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1. Gauge invariance of zero curvature equations. Let g = g(τ, ρ)
be an arbitrary invertible matrix. Show that the transformation

Ũ = gUg−1 +
∂g

∂ρ
g−1, Ṽ = gV g−1 +

∂g

∂τ
g−1

maps solutions to the zero curvature equation into new solutions: if the
matrices (U, V ) satisfy

∂

∂τ
U(λ) − ∂

∂ρ
V (λ) + [U(λ), V (λ)] = 0

then so do Ũ(λ), Ṽ (λ). What is the relationship between the solutions
of the associated linear problems?

2. Let In, n = 0, 1, · · · be the first integrals of KdV such that

{In, Im} = 0.

Show that all equations in the KdV hierarchy

∂u

∂tn
= (−1)n ∂

∂x

δIn[u]

δu(x)

are compatible (in the sense that the partial ‘time’ derivatives com-
mute). You may assume that the Poisson bracket of functionals satisfies
the Jacobi identity.

3. Finite gap integration. Consider solutions to the KdV hierarchy
which are stationary with respect to

c0
∂

∂t0
+ c1

∂

∂t1

where the kth KdV flow is generated by the Hamiltonian (−1)kIk[u]
and Ik[u] are the first integrals constructed in lectures.

Show that the resulting solution to KdV is

F (u) = c1x − c0t,
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where F (u) is given by an integral which should be determined and
t0 = x, t1 = t.

Find the zero curvature representation for the ODE characterising the
stationary solutions.

4. Nonlinear Schrödinger equation. Consider the zero curvature rep-
resentation with

U = iλ

(
1 0
0 −1

)
+ i

(
0 φ
φ 0

)
,

V = 2iλ2

(
1 0
0 −1

)
+ 2iλ

(
0 φ
φ 0

)
+

(
0 φρ

−φρ 0

)
− i

(
|φ|2 0
0 −|φ|2

)
and show that complex valued function φ = φ(τ, ρ) satisfies the non-
linear Schrödinger equation

iφτ + φρρ + 2|φ|2φ = 0.

[This is another famous soliton equation which can be solved by inverse
scattering transform.]

5. From group action to vector fields. Consider three one–parameter
groups of transformations of R

x → x + ε1, x → eε2x, x → x

1 − ε3x
,

and find the vector fields V1, V2, V3 generating these groups. Deduce
that these vector fields generate a three-parameter group of transfor-
mations

x → ax + b

cx + d
, ad− bc = 1.

Show that

[Vα, Vβ] =
3∑

γ=1

fγ
αβVγ, α, β = 1, 2, 3

for some constants fγ
αβ which should be determined.

6. ODE with symmetry. Consider a vector field

V = x
∂

∂x
− u

∂

∂u
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and find the corresponding one parameter group of transformations of
R2. Sketch the integral curves of this vector field.

Find the invariant coordinates, i.e. functions s(x, u), g(x, u) such that

V (s) = 1, V (g) = 0

[These are not unique. Make sure that that s, g are functionally inde-
pendent in a domain of R2 which you should specify.]

Use your results to integrate the ODE

x2du

dx
= F (xu)

where F is arbitrary function of one variable.

7. Lie point symmetries of KdV. Consider the vector fields

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 =

∂

∂u
+ αt

∂

∂x
, V4 = βx

∂

∂x
+ γt

∂

∂t
+ δu

∂

∂u

where (α, β, γ, δ) are constants and find the corresponding one param-
eter groups of transformations of R3 with coordinates (x, t, u).

Find (α, β, γ, δ) such that these are symmetry groups of KdV and de-
duce the existence of a four–parameter symmetry group.

Determine the structure constants of the corresponding Lie algebra of
vector fields.

8. Painlevé II from modified KdV. Consider the modified KdV equa-
tion

vt − 6v2vx + vxxx = 0.

Find a Lie point symmetry of this equation of the form

(ṽ, x̃, t̃) = (cαv, cβx, cγt), c 6= 0

for some (α, β, γ) which should be found, and find the corresponding
vector field generating this group.

Consider the group invariant solution of the form

v(x, t) = (3t)−1/3w(z), where z = x(3t)−1/3

and obtain a third order ODE for w(z). Integrate this ODE once to
show that w(z) satisfies the second Painlevé equation.
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9. Symmetry reduction of Sine–Gordon. Show that the transforma-
tion

(ρ̃, τ̃) = (cρ,
1

c
τ), c 6= 0

is a one–parameter symmetry of the Sine–Gordon equation and find its
generating vector field.

Consider the group invariant solutions of the form φ(ρ, τ) = F (z) where
z = ρτ . Substitute w(z) = exp (iF (z)) and demonstrate that the ODE
arising from a symmetry reduction is one of the Painlevé equations.
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