

• There exist an identity element e ∈ G such that

eg = ge = g, ∀g ∈ G.

• For any g ∈ G there exists an inverse element g−1 ∈ G such that

gg−1 = g−1g = e.

A group G acts on a set X if there exists a map G × X → X, (g, p) → g(p) such that

e(p) = p, g2(g1(p)) = (g2g1)(p)

for all p ∈ X, and g1, g2 ∈ G. The set Orb(p) = {g(p), g ∈ G} ⊂ X is called the orbit of p.
Groups acting on sets are often called groups of transformations.

1Supersymmetry is a symmetry between elementary particles known as bosons and fermions. It is a symmetry
of equations underlying the current physical theories. Supersymmetry predicts that each elementary particle
has its supersymmetric partner. No one has yet observed supersymmetry. Perhaps it will be found in the LHC.
See a footnote on page 26.
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In this Chapter we shall explore the groups which act on solutions to differential equations.
Such group actions occur both for integrable and non-integrable systems so the methods we
shall study are quite universal2. In fact all the techniques of integration of differential equations
(like separation of variables, integrating factors, homogeneous equations, . . . ) students have
encounter in their education are special cases of the symmetry approach. See [16] for a very
complete treatment of this subject and [9] for an elementary introduction at an undergraduate
level.

The symmetry programme goes back to a 19th century Norwegian mathematician Sophus
Lie who developed a theory of continuous transformations now known as Lie groups. One of
most important of Lie’s discoveries was that a continuous group G of transformations is easy
to describe by infinitesimal transformations characterising group elements close (in a sense of
Taylor’s theorem) to the identity element. These infinitesimal transformations are elements of
Lie algebra g. For example a general element of the rotation group G = SO(2)

g(ε) =

(
cos ε − sin ε
sin ε cos ε

)

depends on one parameter ε. The group SO(2) is a Lie group as g, its inverse and the group
multiplication depend on ε in a continuous and differentiable way. This Lie group is one–
dimensional as one parameter - the angle of rotation - is sufficient to describe any rotation
around the origin in R

2. A rotation in R
3 depends on three such parameters - the Euler angles

used in classical dynamics - so SO(3) is a three dimensional Lie group. Now consider the Taylor
series

g(ε) =

(
1 0
0 1

)
+ ε

(
0 −1
1 0

)
+ O(ε2).

The antisymmetric matrix

A =

(
0 −1
1 0

)

represents an infinitesimal rotation as Ax = (−y, x)T are components of the vector tangent to
the orbit of x at x. The one dimensional vector space spanned by A is called a Lie algebra of
SO(2).

The following definition is not quite correct (Lie groups should be defined as manifolds -
see the Definition A.0.3 in Appendix A) but it is sufficient for our purposes.

Definition 4.1.1 An m–dimensional Lie group is a group whose elements depend continu-
ously of m parameters such that the maps (g1, g2) → g1g2 and g → g−1 are smooth (infinitely
differentiable) functions of these parameters.

The infinitesimal description of Lie groups is given by Lie algebras.

Definition 4.1.2 A Lie algebra is a vector space g with an anti–symmetric bilinear operation
called a Lie bracket [ , ]g : g × g → g which satisfies the Jacobi identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0, ∀A,B,C ∈ g.

2It is however the case that integrable systems admit ‘large’ groups of symmetries and non-integrable systems
usually do not.
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If the vectors A1, . . . , Adim g span g, the algebra structure is determined by the structure con-
stants fγ

αβ such that

[Aα, Aβ]g =
∑

γ

fγ
αβAγ , α, β, γ = 1, . . . , dim g.

The Lie bracket is related to non-commutativity of the group operation as the following argu-
ment demonstrates. Let a, b ∈ G. Set

a = I + εA + O(ε2), b = I + εB + O(ε3)

for some A,B and calculate

aba−1b−1 = (I + εA + . . .)(I + εB + . . .)(I − εA + . . .)(I − εB + . . .) = I + ε2[A,B] + O(ε2)

where . . . denote terms of higher order in ε and we used the fact (1 + εA)−1 = 1 − εA + . . .
which follows from the Taylor series. Some care needs to be taken with the above argument as
we have neglected the second order terms in the group elements but not in the answer. The
readers should convince themselves that these terms indeed cancel out.

• Example. Consider the group of special orthogonal transformations SO(n) which consist
of n by n matrices a such that

aaT = I, det a = 1.

These conditions imply that only n(n − 1)/2 matrix components are independent and
SO(n) is a Lie group of dimension n(n − 1)/2. Setting a = I + εA + O(ε2) shows that
infinitesimal version of the orthogonal condition is anti-symmetry

A + AT = 0.

Given two anti-symmetric matrices their commutator is also anti-symmetric as

[A,B]T = BT AT − ATBT = −[A,B].

Therefore the vector space of antisymmetric matrices is a Lie algebra with a Lie bracket
defined to be the matrix commutator. This Lie algebra, called so(n), is a vector space of
dimension n(n − 1)/2. This is equal to the dimension (the number of parameters) of the
corresponding Lie group SO(n).

