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We consider a class of time-dependent finite energy multi-soliton solutions of the U(N )
integrable chiral model in (2C1) dimensions. The corresponding extended solutions of
the associated linear problem have a pole with arbitrary multiplicity in the complex
plane of the spectral parameter. Restrictions of these extended solutions to any space-
like plane in R

2;1 have trivial monodromy and give rise to maps from a three-sphere to
U(N ). We demonstrate that the total energy of each multi-soliton is quantized at the
classical level and given by the third homotopy class of the extended solution. This is the
first example of a topological mechanism explaining the classical energy quantization of
moving solitons.
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1. Introduction

The fact that the allowed energy levels of some physical systems can take
only discrete values has been well known since the early days of quantum
theory. The hydrogen atom and the harmonic oscillator are the two well-
known examples. In these two cases, the boundary conditions imposed on the
wave function imply discrete spectra of the Hamiltonians. The reasons are
therefore global.

The quantization of energy can also occur at the classical level in nonlinear
field theories if the energy of a smooth field configuration is finite. The reasons
are again global, but one needs more subtle ideas from topology to understand
what is going on. The potential energy of static soliton solutions in the
Bogomolny limit of certain field theories must be proportional to integer
homotopy classes of smooth maps. The details depend on the model. In pure
gauge theories, the energy of solitons satisfying the Bogomolny equations is given
by one of the Chern numbers of the curvature. In scalar (2C1)-dimensional
sigma models, allowed energies of Bogomolny solitons are given by the elements
of p2(S), where the manifold S is the target space. In both the cases, the
boundary condition is used to show that the finite energy configurations extend
to the compactification of space. See Manton & Sutcliffe (2004) for a detailed
exposition of these constructions.
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The situation is different for moving solitons. The total energy is the sum of
kinetic and potential terms, and the Bogomolny bound is not saturated. One
expects that the moving (non-periodic) solitons will have continuous energy.
Attempts to construct theories with quantized total energy based on
compactifying the time direction are physically unacceptable, as they lead
to paradoxes related to the existence of closed time-like curves. A soliton
moving along such curve could eventually reach its own past, thus opening
possibilities to sinister scenarios, usually involving a death of somebody’s
great grandparents.

In a recent publication, Ioannidou & Manton (2005) made the surprising
observation that the total energy of the time-dependent SU(2) 2-uniton solution
of Ward’s (2C1)-dimensional chiral model (Ward 1988a, 1995) is quantized in
the units of 8p when the pole of the corresponding extended solution is at Gi.
They have shown that the 2-uniton energy density calculated at any instant of
time t is the same as the energy density of a static CP

3 multi-lump with a
parameter t. The total (potential) energy of the latter model is quantized
(Zakrzewski 1989), which leads to the total (kineticCpotential) energy
quantization of the time-dependent unitons. The quantization was also obtained
by Lechtenfeld & Popov (2001a,b), whose method was based on a large-time
asymptotic analysis.

One expects that there are deeper topological reasons for this quantization,
and the purpose of this paper is to show that this is indeed the case.

The Ward chiral model is

ðJK1JtÞtKðJK1JxÞxKðJK1JyÞyK½JK1Jt; J
K1Jy�Z 0; ð1:1Þ

where J : R3/UðNÞ and xmZ(t, x, y) are the coordinates on R
3, such that the

line element is hZKdt2Cdx2Cdy2. Here, we use the notation JmdvmJ. The
equations are not fully Lorentz invariant, as the commutator term fixes a space-
like direction. A positive-definite, conserved energy functional for (1.1) is

E Z

ð
R2
E dx dy; ð1:2Þ

where the energy density is given by

E ZK
1

2
TrððJK1JtÞ2CðJK1JxÞ2CðJK1JyÞ2Þ: ð1:3Þ

The integrability of (1.1) allows a construction of explicit static and also time-
dependent solutions by twistor or inverse scattering methods (Ward 1988a,
1990). There are time-dependent solutions with non-scattering solitons (Ward
1988a) and also solitons that scatter (Ward 1995). A class of scattering solutions
to (1.1) is given by the so-called time-dependent unitons

