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Topology and energy of
time-dependent unitons

By MAcies DuNAJsSkI* AND PRIM PLANSANGKATE

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Wilberforce Road, Cambridge CB3 0OWA, UK

We consider a class of time-dependent finite energy multi-soliton solutions of the U(N)
integrable chiral model in (2+1) dimensions. The corresponding extended solutions of
the associated linear problem have a pole with arbitrary multiplicity in the complex
plane of the spectral parameter. Restrictions of these extended solutions to any space-
like plane in R*! have trivial monodromy and give rise to maps from a three-sphere to
U(N). We demonstrate that the total energy of each multi-soliton is quantized at the
classical level and given by the third homotopy class of the extended solution. This is the
first example of a topological mechanism explaining the classical energy quantization of
moving solitons.
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1. Introduction

The fact that the allowed energy levels of some physical systems can take
only discrete values has been well known since the early days of quantum
theory. The hydrogen atom and the harmonic oscillator are the two well-
known examples. In these two cases, the boundary conditions imposed on the
wave function imply discrete spectra of the Hamiltonians. The reasons are
therefore global.

The quantization of energy can also occur at the classical level in nonlinear
field theories if the energy of a smooth field configuration is finite. The reasons
are again global, but one needs more subtle ideas from topology to understand
what is going on. The potential energy of static soliton solutions in the
Bogomolny limit of certain field theories must be proportional to integer
homotopy classes of smooth maps. The details depend on the model. In pure
gauge theories, the energy of solitons satisfying the Bogomolny equations is given
by one of the Chern numbers of the curvature. In scalar (2+1)-dimensional
sigma models, allowed energies of Bogomolny solitons are given by the elements
of my(X), where the manifold ¥ is the target space. In both the cases, the
boundary condition is used to show that the finite energy configurations extend
to the compactification of space. See Manton & Sutcliffe (2004) for a detailed
exposition of these constructions.
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946 M. Dunajski and P. Plansangkate

The situation is different for moving solitons. The total energy is the sum of
kinetic and potential terms, and the Bogomolny bound is not saturated. One
expects that the moving (non-periodic) solitons will have continuous energy.
Attempts to construct theories with quantized total energy based on
compactifying the time direction are physically unacceptable, as they lead
to paradoxes related to the existence of closed time-like curves. A soliton
moving along such curve could eventually reach its own past, thus opening
possibilities to sinister scenarios, usually involving a death of somebody’s
great grandparents.

In a recent publication, Ioannidou & Manton (2005) made the surprising
observation that the total energy of the time-dependent SU(2) 2-uniton solution
of Ward’s (2+1)-dimensional chiral model (Ward 1988a, 1995) is quantized in
the units of 87 when the pole of the corresponding extended solution is at =+i.
They have shown that the 2-uniton energy density calculated at any instant of
time ¢ is the same as the energy density of a static CP? multi-lump with a
parameter t. The total (potential) energy of the latter model is quantized
(Zakrzewski 1989), which leads to the total (kinetic+potential) energy
quantization of the time-dependent unitons. The quantization was also obtained
by Lechtenfeld & Popov (2001a,b), whose method was based on a large-time
asymptotic analysis.

One expects that there are deeper topological reasons for this quantization,
and the purpose of this paper is to show that this is indeed the case.

The Ward chiral model is

(ST = (T L), = (), = [T T ) =0, (1.1)

where J : R* > U(N) and 2*=(t, z, y) are the coordinates on R*, such that the
line element is n=—dt*+ dz? + dy?. Here, we use the notation J,=09,J. The
equations are not fully Lorentz invariant, as the commutator term fixes a space-
like direction. A positive-definite, conserved energy functional for (1.1) is

E = J Edzdy, (1.2)
RZ
where the energy density is given by
1 _ _ _

E=—5Te((J7I)" + (T L) + (J7,)). (1.3)
The integrability of (1.1) allows a construction of explicit static and also time-
dependent solutions by twistor or inverse scattering methods (Ward 1988a,
1990). There are time-dependent solutions with non-scattering solitons (Ward

1988a) and also solitons that scatter (Ward 1995). A class of scattering solutions
to (1.1) is given by the so-called time-dependent unitons

J(x, Y, t) - MlMQ"‘Mnﬂ (14)
where the unitary matrices M;, k=1, ..., n are given by
P ®
Mk=i<1—<1—ﬁ>3k>, Ry =3=10 (1.5)
K 1|
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Topology of time-dependent unitons 947

Here, u€C\R is a non-real constant and ¢,=(1,fy,...,finv-1)) € cV,
with k=1, ..., n, are the vectors whose components f;; = fkj(ac”) € C are smooth
functions that tend to a constant at spatial infinity.

