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Abstract

These notes are based on a lecture course I gave to second and third year mathematics students
at Oxford in years 1999–2002.

This is a mathematics course, and I am not assuming any knowledge of physics. The
comments I will occasionally make about physics are there motivate some of the material, and
(hopefully) make it more interesting.

The lectures will be self–contained but I need to assume some maths knowledge. In par-
ticular I would want you to be familiar with basic concepts of linear algebra (like matrices,
eigenvectors, eigenvalues, and diagonalisation), and ordinary differential equations (second or-
der linear ODEs, boundary conditions).
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Chapter 1

The breakdown of classical mechanics

Black body radiation: radiation emitted in packets (quanta)

E = ~ω, (1.1)

where ω is a frequency and ~ = 1.0546× 10−34Js = h/2π is a Planck’s constant. (Planck 1900)
Einstein 1905: The quanta are feature of light. Photo-electric effect:[PICTURE] Experimen-

tal fact: increasing of frequency of light increased the energy of emitted electrons, but not their
number. Increasing the flux (intensity) caused more electrons coming out with the same energy.
Light is a stream of photons whose energy is proportional to the frequency ω = 2πc/γ, where
c is the speed of light and γ is the wavelength. 1900-1924 ‘Old quantum theory’ (Compton’s
scattering, Nielst Bohr’s (1913) hydrogen atom). De Broglie waves (1924): particles (electrons)
behave like waves:

p = ~k, (1.2)

where k is a wave vector |k| = 2π/γ.
Particles in classical mechanics have well defined trajectories, that is a position, and a

velocity is known at each instant of time. How one might observe these features?[PICTURE]
To measure particles position one must hit its with a photon, but this photon will transfer its
momentum to a particle, thus changing particles momentum (it applies only to small particles,
eg. electrons). Consequences

• Measurement process modifies what is being measured

• No trajectories in quantum mechanics

• Indeterminism (linked to the wave properties of matter)

Need for a new theory.
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Chapter 2

Schrödinger’s Equation

Look for a wave equation satisfied by de Broglie ‘matter wave’. The plane wave ψ(x, t) =
exp (−i(ωt− k · x) satisfies

i~
∂ψ

∂t
= ~ωψ = Eψ,

~
i
∇ψ = ~kψ = pψ.

Note the relationship between the observables (physical quantities which we want to measure)
and differential operators acting on a wave function

E −→ i~
∂

∂t
, p −→ ~

i
∇. (2.1)

For a conservative dynamical system H = p2/2m+ V (x) = E. Use (2.1) to obtain

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (x)ψ (2.2)

The time dependent Schrödinger equation (TDS) (1925) for a complex function ψ = ψ(x, t)
(valid also in one or two dimensions). There are solutions other than plane waves.

2.1 Separable solutions

Look for ψ(x, t) = T (t)Ψ(x)

i~
1

T

dT

dt
=

1

Ψ

(
− ~2

2m
∇2Ψ + VΨ

)
LHS = RHS =constant= E

i~
dT

dt
= ET −→ T (t) = e−itE/~T (0),

and
−~2/2m∇2Ψ + VΨ = EΨ, (2.3)

which is the time independent Schrödinger equation (TIS). The stationary states are

ψ(x, t) = Ψ(x)T (0)e−itE/~ = ψ(x, 0)e−itE/~. (2.4)
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2.2 The Interpretation of the wave function

What is ψ(x, t)? The most widely accepted is the (Copenhagen) interpretation in Max Born
(1926):

• The entire information about a quantum state (particle) is contained in the wave function.
For a normalised wave function

ρ(x) = |ψ(x)|2 = ψψ (2.5)

gives the probability density for the position of the particle.

So the probability that the particle moving on a line is in the interval (a, b) is given by∫ a

b

|ψ(x, t)|2dx. (2.6)

Remarks:

• Particle ‘has to be somewhere’, so∫
R3

|ψ(x, t)|2d3x = 1 (2.7)

this is the normalisation condition.

• ψ(x, t) and ψ(x, t)eiφ(x,t) give the some information. The real function φ(x, t) is called
the phase.

• Both (2.2) and (2.3) are linear differential equations. Their solutions satisfy the superpo-
sition principle: If ψ1 and ψ2 are solutions then so is c1ψ1 + c2ψ2, for any c1, c2 ∈ C (so
solutions form a complex vector space, later to be identified with a Hilbert space.)