Jðx; y; tÞZM1M2.Mn; ð1:4Þ

where the unitary matrices Mk, kZ1,., n are given by

Mk Z i 1K 1K
m

�m

� �
Rk

� �
; Rk h

q�k5qk

kqkk2
: ð1:5Þ
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947Topology of time-dependent unitons
Here, m2CnR is a non-real constant and qkZð1; fk1;.; fkðNK1ÞÞ2C
N ,

with kZ1, ., n, are the vectors whose components fkjZ fkjðxmÞ2C are smooth

functions that tend to a constant at spatial infinity.1

If nZ1, then q1 is holomorphic and rational in uZxCð1=2ÞmðtCyÞC
ð1=2ÞmK1ðtKyÞ (Ward 1988a). Note that if mZGi, then q1 does not depend on t,
and the corresponding 1-uniton is static. If nO1, q1 is still holomorphic and
rational in u, but q2, q3, . are not holomorphic. The exact form of these
functions is known explicitly for nZ2, 3 (Ward 1995; Ioannidou 1996), for the
case NZ2. For nO3, the Bäcklund transformations (Ioannidou & Zakrzewski
1998; Dai & Terng 2004) can be used to determine the f s recursively. The total
energy (1.2) of n-uniton solutions is finite.

In general, the finiteness of E is ensured by imposing the boundary condition
(valid for all t)

J Z J0CJ1ð4ÞrK1 COðrK2Þ as r/N; xC iy Z rei4; ð1:6Þ

and hence for a fixed value of t, the matrix J extends to a map from S 2

(conformal compactification of R2) to U(N ). The homotopy group p2(U(N ))Z0;
hence, there is no topological information in J defined on R!S2, which could be
related to the total energy. We shall nevertheless show that the energy of (1.4) is
quantized and given by the third homotopy class of the extended solution to
(1.1). The existence of this extended solution is linked to the complete
integrability of (1.1) and the associated Lax equations with the spectral
parameter. The extended solution also depends on this parameter, and hence is
defined on R

3!CP
1. Restricting it to a space-like plane in R

3 and an equator in a
Riemann sphere of the spectral parameter gives a map j, whose domain is
R
2!S1. If J is an n-uniton solution (1.4), the corresponding extended solution

satisfies stronger boundary conditions, which promote j to a map S 3/U(N ). In
§2, we shall introduce the extended solution, impose boundary conditions on J,
which are stronger than (1.6), and, in fact, provide a coordinate-free
characterization of the uniton solutions (1.4). In §3, we shall establish the
following result.

Theorem 1.1. The total energy of the n-uniton solution (1.4) with complex
number mZmeif is quantized and equal to

EðnÞ Z 4p
1Cm2

m

� �
jsinðfÞj½j�; ð1:7Þ

where for any fixed value of t, the map j:S3/U(N ) is given by

jZ
Y1
kZn

1C
�mKm

mCcot q
2

� �Rk

 !
; q2½0; 2p�; ð1:8Þ
1The matrix Rk is a Hermitian projection, satisfying (Rk)
2ZRk, and the corresponding Mk is a

Grassmanian embedding of CPNK1 into U(N). The results in this paper apply to the more general
class of unitons obtained from the complex Grassmanian embeddings of Gr(K,N) into the unitary
group. For m pure imaginary, a complex K-plane V3C

N corresponds to a unitary transformation
i(pVKpVt), where pV denotes the Hermitian orthogonal projection onto V. Formula (1.5) with
mZi corresponds to KZ1, where Grð1;NÞZCP

NK1.
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and

½j�Z 1

24p2

ð
S3
TrððjK1djÞ3Þ; ð1:9Þ

is an integer taking values in p3ðUðNÞÞZZ.

The model (1.1) is SO(1, 1) invariant, and in §3 it will be shown that the
Lorentz boosts correspond to rescaling m by a real number. The rest frame
corresponds to jmjZ1, when the y-component of the momentum vanishes. The
SO(1, 1) invariant generalization of equation (1.7) will be given by theorem 3.1.
Energies of soliton solutions more general than (1.4) are briefly discussed in §4.
2. Extended solution and its homotopy

(a ) Lax pair and trivial scattering

The proof of theorem (1.1) relies on the integrability of equation (1.1) and its Lax
formulation, which we set-up in the following. Let AZAmdx

m and F be a one-
form and a function on R

2;1, with values in a Lie algebra of U(N ) determined up
to gauge transformations

A/bAbK1Kdb bK1; F/bFbK1; bZ bðx mÞ2UðNÞ:
The system of first-order equations

DFZ *F;

where DFZdFC ½A;F� and FZdACAoA give the integrability conditions
[L0,L1]Z0 for an overdetermined system of linear equations

L0JdðDy CDtKlðDx CFÞÞJZ 0;

L1JdðDxKFKlðDtKDyÞÞJZ 0;
ð2:1Þ

where J is a GLðN ;CÞ-valued function of x m and a complex parameter l2CP
1,

which satisfies the unitary reality condition

Jðxm; �lÞ�Jðxm; lÞZ 1:

The matrix J is also subject to gauge transformation J/bJ. The integrability
conditions for equation (2.1) imply the existence of a gauge AtZAy, and
AxZKF, and a matrix J : R3/UðNÞ, such that

At ZAy Z
1

2
JK1ðJt CJyÞ; Ax ZKFZ

1

2
JK1Jx ;

and equation (1.1) hold. Given a solution J to the linear system (2.1), one can
construct a solution to (1.1) by

JðxmÞZJK1ðxm; lZ 0Þ; ð2:2Þ
and all solutions to (1.1) arise from some Js. The detailed exposition of this is
presented, for example, by Hitchin et al. (1999).