If n=1, then ¢ is holomorphic and rational in w=z+ (1/2)u(t+y)+
(1/2)u ' (t—y) (Ward 1988a). Note that if u= +1i, then ¢, does not depend on ¢,
and the corresponding 1-uniton is static. If n>1, ¢ is still holomorphic and
rational in w, but ¢, ¢3, ... are not holomorphic. The exact form of these
functions is known explicitly for n=2, 3 (Ward 1995; Ioannidou 1996), for the
case N=2. For n>3, the Bécklund transformations (Ioannidou & Zakrzewski
1998; Dai & Terng 2004) can be used to determine the fs recursively. The total
energy (1.2) of n-uniton solutions is finite.

In general, the finiteness of F is ensured by imposing the boundary condition
(valid for all ¢)

J=Jy+ Ji(e)r P+ 02 as row,  z+iy=re?, (1.6)

and hence for a fixed value of ¢, the matrix J extends to a map from S2
(conformal compactification of R?) to U(N). The homotopy group mo( U(N))=0;
hence, there is no topological information in J defined on R X S?, which could be
related to the total energy. We shall nevertheless show that the energy of (1.4) is
quantized and given by the third homotopy class of the extended solution to
(1.1). The existence of this extended solution is linked to the complete
integrability of (1.1) and the associated Lax equations with the spectral
parameter. The extended solution also depends on this parameter, and hence is
defined on R? X CP!. Restricting it to a space-like plane in R?® and an equator in a
Riemann sphere of the spectral parameter gives a map ¥, whose domain is
R? X S'. If J is an n-uniton solution (1.4), the corresponding extended solution
satisfies stronger boundary conditions, which promote ¥ to a map S°— UN). In
§2, we shall introduce the extended solution, impose boundary conditions on J,
which are stronger than (1.6), and, in fact, provide a coordinate-free
characterization of the uniton solutions (1.4). In §3, we shall establish the
following result.

Theorem 1.1. The total energy of the n-uniton solution (1.4) with complex
number u=me? is quantized and equal to

14+ m?

By = () in() ), (17)

where for any fized value of t, the map ¥:5°— U(N) is given by

1
H < ;LT()‘G()Rk>’ 6 €10,2mn], (1.8)

! The matrix Ry is a Hermitian projection, satisfying (RA;)2=RA,, and the corresponding M, is a
Grassmanian embedding of CPY™! into U(N). The results in this paper apply to the more general
class of unitons obtained from the complex Grassmanian embeddings of Gr(K,N) into the unitary
group. For u pure imaginary, a complex K-plane V CCV corresponds to a unitary transformation
i(my—myy), where my denotes the Hermitian orthogonal projection onto V. Formula (1.5) with
w=i corresponds to K=1, where Gr(1, N)=CP"™.
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and

[V]

= 5z | (@70, (1.9

is an integer taking values in w3(U(N)) = Z.

The model (1.1) is SO(1, 1) invariant, and in §3 it will be shown that the
Lorentz boosts correspond to rescaling pu by a real number. The rest frame
corresponds to |u|=1, when the y-component of the momentum vanishes. The
SO(1, 1) invariant generalization of equation (1.7) will be given by theorem 3.1.
Energies of soliton solutions more general than (1.4) are briefly discussed in §4.

