TWISTOR THEORY AND DIFFERENTIAL EQUATIONS

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics University of Cambridge

MOTIVATION: INTEGRAL GEOMETRY

• 1917 Radon. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ with decay condition of ∞ , $L \subset \mathbb{R}^2$ oriented line.

$$\phi(L) := \int_L f.$$

There exist an inversion formula $\phi \longrightarrow f$.

DIFFERENTIAL EQUATIONS

• 1938 Fritz John. $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$, oriented line $L \subset \mathbb{R}^3$. Define $\phi(L) = \int_L f$, or

$$\phi(\alpha_1, \alpha_2, \beta_1, \beta_2) = \int_{-\infty}^{\infty} f(\alpha_1 s + \beta_1, \alpha_2 s + \beta_2, s) ds.$$

- The space of oriented lines is 4 dimensional, and 4>3 so expect one condition on ϕ .
- Differentiate under the integral: ultrahyperbolic wave equation

$$\frac{\partial^2 \phi}{\partial \alpha_1 \partial \beta_2} - \frac{\partial^2 \phi}{\partial \alpha_2 \partial \beta_1} = 0.$$

• Change coordinates $\alpha_1 = x + y, \alpha_2 = t + z, \beta_1 = t - z, \beta_2 = x - y$.

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} - \frac{\partial^2 \phi}{\partial y^2} - \frac{\partial^2 \phi}{\partial t^2} = 0.$$

Relevant to physics with two times!

Nobel Prize for Mathematics

1963 Cormack. Hole theorem.

$$\phi(L) = \int_{L} \frac{dI}{I} = \log I - \log I_0 = -\int_{L} f$$

1979 Nobel Prize (in medicine) for image reconstruction.

Penrose's integral formulae

• 1967 Penrose (Twistor theory). Wave equation in Minkowski space.

$$\begin{split} \phi(x,y,z,t) &= \oint_{\Gamma \subset \mathbb{CP}^1} f((z+t) + (x+iy)\lambda, (x-iy) - (z-t)\lambda, \lambda) d\lambda \\ \text{verify} &\quad \frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} - \frac{\partial^2 \phi}{\partial u^2} - \frac{\partial^2 \phi}{\partial z^2} = 0. \end{split}$$

 Mathematically sophisticated: Could modify a contour and add a holomorphic function inside the contour to f. Needs sheaf cohomology.

Complex Numbers in Physics

- Quantum Physics. Complex wave function, Hilbert spaces, ...
- Classical Physics. Complex numbers in the sky! Celestial sphere

- From north pole $(0,0,1), \quad \lambda = \frac{u_1+iu_2}{1-u_3}.$ From south pole $(0,0,-1), \quad \tilde{\lambda} = \frac{u_1-iu_2}{1+u_3}.$
- On the overlap $\tilde{\lambda}=1/\lambda$. This makes S^2 into a complex manifold \mathbb{CP}^1 (Riemann sphere).
- Möbius transformations $\xrightarrow{2:1}$ Lorentz transformations.

TWISTOR PROGRAMME

Twistor correspondence

```
\begin{array}{cccc} \mathsf{Space} \ \mathsf{time} & \longleftrightarrow & \mathsf{Twistor} \ \mathsf{space} \\ & \mathsf{Point} & \longleftrightarrow & \mathsf{Complex} \ \mathsf{line} \ \mathbb{CP}^1 \\ & \mathsf{Light} \ \mathsf{ray} & \longleftrightarrow & \mathsf{Point}. \end{array}
```

- Space-time points are derived objects in twistor theory. They become 'fuzzy' after quantisation. Attractive framework for quantum gravity.
- 40 years of research: No major impact on physics (so far).
 Surprisingly major impact on pure mathematics: representation theory, differential geometry, solitons, instantons, integrable systems.

Differential equations and complex numbers

• Harmonic functions on \mathbb{R}^2 . Complex numbers $\mathbb{R}^2 = \mathbb{C}$.

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, \qquad \phi = \mathrm{Re}(f(\zeta)), \quad \zeta = x + iy.$$

- Harmonic functions on \mathbb{R}^3 ? Problem: 3 is an odd number, $\mathbb{R}^3 \neq \mathbb{C}^n$.
- Twistor space $\mathbb{T}=$ space of oriented lines in \mathbb{R}^3 . Line $\mathbf{v}+t\mathbf{u},\quad t\in\mathbb{R}.$

Dimension of \mathbb{T} is four (even!).