Let us restrict J from R
2;1!CP

1 to the space-like plane tZ0. We shall also
restrict the spectral parameter to lie in the real equatorS13CP

1 parameterized byq,

Jðx; y; t; lÞ/jðx; y; qÞ :ZJ x; y; 0;Kcot
q

2

� �
; ð2:3Þ
Proc. R. Soc. A (2007)



949Topology of time-dependent unitons
where now j : R2!S1/UðNÞ and we made change of variable for real
lZKcot(q/2). Note that j automatically satisfies

ðumDmKFÞjZ 0; ð2:4Þ
where the operator anihilating j is the spatial part of the Lax pair (2.1), which is
given by

lL0 CL1

1Cl2
Z umDmKF; where u Z 0;

1Kl2

1Cl2
;

2l

1Cl2

� �
Z ð0;Kcos q;Ksin qÞ:

We impose the ‘trivial scattering’ boundary condition (Anand 1997; Ward 1998)

jðx; y; qÞ/j0ðqÞ as r/N; ð2:5Þ
where j0(q) is a U(N )-valued function on S 1. We shall now demonstrate that this
enables us to extend j to a map from S 3 to U(N ).

First, note that (2.5) implies the existence of the limit of j at spatial infinity
for all values of q, while the finite energy boundary condition (1.6) implies
only the limit at qZp. Thus, the condition (2.5) extends the domain of j to
S 2!S 1. However, it turns out that (2.5) is also a sufficient condition for j to
extend to the suspension SS 2ZS 3 of S 2. This can be seen as follows. The domain
S 2!S1 can be considered as S 2![0,1], with {0} and {1} identified. Recall that a
suspension SX of a manifold X is the quotient space (Bredon 1993)

SX Z ð½0; 1�!XÞ=ððf0g!XÞgðf1g!XÞÞ:
This definition is compatible with spheres, in the sense that SSdZSSdC1.

Now, the only condition that j needs to fulfil for the suspension is an equi-
valence relation between all the points in S 2!{0}, since such relation for
S 2!{1} will follow from the identification of {0} and {1}. This equivalence can
be achieved by choosing a gauge

jðx; y; 0ÞZ 1: ð2:6Þ
Therefore, j extends to a map from SS 2ZS 3 to U(N ) if it satisfies the trivial
scattering boundary condition.

In addition, after fixing the gauge (2.6), there is still some residual freedom in
j given by

j/jK ; ð2:7Þ
whereKZKðx; y; qÞ2UðNÞ is anihilated by umvm. SettingKZ(j0(q))

K1 results in

jðfNg; qÞZ 1: ð2:8Þ
The gauge (2.8) picks a base point {x0ZN}2S 2, and this implies that the trivial
scattering condition is also sufficient for j to extend to the reduced suspension
of S 2, which is given by

SredS
2 Z ð½0; 1�!S2Þ=ððf0g!S2Þgðf1g!S2Þgð½0; 1�!fx 0gÞÞ:

This is also homeomorphic to S 3. The idea of (reduced) suspension is illustrated
in figure 1.

Now, let us justify the term trivial scattering in (2.5). Consider equation (2.4)
and restrict it to a line ðx; yÞZðx 0Ks cos q; y0Ks sin qÞ, s2R. Now (2.4)
becomes an ODE describing the propagation of

jZjðx 0Ks cos q; y0Ks sin q; qÞ;
Proc. R. Soc. A (2007)
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Figure 1. Suspension and reduced suspension.
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along the oriented line through (x0, y0) in R
2. We can choose a gauge, such that

lim
s/KN

jZ 1;

and define the scattering matrix S:TS 1/U(N ) on the space of oriented lines in
R
2 as

S Z lim
s/N

j: ð2:9Þ

The trivial scattering condition (2.5) then implies that this matrix is trivial,

S Z 1: ð2:10Þ
As we have explained, the boundary conditions (1.6) and (2.5) imply that for

each value of q, the function j extends to a one-point compactification S 2 of R2.
The straight lines on the plane are then replaced by the great circles and, in this
context, the trivial scattering condition implies that the differential operator
umDmKF has trivial monodromy along the compactification S1ZRgfNg of a
straight line parameterized by s.
(b ) Topology of extended solution

In §2a, we have explained that we can regard j as a map from S 3 to U(N ). All
such maps are partially characterized by their homotopy type (Bredon 1993)

½j�Z 1

24p2

ð
S3
TrððjK1djÞ3Þ: ð2:11Þ

The element [j] is an integer taking values in p3ðUðNÞÞZZ and is invariant
under continuous deformations of j.