2. Extended solution and its homotopy

(a) Laz pair and trivial scattering

The proof of theorem (1.1) relies on the integrability of equation (1.1) and its Lax
formulation, which we set-up in the following. Let A=A,dz" and @ be a one-
form and a function on R*!, with values in a Lie algebra of U(N) determined up
to gauge transformations

A= bAV T —dbb, D bOb T, b= b(z*) € U(N).
The system of first-order equations
D® = *F,

where D@ =d®+ [A,P] and F=dA+ AA A give the integrability conditions
[Lo,L1] =0 for an overdetermined system of linear equations

LyW = (D, + D,—A(D, + ®))¥ =0,

(2.1)

LY%:=(D,—®—AD,— D,))¥ =0,
where ¥ is a GL(N,C)-valued function of z* and a complex parameter 2 € CP',
which satisfies the unitary reality condition

(", )W (z",A) = 1.

The matrix ¥ is also subject to gauge transformation ¥ — b¥. The integrability
conditions for equation (2.1) imply the existence of a gauge A,=A,, and
A,=—&, and a matrix J : R*—> U(N), such that

1 1
A=A, = §J*1(Jt +7,), A, =—® = §J’1Jz,

Y

and equation (1.1) hold. Given a solution ¥ to the linear system (2.1), one can
construct a solution to (1.1) by

J(z*) =w (24,1 =0), (2.2)
and all solutions to (1.1) arise from some ¥s. The detailed exposition of this is
presented, for example, by Hitchin et al. (1999).

Let us restrict ¥ from R*' X CP! to the space-like plane t=0. We shall also
restrict the spectral parameter to lie in the real equator S* C CP! parameterized by 6,

0
Y (z,y, t,A)—y(x,y,0) = W(x, y,0,—cot 5), (2.3)
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where now ¥ :R?XS'— U(N) and we made change of variable for real
A= —cot(6/2). Note that ¥ automatically satisfies

(u“D, —®)y =0, (2.4)
where the operator anihilating ¥ is the spatial part of the Lax pair (2.1), which is
given by

ALy + Ly
1+ 22

1-22 22

=u'D,—®, where u=(0,—F,——
1+21+2

> = (0,—cos #,—sin ).

We impose the ‘trivial scattering’ boundary condition (Anand 1997; Ward 1998)

’»D(l’a Y, 6) - ’100(6) as r—x, (25)
where y,(6) is a U(N)-valued function on S*. We shall now demonstrate that this
enables us to extend ¥ to a map from S* to U(N).

First, note that (2.5) implies the existence of the limit of ¥ at spatial infinity
for all values of #, while the finite energy boundary condition (1.6) implies
only the limit at §==. Thus, the condition (2.5) extends the domain of ¥ to
S$?x 8. However, it turns out that (2.5) is also a sufficient condition for y to
extend to the suspension $5%= 3 of $2. This can be seen as follows. The domain
52X S' can be considered as S*X[0,1], with {0} and {1} identified. Recall that a
suspension SX of a manifold X is the quotient space (Bredon 1993)

SX = ([0,1] X X)/({0} X X) U ({1} X X)).
This definition is compatible with spheres, in the sense that $5%=855%"1.
Now, the only condition that y needs to fulfil for the suspension is an equi-
valence relation between all the points in S*X {0}, since such relation for

52X {1} will follow from the identification of {0} and {1}. This equivalence can
be achieved by choosing a gauge

Y(z,,0) = 1. (2.6)

Therefore, ¥ extends to a map from SS*=S5? to U(N) if it satisfies the trivial
scattering boundary condition.

In addition, after fixing the gauge (2.6), there is still some residual freedom in

Y given by

Y- YK, (2.7)
where K = K (=, y,0) € U(N) is anihilated by u*d,,. Setting K= (y(6)) ™" results in
Y({o},0) = 1. (2.8)

The gauge (2.8) picks a base point {zy= % } € 8%, and this implies that the trivial
scattering condition is also sufficient for ¢ to extend to the reduced suspension
of %, which is given by
SteaS” = ([0,1] X 8%)/(({0} X 8%) U ({1} X 5%) U ([0, 1] X {z})).
This is also homeomorphic to S*. The idea of (reduced) suspension is illustrated
in figure 1.
Now, let us justify the term trivial scattering in (2.5). Consider equation (2.4)

and restrict it to a line (z,y)= (zy—ocosb,yy—asinf), ¢ €ER. Now (2.4)
becomes an ODE describing the propagation of

Y =y(xy—0ocos b,y —osinb,b),
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£x[0,] s3

{1

Figure 1. Suspension and reduced suspension.

