Part III Applications of Differential Geometry to Physics, Sheet Two

Maciej Dunajski, Lent Term 2020

1. Let $\phi : \mathbb{R}^{2,1} \to S^2$. Set

$$\phi^1 + i\phi^2 = \frac{2u}{1+|u|^2}, \qquad \phi^3 = \frac{1-|u|^2}{1+|u|^2},$$

and deduce that the Bogomolny equations

$$\partial_i \phi^a = \pm \varepsilon_{ij} \varepsilon^{abc} \phi^b \partial_j \phi^c, \qquad \phi_t = 0$$

imply that u is holomorphic or antiholomorphic in $z = x_1 + ix_2$. Find the expression for the total energy

$$E[\phi] = \frac{1}{2} \int \partial_j \phi^a \partial_j \phi^a d^2 x$$

in terms of u.

By counting the pre-images or otherwise find the topological degree of ϕ corresponding to $u(z) = u_0 + u_1 z + \ldots + u_k z^k$, where u_0, \ldots, u_k are constants with $u_k \neq 0$.

- 2. Derive the SU(2) Yang–Mills theory on \mathbb{R}^4 form the action. Let $A_a(x)$ be a solution to these equations. Show that, for any nonzero constant c, the potential $\widetilde{A}_a(x) = cA_a(cx)$ is also a solution and that it has the same action.
- 3. Consider the map $g: S^3 \to SU(2)$ defined by

$$g(x_1, x_2, x_3, x_4) = x_4 + i(x_1\sigma_1 + x_2\sigma_2 + x_3\sigma_3),$$

where σ_i are Pauli matrices and $x_1^2 + x_2^2 + x_3^3 + x_4^2 = 1$ and find its degree. By calculating $Tr((dg \ g^{-1})^3)$ at the point on S^3 where $x_4 = 1$, or otherwise deduce that the formula

$$\deg(g) = \frac{1}{24\pi^2} \int_{S^3} Tr((dg \ g^{-1})^3)$$

is correctly normalised.

4. Let T_1, T_2, T_3 form a basis of $\mathfrak{su}(2)$ such that

$$[T_{\alpha}, T_{\beta}] = -\varepsilon_{\alpha\beta\gamma}T_{\gamma}, \quad \alpha, \beta, \gamma = 1, 2, 3,$$

and let the symbols $\sigma_{ab} = -\sigma_{ba}$ where $a, b = 1, \ldots, 4$ be defined by

$$\sigma_{\alpha\beta} = \varepsilon_{\alpha\beta\gamma}T_{\gamma}, \quad \sigma_{\alpha4} = T_{\alpha}.$$

Show that

$$\sigma_{ab} = \frac{1}{2} \varepsilon_{ab}{}^{cd} \sigma_{cd}, \quad \text{and} \quad \sigma_{ab} \sigma_{ac} = -\frac{3}{4} \mathbf{1} \delta_{bc} - \sigma_{bc}$$

Identify $\Lambda^2(\mathbb{R}^4)$ with the Lie algebra $\mathfrak{so}(4)$ and deduce that $\mathfrak{so}(4) = \mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

5. Let $V = 1 + r^{-2}$, where $r^2 := \delta_{ab} x^a x^b$. Show that the one-form

$$A = \sigma_{ab} \frac{1}{V} \frac{\partial V}{\partial x^b} dx^a \tag{1}$$

is a solution of the anti-self-dual Yang-Mills equations on \mathbb{R}^4 .

The one-form A is singular at r = 0. What can you say about the behaviour of the field strength F at r = 0?

- 6. Find, by explicit integration, the Chern number of the solution (1).
- 7. Let F be a two-form on \mathbb{R}^4 . Show, from the definition of the Hodge operator, that
 - (a) $**F = \pm F$ depending on the signature.
 - (b) $*F \wedge *F = F \wedge F$.

Show that in the U(1) theory $F \to *F$ interchanges the electric and magnetic fields with factors of ± 1 or $\pm i$ and determine the different cases in the corresponding signatures.

Let F be a non-zero real self-dual two-form on \mathbb{R}^4 such that $F \wedge F = 0$. What is the signature of the underlying metric?

8. Let A be a 1-form gauge potential on \mathbb{R}^n with values in $\mathfrak{su}(2)$, and let F be its curvature. Verify that $Tr(A), Tr(A \wedge A), Tr(A \wedge A \wedge A \wedge A)$ and Tr(F) all vanish.

Verify that $C_2 = dY_3$, where C_2 and Y_3 are the second Chern form, and the Chern–Simons three–form respectively.

9. Let $A = A_i dx^i$, i = 1, 2, 3 be a gauge potential on \mathbb{R}^3 with values in the Lie algebra \mathfrak{g} . Find the Euler-Lagrange equations arising from varying the Chern-Simons functional

$$W[A] = \int_{\mathbb{R}^3} \operatorname{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$$

with respect to A.

Now consider a one parameter family of \mathfrak{g} -valued one-forms A = A(t)on \mathbb{R}^3 , and define a one-form on \mathbb{R}^4 by $\mathcal{A} = A + \phi dt$, where the function $\phi = \phi(x^i, t)$ takes its values in $\mathfrak{su}(2)$. Show that, in a gauge where $\phi = 0$, the anti-self-dual Yang-Mills equations on \mathcal{A} take the gradient flow form

$$\frac{dA_i(t)}{dt} = \frac{\delta W[A]}{\delta A_i}$$

- 10. Consider a connection $\omega = \gamma^{-1}A\gamma + \gamma^{-1}d\gamma$ on a principal *G*-bundle $P \to B$, where *A* is a one-form on *B* and $\gamma^{-1}d\gamma$ is the Maurer-Cartan form on *G*.
 - (a) Show that the transformation of the fibres $\gamma' = g\gamma$, where $g \in G$ depends on the coordinates on B, does not change ω if A transforms like a gauge potential.
 - (b) Let $\Omega = d\omega + \omega \wedge \omega$. Show that $\Omega = \gamma^{-1} F \gamma$ for some F which should be found.
 - (c) Let $D_a, a = 1, ..., \dim(B)$ be linearly independent vector fields on P such that

$$D_a \,\lrcorner\, \omega = 0.$$

Show that $D_a = \partial_a - A^{\alpha}_a R_{\alpha}$, where $\partial_a = \partial/\partial x^a$ are vector fields on *B* and R_{α} are right-invariant vector fields on *G*. Demonstrate that

$$[D_a, D_b] = -F_{ab}^{\alpha} R_{\alpha}$$