In §3, we will need the following result. Let g1 and g2 be maps from S 3 to U(N )
and g1g2:S

3/U(N ) be given by

g1g2ðxÞ :Z g1ðxÞg2ðxÞ; x2S3;

where the product on the r.h.s. is the pointwise group multiplication. Then,

½g1g2�Z ½g1�C ½g2�: ð2:12Þ
Proc. R. Soc. A (2007)



951Topology of time-dependent unitons
This is because

Tr½ððg1g2ÞK1dðg1g2ÞÞ3�ZTr½ðgK1
1 dg1Þ3 CðgK1

2 dg2Þ3�Cdb;

where b is a two-form and hence db integrates to 0 by Stokes’ theorem. This was
explicitly demonstrated by Skyrme (1962) in the case of SU(2).

Rather than exhibiting the exact form of b, we shall use the following general
argument. The higher homotopy groups pd (G ) of a Lie group G are abelian, and
the group multiplication in G induces the addition in the homotopy groups, i.e. if
g1 and g2 are maps from Sd to G, then the homotopy class of the map g1g2:S

d/G
defined by the group multiplication is the sum of homotopy classes of g1 and g2.
The proof of this is presented, for example, by Bredon (1993) and essentially
follows the proof that the fundamental group of a topological group is abelian.
Now p3ðGÞZZ for any compact simple Lie group. If GZSU (2), then this result
just reproduces the calculation done by Skyrme, as two continuous maps from S 3

to itself are homotopic if and only if they have the same topological degree.
Theorem 1.1 holds for unitons with values in GZU (N ), where [j] in (1.7) is the
sum of homotopy classes that arise from integrals of elements of H 3(G ). To find
out a homotopy class of a map j, we can use formula (2.11), where the integrand
is a left-invariant three-form on the group manifold pulled back to S 3. This is
because p3(G ) is isomorphic to the integral homology group H3ðG;ZÞ, and the
r.h.s. of (2.11) coincides with the homology class of the cycle j(S 3)3G.

We remark that some part of this topological data is encoded in the Ward
equation (1.1), which can be regarded as an ordinary chiral model with torsion
(Ward 1988b). Any compact semi-simple group G admits a connection that
parallel propagates left-invariant vector fields. This connection is flat, but
necessarily has a torsion T. The torsion is totally antisymmetric, thus giving a
preferred three-form in the third cohomology group that can then be pulled back
to S 3. The first-order commutator term in equation (1.1) can be rewritten as

½emnðJK1vmJÞðJK1vnJÞ�;
where emn is a totally antisymmetric constant matrix. In our case, emnZemnaVa,
where VZ(0, 1, 0) is the space-like unit vector and (1.1) takes the form

ðhmnCemnÞðvmðJK1vnJÞÞZ 0:

The choice of V reduces the symmetry group of (1.1) down to SO(1, 1). The
momenta PtZE, and Py are well defined, and conserved for (1.1).

The commutator term can be obtained from a Lagrangian density
emnðvmxiÞðvnxjÞeijðxÞ, where the two-form e is a local potential for the torsion
deZT, and xj are local coordinates on G, where i, jZ1, ., dim G. The two-form
e is defined only locally in G.
3. Time-dependent unitons and energy quantization

A class of extended solutions that satisfy the trivial scattering condition (2.5)
gives rise to the n-uniton solutions defined in (1.4). These extended solutions
factorize into the so-called n-uniton factors (Ward 1995)

JZGnGnK1.G1; where Gk Z 1K
�mKm

lKm
Rk

� �
2GLðN ;CÞ; Rk Z

q�k5qk

kqkk2
:

ð3:1Þ
Proc. R. Soc. A (2007)
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Here, qkZqkðx; y; tÞ2C
N , kZ1, ., n, and m is a non-real constant. The

terminology here is rather confusing, as the maxima of the energy density of
the corresponding soliton solutions of (1.1) do physically scatter. The exact form
of qks is determined from (2.1) by demanding that the expressions

ðvxJKlðvtKvyÞJÞJK1 and ððvt CvyÞJKlvxJÞJK1 ð3:2Þ
are independent of l. In practice, one determines the qks by a limiting procedure
from solutions of a Riemann problem with simple poles (Ward 1988a).