along the oriented line through (=, yo) in R*. We can choose a gauge, such that
lim ¢y =1,

ar;d define the scattering matrix S:TS'— U(N) on the space of oriented lines in
R* as
S = lim y. (2.9)

g— 0
The trivial scattering condition (2.5) then implies that this matrix is trivial,
S =1 (2.10)

As we have explained, the boundary conditions (1.6) and (2.5) imply that for
each value of 4, the function ¥ extends to a one-point compactification S? of R%.
The straight lines on the plane are then replaced by the great circles and, in this
context, the trivial scattering condition implies that the differential operator
u*D,— & has trivial monodromy along the compactification S*=RU {®} of a
straight line parameterized by o.

(b) Topology of extended solution

In §2a, we have explained that we can regard ¥ as a map from S* to U(N). All
such maps are partially characterized by their homotopy type (Bredon 1993)

= Tr((y'dy)?). 2.11
W= 5mz | T 0 (211)
The element [y] is an integer taking values in m3(U(N))=Z and is invariant
under continuous deformations of y.

In §3, we will need the following result. Let g; and g, be maps from S® to U(N)
and g,9,:5°— U(N) be given by

7n9:(2) = g1(2)go(2), zES,

where the product on the r.h.s. is the pointwise group multiplication. Then,

[9192] = [91] + [g2]- (2.12)
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This is because

Tr(((9192) " d(9192))"] = Trl(g1'dgn)” + (92" dg)’] + B,
where § is a two-form and hence d@ integrates to 0 by Stokes’ theorem. This was
explicitly demonstrated by Skyrme (1962) in the case of SU(2).

Rather than exhibiting the exact form of 8, we shall use the following general
argument. The higher homotopy groups m,;(G) of a Lie group G are abelian, and
the group multiplication in G induces the addition in the homotopy groups, i.e. if
g1 and ¢ are maps from S¢to G, then the homotopy class of the map g go:5%— G
defined by the group multiplication is the sum of homotopy classes of g; and g..
The proof of this is presented, for example, by Bredon (1993) and essentially
follows the proof that the fundamental group of a topological group is abelian.
Now m3(G) = Z for any compact simple Lie group. If G=SU(2), then this result
just reproduces the calculation done by Skyrme, as two continuous maps from S°
to itself are homotopic if and only if they have the same topological degree.
Theorem 1.1 holds for unitons with values in G= U(N), where [y] in (1.7) is the
sum of homotopy classes that arise from integrals of elements of H 3(G’ ). To find
out a homotopy class of a map ¥, we can use formula (2.11), where the integrand
is a left-invariant three-form on the group manifold pulled back to S*. This is
because m3(G) is isomorphic to the integral homology group H;(G,Z), and the
r.h.s. of (2.11) coincides with the homology class of the cycle ¥(S*)C G.

We remark that some part of this topological data is encoded in the Ward
equation (1.1), which can be regarded as an ordinary chiral model with torsion
(Ward 1988b). Any compact semi-simple group G admits a connection that
parallel propagates left-invariant vector fields. This connection is flat, but
necessarily has a torsion 7. The torsion is totally antisymmetric, thus giving a
preferred three-form in the third cohomology group that can then be pulled back
to S°. The first-order commutator term in equation (1.1) can be rewritten as

[ (770, T) (70, ),
where € is a totally antisymmetric constant matrix. In our case, e'=¢"*V,,
where V=(0, 1, 0) is the space-like unit vector and (1.1) takes the form
(" + €)(0,(J0,J)) =0.
The choice of V reduces the symmetry group of (1.1) down to SO(1, 1). The
momenta P,=F, and P, are well defined, and conserved for (1.1).

The commutator term can be obtained from a Lagrangian density
e (09,£')(0,6")e;(§), where the two-form e is a local potential for the torsion
de=T, and &’ are local coordinates on G, where 4,j=1, ..., dim G. The two-form
e is defined only locally in G.