• The general solution to (2.2) will not be separable, but will be of the form∑
cnψn(x, t), (2.8)

where ψn(x, t) = Ψn(x)Tn(t) are stationary states given by (2.4).

• For each stationary state

− ~2

2m
∇2Ψn + VΨn = EnΨn.

The probability of measuring the value En is |cn|2, and (from the Parceval’s theorem, and
(2.7)) [THINK ABOUT IT IN GENERAL]∑

n

|cn|2 = 1.

• The mean position is given by

〈r〉 =

∫
R3

ψrψd3x
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2.3 Conservation of probability

Assume the normalisation (2.7) at t = 0.∫
R3

|ψ(x, 0)|2d3x = 1.

Is ∫
R3

|ψ(x, t)|2d3x = 1 for t > 0 ?

The TDS equation (2.2) and its complex conjugations are

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (x)ψ,

−i~∂ψ
∂t

= − ~2

2m
∇2ψ + V (x)ψ,

where V (x) is real.

∂

∂t

(
|ψ(x, t)|2

)
=

∂ψ

∂t
ψ + ψ

∂ψ

∂t

=
( ~

2im
∇2ψ − V

i~
ψ

)
ψ + ψ

(
− ~

2im
∇2ψ +

V

i~
ψ

)
=

i~
2m

(ψ∇2ψ − ψ∇2ψ) =
i~
2m

∇ · (ψ∇ψ − ψ∇ψ).

Definition 2.3.1 The probability current is

j(x, t) = − i~
2m

(ψ∇ψ − ψ∇ψ). (2.9)

So we have proved

Proposition 2.3.2 If ψ is a solution to (2.2) then the probability density (2.5) and the proba-
bility current (2.9) satisfy the continuity equation

∂ρ

∂t
+ divj = 0. (2.10)

We shall now use the divergence theorem and Proposition 2.3.2 to show that QM probability
is conserved.

Proposition 2.3.3 Suppose that j(x, t) tends to 0 faster than |x|−2 as |x| → ∞. Then∫
R3

ρ(x, t)d3x.

is independent of time.
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Proof. Let B be a ball enclosed by a sphere S|x| of radius |x|. Then

d

dt

∫
B

ρ(x, t)d3x =

∫
B

∂ρ(x, t)

∂t
d3x = −

∫
B

divjd3x = −
∫

S|x|

j · dS.

So if j(x, t) tends to 0 faster than |x|−2 the last integral tends to 0 as |x| → ∞, and so∫
R3 ρ(x, t)d

3x is independent of time.

2

Example. Consider a potential well

V (x) =

{
0 for x ∈ (0, a)
∞ otherwise.

(2.11)

The equation (2.3) reduces to

− ~2

2m

d2Ψ

dx2
= EΨ for x ∈ (0, a), Ψ = 0 otherwise.

Solve the boundary value problem

Ψ(x) =

 A cosh(x
√

2m|E|/~) +B sinh(x
√

2m|E|/~) if E < 0
A+Bx if E = 0

A cos(x
√

2mE/~) +B sin(x
√

2mE/~) if E > 0.

From Ψ(0) = 0 we have A = 0 in each case. From Ψ(a) = 0 we have B = 0 if E 6 0 (so that
Ψ = 0 in those cases), and

a
√

2mE

~
= nπ for n ∈ Z if E > 0.

So we have infinitely many nontrivial solutions parametrised by a positive integer (the sign can
be absorbed in B)

Ψn(x) = Bn sin
(nπx

a

)
, and En =

n2π2~2

2ma2
. (2.12)

Remarks

• Equation (2.3) gave rise to an eigenvalue problem. Allowed energies are eigenvalues En

corresponding to eigenvectors Ψn. If a given eigenvalue corresponds to only one eigenvec-
tor then it is called non-degenerated. Otherwise it is degenerated

• Energies of the system can take only discrete values, which is a purely quantum phe-
nomenon.

Definition 2.3.4 When the energies of a quantum system are discrete and bounded below, then
the lowest possible energy state is called the ground state and the higher states are known as 1st,
2nd, ..., kth excited states. The integer parametrising discrete energies (or other observables)
is called a quantum number.
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The normalisation condition (2.7) yields∫ a

0

Bn
2 sin2

(nπx
a

)
dx = 1, so Bn =

√
2

a
.