• Example. An example of a three–dimensional Lie group is given by the group of 3 by 3
upper triangular matrices

g(m1,m2,m3) =




1 m1 m3

0 1 m2

0 0 1


 . (4.1)

Note that g = 1 +
∑

α mαTα, where the matrices Tα are

T1 =




0 1 0
0 0 0
0 0 0


 , T2 =




0 0 0
0 0 1
0 0 0


 , T3 =




0 0 1
0 0 0
0 0 0


 . (4.2)
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This Lie group is called Nil, as the matrices Tα are all nilpotent. These matrices span
the Lie algebra of the group Nil and have the commutation relations

[T1, T2] = T3, [T1, T3] = 0, [T2, T3] = 0. (4.3)

This gives the structure constants f 3
12 = −f 3

21 = 1 and all other constants vanish.

A three-dimensional Lie algebra with these structure constants is called the Heisenberg
algebra because of its connection with Quantum Mechanics - think of T1 and T2 as position
and momentum operators respectively, and T3 as i~ times the identity operator.

In the above example the Lie algebra of a Lie group was represented by matrices. If the
group acts on a subset X of R

n, its Lie algebra is represented by vector fields3 on X. This
approach underlies the application of Lie groups to differential equations so we shall study it
next.

4.2 Vector fields and one parameter groups of transfor-

mations

Let X be an open set in R
n with local coordinates x1, . . . , xn and let γ : [0, 1] −→ X be a

parametrised curve, so that γ(ε) = (x1(ε), . . . , xn(ε)). The tangent vector V |p to this curve at
a point p ∈ X has components

V a = ẋa|p, a = 1, . . . , n, where =̇
d

dε
.

The collection of all tangent vectors to all possible curves through p is an n-dimensional vector
space called the tangent space TpX. The collection of all tangent spaces as x varies in X is
called a tangent bundle TX = ∪x∈MTxX. The tangent bundle is a manifold of dimension 2n
(see Appendix A).

A vector field V on X assigns a tangent vector V |p ∈ TpX to each point in X. Let
f : X −→ R be a function on X. The rate of change of f along the curve is measured by a
derivative

d

dε
f(x(ε))|ε=0 = V a ∂f

∂xa

= V (f)

where

V = V 1 ∂

∂x1
+ . . . + V n ∂

∂x1
.

Thus vector fields can be thought of as first order differential operators. The derivations
{ ∂

∂x1 , . . . ,
∂

∂xn} at the point p denote the elements of the basis of TpX.
An integral curve γ of a vector field V is defined by γ̇(ε) = V |γ(ε)or equivalently

dxa

dε
= V a(x). (4.4)

3The structure constants fγ
αβ do not depend on which of these representation is used.
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This system of ODEs has a unique solution for each initial data, and the integral curve passing
through p with coordinates xa is called a flow x̃a(ε, xb). The vector field V is called a generator
of the flow, as

x̃a(ε, x) = xa + εV a(x) + O(ε2).

Determining the flow of a given vector field comes down to solving a system of ODEs (4.4).

• Example. Integral curves of the vector field

V = x
∂

∂x
+

∂

∂y

on R2 are found by solving a pair of ODEs ẋ = x, ẏ = 1. Thus

(x(ε), y(ε)) = (x(0)eε, y(0) + ε).

There is one integral curve passing through each point in R
2.

The flow is an example of one–parameter group of transformations, as

x̃(ε2, x̃(ε1, x)) = x̃(ε1 + ε2, x), x̃(0, x) = x.

An invariant of a flow is a function f(xa) such that f(xa) = f(x̃a) or equivalently

V (f) = 0

where V is the generating vector field.

• Example. The one parameter group SO(2) of rotations on the plane

(x̃, ỹ) = (x cos ε − y sin ε, x sin ε + y cos ε)

is generated by

V =
(∂ỹ

∂ε
|ε=0

) ∂

∂y
+

(∂x̃

∂ε
|ε=0

) ∂

∂x

= x
∂

∂y
− y

∂

∂x
.

The function r =
√

x2 + y2 is an invariant of V .

A Lie bracket of two vector fields V,W is a vector field [V,W ] defined by its action on functions

[V,W ](f) := V (W (f)) − W (V (f)). (4.5)

The components of the Lie bracket are

[V,W ]a = V b ∂W a

∂xb
− W b ∂V a

∂xb
.

From its definition the Lie bracket is bi-linear, antisymmetric and it satisfies the Jacobi identity

[V, [W,U ]] + [U, [V,W ]] + [W, [U, V ]] = 0. (4.6)
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A geometric interpretation of the Lie bracket is the infinitesimal commutator of two flows. To
see it consider x̃1(ε1, x) and x̃2(ε2, x) which are the flows of vector fields V1 and V2 respectively.
For any f : X → R define

F (ε1, ε2, x) := f(x̃1(ε1, (x̃2(ε2, x)))) − f(x̃2(ε2, (x̃1(ε1, x)))).

Then
∂2

∂ε1∂ε2

F (ε1, ε2, x)|ε1=ε2=0 = [V1, V2](f).