The restricted map j (2.3) corresponding to (3.1) is given by

jZ gngnK1.g1; where gk Z 1C
�mKm

mCcot q
2

� � Rk2UðNÞ; ð3:3Þ

where lZKcotðq=2Þ2S13CP
1 as before and all the maps are restricted to the

tZ0 plane. Each element gk has the limit at spatial infinity for all values of q,

gkðx; y; qÞ/g0kðqÞZ 1C
�mKm

mCcot q
2

� �R0k as x2 Cy2/N:

The existence of the limit at spatial infinity R0kZ limr/NRkðx; yÞZconst is
guaranteed by the finite energy condition (1.6). Hence, j in (3.3) satisfies the
trivial scattering condition (2.5) and extends to a map from S 3 to U(N ). The
scattering matrix2 (2.9) is SZ1.

Note, however, that the gks and j in (3.3) only extend to the ordinary suspension
of S2. One needs to perform the transformation (2.7) with KZ

Qn
kZ1 g

K1
0k for j

to extend to the reduced suspension of S2. We shall use j as in (3.3), because (2.12)
implies that the transformation (2.7) does not contribute to the degree and
[K(q)j]Z[j].

Proposition 3.1. The third homotopy class of j is given by

½j�ZG
i

2p

ð
R2

Xn
kZ1

TrðRk ½vxRk ; vyRk �Þ dx dy
0!f!p;

p!f!2p;

(
ð3:4Þ

where mZmeif.

Proof. The recursive application of (2.12) implies that

½j�Z
Xn
kZ1

½gk �:

Using (2.11), with zZxCiy,

½gk �Z
1

8p2

ð
S1!R2

Tr gK1
k vqgk gK1

k vzgk ; g
K1
k v�zgk

h i� �
dqodzod�z

Z
1

16p2
QðmÞ

ð
R2
TrðRk ½vzRk ; v�zRk �Þdzod�z;
2 Novikov (2002) has demonstrated that given a scattering matrix on the space of oriented lines in
R
D with DO2, it is always possible to reconstruct the gauge potential and the Higgs field on R

D by
means of a non-abelian inverse Radon transform. The non-trivial initial data for the time-
dependent n-unitons (3.1) have a trivial scattering matrix, which shows that the inversion is not, in
general, possible if DZ2.
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953Topology of time-dependent unitons
where

QðmÞZ
ð2p
0

ð�mKmÞ3sin2 q
2

� �
jmj2 C ð1Kjmj2Þcos2 q

2

� �
CðmC �mÞcos q

2

� �
sin q

2

� �� �2 dqZG8pi
0!f!p;

p!f!2p:

(

Hence, changing to the (x, y) coordinates, we obtain

½gk �ZG
i

2p

ð
R2
TrðRk ½vxRk ; vyRk �Þdx dy

0!f!p;

p!f!2p:

(
ð3:5Þ

Therefore, the third homotopy class of j is given by (3.4).
&

The proof of theorem (1.1) makes use of proposition 3.1 and a recursive
procedure of adding unitons to a given solution, which we shall now explain. Let
J be an extended solution to the Lax pair (2.1) corresponding to a solution J,
which satisfies (1.1). Set

ĴZGJZ 1K
�mKm

lKm
R

� �
J; Ĵ Z Ĵ

K1jlZ0 Z JM ; ð3:6Þ

where M is of the form (1.5), up to a constant phase factor that is irrelevant. The
matrix Ĵ will be an extended solution if expressions (3.2) with J replaced by Ĵ
are independent of l. This leads to the Bäcklund relations (Ioannidou &
Zakrzewski 1998; Dai & Terng 2004). These are first-order PDEs for M, which
can be regarded as a generalization of Uhlenbeck’s method of adding unitons for
harmonic maps (Uhlenbeck 1989). In terms of the Hermitian projection R, these
PDEs are

RðRtKJK1Jtð1KRÞÞZB; ð3:7Þ
RRt ZC ;

where

B Z ðmRxKRy CRJK1JyÞð1KRÞ;

C Z
1

m
ððmRy CRxKRJK1JxÞð1KRÞÞ:

Proof of theorem 1.1. Wefirst consider a solution of the form Ĵ ZJM , where J is
an arbitrary solution of (1.1). Noting thatM is unitary and writing it in terms ofR,
the difference between the energy densities (1.3) of Ĵ and J is given by

DEh ÊKE Z
X
a

Trðk�kRaRaRCkð1K �kRÞJK1JaRaÞ; ð3:8Þ

where a stands for (t, x, y); Ê and E are the energy densities of Ĵ and J, respectively;
and kZð1Kðm=�mÞÞ.