The stationary states (2.4) are

ψn(x, t) =

√
2

a
e−in2π2~t/(2ma2) sin

nπx

a

and the general solution is given by (2.8). To determine cn suppose that ψ(x, 0) = f(x). From
(2.8)

f(x) =

√
2

a

∞∑
n=1

cn sin
nπx

a
, so cn =

√
2

a

∫ a

0

f(x) sin
nπx

a
dx. (2.13)

Look at Born’s probabilistic interpretation:

|ψn(x, t)|2 =
2

a
sin2 nπx

a
=

1

a

(
1− cos

2nπx

a

)
.

What is a probability that a particle described by ψn is between 0 and x0?

Fn(x0) =

∫ x0

0

1

a

(
1− cos

2nπx

a

)
dx =

(x0

a
− 1

2nπ
sin

2nπx0

a

)
.

The classical distribution would be F (x0) = x0/a = limn→∞ Fn(x0).

Definition 2.3.5 (Bohr’s correspondence principle) Quantum mechanical formulae ap-
proach those of the classical mechanics if the quantum number is large.

Example 2.3.6 Suppose that ψ(x, 0) = 1/
√
a = const. Find a probability of measuring energy

En.

From (2.13)

cn =

√
2

a

∫ a

0

√
1

a
sin

nπx

a
dx =

√
2

nπ

[
− cos

nπx

a

]a

0
=

√
2

nπ
[1− (−1)n]

So the probability of measuring En is 0 if n is even, and

8

n2π2

if is n is odd.
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Chapter 3

Basic scattering theory (in one
dimension)

The way physicists discover new elementary particles is by scattering experiments. Huge accel-
erators collide particles through targets, and by analysing the changes to momentas of scattered
particles, a picture of a target is built. We shall look at some features of the scattering theory.

3.1 Free particle

Equation (2.3) with V = 0 yields

− ~2

2m

d2Ψ

dx2
= EΨ.

With the definition k =
√

2mE/~ the solution is

Ψ(x) = Aeikx +Be−ikx, (3.1)

and the stationary states (2.4) are

ψ(x, t) = Ψ(x)e−iEt/~ = Aei(kx−ωt)︸ ︷︷ ︸
incoming wave

+ Be−i(kx+ωt)︸ ︷︷ ︸
outgoing wave

, where ω =
E

~
. (3.2)

Convention: incoming=incident from the left.

Remarks

• If B = 0, then ρ(x, t) = |ψ(x, t)|2 = |A|2, so the probability of finding a particle in an
interval L is (from (2.6)) |A|2L. But∫

R
ρ(x, t)dx = ∞,

and the plane waves can not be normalised (one way to get around it is suggested in the
problem one, sheet two). However it still makes sense to talk about relative probabilities
of finding a particle in two intervals.
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• The normalizable wave functions (like (2.12)) are called bound states. Other (like plane
waves (3.2) ) are scattering states.

• There are no restrictions on k (and so E) in (3.2). Therefore the energies are continuous.

• The probability current (2.9) for (3.2) is

j =
~

2mi

(
ψ

dψ

dx
− ψ

dψ

dx

)
=

~k
m

(
|A|2 − |B|2

)
, (3.3)

where the factor ~k/m can be identified (by the De Broglie formula (1.2)) with a velocity.

3.2 Reflection and transmission coefficients

In the example (2.11) the boundary conditions at ∞ determined the energy eigenvalues in
(0, a) (this led to a discrete spectrum). In the scattering theory the energy of a potential
barrier determines energies of a quantum system at the large distances. [PICTURE] Regions
where V (x) = 0 correspond to free particle (3.1)

Ψ(x) =


ΨL = ALe

ikLx +BLe
−ikLx, for x 6 0

ΨV depends on V (x), for x ∈ [0, a]
ΨR = ARe

ikRx, for x > a

For a beam incident from the left define

Definition 3.2.1

Reflection coefficient =
|reflected current|
|incident current|

=
|BL|2

|AL|2
= R

Transmission coefficient =
|transmitted current|
|incident current|

=
kR|AR|2

kL|AL|2
= T (3.4)

We don’t know Ψ in the interaction region. However, we can still say something:

Proposition 3.2.2 For one-dimensional, time independent problems

1. The probability current is constant.

2. The sum of reflection and transmition coefficient is 1.

Proof.

1. The continuity equation (2.10) reduces to dj/dx = 0, so that j is constant in regions L, V ,
and R. In fact jL = jV = jR, which follows from the matching conditions: Ψ and dΨ/dx
are continuous at x = 0 and x = a (and in general, at the potential discontinuities), so
that the probability current is well defined.