• Example. Consider the three–dimensional Lie group Nil of 3 by 3 upper triangular
matrices

g(m1,m2,m3) =




1 m1 m3

0 1 m2

0 0 1




acting on R3 by matrix multiplication

x̃ = g(m1,m2,m3)x = (x + m1y + m3z, y + m2z, z).

The corresponding vector fields4 V1, V2, V3 are

Vα =
( ∂x̃

∂mα

∂

∂x̃
+

∂ỹ

∂mα

∂

∂ỹ
+

∂z̃

∂mα

∂

∂z̃

)
|(m1,m2,m3)=(0,0,0)

which gives

V1 = y
∂

∂x
, V2 = z

∂

∂y
, V3 = z

∂

∂x
.

The Lie brackets of these vector fields are

[V1, V2] = −V3, [V1, V3] = 0, [V2, V3] = 0.

Thus we have obtained the representation of the Lie algebra of Nil by vector fields on
R3. Comparing this with the commutators of the matrices (4.2) we see that the structure
constants only differ by an overall sign. The Lie algebra spanned by the vector fields Vα

is isomorphic to Lie algebra spanned by the matrices Mα.

• Example. A driver of a car has two transformation at his disposal. These are generated
by vector fields

STEER =
∂

∂φ
, DRIVE = cos θ

∂

∂x
+ sin θ

∂

∂y
+

1

L
tan φ

∂

∂θ
, L = const.

where (x, y) are coordinates of the center of the rear axle, θ specifies the direction of the
car, and φ is the angle between the front wheels and the direction of the car. These two
flows don’t commute, and

[STEER,DRIVE] = ROTATE,

4Note that the lower index labels the vector fields while the upper index labels the components. Thus
Vα = V a

α ∂/∂xa
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where the vector field

ROTATE =
1

L cos2 φ

∂

∂θ

generates the manoeuvre steer, drive, steer back, drive back. This manoeuvre alone
doesn’t guarantee that the driver parks his car in a tight space. The commutator

[DRIVE,ROTATE] =
1

L cos2 φ

(
sin θ

∂

∂x
− cos θ

∂

∂y

)
= SLIDE

is the key to successful parallel parking. One needs to perform the following sequence
steer, drive, steer back, drive, steer, drive back, steer back, drive back!

In general the Lie bracket is a closed operation in a set of the vector fields generating a group.
The vector space of vector fields generating the group action gives a representation of the
corresponding Lie algebra. The structure constants fγ

αβ do not depend on which of the repre-
sentations (matrices or vector fields) is used.

4.3 Symmetries of differential equations

Let u = u(x, t) be a solution to the KdV equation (2.1). Consider a vector field

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u

on the space of dependent and independent variables R × R
2. This vector field generates a

one–parameter group of transformations

x̃ = x̃(x, t, u, ε), t̃ = t̃(x, t, u, ε), ũ = ũ(x, t, u, ε).

This group is called a symmetry of the KdV equation if

∂ũ

∂t̃
− 6ũ

∂ũ

∂x̃
+

∂3ũ

∂x̃3
= 0.

The common abuse of terminology is to refer to the corresponding vector field as a symmetry,
although the term infinitesimal symmetry is more appropriate.

• Example. An example of a symmetry of the KdV is given by

x̃ = x, t̃ = t + ε, ũ = u.

It is a symmetry as there is no explicit time dependence in the KdV. Its generating vector
field is

V =
∂

∂t
.

Of course there is nothing special about KdV in this definition and the concept of a symmetry
applies generally to PDEs and ODEs.
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Definition 4.3.1 Let X = R
n × R be the space of independent and dependent variables in a

PDE. A one–parameter group of transformations of this space

ũ = ũ(xa, u, ε), x̃b = x̃b(xa, u, ε)

is called a Lie point symmetry (or symmetry for short) group of a PDE

F [u,
∂u

∂xa
,

∂2u

∂xa∂xb
, . . .] = 0 (4.7)

if its action transforms solutions to other solutions i.e.

F [ũ,
∂ũ

∂x̃a
,

∂2ũ

∂x̃a∂x̃b
, . . .] = 0.

This definition naturally extends to multi–parameter groups of transformation. A Lie group
G is a symmetry of a PDE if any of its one–parameter subgroups is a symmetry in a sense of
Definition 4.3.1.

A knowledge of Lie point symmetries is useful for the following reasons

• It allows to use known solutions to construct new solutions.

Example. The Lorentz group

(x̃, t̃) =
( x − εt√

1 − ε2
,

t − εx√
1 − ε2

)
, ε ∈ (−1, 1)

is the symmetry group of the Sine–Gordon equation (2.2). Any t–independent solution
φS(x) to (2.2) can be used to obtain a time dependent solution

φ(x, t) = φS

( x − εt√
1 − ε2

)
, ε ∈ (−1, 1).

In physics this procedure is known as ‘Lorentz boost’. The parameter ε is usually denoted
by v and called velocity. For example the Lorentz boost of a static kink is a moving kink.

• For ODEs each symmetry reduces the order by 1. So a knowledge of a sufficiently many
symmetries allows a construction of the most general solution.

Example. An ODE
du

dx
= F

(u

x

)

admits a scaling symmetry

(x, u) −→ (eεx, eεu), ε ∈ R.

