Part III Applications of Differential Geometry to Physics, Sheet One

Maciej Dunajski, Lent Term 2020

1. Show, by exhibiting the coordinate charts, that the real projective space \mathbb{RP}^n is a manifold. Show that \mathbb{RP}^n may be regarded as the *n*-sphere S^n with antipodal points identified. Prove that $\mathbb{RP}^3 \equiv SO(3)$. Show also that $\mathbb{RP}^n \equiv S^n/\mathbb{Z}_2$ and that $S^n \equiv O(n+1)/O(n)$.

The complex projective space \mathbb{CP}^n is defined analogously to \mathbb{RP}^n , as a set of one-dimensional *complex* subspaces in \mathbb{C}^{n+1} . Prove that, as real manifolds, $\mathbb{CP}^1 \equiv S^2$.

Remark. Thus S^2 has an atlas with holomorphic transition functions which makes it a *complex manifold*. It is known that no other sphere apart from S^6 is a complex manifold. It is still not known whether S^6 is a complex manifold.

2. Show that the Lie algebra of $SO(n) = \{A \in GL(n, \mathbb{R}), A^TA = 1\}$ may be identified with antisymmetric $n \times n$ matrices.

Let J be a $2n \times 2n$ matrix

$$\begin{pmatrix} 0 & \mathbf{1}_n \\ -\mathbf{1}_n & 0 \end{pmatrix}$$

and let $Sp(2n, \mathbb{R}) = \{A \in GL(2n, \mathbb{R}), A^T J A = J\}$. Compute the dimensions of SO(n) and $Sp(2n, \mathbb{R})$. What is the Lie algebra of $Sp(2n, \mathbb{R})$?

3. Starting from the definition of the Lie derivative show that

$$\mathcal{L}_V(W) = [V, W]$$

if V and W are vector fields. Use the Leibniz rule to establish the Cartan formula

$$\mathcal{L}_V \Omega = d(V \,\lrcorner\, \Omega) + V \,\lrcorner\, d\Omega,$$

where Ω is a *p*-form.

Show that, if Ω is a one–form, then

$$d\Omega(V,W) = V(W \,\lrcorner\, \Omega) - W(V \,\lrcorner\, \Omega) - [V,W] \,\lrcorner\, \Omega.$$

4. Consider the matrix representation of the Euclidean group E(2) in two dimensions

$$\begin{pmatrix} \cos\theta & -\sin\theta & a\\ \sin\theta & \cos\theta & b\\ 0 & 0 & 1 \end{pmatrix}$$

to find a basis of right- and left-invariant one forms and the dual vector fields. How is this matrix representation related to the action of E(2) on \mathbb{R}^2 discussed in Lectures?

The location of a motor car with rear wheel drive may be specified by giving the coordinates (a, b) of the centre of the front axle and the angle θ that the axis of the car makes with the *a*-axis. Show that the configuration space of of the car may be regarded as E(2). If *l* is the distance between the mid-points of the rear and front axles, show that the vector field \mathbf{V}_{ψ} associated with driving forward the front wheels making a constant angle $\frac{\pi}{2} - \psi$ to the axis of the car is given by

$$\mathbf{V}_{\psi} = \cos\psi\cos\theta\frac{\partial}{\partial a} - \cos\psi\sin\theta\frac{\partial}{\partial b} + \sin\psi\frac{1}{l}\frac{\partial}{\partial\theta}$$

Show that a basis for $\mathfrak{e}(2)$ is given by **Steer** = $\mathbf{V}_{\frac{\pi}{2}}$, **Drive** = \mathbf{V}_0 , and **Left** = [**Steer**, **Drive**]. Calculate the commutation relations. Show in particular how, in the UK, parking may be achieved by a succession of infinitesimal steering and driving.