2. Equation (3.3) and the first part of this Proposition imply

kL(|AL|2 − |BL|2) = kR|AR|2.

The result follows if one divides the last formula by kL|AL|.

2
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3.3 Examples

Potential Step [PICTURE]

V (x) =

{
0 for x < 0
V0 for x > 0.

(3.5)

Ψ =

{
ΨL = ALe

ikLx +BLe
−ikLx, for x < 0, where kL =

√
2mE/~

ΨR = ARe
ikRx +BRe

−ikRx, for x > 0, where kR =
√

2m(E − V0)/~.

Note that kR may be real or imaginary. The matching conditions are

ΨL(0) = ΨR(0) −→ AL +BL = AR +BR

Ψ′
L(0) = Ψ′

R(0) −→ kL(AL −BL) = kR(AR −BR),

which relates the waves on both sides of the potential jump

AL =
1

2kL

(
(kL + kR)AR + (kL − kR)BR

)
,

BL =
1

2kL

(
(kL − kR)AR + (kL + kR)BR

)
.

Assume that the particle is incident from the left, and E > V0. Now kR is real and BR = 0 (as
no beam is coming from ∞. The reflection and transmition coefficients (scattering data) are
given by

R =
|BL|2

|AL|2
=

(kL − kR)2

(kL + kR)2
, T =

kR|AR|2

kL|AL|2
=

4kLkR

(kL + kR)2
.

3.4 Potential Barrier

[PICTURE]

V (x) =

{
V0 > 0 for x ∈ [0, a]
0 otherwise.

(3.6)

Consider an incoming beam of particles with energy 0 < E < V0. In classical mechanics the
whole beam would be reflected. How about QM? In the regions 0 and 2 we have the free particle
solutions (3.1). In the region 1 the wave function satisfies

d2Ψ

dx2
− k̃2Ψ = 0, where k̃=

√
2m(V0 − E)

~
.

Therefore we have

Ψ =


Ψ0 = A0e

ikx +B0e
−ikx, for x 6 0 k =

√
2mE/h

Ψ1 = A1e
k̃x +B1e

−k̃x, for x ∈ [0, a]
Ψ2 = A2e

ikx, for x > a
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B2 = 0 as there are no incident particles coming from from ∞. Continuity of the wave function
and its first derivatives gives four conditions on five constant

Ψ0(0) = Ψ1(0) A0 +B0 = A1 +B1

Ψ0
′(0) = Ψ1

′(0) ik(A0 −B0) = k̃(A1 +B1)

Ψ1(a) = Ψ2(a) A1e
ak̃ +B1e

−ak̃ = A2e
ika

Ψ1
′(a) = Ψ2

′(a) k̃(A1e
ak̃ −B1e

−ak̃) = ikA2e
ika.

A simple algebra gives
A2

A0

=
4ikk̃e−ika

ek̃a(k + ik̃)2 − e−k̃a(k − ik̃)2

so that the transmition coefficient (3.4) T 6= 0. This is a quantum phenomenon known as
tunnelling. Classical particles with E < V0 would not have enough energy to penetrate te
barrier. Quantum particles can (because of their wave properties) tunnel through large barriers.
This has many application (for example Scanning tunneling electron microscope, Nobel 1986).

3.5 Finite square well

[PICTURE]

V (x) =

{
0 for x ∈ (0, a)
V0 > 0 otherwise.

(3.7)

Case 1. 0 < E < V0 [Bound states.] In the region x ∈ (0, a)

d2Ψ

dx2
+ k2Ψ = 0, where k =

√
2mE

~
.

In the region x ∈ (−∞, 0] ∪ [a,∞)

d2Ψ

dx2
− k̃2Ψ = 0, where k̃ =

√
2m(V0 − E)

~
.

This yields

Ψ =


Ψ0 = A0e

k̃x, for x 6 0
Ψ1 = A1e

ikx +B1e
−ikx, for x ∈ [0, a]

Ψ2 = B2e
−k̃x, for x > a

and B0 = A2 = 0 so that Ψ remains bounded for |x| → ∞. We have four boundary conditions:

A0 − A1 −B1 = 0

k̃A0 − ikA1 + ikB1 = 0

eikaA1 + e−ikaB1 − e−k̃aB2 = 0

ikeikaA1 − ike−ikaB1 + k̃e−k̃aB2 = 0
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The determinant of the associated matrix must vanish for the nontrivial solutions to exists.
This gives a condition for energy:

det


1 −1 −1 0

k̃ −ik ik 0

0 eika e−ika −e−k̃a

0 ikeika −ike−ika k̃e−k̃a

 = 0

which yields

tan ka =
2kk̃

k2 − k̃2
. (3.8)

Remarks

• Since 0 < E < V0, there are only finitely many of states of the form (3.8). If V0 →∞ we
recover the result (2.12).

