Part III Solitons and Instantons, Sheet Two

Maciej Dunajski, Easter Term 2007

- 1. The harmonic function $\rho = 1 + r^{-2}$ determines a one–instanton solution. Check, by explicit integration that the second Chern number of the corresponding bundle is 1.
- 2. Consider the map $g: S^3 \to SU(2)$ defined by

$$g(x_1, x_2, x_3, x_4) = x_4 + i(x_1\sigma_1 + x_2\sigma_2 + x_3\sigma_3),$$

where σ_i are Pauli matrices and $x_1^2 + x_2^2 + x_3^3 + x_4^2 = 1$ and find its degree. By calculating $Tr((dg \ g^{-1})^3)$ at the point on S^3 where $x_4 = 1$, or otherwise deduce that the formula

$$deg(g) = \frac{1}{24\pi^2} \int_{S^3} Tr((dg \ g^{-1})^3)$$

is correctly normalised.

3. Show that $**F = \pm F$ depending on the signature.

Show that in the U(1) theory $F \to *F$ interchanges the electric and magnetic fields with factors of ± 1 or $\pm i$ and determine the different cases in the corresponding signatures.

4. Show that the two-forms

$$\omega_1 = dw \wedge dz, \qquad \omega_2 = dw \wedge d\tilde{w} - dz \wedge d\tilde{z}, \qquad \omega_3 = d\tilde{w} \wedge d\tilde{z}$$

span the space of SD two-forms in \mathbb{C}^4 , where

$$ds^{2} = 2(dzd\tilde{z} - dwd\tilde{w}), \quad vol = dw \wedge d\tilde{w} \wedge dz \wedge d\tilde{z}.$$

Show that a two form F is ASD iff $F \wedge \omega_i = 0$.

- 5. Use the Lax pair formulation of ASDYM to
 - (a) Deduce the existence of a gauge such that $A = A_{\tilde{w}} d\tilde{w} + A_{\tilde{z}} d\tilde{z}$
 - (b) Deduce the existence of a \mathfrak{g} valued function $K = K(w, z, \tilde{w}, \tilde{z})$ such that $A_{\tilde{w}} = \partial_z K, A_{\tilde{z}} = \partial_w K$
 - (c) Reduce the ASDYM to a single second order PDE

$$\partial_z \partial_{\tilde{z}} K - \partial_w \partial_{\tilde{w}} K + [\partial_w K, \partial_z K] = 0.$$

What is the residual gauge freedom in K?

6. Show that iff $f(\lambda)$ is a meromorphic function on \mathbb{CP}^1 (so its only singularities are a finite collection of poles), then $f = s_1/s_2$ for some holomorphic sections s_1, s_2 of $\mathcal{O}(n)$ for some n.

Show that the holomorphic tangent and cotangent bundles of \mathbb{CP}^1 are, respectively, $\mathcal{O}(2)$ and $\mathcal{O}(-2)$.

- 7. Exercises on two component spinor notation. Show that
 - $\xi_A \rho^A = 0$ iff ξ_A, ρ_A are proportional
 - A vector in \mathbb{C}^4 is null iff $V^{AA'} = \lambda^A \xi^{A'}$ for some spinors $\lambda^A, \xi^{A'}$.
 - $\tau_{AB} = \tau_{(AB)} + \frac{1}{2}\tau \varepsilon_{AB}$ where (...) denotes symmetrisation, and τ should be determined.
 - Any two-form $F_{AA'BB'} dx^{AA'} \wedge dx^{BB'}$ in \mathbb{C}^4 is of the form

$$F_{AA'BB'} = \psi_{AB}\varepsilon_{A'B'} + \phi_{A'B'}\varepsilon_{AB},$$

where ψ_{AB} , $\phi_{A'B'}$ determine the ASD and SD parts of F respectively.

• ASDYM equations are of the form

$$\partial_{B(B'} A_{C')}^{\ B} + A_{B(B'} A_{C')}^{B} = 0$$

and are equivalent to $[L_0, L_1] = 0$, where $L_B = \pi^{B'}(\partial_{BB'} + A_{BB'})$ for some constant spinor $\pi^{B'}$.

- 8. Show that the factorisation of the patching matrix $F = \widetilde{H}H^{-1}$ in the Ward correspondence is unique up to multiplication of H and \widetilde{H} on the left by a nonsingular matrix g depending on the space-time coordinates, but not λ . Show that different choices of factorisation give gauge-equivalent connections.
- 9. Let the patching matrix for a rank-two Ward bundle over the twistor space \mathcal{PT} be given by

$$F = \left(\begin{array}{cc} 1 & f \\ 0 & 1 \end{array}\right),$$

where $f = f(\omega^A, \pi_{A'})$ is en element of $H^1(\mathcal{PT}, \mathcal{O})$. Find a YM potential A in terms of the electromagnetic field generated by f.