3. Time-dependent unitons and energy quantization

A class of extended solutions that satisfy the trivial scattering condition (2.5)
gives rise to the n-uniton solutions defined in (1.4). These extended solutions
factorize into the so-called n-uniton factors (Ward 1995)

i — i®
W = G,Gyy...Gy, where G = <1— %RO €GL(N,C), Ry= qu qu.
N ap,

(3.1)
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Here, ¢.= qy(z,y,1) eCV, k=1,...,n, and u is a non-real constant. The
terminology here is rather confusing, as the maxima of the energy density of
the corresponding soliton solutions of (1.1) do physically scatter. The exact form
of gs is determined from (2.1) by demanding that the expressions

(0,9 —A(0,—08,) )P and ((3,+0,)¥ —29,¥) ¥ (3.2)

are independent of A. In practice, one determines the ¢;s by a limiting procedure
from solutions of a Riemann problem with simple poles (Ward 1988a).
The restricted map ¥ (2.3) corresponding to (3.1) is given by
o
VY = 9.9p1.--G1, Wwhere g=1+—-—71R €U(N), (3.3)
u =+ cot (5)

where A= —cot(6/2) € S* € CP' as before and all the maps are restricted to the
t=0 plane. Each element g¢; has the limit at spatial infinity for all values of 6,

M
Ly, 0)— go(0) =14+ ——C _
gk(m Y ) g()k( ) ,U«+C0t(g)

Y

R(Jk as 11?2 + ’y2 — 0,

The existence of the limit at spatial infinity Ry, = lim, . R.(z, y) = const is
guaranteed by the finite energy condition (1.6). Hence, ¢ in (3.3) satisfies the
trivial scattering condition (2.5) and extends to a map from S to U(N). The
scattering matrix® (2.9) is S=1.

Note, however, that the gis and ¥ in (3.3) only extend to the ordinary suspension
of S%. One needs to perform the transformation (2.7) with K =[]/ goi for ¥
to extend to the reduced suspension of $*. We shall use y as in (3.3), because (2.12)
implies that the transformation (2.7) does not contribute to the degree and

[K(0)y]=[¥].
Proposition 3.1. The third homotopy class of ¥ is given by

0<op<m,

=+L‘[ n .
¥ =5 ), DT RS R dedy § L (34)

where u=me?.

Proof. The recursive application of (2.12) implies that
n
V] = Z[gk]'
k=1
Using (2.11), with z=z+iy,

1 - . — _
JS] XRQTT (gklaﬁgk [gklazglm gklazgk} )dﬁ ANdzAdz

l9) = )

1
1672

2 Novikov (2002) has demonstrated that given a scattering matrix on the space of oriented lines in
R” with D>2, it is always possible to reconstruct the gauge potential and the Higgs field on R” by
means of a non-abelian inverse Radon transform. The non-trivial initial data for the time-
dependent n-unitons (3.1) have a trivial scattering matrix, which shows that the inversion is not, in
general, possible if D=2.

O(u) [ Tr(Rf0.Ru,0,Ri))dz A d
RZ
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where
Ou zr” (ﬁ—,u)SSiHQ(g) _d9 =48 {0<¢<7T)
0 (Jul* + (1 —|u*)cos? (£) + (1 + @)cos(£)sin(4)) T<¢<2m.
Hence, changing to the (z, y) coordinates, we obtain
L94] =J_rLJ Tr(Ry[0, Ry, 8, Ry])dz dy {O< P (3.5)
21 Jpe ! Y T<¢<2m.
Therefore, the third homotopy class of ¥ is given by (3.4).
|

The proof of theorem (1.1) makes use of proposition 3.1 and a recursive
procedure of adding unitons to a given solution, which we shall now explain. Let
¥ be an extended solution to the Lax pair (2.1) corresponding to a solution J,
which satisfies (1.1). Set

W= Gy = <1—';L—ZR>LU, J=wT,l, = JM, (3.6)
where M is of the form (1.5), up to a constant phase factor that is irrelevant. The
matrix ¥ will be an extended solution if expressions (3.2) with ¥ replaced by ¥
are independent of A. This leads to the Bécklund relations (Ioannidou &
Zakrzewski 1998; Dai & Terng 2004). These are first-order PDEs for M, which
can be regarded as a generalization of Uhlenbeck’s method of adding unitons for

harmonic maps (Uhlenbeck 1989). In terms of the Hermitian projection R, these
PDEs are

R(R,—J'J,1—R)) = B, (3.7)
RRt = C,
where

B=(uR,—R,+RJJ)1—-R),

C= %((,uRy +R,—RJ'J,)(1—R)).