5. Consider three one–parameter groups of transformations of \mathbb{R}

$$x \to x + \varepsilon_1, \quad x \to e^{\varepsilon_2} x, \quad x \to \frac{x}{1 - \varepsilon_3 x},$$

and find the vector fields V_1, V_2, V_3 generating these groups. Deduce that these vector fields generate a three-parameter group of transformations

$$x \to \frac{ax+b}{cx+d}, \qquad ad-bc \neq 0.$$

Show that the vector fields V_{α} generate the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ and thus deduce that $\mathfrak{sl}(2,\mathbb{R})$ is a subalgebra of the infinite dimensional Lie algebra $\operatorname{vect}(\Sigma)$ of vector fields on $\Sigma = \mathbb{R}$. Find all other finite dimensional subalgebras of $\operatorname{vect}(\Sigma)$. Let $f: \Sigma \to \mathbb{R}$ be a smooth function. Consider a map $\pi: C^{\infty}(\Sigma) \to C^{\infty}(T^*\Sigma)$ given by

$$\pi(f)(x,p) = pf(x), \text{ where } (x,p) \in T^*\Sigma$$

and show that this map gives a homomorphism between $vect(\Sigma)$ and the Lie algebra of Poisson bracket on $T^*\Sigma$.

Remark. The Poisson bracket on $T^*\Sigma$ admits a deformation to the so called *Moyal bracket* (if you want to, look it up on Wikipedia) which makes quantisation possible. On the other hand the algebra $\operatorname{vect}(\Sigma)$ can be centrally extended to the Virasoro algebra as discussed in lectures, but is otherwise rigid.

6. The dilatations \mathbb{R}_+ and translations \mathbb{R}^4 combine as the semi-direct product $\mathbb{R}_+ \ltimes \mathbb{R}^4$ to act on $y^{\mu} \in \mathbb{E}^{3,1}$, the Minkowski space-time, as

$$\begin{pmatrix} y^{\mu} \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda & x^{\mu} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y^{\mu} \\ 1 \end{pmatrix} .$$
 (1)

Show that

$$ds^{2} = \frac{1}{\lambda^{2}} \left(d\lambda^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu} \right)$$

is a left-invariant metric on $\mathbb{R}_+ \ltimes \mathbb{R}^4$. By considering the embedding into $\mathbb{E}^{4,2}$ given by

$$X^{6} + X^{5} = \frac{1}{\lambda}, \quad X^{6} - X^{5} = \lambda + \frac{\eta_{\mu\nu}x^{\mu}x^{\nu}}{\lambda}, \quad X^{\mu} = \frac{x^{\mu}}{\lambda},$$

with X^6 an extra timelike coordinate and X^5 an extra spacelike coordinate, show that $\mathbb{R}_+ \ltimes \mathbb{R}^4$ with this metric is one half of five-dimensional Anti-de-Sitter space-time AdS_5 .

Show that, despite being a group manifold , $\mathbb{R}_+ \ltimes \mathbb{R}^4$ equipped with this metric is geodesically incomplete.

Remark. This construction is currently quite popular because it is the basis of the AdS/CFT correspondence.

7. Let $A \in SO(3)$. Find the vector fields generating the action $\mathbf{x} \to A\mathbf{x}$ of SO(3) on \mathbb{R}^3 . Show that this action restricts to $S^2 \subset \mathbb{R}^3$, and that the symplectic form $d(\cos \theta) \wedge d\psi$ on S^2 , where (θ, ψ) are spherical polars,

is preserved by the action. Deduce that the action on the two-sphere is generated by Hamiltonian vector fields, and find the corresponding Hamiltonians. Verify that these Hamiltonians form a Lie algebra with a Poisson bracket, which is isomorphic to the Lie algebra of SO(3).

8. A Poisson on structure on \mathbb{R}^{2n} is an anti-symmetric matrix ω^{ab} whose components depend on the coordinates $x^a \in \mathbb{R}^{2n}$, $a = 1, \dots, 2n$ and such that the Poisson bracket

$$\{f,g\} = \sum_{a,b=1}^{2n} \omega^{ab}(x) \frac{\partial f}{\partial x^a} \frac{\partial g}{\partial x^b}$$

satisfies the Jacobi identity.

