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1.

Gauge invariance of zero curvature equations. Let g = g(7,p)
be an arbitrary invertible matrix. Show that the transformation

- dg

_ dg _
U=9Ugl+ag, 79 41
p

V=gVg T+ 59

maps solutions to the zero curvature equation into new solutions: if the
matrices (U, V) satisfy

Do - Zvy+ M, v =0

or dp ’ N
then so do U(X), V(X). What is the relationship between the solutions
of the associated linear problems?

. Let I,,,n=0,1,--- be the first integrals of KdV such that

{L,,I,} = 0.
Show that all equations in the KdV hierarchy

ou , 0 01,[ul
ot, (=1) Oz du(x)

are compatible (in the sense that the partial ‘time’ derivatives com-
mute). You may assume that the Poisson bracket of functionals satisfies
the Jacobi identity.

Finite gap integration. Consider solutions to the KdV hierarchy
which are stationary with respect to

C i—i—c i
9ty ot

where the kth KdV flow is generated by the Hamiltonian (—1)*I}[u]
and I [u] are the first integrals constructed in lectures.

Show that the resulting solution to KdV is

F(u) = c1x — cot,
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where F'(u) is given by an integral which should be determined and
to =X, tl =t.

Find the zero curvature representation for the ODE characterising the
stationary solutions.

4. Nonlinear Schrodinger equation. Consider the zero curvature rep-
resentation with

(1 0 {0 &
U—z/\<0_1>+z(¢0>,

s 1 0 . 0 ¢ 0 ¢ | 1o)? 0
V = 22)\2<0 _1>+22)\(¢ O>+<—¢p O”)—Z( 0 _|¢|2)

and show that complex valued function ¢ = ¢(7, p) satisfies the non-
linear Schrodinger equation

@'4257 + prp + 2|¢|2¢ = 0.

[This is another famous soliton equation which can be solved by inverse
scattering transform.|

5. From group action to vector fields. Consider three one—parameter
groups of transformations of R

x
rT—T+e, x—elr, T—

1 —e3x’

and find the vector fields Vi, V5, V3 generating these groups. Deduce
that these vector fields generate a three-parameter group of transfor-

mations
ar +b

cr +d’

ad — bec = 1.

Tr —
Show that ;
[Vomvﬁ] = Zf;ﬁv’y: O[,ﬁ: 17273

y=1

for some constants ;ﬁ which should be determined.

6. ODE with symmetry. Consider a vector field
0 0

V=r——u—

Oz ou



and find the corresponding one parameter group of transformations of
R2. Sketch the integral curves of this vector field.

Find the invariant coordinates, i.e. functions s(x,u), g(x,u) such that
V(s) =1, V(g)=0

[These are not unique. Make sure that that s, g are functionally inde-

pendent in a domain of R? which you should specify.]

Use your results to integrate the ODE

xQ% = F(zu)

where F' is arbitrary function of one variable.

. Lie point symmetries of KdV. Consider the vector fields

0 0 0 0 0 0 0
O VQ—Q, %—%ﬂLOft%, V4—5$%+7t§+515%

where («, 3,7, 0) are constants and find the corresponding one param-
eter groups of transformations of R with coordinates (z,t, u).

‘/1:

Find (o, 3,7,0) such that these are symmetry groups of KdV and de-
duce the existence of a four—parameter symmetry group.

Determine the structure constants of the corresponding Lie algebra of
vector fields.

. Painlevé II from modified KdV. Consider the modified KdV equa-
tion
vy — 6020, + Ve = 0.
Find a Lie point symmetry of this equation of the form
(0, %,1) = (c*v, Pz, ANt), c#0
for some («, 3,7) which should be found, and find the corresponding
vector field generating this group.

Consider the group invariant solution of the form
v(z,t) = (3t)"Y3w(z), where z=ax(3t)"1/?

and obtain a third order ODE for w(z). Integrate this ODE once to
show that w(z) satisfies the second Painlevé equation.
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9. Symmetry reduction of Sine-Gordon. Show that the transforma-
tion ]
(:57’7_) = (va ET)a C#O

is a one—parameter symmetry of the Sine-Gordon equation and find its
generating vector field.

Consider the group invariant solutions of the form ¢(p, 7) = F'(2) where
z = pr. Substitute w(z) = exp (iF(z)) and demonstrate that the ODE
arising from a symmetry reduction is one of the Painlevé equations.