Proof of theorem 1.1. We first consider a solution of the form J = JM, where Jis
an arbitrary solution of (1.1). Noting that Mis unitary and writing it in terms of R,
the difference between the energy densities (1.3) of J and Jis given by

AE=E—E =) Tr(kkR,R,R+x(1—kR)J"J,R,), (3.8)

where a stands for (¢, z, y); & and € are the energy densities of J and J, respectively;
and k= (1 — (1/i)).

Multiplying the relations (3.7) and their Hermitian conjugates yields the
following identities:

Tr(R,R,R) = Tr(CC"),
Tr(J ' J,R,) = Tr(CB* — BC™),
Tr(RJ'J,R,) = Tr((C— B)C"). (3.9)
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The terms involving the time derivatives in (3.8) are of the form R,R;R, J YR,
and RJ~'J,R,, which, by (3.9), can be written in terms of the spatial derivatives
only. Thus, by direct substitution and some rearrangements, equation (3.8)
becomes

AE = — %Tr((l + |u[*)R[R,, R, + T),

where T =90,(RJ " J,) —9,(RJ " J,) gives no contribution to the difference in the
energy functionals of J and J. This is because

TrJ T dzAdy = lim J d(Tr(RJ'dJ))
R D,

r—o

r—oo r—0

=lim ) Tr(RJ'dJ) =Tr<nm95 (JR)*dJ)
C, C,

< lim <Tr <@(J1(<p =2m)— Ji(p = 0)))

r—o0

T

7

by Stokes’ theorem, where C, denotes the circle enclosing the disc D, of radius r,
¢ is a coordinate on C, and |¢,| is the bound of Tr((JR);9,J), i=1,2, .... We have
used the boundary condition

lim JR = (JR)o + (JR);(@)r ' + O(r?), (3.10)

r—00

which follows from (1.6) for J = JM, and the fact that integrands are continuous
on the circle and hence bounded. Since (JR), is a constant matrix, the first term
in the series is a total derivative.

So far, we have only used the assumption that Jis a solution of equation (1.1),
but not that it has to be a uniton solution defined by equation (1.4). Therefore,
we have a more general result for the total energy of a Ward solution of the form
J = JM, where J is an arbitrary solution to Ward equation. Let E and E be the
total energies of J and J, respectively, then

gy e B )
uf?

JRQTY(R[RW R,))dz dy. (3.11)

From (3.11), the explicit expression for the total energy of an n-uniton solution
(1.4) follows. First, consider a l-uniton solution J;y=M,. It can be written as
Jiy=JoyM,, where the constant matrix J), which satisfies (1.1) trivially, is
chosen to be the identity matrix. Then, from (3.11), the total energy of a
1-uniton solution is given by

—a)(1 2
By = (1 “)“(L‘;r 4 )JWTr(Rl[ale,ale])dx dy. (3.12)
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Therefore, using (3.11), we show by induction that the total energy of an
n-uniton solution (1.4) is given by

pw— )1+ uf) &
By =+ )|£|2 | |)ZJﬂzTr(Rk[asz,ayRk})dxdy
k=1

1+m2 . O<¢<7T,
_i47'r< p- )sm(qﬁ)[xﬁ] {W<¢><27T, (3.13)

where u=me'?, and we have used (3.4).

We remark that formula (3.5) reveals another topological interpretation of the
energy quantization, which is useful in practical calculations. Consider the group
element (3.3) with the index k dropped. The Grassmanian projector R in (3.1)
corresponds to a smooth map from the compactified space to the projective space
q: S>> CP"!. The homotopy group m(CP¥1)=2Z is non-trivial and the
degree of ¢ is obtained by evaluating the homology class on a standard generator
for H*(CPY™) represented in a map ¢=(1, f;, ..., fv_1) by the Kihler form

B N—1
Q = —4i0d 1n<1 + |f;-|2>.

J=1
This evaluation is just the integration, thus
i

ld = 8_7TJ[R2 ¢ (Q).

Evaluating the integrand, we verify that

Tr(RIR,, R)) = 1 0'(2).
We conclude that the energy is proportional to the sum of the topological degrees
of Grassmanian projectors involved in the definition of unitons.