ORIENTED LINES IN \mathbb{R}^3

- $\mathbb{T} = \{(\mathbf{u}, \mathbf{v}) \in S^2 \times \mathbb{R}^3, \ \mathbf{u}.\mathbf{v} = 0\}$. For each fixed \mathbf{u} this space restricts to a tangent plane to S^2 . The twistor space is the union of all tangent planes the tangent bundle TS^2 .
- ullet Topologically nontrivial: Locally $S^2 imes \mathbb{R}^2$ but globally twisted

- Reversing the orientation of lines $\tau: \mathbb{T} \longrightarrow \mathbb{T}$, $\tau(\mathbf{u}, \mathbf{v}) = (-\mathbf{u}, \mathbf{v})$.
- Points $\mathbf{p}=(x,y,z)$ in \mathbb{R}^3 two–spheres in \mathbb{T} ; au–invariant maps

$$\mathbf{u} \longrightarrow (\mathbf{u}, \mathbf{v}(\mathbf{u}) = \mathbf{p} - (\mathbf{p}.\mathbf{u})\mathbf{u}) \in \mathbb{T}.$$

TWISTOR SPACE AS A COMPLEX MANIFOLD

Holomorphic coordinates

$$\lambda = \frac{u_1 + iu_2}{1 - u_3} \in \mathbb{CP}^1 = S^2, \quad \eta = \frac{v_1 + iv_2}{1 - u_3} + \frac{u_1 + iu_2}{(1 - u_3)^2}v_3.$$

Need another coordinate patch $(\tilde{\lambda}, \tilde{\eta})$ containing $\mathbf{u} = (0, 0, 1)$. On the overlap $\tilde{\lambda} = 1/\lambda, \tilde{\eta} = -\eta/\lambda^2$.

ullet Points in \mathbb{R}^3 are au-invariant holomorphic maps $\mathbb{CP}^1 o T\mathbb{CP}^1$

$$\lambda \to (\lambda, \eta = (x + iy) + 2\lambda z - \lambda^2 (x - iy)).$$

HARMONIC FUNCTIONS ON \mathbb{R}^3

To find a harmonic function at P = (x, y, z):

- Restrict a twistor function $f(\lambda, \eta)$ to $\hat{P} = \mathbb{CP}^1 = S^2$.
- Integrate along a closed contour

$$\phi(x,y,z) = \oint_{\Gamma \subset \hat{P}} f(\lambda, (x+iy) + 2\lambda z - \lambda^2(x-iy)) d\lambda,$$

• Differentiate under the integral to verify

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0.$$

(Whittaker, 1903).

Magnetic monopole

ullet Dirac. Are there point magnetic charges? If yes, quantisation of electric charge e can be explained

$$eg = 2\pi N, \qquad N = 1, 2, 3, \dots$$
.

- Maxwell equations =U(1) gauge theory. Nonabelian gauge theory: Replace U(1) by a non-abelian group SU(2). (Relevant in electro-weak model).
- $(A_j(\mathbf{x}), \Phi(\mathbf{x}))$ anti-hermitian 2x2 matrices on \mathbb{R}^3 .
- Nonabelian magnetic field

$$F_{jk} = \frac{\partial A_j}{\partial x^k} - \frac{\partial A_k}{\partial x^j} + [A_j, A_k], \quad j, k = 1, 2, 3.$$

Monopole equation

$$\frac{\partial \Phi}{\partial x^j} + [A_j, \Phi] = \frac{1}{2} \varepsilon_{jkl} F_{kl}.$$

System of non-linear PDEs.

TWISTOR SOLUTION TO THE MONOPOLE EQUATION

• Given $(A_j(\mathbf{x}), \Phi(\mathbf{x}))$ solve a matrix ODE along each oriented line $\mathbf{x}(t) = \mathbf{v} + t\mathbf{u}$

$$\frac{dV}{dt} + (u^j A_j + i\Phi)V = 0.$$

Space of solutions at $p \in \mathbb{R}^3$ is a complex vector space \mathbb{C}^2 .

• Complex vector bundle over $\mathbb T$ with patching matrix $F(\lambda, \overline{\lambda}, \eta, \overline{\eta})$.

- Monopole equation \longleftrightarrow Cauchy–Riemann eq. $\frac{\partial F}{\partial \overline{\lambda}}=0, \frac{\partial F}{\partial \overline{\eta}}=0.$
- Holomorphic vector bundles over $T\mathbb{CP}^1$ well understood. Take one and work backwards to construct a monopole. (Hitchin, 1982.)