Multiplying the relations (3.7) and their Hermitian conjugates yields the
following identities:

TrðRtRtRÞZTrðCC�Þ;

TrðJK1JtRtÞZTrðCB�KBC �Þ;

TrðRJK1JtRtÞZTrððCKBÞC�Þ: ð3:9Þ
Proc. R. Soc. A (2007)
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The terms involving the time derivatives in (3.8) are of the form RtRtR, J
K1JtRt

and RJK1JtRt, which, by (3.9), can be written in terms of the spatial derivatives
only. Thus, by direct substitution and some rearrangements, equation (3.8)
becomes

DE ZK
k

m
Trðð1C jmj2ÞR½Rx ;Ry�CT Þ;

where T ZvxðRJK1JyÞKvyðRJK1JxÞ gives no contribution to the difference in the
energy functionals of Ĵ and J. This is because

Tr

ð
R2
T dxody Z lim

r/N

ð
Dr

dðTrðRJK1dJÞÞ

Z lim
r/N
#

Cr

TrðRJK1dJÞZTr lim
r/N
#

Cr

ðJRÞ�dJ
� �

% lim
r/N

Tr
ððJRÞ0Þ�

r
ðJ1ð4Z 2pÞK J1ð4Z 0ÞÞ

� ��

C2pr
jc2j
r2

C
jc3j
r3

C/

� ��
Z 0;

by Stokes’ theorem, where Cr denotes the circle enclosing the disc Dr of radius r ,
4 is a coordinate on Cr and jcij is the bound of TrððJRÞ�i v4JÞ, iZ1, 2, .. We have
used the boundary condition

lim
r/N

JRZ ðJRÞ0 CðJRÞ1ð4ÞrK1 COðrK2Þ; ð3:10Þ

which follows from (1.6) for Ĵ ZJM , and the fact that integrands are continuous
on the circle and hence bounded. Since (JR)0 is a constant matrix, the first term
in the series is a total derivative.

So far, we have only used the assumption that J is a solution of equation (1.1),
but not that it has to be a uniton solution defined by equation (1.4). Therefore,
we have a more general result for the total energy of a Ward solution of the form
Ĵ ZJM , where J is an arbitrary solution to Ward equation. Let Ê and E be the
total energies of Ĵ and J, respectively, then

Ê ZEC
ðmK �mÞð1C jmj2Þ

jmj2
ð
R2
TrðR½Rx ;Ry�Þdx dy: ð3:11Þ

From (3.11), the explicit expression for the total energy of an n-uniton solution
(1.4) follows. First, consider a 1-uniton solution J(1)ZM1. It can be written as
J(1)ZJ(0)M1, where the constant matrix J(0), which satisfies (1.1) trivially, is
chosen to be the identity matrix. Then, from (3.11), the total energy of a
1-uniton solution is given by

Eð1Þ Z
ðmK �mÞð1C jmj2Þ

jmj2
ð
R2
TrðR1½vxR1; vyR1�Þdx dy: ð3:12Þ
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955Topology of time-dependent unitons
Therefore, using (3.11), we show by induction that the total energy of an
n-uniton solution (1.4) is given by

EðnÞ Z
ðmK �mÞð1C jmj2Þ

jmj2
Xn
kZ1

ð
R2
TrðRk ½vxRk ; vyRk �Þdx dy

ZG4p
1Cm2

m

� �
sinðfÞ½j�

0!f!p;

p!f!2p;

(
ð3:13Þ

where mZm eif, and we have used (3.4).
&

We remark that formula (3.5) reveals another topological interpretation of the
energy quantization, which is useful in practical calculations. Consider the group
element (3.3) with the index k dropped. The Grassmanian projector R in (3.1)
corresponds to a smooth map from the compactified space to the projective space
q : S2/CP

NK1. The homotopy group p2ðCPNK1ÞZZ is non-trivial and the
degree of q is obtained by evaluating the homology class on a standard generator
for H 2ðCPNK1Þ represented in a map qZ(1, f1, ., fNK1) by the Kähler form

UZK4iv�v ln 1C
XNK1

jZ1

jfj j2
 !

:

This evaluation is just the integration, thus

½q�Z i

8p

ð
R2
q�ðUÞ:

Evaluating the integrand, we verify that

iTrðR½Rx ;Ry�ÞZ
1

4
q�ðUÞ:

We conclude that the energy is proportional to the sum of the topological degrees
of Grassmanian projectors involved in the definition of unitons.