In the remaining part of this section, we shall prove a Lorentz invariant
generalization of theorem (1.1). We start off by looking at the quantization of
the momentum. Following Ward (1988a), we have chosen the conserved
energy functional for a solution of (1.1) to be that obtained from the energy—
momentum tensor of the associated standard chiral model. However, for (1.1),
only the energy and the y-component of momentum are conserved, while the
z-component of momentum is not. The conserved y-momentum is given by

P = J P dxdy, (3.14)
RZ

where the momentum density is

P=—Tr(J " J,J7J,). (3.15)
It turns out that this is also quantized and proportional to the third homotopy
class of the restricted extended solution.

Proposition 3.2. The y-momentum of the n-uniton solution (1.4) is given by

1— 2
Py = —47r< “ >|sin(¢)|[u/]. (3.16)
Thus, unless [¢]=0, P=0 if and only if m=1.
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Proof. We first consider J = JM as in proof of theorem 1.1. The difference
between the y-momentum densities (3.15) of J and J is given by
AP=P—P =«Tr((1— &R)(J " J,R, + J " J,R,) + R(R,R,)). (3.17)
Then, the substitution
Tr(J'J,R,R) = Tr((C—B)R,),

Tr(J'J,RR,) = Tr((B*—C*)R,),
from the Bécklund relations (3.7) gives

AP = ETlr((l —|,U,|2)R[R1,Ry] +7), where k= <1 —'(f>
I ik
The term 7 = d,(RJ " J,) —d,(RJ ' J,) gives no contribution to the difference in
the y-momenta of J and J as to the difference in the energies. Thus, we have a
result for Ward solution of the form in J = JM, where Jis an arbltrary solution
to Ward equation; its y-momentum is given by

pop_ (= ﬁ)(12—\u!2)
|l

where P and P are the y-momenta of J and J, respectively.
We then proceed by induction to obtain the expression for the y-momentum of
an n-uniton solution (1.4), in the same way as for the total energy. This gives

JRQTT(R[Rx: R,))dz dy, (3.18)

— (1 — 2 n
Py =— (w ﬂy);i\Q ) ;JRQTr(Rk[aka,ayRk])dx dy
_ (1-m?\ . 0<o¢p<m,
= +47'r< p- )sm(qﬁ)[t//] { << 2m (3.19)

We shall now exploit the SO(1, 1) invariance of (1.1) to combine theorem 1.1
and proposition 3.2 in the Lorentz invariant form.

Theorem 3.1. For an n-uniton solution, the SO(1, 1) invariant relation
Ef,) = Pl = 64n’sin’(¢) 4], (3.20)
holds.

Proof. Since equation (1.1) is invariant under SO(1, 1), we can generate new
solutions from a given one by boosts in the y—t plane. In the coordinates
{z,u=(1/2)(t+y),v=(1/2)(t—y)}, the boosts are given by z—=z, u— su,
v—s v, s €R*. We shall show that a boost of an n-uniton solution with a pole u
in the extended solution gives rise to another n-uniton solution, with the pole
w'=su.

Consider the Bécklund relations (3.7) expressed in the {z,u,v} coordinates,

(uR,— R, + RJ'J)(1—R) =0,
(uR,— R, +RJJ,)1—R) =

Let J be an arbitrary solution of (1.1) and R(z,u,v) be the Hermitian projector,
satisfying (3.21). Under the boost to another solution J—.J', we have

(3.21)
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R— R'= R(z, su, s 'v). By changing the coordinates, we see that R’ will satisfy
(3.21) with w and J replaced by u’ and J', if u'=su. That is, each restricted
uniton factor transforms as

S — S
su + cot (g)

K

T R x,su,s_lv, .
M‘f’COt(g) k( :u)

gk=1+ Rk(x,u,v,,u)ﬁg;'ﬂ=1+

Since boost is a continuous transformation, it does not change the homotopy
types and

[W(z, u,v)] = [Y(z, su, s )].