This one–dimensional group is generated by a vector field

V = x
∂

∂x
+ u

∂

∂u
.
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Introduce the invariant coordinates

r =
u

x
, s = log |x|

so that
V (r) = 0, V (s) = 1.

If F (r) = r the general solution is r = const. Otherwise

ds

dr
=

1

F (r) − r

and the general implicit solution is

log |x| + c =

∫ u
x dr

F (r) − r
.

• For PDEs the knowledge of the symmetry group is not sufficient to construct the most
general solution, but it can be used to find special solutions which admit symmetry.

Example. Consider the one–parameter group of transformations

(x̃, t̃, ũ) = (x + cε, t + ε, u)

where c ∈ R is a constant. It is straightforward to verify that this group is a Lie point
symmetry of the KdV equation (2.1). It is generated by the vector field

V =
∂

∂t
+ c

∂

∂x

and the corresponding invariants are u and ξ = x − ct. To find the group invariant
solutions assume that a solution of the KdV equation is of the form

u(x, t) = f(ξ).

Substituting this to the KdV yields a third order ODE which easily integrates to

1

2

(df

dξ

)2

= f 3 +
1

2
cf 2 + αf + β

where (α, β) are arbitrary constants. This ODE is solvable in terms of an elliptic integral,
which gives all group invariant solutions in the implicit form

∫
df√

f 3 + 1
2
cf 2 + αf + β

=
√

2ξ.

Thus we have recovered the cnoidal wave which in Section 3.4 arose from the finite gap
integration. In fact the one–soliton solution (2.3) falls into this category: if f and its first
two derivatives tend to zero as |ξ| → ∞ then α, β are both zero and the elliptic integral
reduces to an elementary one. Finally we obtain

u(x, t) = − 2χ2

cosh2 χ(x − 4χ2t − φ0)

which is the one–soliton solution (2.3) to the KdV equation.
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4.3.1 How to find symmetries

Some of them can be guessed. For example if there is no explicit dependence of independent
coordinates in the equation then the translations x̃a = xa + ca are symmetries. All translations
form an n–parameter abelian group generated by n vector fields ∂/∂xa.

In the general case of (4.7) we could substitute

ũ = u + εη(xa, u) + O(ε2), x̃b = xb + εξb(xa, u) + O(ε2)

into the equation (4.7) and keep the terms linear in ε. A more systematic method is given by
the prolongation of vector field. Assume that the space of independent variables is coordinatised
by (x, t) and the equation (4.7) is of the form

F (u, ux, uxx, uxxx, ut) = 0.

(for example KdV is of that form). The prolongation of the vector field

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u

is

pr(V ) = V + ηt ∂

∂ut

+ ηx ∂

∂ux

+ ηxx ∂

∂uxx

+ ηxxx ∂

∂uxxx

,

where (ηt, ηx, ηxx, ηxxx) are certain functions of (u, x, t) which can be determined algorithmically
in terms of (ξ, τ, η) and their derivatives (we will do it in the next Section). The prolongation
pr(V ) generates a one–parameter group of transformations on the 7–dimensional space with
coordinates

(x, t, u, ut, ux, uxx, uxxx).

(This is an example of a jet space. The symbols (ut, ux, uxx, uxxx) should be regarded as
independent coordinates and not as derivatives of u.). The vector field V is a symmetry of the
PDE if

pr(V )(F )|F=0 = 0. (4.8)

This condition gives a linear system of PDEs for (ξ, τ, η). Solving this system yields the most
general symmetry of a given PDE. The important point is that (4.8) is only required to hold
when (4.7) is satisfied (‘on shell’ as a physicist would put it).

4.3.2 Prolongation formula

The first step in implementing the prolongation procedure is to determine the functions

ηt, ηx, ηxx, . . .

in the prolonged vector field. For simplicity we shall assume that we want to determine a
symmetry of Nth order ODE

dNu

dxN
= F

(
x, u,

du

dx
, · · · , dN−1u

dxN−1

)
.
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Consider a vector field

V = ξ
∂

∂x
+ η

∂

∂u
.

Its prolongation

pr(V ) = V +
N∑

k=1

η(k) ∂

∂u(k)

generates a one–parameter transformation group

x̃ = x + εξ + O(ε2), ũ = u + εη + O(ε2), ũ(k) = u(k) + εη(k) + O(ε2)

of the (N + 2) dimensional jet space with coordinates (x, u, u′, . . . , uN ).
The prolongation is an algorithm for the calculation of the functions η(k). Set

Dx =
∂

∂x
+ u′ ∂

∂u
+ u

′′ ∂

∂u′ + · · · + u(N) ∂

∂u(N−1)
.

The chain rule gives

ũ(k) =
dũ(k−1)

dx̃
=

Dxũ
(k−1)

Dxx̃
,

so

ũ(1) =
Dxũ

Dxx̃
=

du
dx

+ εDx(η) + . . .

1 + εDx(ξ) + . . .
=

du

dx
+ ε(Dxη − du

dx
Dxξ) + O(ε2).

Thus

η(1) = Dxη − du

dx
Dxξ.