In the remaining part of this section, we shall prove a Lorentz invariant
generalization of theorem (1.1). We start off by looking at the quantization of
the momentum. Following Ward (1988a), we have chosen the conserved
energy functional for a solution of (1.1) to be that obtained from the energy–
momentum tensor of the associated standard chiral model. However, for (1.1),
only the energy and the y-component of momentum are conserved, while the
x -component of momentum is not. The conserved y-momentum is given by

P Z

ð
R2
P dx dy; ð3:14Þ

where the momentum density is

P ZKTrðJK1JtJ
K1JyÞ: ð3:15Þ

It turns out that this is also quantized and proportional to the third homotopy
class of the restricted extended solution.

Proposition 3.2. The y-momentum of the n-uniton solution (1.4) is given by

PðnÞ ZK4p
1Km2

m

� �
jsinðfÞj½j�: ð3:16Þ

Thus, unless [j]Z0, PZ0 if and only if mZ1.
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Proof. We first consider Ĵ ZJM as in proof of theorem 1.1. The difference
between the y-momentum densities (3.15) of Ĵ and J is given by

DPh P̂KP Z kTrðð1K �kRÞðJK1JtRy CJK1JyRtÞC �kðRyRtÞÞ: ð3:17Þ
Then, the substitution

TrðJK1JtRyRÞZTrððCKBÞRyÞ;

TrðJK1JtRRyÞZTrððB�KC�ÞRyÞ;
from the Bäcklund relations (3.7) gives

DP Z
k

m
Trðð1Kjmj2ÞR½Rx ;Ry�CT Þ; where kZ 1K

m

�m

� �
:

The term T ZvxðRJK1JyÞKvyðRJK1JxÞ gives no contribution to the difference in
the y-momenta of Ĵ and J as to the difference in the energies. Thus, we have a
result for Ward solution of the form in Ĵ ZJM , where J is an arbitrary solution
to Ward equation; its y-momentum is given by

P̂ ZPK
ðmK �mÞð1Kjmj2Þ

jmj2
ð
R2
TrðR½Rx ;Ry�Þdx dy; ð3:18Þ

where P̂ and P are the y-momenta of Ĵ and J, respectively.
We then proceed by induction to obtain the expression for the y-momentum of

an n-uniton solution (1.4), in the same way as for the total energy. This gives

PðnÞ ZK
ðmK �mÞð1Kjmj2Þ

jmj2
Xn
kZ1

ð
R2
TrðRk ½vxRk ; vyRk �Þdx dy

ZH4p
1Km2

m

� �
sinðfÞ½j�

0!f!p;

p!f!2p:

(
ð3:19Þ

&

We shall now exploit the SO(1, 1) invariance of (1.1) to combine theorem 1.1
and proposition 3.2 in the Lorentz invariant form.

Theorem 3.1. For an n-uniton solution, the SO(1, 1) invariant relation

E2
ðnÞKP2

ðnÞ Z 64p2sin2ðfÞ½j�2; ð3:20Þ
holds.

Proof. Since equation (1.1) is invariant under SO(1, 1), we can generate new
solutions from a given one by boosts in the y–t plane. In the coordinates
fx; uZð1=2ÞðtCyÞ; vZð1=2ÞðtKyÞg, the boosts are given by x/x, u/su,
v/sK1v, s2R

�. We shall show that a boost of an n -uniton solution with a pole m
in the extended solution gives rise to another n-uniton solution, with the pole
m 0Zsm.

Consider the Bäcklund relations (3.7) expressed in the {x,u,v} coordinates,

ðmRxKRu CRJK1JuÞð1KRÞZ 0;

ðmRvKRx CRJK1JxÞð1KRÞZ 0:
ð3:21Þ

Let J be an arbitrary solution of (1.1) and R(x,u,v) be the Hermitian projector,
satisfying (3.21). Under the boost to another solution J/J 0, we have
Proc. R. Soc. A (2007)



957Topology of time-dependent unitons
R/R0ZRðx; su; sK1vÞ. By changing the coordinates, we see that R 0 will satisfy
(3.21) with m and J replaced by m0 and J 0, if m0Zsm. That is, each restricted
uniton factor transforms as

gk Z 1C
�mKm

mCcot q
2

� � Rkðx; u; v;mÞ/g 0k Z 1C
s�mKsm

smCcot q
2

� �Rkðx; su; sK1v;mÞ:

Since boost is a continuous transformation, it does not change the homotopy
types and

½jðx; u; vÞ�Z ½jðx; su; sK1vÞ�:
Hence, under the transformation, E(n) and P(n) only change due to the explicit
factors of m in equations (1.7) and (3.16), respectively. The boosts rescale m by
m/sm, keeping the phase f fixed. This leads to the SO(1, 1) invariance of
E2
ðnÞKP2