Show that

$$\{fg,h\} = f\{g,h\} + \{f,h\}g$$

Assume that the matrix ω is invertible with $W := (\omega^{-1})$ and show that the antisymmetric matrix $W_{ab}(\xi)$ satisfies

$$\partial_a W_{bc} + \partial_c W_{ab} + \partial_b W_{ca} = 0, \qquad (2)$$

or equivalently that the two-form $W = (1/2)W_{ab}dx^a \wedge dx^b$ is closed.

[Hint: note that $\omega^{ab} = \{x^a, x^b\}$.] Deduce that if n = 1 then any antisymmetric invertible matrix $\omega(x^1, x^2)$ gives rise to a Poisson structure (i.e. show that the Jacobi identity holds automatically in this case).

Remark. The invertible antisymmetric matrix W which satisfies (2) is called a symplectic structure. We have therefore deduced that symplectic structures are special cases of Poisson structures.

9. The metric of hyperbolic 3-space H^3 in Beltrami coordinates is given by

$$ds^{2} = \frac{d\mathbf{r}^{2}}{1 - r^{2}} + \frac{(\mathbf{r}.d\mathbf{r})^{2}}{(1 - r^{2})^{2}}.$$

Let

$$\mathbf{M} = \mathbf{p} - \mathbf{r}(\mathbf{p}.\mathbf{r}), \qquad \mathbf{L} = \mathbf{r} \times \mathbf{p}$$

so that $\mathbf{M} \cdot \mathbf{L} = 0$. Show that the Hamiltonian for geodesic motion is given by

$$H = \frac{1}{2} \left(\mathbf{M}^2 - \mathbf{L}^2 \right).$$

Obtain the Poisson brackets

$$\{L_i, L_j\} = \epsilon_{ijk} L_k ,$$

$$\{M_i, M_j\} = -\epsilon_{ijk} L_k ,$$

$$\{L_i, M_j\} = \epsilon_{ijk} M_k .$$

Hence show that both L and M are constants of the motion. Identify the associated Killing vector fields and compute their Lie brackets. Show that

$$\mathbf{M} = \frac{\mathbf{\dot{r}}}{1 - r^2}$$

and hence that the geodesics are straight lines in Beltrami coordinates. What is the geometrical significance of the condition $\mathbf{M}.\mathbf{L} = 0$?

Check that the Poisson algebra of $L_{ij} = \epsilon_{ijk}L_k$ and L_{0i} is that of the Lorentz Lie algebra $\mathfrak{so}(3, 1)$, and show that H and $\mathbf{M}.\mathbf{L}$ are quadratic Casimirs.

10. The set of oriented lines in Euclidean space \mathbb{R}^{n+1} may be parametrized in terms of their unit tangent vector \mathbf{t} and the vector \mathbf{p} joining the an arbitrary origin 0 to the point P of nearest approach of the line to this origin. Identify the space of oriented lines as TS^n - the tangent bundle to the *n*-dimensional sphere.

Now Consider n = 2.

- (a) Show that points $P \in \mathbb{R}^3$ corresponds to maps L_P from S^2 to TS^2 which should be constructed. Let $\tau : TS^2 \to TS^2$ be a fixed-point-free map obtained by reversing the orientation of each straight line. Show that a two-sphere in TS^2 corresponding to $P \in \mathbb{R}^3$ is preserved by τ .
- (b) Describe the action and orbits of rotations about O on TS^2 . How does the Euclidean group E(3) act? What happens if we consider *unoriented* lines?

Remark. You have established a *mini-twistor correspondence* between points in \mathbb{R}^3 and spheres in TS^2 . If a complex atlas (see Question 1) is used on S^2 , then TS^2 becomes a complex manifold, and holomorphic functions on this manifold give rise to solutions of linear and non-linear PDEs on \mathbb{R}^3 (like the Bogomolny equations for magnetic monopoles).