The remaining prolongation coefficients can now be constructed recursively: The relation

ũ(k) =
u(k) + εDx(η

(k−1))

1 + εDx(ξ)

yields the general prolongation formula

η(k) = Dx(η
(k−1)) − dku

dxk
Dxξ. (4.9)

The procedure is entirely analogous for PDEs, where u = u(xa) but one has to keep track of
the index a labelling the independent variables. Set

Da =
∂

∂xa
+ (∂au)

∂

∂u
+ (∂2

au)
∂

∂(∂au)
+ · · · + (∂N

a u)
∂

∂(∂N−1
a u)

,

where

∂k
au =

∂ku

∂(xa)k
.

The first prolongation is

η(a) = Daη −
n∑

b=1

(Daξ
b)

∂u

∂xb
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and the higher prolongations are given recursively by the formula

ηA,a = Daη
A −

n∑

b=1

(Daξ
b)

∂uA

∂xb

where A = (a1, . . . , ak) is a multi-index and

uA =
∂ku

∂xa1∂xa2 . . . ∂xak
.

• Example. Let us follow the prolongation procedure to find the most general Lie–point
symmetry of the second order ODE

d2u

dx2
= 0.

We first need to compute the second prolongation

pr(V ) = ξ
∂

∂x
+ η

∂

∂u
+ ηx ∂

∂ux

+ ηxx ∂

∂uxx

.

This computation does not depend on the details of the equation but only on the prolon-
gation formulae (4.9). The result is

ηx = ηx + (ηu − ξx)ux − ξuu
2
x,

ηxx = ηxx + (2ηxu − ξxx)ux + (ηuu − 2ξxu)u
2
x − ξuuu

3
x + (ηu − 2ξx)uxx − 3ξuuxuxx.

Now we substitute this, and the ODE to the symmetry criterion (4.8)

pr(V )(uxx) = ηxx = 0.

Thus
ηxx + (2ηxu − ξxx)ux + (ηuu − 2ξxu)u

2
x − ξuuu

3
x = 0

where we have used the ODE to set uxx = 0. In the second order equation the value of
ux can be prescribed in an arbitrary way at each point (initial condition). Therefore the
coefficients of ux, u

2
x and u3

x all vanish

ηxx = 0, 2ηxu − ξxx = 0, ηuu − 2ξxu = 0, ξuu = 0.

The general solution of these linear PDEs is

ξ(x, u) = ε1x
2 + ε2xu + ε3x + ε4u + ε5,

η(x, u) = ε1xu + ε2u
2 + ε6x + ε7u + ε8.

Therefore the trivial ODE in our example admits an eight dimensional group of symme-
tries.

65



Let Vα, α = 1, . . . , 8 be the corresponding vector fields obtained by setting εα = 1 and
εβ = 0 if β 6= α

V1 = x2 ∂

∂x
+ xu

∂

∂u
, V2 = xu

∂

∂x
+ u2 ∂

∂u
, V3 = x

∂

∂x
, V4 = u

∂

∂x
,

V5 =
∂

∂x
, V6 = x

∂

∂u
, V7 = u

∂

∂u
, V8 =

∂

∂u
.

Each of the eight vector fields generates a one–parameter group of transformations. Cal-
culating the Lie brackets of these vector fields verifies that they form a Lie algebra of
PGL(3, R).

It is possible to show that the Lie point symmetry group of a general second order ODE
has dimension at most 8. If this dimension is 8 then the ODE is equivalent to uxx = 0 by
a coordinate transformation u → U(u, x), x → X(u, x).

This example shows that the process of prolonging the vector fields and writing down the
linear PDEs characterising the symmetries is tedious but algorithmic. It is worth doing a
few examples by hand to familiarise oneself with the method but in practice it is best to use
computer programmes like MAPLE or MATHEMATICA to do symbolic computations.

• Example. Lie point symmetries of KdV. The vector fields

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 =

∂

∂u
− 6t

∂

∂x
, V4 = x

∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u

generate a four–parameter symmetry group of KdV. The group is non–abelian as the
structure constants of the Lie algebra spanned by Vα are non–zero:

[V2, V3] = −6V1, [V1, V4] = V1, [V2, V4] = 3V2, [V3, V4] = −2V3

and all other Lie brackets vanish.

One can use the prolongation procedure to show that this is in fact the most general
symmetry group of KdV. One needs to find a third prolongation of a general vector field
on R3 - this can be done ‘by hand’ but it is best to use MAPLE package liesymm with the
command determine. Type help(determine); and take it from there.

4.4 Painlevé equations

In this Section we shall consider ODEs in complex domain. This means that both the dependent
and independent variables are complex numbers. Let us first discuss the linear ODEs of the
form

dNw

dzN
+ pN−1(z)

dN−1w

dzN−1
+ · · · + p1(z)

dw

dz
+ p0(z)w = 0 (4.10)

where w = w(z). If the functions p0, . . . , pN−1 are analytic at z = z0, then z0 is called a regular
point and for a given initial data there exist a unique analytic solution in the form of a power
series

w(z) =
∑

k

ak(z − z0)
k.
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The singular points of the ODE (4.10) can be located only at the singularities of pk. Thus
the singularities are fixed – their location does not depend on the initial conditions. Nonlinear
ODEs lose this property.