ðnÞ. Formula (3.20) follows directly from (1.7) and (3.16).
&

Examples. Consider the SU(2) case, where the third homotopy class is equal
to the topological degree and set mZi. The uniton factors are of the form

Mk Z
i

1C jfkj2
jfk j2K1 K2fk

K2fk 1Kjfk j2

 !
:

nZ1. In the 1-uniton case, vtM1Z0, and M1 is given by equation (1.5), with
f1Zf1(z), a rational function of some fixed degree Q. The energy density is

E1 Z
8jf 01j2

ð1C jf1j2Þ2
ZKiTrðM1½vzM1; v�zM1�Þ;

and EZ8pdeg(g1) is in agreement with (1.7). In this case, g1 is a suspension of a
rational map f1 : CP

1/CP
1 and deg(g1)Zdeg(f1) is a simple illustration of the

Freundenthal theorem, which says that a suspension of maps of d-spheres induces
an isomorphism of the homotopy groups.

nZ2. In the 2-uniton case,M1 andM2 are given by equation (1.5), with mZi, and

q1 Z ð1; f Þ; q2 Z ð1C jf j2Þð1; f ÞK2iðtf 0 ChÞð�f ;K1Þ;
where f and h are the rational functions of z (Ward 1995). Define kZ2ðtf 0ChÞ. The
total energy density is

E Z
8jð1C jf j2Þk 0K2k�f f 0j2C16jkf 0j2 C16ð1C jf j2Þ2jf 0j2

ðjkj2Cð1C jf j2Þ2Þ2
ð3:22Þ

and

E Z

ð
R2

E dx dy Z 8pðdegðg1ÞCdegðg2ÞÞ

for all t. The quantization of energy in this case has first been observed by
Ioannidou & Manton (2005), where it was shown that EZ8pQ, where generically
QZ2 deg fCdeg h. However, QZmaxð2 deg f ;deg hÞ if both f and h are
polynomials. Our formula (1.7) is valid for all pairs ( f, h).
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4. Conclusions

We have established the relation between the total energy of time-dependent
solitons (1.4) and the homotopy classes of associated extended solutions. To the
best of our knowledge, this is the first example of a topological mechanism
ensuring the classical energy quantization of moving solitons.

The n-uniton solutions (1.4) form a subclass of all finite energy solitons, which
satisfy the trivial scattering boundary condition (2.5). Dai & Terng (2004) have
demonstrated that the extended solution corresponding to the general trivial
scattering soliton has poles at non-real points m1, ., mr, with multiplicities
n1, ., nr, and is a product of simple elements Gk,a aZ1,., r of the form in (3.1).
Our case (3.1) corresponds to rZ1, but the method used in proof of theorem 1.1
applies to the general case, as one can choose a different m at each iteration of the
Bäcklund transformations (3.7). Formulae (3.5) and (3.11) lead to the general
form of the total energy of trivial scattering solitons

E Z 4p
Xr
aZ1

Xnr
kZ1

1Cm2
a

ma

jsin faj½gk;a�; ma Zmae
ifa ; ð4:1Þ

where

gk;a Z 1C
�maKma

ma Ccot q
2

� � Rk;a2UðNÞ;

and Rk,a are Hermitian projections, whose form is determined by the Bäcklund
relations. This agrees with the result of Lechtenfeld & Popov (2001). Formula
(4.1) is not directly linked to the homotopy type of the extended solution, and
the SO(1, 1) invariance cannot be easily incorporated. This is why we have
focused on the special case (1.4).

Dunajski & Manton (2005) have analysed the SU (2) integrable chiral model
(1.1) in the moduli space approximation, when the time-dependent slowly
moving solitons correspond to curves in the moduli space of static solitons, which
are geodesic with respect to the natural metric

hð _g; _gÞZ 1

2
_gp _gq

ð
R2

vpf vqf
		 		
ð1C jf j2Þ2

dx dy;

on the space of rational maps. Here, fZf (z, g) is a rational meromorphic function
of zZxCiy, which depends on real parameters (positions of zeros and poles) g p,
and vpfZvf =vgp.

The kinetic energy of these approximate solitons is small, and their total
energy is close (in the units of 8p) to the degree of the associated rational map.
Theorem (1.1) gives a class of exact solutions with quantized total energy, and
one may expect that the approximate solitons of Dunajski & Manton (2005) arise
from the time-dependent unitons by some limiting procedure.

We wish to thank Marcin Kaźmierczak, Nick Manton, Lionel Mason and the anonymous referee for
valuable comments, and Ivan Smith for clarifying some aspects of homotopy theory. P.P. is
grateful to the Royal Thai Government for funding her research.
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