Geometry of ODEs

point ←→ hypersurface
curve ←→ point

• Implicit function theorem $y=Z(x;t_1,\ldots,t_n)$. Differentiate N times, elliminate t_1,\ldots,t_n

$$y^{(n)} = F(x, y, y', \dots, y^{(n-1)}),$$
 ODE

• Classical problem: Take n=3, assume $z\subset M$ is null w.r.t. some conformal structure on M. Conditions on F? (Wünschmann (1905)).

$$\frac{1}{3}F_2\frac{d}{dx}F_2 - \frac{1}{6}\frac{d^2}{dx^2}F_2 + \frac{1}{2}\frac{d}{dx}F_1 - \frac{2}{27}(F_2)^3 - \frac{1}{3}F_2F_1 - F_0 = 0.$$

$GL(2,\mathbb{R})$ STRUCTURES

- Bundle isomorphism $TM \cong \mathbb{S} \odot \mathbb{S} \odot \cdots \odot \mathbb{S} = \mathbb{S}^{(n-1)}(\mathbb{S})$, where $\mathbb{S} \to M$ is a rank 2 symplectic vector bundle.
- Identifies vectors with (n-1)st order homogeneous polynomials. $V^{AB\cdots C}\pi_A\pi_B\dots\pi_C$ in $\pi_A=(\pi_0,\pi_1)$. (conformal structure if n=3). Embedding $SL(2,\mathbb{R})\subset O(n)$ given by $\pi_A\to t^B{}_A\pi_B$.
- (MD, Paul Tod.) Assume that the space of solutions to the nth order ODE has a $GL(2,\mathbb{R})$ structure such that surfaces y=Z(x;t) are maximally null (i.e. normal vector has repeated root with multiplicity (n-1)). Then F satisfies (n-2) Doubrov conditions. Equivalently, $L_p\subset \mathbb{T}$ is a rational curve with a normal bundle $\mathcal{O}(n-1)$.
- The same structure came up recently in many different contexts
 - 1 Bryant: exotic holonomy in dimension 4.
 - **2** Doubrov: Linearise the ODE around a given solution and demand that the resulting linear homogeneous ODE be trivialisable, i.e. equivalent to $y^{(n)} = 0$ by a coordinate transformation $(x,y) \to (b(x),a(x)y)$.
 - **6** Godlinski–Nurowski: A general framework: restricting torsion of a Cartan connection.

G_2 STRUCTURES FROM $GL(2,\mathbb{R})$ STRUCTURES

Is there a G_2 structure on a space of solutions to 7th order ODE? (work in progress with Michal Godlinski and Pawel Nurowski).

• Take a family of rational curves $x \to (x, y(x;t))$ with self-intersection number 6 in a complex surface \mathbb{T} . Normal vector (section of $\mathcal{O}(6)$)

$$\delta y = \frac{\delta y}{\delta t_i} \delta t_i = a_0 x^6 + 6a_1 x^5 + 15a_2 x^4 + 20a_3 x^3 + 15a_4 x^2 + 6a_5 x + a_6$$

Olassical invariant theory: a conformal structure and a three-form

$$g = a_0 a_6 - 6a_1 a_5 + 15a_2 a_4 - 10a_3^2,$$

$$\phi = 3(a_1 \wedge a_2 \wedge a_6 + a_0 \wedge a_4 \wedge a_5) + a_3 \wedge (a_0 \wedge a_6 + 6 \ a_1 \wedge a_5 - 15 \ a_2 \wedge a_4).$$

3 Example: rational curve in $\mathbb{CP}^1 \times \mathbb{CP}^1$ of bidegree (1,3)

$$y = \frac{r_0 + r_1 x + r_2 x^2 + r_3 x^3}{s_0 + s_1 x + s_2 x^2 + s_3 x^3} \quad \text{gives} \quad a_i = \binom{6}{i}^{-1} \sum_{\alpha + \beta = i} (r_\alpha ds_\beta - s_\beta dr_\alpha).$$

Want to learn more - go to Godlinski's talk tomorrow. Dunajski (DAMTP, Cambridge)

2ND ORDER ODEs: Nonlinear Radon Transform

- When are the curves $z \subset M$ are unparametrised geodesic of some torsion–free connection (projective sturcture)
- \bullet One-to-one correspondence between holomorphic projective structures on M and complex surfaces $\mathbb T$ with a family of rational curves.

points \longleftrightarrow geodesics rational curves with self intersection number $1 \longleftrightarrow$ points

- Double fibration $\mathbb{T}=\mathbb{P}(TM)/D \longleftarrow \mathbb{P}(TM) \longrightarrow M$, where D is the geodesic spray.
- Relevant to my next talk (in 15 minutes).

TWISTOR THEORY

 Non-local construction with roots in the 19th century Klein correspondence (projective geometry).

$$\begin{array}{ccc} \mathsf{point} & \longleftrightarrow & \mathsf{line} \; (\mathsf{complex}) \\ \mathsf{line} & \longleftrightarrow & \mathsf{point}. \end{array}$$

• Complex numbers are essential

```
nonlinear PDEs \longleftrightarrow linear Cauchy–Riemann equations.
```

- Its status as a physical theory is not clear
 - Weakness: effective only in low dimensions.
 - Strength: effective only in low dimensions.