• Example. Consider a simple nonlinear ODE and its general solution

dw

dz
+ w2 = 0, w(z) =

1

z − z0

.

The location of the singularity depends on the constant of integration z0. This is a
movable singularity.

A singularity of a nonlinear ODE can be a pole (of arbitrary order), a branch point or an
essential singularity.

• Example. The ODE with the general solution

dw

dz
+ w3 = 0, w(z) =

1√
2(z − z0)

.

has a movable singularity which is a branch point. Another example with a movable
logarithmic branch point is

dw

dz
+ ew = 0, w(z) = ln (z − z0).

Definition 4.4.1 The ODE

dNw

dzN
= F

(dN−1w

dzN−1
, · · · , dw

dz
, w, z

)

where F is rational in w and its derivatives has Painlevé property if its movable singularities
are at worst poles.

In 19th century Painlevé, Gambier and Kowalewskaya aimed to classify all second order ODEs
with Painlevé property up to a change of variables

w̃(w, z) =
a(z)w + b(z)

c(z)w + d(z)
, z̃(z) = φ(z)

where the functions a, b, c, d, φ are analytic in z. There exist 50 canonical types 44 of which are
solvable in terms of ‘known’ functions (sinus, cosinus, elliptic functions or in general solutions
to linear ODEs) [10]. The remaining 6 equations define new transcendental functions

d2w

dz2
= 6w2 + z PI, (4.11)

d2w

dz2
= 2w3 + wz + α PII,

d2w

dz2
=

1

w

(dw

dz

)2

− 1

z

dw

dz
+

αw2 + β

z
+ γw3 +

δ

w
PIII,
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d2w

dz2
=

1

2w

(dw

dz

)2

+
3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
PIV,

d2w

dz2
=

(
1

2w
+

1

w − 1

) (dw

dz

)2

− 1

z

dw

dz
+

(w − 1)2

z2

(
αw +

β

w

)

+
γw

z
+

δw(w + 1)

w − 1
PV,

d2w

dz2
=

1

2

(
1

w
+

1

w − 1
+

1

w − z

)(dw

dz

)2

−
(

1

z
+

1

z − 1
+

1

w − z

)
dw

dz

+
w(w − 1)(w − z)

z2(z − 1)2

(
α + β

z

w2
+ γ

z − 1

(w − 1)2
+ δ

z(z − 1)

(w − z)2

)
PVI.

Here α, β, γ, δ are constants. Thus PVI belongs to a four–parameter family of ODEs but PI is
rigid up to coordinate transformations.

How to check the Painlevé property for a given ODE? If a second order equation possesses
the Painlevé property then it is either linearisable or can be put into one of the six Painlevé
types by appropriate coordinate transformation. Exhibiting such transformation is often the
most straightforward way of establishing the Painlevé property.

Otherwise, especially if we suspect that the equation does not have Painlevé property, the
singular point analysis may be performed. If a general Nth order ODE possesses the PP then
the general solution admits a Laurent expansion with a finite number of terms with negative
powers. This expansion must contain N arbitrary constants so that the initial data consisting
of w and its first (N − 1) derivatives can be specified at any point. Assume that a leading term
in the expansion of the solution is of the form

w(z) ∼ a(z − z0)
p, a 6= 0, a, p ∈ C

as z → z0. Substitute this to the ODE and require the maximal balance condition. This means
that two (or more) terms must be of equal maximally small order as (z − z0) → 0. This should
determine a and p and finally the form of a solution around z0. If z0 is a singularity we should
also be able to determine if it is movable or fixed.

• Example. Consider the ODE
dw

dz
= w3 + z.

The maximal balance condition gives

ap(z − z0)
p−1 ∼ a3(z − z0)

3p.

Thus p = −1/2, a = ±i
√

2
−1

and

w(z) ∼ ±i

√
2

2
(z − z0)

−1/2

possesses a movable branch point as z0 depends on the initial conditions. The ODE does
not have Painlevé property.
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• Example. Consider the first Painlevé equation

d2w

dz2
= 6w2 + z.

The orders of the three terms in this equations are

p − 2, 2p, 0.

Balancing the last two terms gives p = 0 but this is not the maximal balance as the first
term is then of order −2. Balancing the first and last terms gives p = 2. This is a maximal
balance and the corresponding solution is analytic around z0. Finally balancing the first
two terms gives p = −2 which again is the maximal balance: the ‘balanced’ terms behave
like (z − z0)

−4 and the remaining term is of order 0. Now we find that a = a2 and so
a = 1 and

w(z) ∼ 1

(z − z0)2
.

Thus the movable singularity is a second order pole.

This singular point analysis is good to rule out Painlevé property, but does not give sufficient
conditions (at least not in the heuristic form in which we presented it), as some singularities may
have been missed or the Laurent series may be divergent. The analysis of sufficient conditions
is tedious and complicated - we shall leave it out.