Hence, under the transformation, E,, and P, only change due to the explicit
factors of u in equations (1.7) and (3.16), respectively. The boosts rescale u by
m— sm, keeping the phase ¢ fixed. This leads to the SO(1, 1) invariance of
E(2n> —P(2"). Formula (3.20) follows directly from (1.7) and (3.16).

|

Examples. Consider the SU(2) case, where the third homotopy class is equal
to the topological degree and set u=1i. The uniton factors are of the form

ML = i <|fk|2_1 —2f )
CUIHIAPN o -/

n=1. In the 1-uniton case, 9,M;=0, and M, is given by equation (1.5), with
fi=fi(z), a rational function of some fixed degree (). The energy density is
81/"1|” :
& = — a5 = —iTr(M;[0,M,,0,M,]),
(1+ A1) T

and F=8mdeg(¢g;) is in agreement with (1.7). In this case, g; is a suspension of a
rational map f; : CP' - CP! and deg(g;)=deg(f,) is a simple illustration of the
Freundenthal theorem, which says that a suspension of maps of d-spheres induces
an isomorphism of the homotopy groups.

n=2. In the 2-uniton case, M; and M, are given by equation (1.5), with u=1, and

where fand hare the rational functions of z(Ward 1995). Define k = 2(¢f’ + h). The
total energy density is
_ 81(L+ U)K —2kff1* + 16]kf'|” + 16(1 + |f°)*|f']

€ 2 2\2\2
(K7 + (1 +177)7)

(3.22)

and

E= j £ dz dy = 8m(deg(g) + deg(gs))

for all ¢. The quantization of energy in this case has first been observed by
Ioannidou & Manton (2005), where it was shown that E=8m (@), where generically
Q=2deg f+ deg h. However, Q= max(2deg f,degh) if both f and h are
polynomials. Our formula (1.7) is valid for all pairs (f, h).
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4. Conclusions

We have established the relation between the total energy of time-dependent
solitons (1.4) and the homotopy classes of associated extended solutions. To the
best of our knowledge, this is the first example of a topological mechanism
ensuring the classical energy quantization of moving solitons.

The n-uniton solutions (1.4) form a subclass of all finite energy solitons, which
satisfy the trivial scattering boundary condition (2.5). Dai & Terng (2004) have
demonstrated that the extended solution corresponding to the general trivial
scattering soliton has poles at non-real points uq, ..., u, with multiplicities
ny, ..., N, and is a product of simple elements Gy, a=1, ..., rof the form in (3.1).
Our case (3.1) corresponds to r=1, but the method used in proof of theorem 1.1
applies to the general case, as one can choose a different u at each iteration of the
Bécklund transformations (3.7). Formulae (3.5) and (3.11) lead to the general
form of the total energy of trivial scattering solitons

" &1+ m? :
E=4r3" 3 " sin g llgad,  po = me, (4.1)
a=1 k=1 M
where B
Gk = 1+ s Ha Rk,a = U(N)’

e + cot (g)
and Ry, are Hermitian projections, whose form is determined by the Bécklund
relations. This agrees with the result of Lechtenfeld & Popov (2001). Formula
(4.1) is not directly linked to the homotopy type of the extended solution, and
the SO(1, 1) invariance cannot be easily incorporated. This is why we have
focused on the special case (1.4).

Dunajski & Manton (2005) have analysed the SU(2) integrable chiral model
(1.1) in the moduli space approximation, when the time-dependent slowly
moving solitons correspond to curves in the moduli space of static solitons, which
are geodesic with respect to the natural metric

Co 1 .,,.qj 10,10,
W) =59, 0+ ) dz

9

2

on the space of rational maps. Here, f=f(z, ) is a rational meromorphic function
of z=z+1iy, which depends on real parameters (positions of zeros and poles) v ?,
and 9,f =0f/0vy".

The kinetic energy of these approximate solitons is small, and their total
energy is close (in the units of 87) to the degree of the associated rational map.
Theorem (1.1) gives a class of exact solutions with quantized total energy, and
one may expect that the approximate solitons of Dunajski & Manton (2005) arise
from the time-dependent unitons by some limiting procedure.

We wish to thank Marcin Kazmierczak, Nick Manton, Lionel Mason and the anonymous referee for
valuable comments, and Ivan Smith for clarifying some aspects of homotopy theory. P.P. is
grateful to the Royal Thai Government for funding her research.
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