Do we live in eleven dimensions?

Maciej Dunajski

Clare College and Department of Applied Mathematics and Theoretical Physics University of Cambridge

NEWTON'S LAW OF GRAVITATION

• Isaac Newton, 1687. Gravitational force is proportional to the product two masses, and inverse proportional to the square of the distance

Force
$$= G \frac{M \times m}{r^2}$$
.

- $r = \text{distance}, \quad M = \text{Mass}_{1}, \quad m = \text{mass}_{2},$ $G = 6.67 \times 10^{-11} = 0.0000000000667$
- Newton physicist, mathematician, astronomer, alchemist, theologian, ..., Fellow of Trinity College in Cambridge.

DUNAJSKI (DAMTP, CAMBRIDGE)

ELEVEN DIMENSIONS

SUCCESSES OF NEWTONIAN THEORY

Galileo's Leaning Tower of Pisa. Acceleration a does not depend on mass.

$$a =$$
Force \div mass $= G \frac{M \times m}{r^2} \div m = G \frac{M}{r^2}$

Planetary orbits

ELEVEN DIMENSIONS

Newton's Law

Force
$$= G \frac{M \times m}{r^2}$$
.

Some maths

$$10^{-3} = 0.001, \quad \frac{1}{10^{-3}} = 10^3 = 1000.$$

- Small distance=big force.
- Small and dense objects exert huge gravitational force.
- ... very dense objects become black holes everything, including light is sucked inside a black hole by its gravitational force.
- $\bullet\,$ Squeeze the Earth into a size of a peanut \to Black hole!

QUANTUM PHYSICS

- Paul Dirac Fellow of St Johns College in Cambridge.
- Dirac on poetry: The aim of science is to make difficult things understandable in a simpler way; the aim of poetry is to state simple things in an incomprehensible way. The two are incompatible.

QUANTUM PHYSICS - PHYSICS OF SMALL THINGS

 $\Delta =$ uncertainty.

$$\Delta(position) \times \Delta(velocity) > 0.0000001 \frac{meter^2}{second}.$$

The more precisely the position of a particle is determined, the less precisely the velocity is known (and vice versa).

DUNAJSKI (DAMTP, CAMBRIDGE)

Eleven dimensions

QUEST FOR THE THEORY OF EVERYTHING

DUNAJSKI (DAMTP, CAMBRIDGE)

ELEVEN DIMENSIONS

QUANTUM PHYSICS MEETS GRAVITATION

- Quantum Mechanics physics of small things: electrons, protons, quarks,..., lasers, electronics.
- Gravitation physics of big things: planets, stars, black holes, ..., GPS, space travel.
- Idea microscopic strings are more elementary than particles. Different particles - vibration modes of one string.
- Particle collisions vs String collisions

 Mathematics - string theory requires eleven dimensions - ten space + one time! M Theory.

How to look for higher dimensions?

Look closer!

How to look for higher dimensions?

Large Hadron Collider (CERN, Geneva)

Higher dimensions predict new particles. 'Look closer' - particle collisions.

${\tt Space-time}{=}{\sf Time}\,\times\,{\sf Space}\,\times\,{\sf Hyperspace}$

$$11 = 1 + 3 + 7$$

- Question with no practical consequences.
- Intriguing nevertheless
- No definitive answer so far.
- Needs new ideas, new mathematical tools.

Thank You !!!