The Painlevé property guarantees that the solutions of six Painlevé equations are single
valued thus giving rise to proper functions. The importance of the Painlevé equations is that
they define new transcendental functions in the following way: Any sufficiently smooth function
can be defined as a solution to certain DE. For example we can define the exponential function
as a general solution to

dw

dz
= w

such that w(0) = 1. Similarly we define the function PI from the general solution of the first
Painlevé equation. From this point of view the exponential and PI functions are on equal
footing. Of course we know more about the exponential as it possesses simple properties and
arises in a wide range of problems in natural sciences. We know much less about PI, but it is
largely because we have not yet been bothered to reveal its properties.

The irreducibility of the Painlevé equations is a more subtle issue. It roughly means the
following. One can define a field of classical functions by starting off with the rational func-
tions Q[z] and adjoining those functions which arise as solutions of algebraic or linear dif-
ferential equations with coefficients in Q[z]. For example the exponential, Bessel function,
hyper-geometric function are all solutions of linear DEs, and thus are classical. A function is
called irreducible (or transcendental) if it is not classical. Painlevé himself anticipated that the
Painlevé equations define irreducible functions but the rigorous proofs for PI and PII appeared
only recently. They use a far reaching extension of Galois theory from the number fields to
differential fields of functions. The irreducibility problem is analogous to existence of non–
algebraic numbers (numbers which are not roots of any polynomial equations with rational
coefficients). Thus the the appearance of Galois theory is not that surprising.
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4.4.1 Painlevé test

How to determine whether a given PDE is integrable? It is to large extend an open problem as
the satisfactory definition of integrability of PDEs is still missing. The following algorithm is
based on the observation of Ablowitz, Ramani and Segur [1] (see also [2]) that PDEs integrable
by inverse scattering transform reduce (when the solutions are required to be invariant under
some Lie symmetries) to ODEs with Painlevé property.

• Example. Consider a Lie point symmetry

(ρ̃, τ̃ ) = (cρ,
1

c
τ), c 6= 0

of the Sine–Gordon equation
∂2φ

∂ρ∂τ
= sin φ.

The group invariant solutions are of the form φ(ρ, τ) = F (z) where z = ρτ is an invariant
of the symmetry. Substituting w(z) = exp (iF (z)) to the Sine–Gordon yields

d2w

dz2
=

1

w

(dw

dz

)2

− 1

z

dw

dz
+

1

2

w2

z
− 1

2z
,

which is the third Painlevé equation PIII with the special values of parameters

α =
1

2
, β = −1

2
, γ = 0, δ = 0.

• Example. Consider the modified KdV equation

vt − 6v2vx + vxxx = 0,

and look for a Lie point symmetry of the form

(ṽ, x̃, t̃) = (cαv, cβx, cγt), c 6= 0.

The symmetry condition will hold if all three terms in the equation have equal weight

α − γ = 3α − β = α − 3β.

This gives β = −α, γ = −3α where α can be chosen arbitrarily. The corresponding
symmetry group depends on one parameter cα and is generated by

V = v
∂

∂v
− x

∂

∂x
− 3t

∂

∂t
.

This has two independent invariants

z = (3)−1/3 x t−1/3, w = (3)1/3 v t1/3

where the constant factor (3)−1/3 has been added for convenience. The group invariant
solutions are of the form w = w(z) which gives

v(x, t) = (3t)−1/3w(z).
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Substituting this to the modified KdV equation leads to a third order ODE for w(z)

wzzz − 6w2wz − w − zwz = 0.

Integrating this ODE once shows that w(z) satisfies the second Painlevé equation PII
with general value of the parameter α.

The general Painlevé test comes down to the following algorithm: Given a PDE

1. Find all its Lie point symmetries.

2. Construct ODEs characterising the group invariant solutions.

3. Check for Painlevé property.

This procedure only gives necessary conditions for integrability. If all reduction possess Painlevé
property the PDE does not have to be integrable in general.
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Appendix A

Manifolds

This course is intended to give an elementary introduction to the subject and the student is
expected only to be familiar with basic real and complex analysis, algebra and dynamics as
covered in the undergraduate syllabus. In particular no knowledge of differential geometry is
assumed. One obvious advantage of this approach is that the course is suitable for advanced
undergraduate students.

The disadvantage is that the discussion of Hamiltonian formalism and continuous groups of
transformations in earlier chapters used phrases like ‘spaces coordinatised by (p, q)’, ‘open sets
in Rn’ or ‘groups whose elements smoothly depend on parameters’ instead calling these object
by their real name - manifolds. This Appendix is intended to fill this gap.

Definition A.0.2 An n–dimensional smooth manifold is a set M together with a collection of
open sets Uα called the coordinate charts such that

• The open sets Uα labeled by a countable index α cover M .

• There exist one-to-one maps φα : Uα → Vα onto open sets in Rn such that for any pair of
overlapping coordinate charts the maps

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ)

are smooth (i.e. infinitely differentiable) functions from Rn to Rn.

U

R
n

R
n

U

V

V

M

α  

β

φ

φ

α  

β

α  

β

φβ φα  
−1
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Thus a manifold is a topological space together with additional structure which makes the local
differential calculus possible. The space R

n itself is of course a manifold which can be covered
by one coordinate chart.

• Example. A less trivial example is the unit sphere

Sn = {r ∈ R
n+1, |r| = 1}.

To verify that it is indeed a manifold, cover Sn by two open sets U1 = U and U2 = Ũ

U = Sn/{0, . . . , 0, 1}, Ũ = Sn/{0, . . . , 0,−1}

and define the local coordinates by stereographic projections

φ(r1, r2, . . . , rn+1) =
( r1

1 − rn+1

, . . . ,
rn

1 − rn+1

)
= (x1, . . . , xn) ∈ R

n,

φ̃(r1, r2, . . . , rn+1) =
( r1

1 + rn+1

, . . . ,
rn

1 + rn+1

)
= (x1, . . . , xn) ∈ R

n.
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N=(0, 0,  ..., 0, 1)

r

RP

     (P)ϕ

n+1

n

Using
rk

1 + rn+1

=
(1 − rn+1

1 + rn+1

) rk

1 − rn+1

, k = 1, . . . , n

where rn+1 6= ±1 shows that on the overlap U ∩ Ũ the transition functions

φ ◦ φ̃−1(x1, . . . , xn) =
( x1

x2
1 + . . . + x2

n

, . . . ,
xn

x2
1 + . . . + x2

n

)
,

are smooth.
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A cartesian product of manifolds is also a manifold. For example the n–torus arising in the
Arnold–Liouville theorem 1.2.2 is a cartesian product on n one–dimensional spheres.

Another way to obtain interesting manifolds is to define them as surfaces in R
n by a vanishing

condition for a set of functions. If f1, . . . , fk : R
n → R then the set

Mf := (x ∈ R
n, fi(x) = 0, i = 1, . . . , k) (A1)

is a manifold if the rank of the k by n matrix of gradients ∇fi is constant in a neighborhood of
Mf in R

n. If this rank is maximal and equal to k then dim Mf = n − k. The manifold axioms
can be verified using the implicit function theorem. For example the sphere Sn−1 arises this
way with k = 1 and f1 = 1− |x|2. There is a theorem which says that every manifold arises as
some surface in Rn for sufficiently large n. If the manifold is m dimensional then n is at most
2m + 1. This useful theorem is now nearly forgotten - differential geometers like to think of
manifolds as abstract objects defined by a collections of charts as in Definition A.0.2.

Lie groups

We can now give a proper definition of a Lie group

Definition A.0.3 A Lie group G is a group and, at the same time, a smooth manifold such
that the group operations

G × G → G, (g1, g2) → g1g2, and G → G, g → g−1

are smooth maps between manifolds.

• Example. The general linear group G = GL(n, R) is an open set in R
n2

defined by the
condition det g 6= 0, g ∈ G. It is therefore a Lie group of dimension n2. The special
orthogonal group SO(n) is defined by (A1), where the n(n + 1)/2 conditions in R

n2

are

ggT − 1 = 0, det g = 1.

The determinant condition just selects a connected component in the set of orthogo-
nal matrices, so it does not count as a separate condition. It can be shown that the
corresponding matrix of gradients has constant rank and thus SO(n) is an n(n − 1)/2
dimensional Lie group.

In Chapter 4 a Lie algebra g was defined as a vector space with an anti–symmetric bilinear
operation which satisfies the Jacobi identity (4.6).

A Lie algebra of a Lie group G is the tangent space to G at the identity element, g = TeG
with the Lie bracket defined by a commutator of vector fields at e.

Proof of the first part of Arnold–Liouville’s theorem 1.2.2.

The gradients ∇fk are independent, thus the set

Mf := {(p, q) ∈ M ; fk(p, q) = ck}
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where c1, c2, . . . , cn are constant defines a manifold of dimension n. Let ξa = (p, q) be local
coordinates on M such that the Poisson bracket is

{f, g} = ωab ∂f

∂ξa

∂g

∂ξb
, a, b = 1, 2, . . . , 2n

where ω is a constant anti–symmetric matrix

(
0 1n

−1n 0

)
.

The vanishing of Poisson brackets {fj , fk} = 0 implies that each Hamiltonian vector field

Xfk
= ωab ∂fk

∂ξb

∂

∂ξa

is orthogonal (in the Euclidean sense) to any of the gradients ∂afj, a = 1, . . . , 2n, j, k = 1, . . . , n.
The gradients are perpendicular to Mf , thus the Hamiltonian vector fields are tangent to Mf .
They are also commuting as

[Xfj
, Xfk

] = −X{fj ,fk} = 0,

so the vectors generate an action of the abelian group R
n on M . This action restricts to an

R
n action on Mf . Let p0 ∈ Mf , and let Γ be a lattice consisting of all vectors in R

n which
fix p0 under the group action. Then Γ is a finite subgroup of Rn and (by an intuitively clear
modification of the orbit–stabiliser theorem) we have

Mf = R
n/Γ.

Assuming that Mf is compact, this quotient space is diffeomorphic to a torus T n.

2

In fact this argument shows that we get a torus for any choice of the constants ck. Thus,
varying the constants, we find that the phase–space M is foliated by n–dimensional tori.
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