• The wave function (or the probability of finding a particle) is non zero in a classically
forbidden region x ∈ (−∞, 0] ∪ [a,∞).

Case 2. E > V0 [Scattering states.] In the region x ∈ (0, a) equation (2.3) yields

d2Ψ

dx2
+ k2Ψ = 0, where k2 =

2mE

~2
> 0.

In the region x ∈ (−∞, 0] ∪ [a,∞)

d2Ψ

dx2
+ k̃2Ψ = 0, where k̃2 =

2m(E − V0)

~2
> 0.

So, in each region, we have a combination of exponents (two constants in each region). Six
constants and four boundary conditions, so there are no restrictions on energy. We have
continuous spectrum.

13



Chapter 4

The harmonic oscillator

In classical mechanics the harmonic oscillator is described by the potential V = (1/2)mω2x2,
which leads to the Newton equation

d2x

dt2
= −mω2x,

and the continuous energy spectrum.
The quantum harmonic oscillator (first solved by Heisenberg in 1925) is an important ex-

ample, because many systems (eg. atoms in crystals) undergoing small disturbances behave
like harmonic oscillators. The time independent Schrödinger equation (2.3) yields

− ~2

2m

d2Ψ

dx2
+

1

2
mω2x2Ψ = EΨ. (4.1)

We shall adopt the following strategy:

1. Find the asymptotic behaviour φ of Ψ for large |x|,

2. make a substitution Ψ = fφ,

3. solve an equation for f using a power series method (a1 differential equations).

First simplify: In terms of
z := x

√
mω/~, ε = E/~ω

equation (4.1) becomes

Ψ′′ + (2ε− z2)Ψ = 0, where ′ =
d

dz
. (4.2)

Step 1: For large z the function φ = exp (−z2/2) satisfies (4.2). Inspection

φ′ = −zφ, φ′′ = −φ+ z2φ, (4.3)

which is (4.2) with ε = 1/2. For large z the multiple of z2 dominates, so we neglect ε.
Step 2: Substitute Ψ(z) = f(z)φ(z) to (4.2)

f ′′φ+ 2f ′φ′ + fφ′′ + (2ε− z2)fφ = 0.
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Use (4.3)
f ′′φ− 2zf ′φ− fφ+ z2fφ+ 2εfφ− z2fφ = 0,

and put 2N := 2ε− 1 to obtain
f ′′ − 2zf ′ + 2Nf = 0. (4.4)

This is the Hermite equation, well known in the 19th century mathematics.
Step 3: Solve (4.4) using a method of series solutions. The point z = 0 is regular, so take
f(z) =

∑∞
n=0 anz

n, which yields

∞∑
n=0

n(n− 1)anz
n−2 − 2

∞∑
n=0

nanz
n + 2N

∞∑
n=0

anz
n = 0.

This gives the recursion relation

an+2 =
2(n−N)

(n+ 2)(n+ 1)
an. (4.5)

All ans have the same sign (assume non-negative). For large n (4.5) yields

an+2

an

=
2

n
,

so f has a behaviour of exp (z2) =
∑∞

n=0 z
2n/n! for even n, or z exp (z2) for odd n, and Ψ =

fφ ∼ exp z2/2, which is not normalisable. Conclusion: The series must terminate for some
n, so (from (4.5)) N must be a non-negative integer

N =
E

~ω
− 1

2
= n ∈ Z −→ E =

(
n+

1

2

)
~ω.

The corresponding f(z) is a polynomial of degree n, known as n-th Hermite polynomial. We
have proved

Proposition 4.0.1 The energy levels of a harmonic oscillator with the potential (1/2)mω2x2

are discrete, and given by

En =
(
n+

1

2

)
~ω, n = 0, 1, 2, ... . (4.6)

The corresponding wave functions are

Ψn(x) = cnHn

(
x

√
mω

~

)
exp

(
− mωx2

2~

)
, (4.7)

where cn are normalisation constants, and Hn are polynomials of degree n.
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4.1 Hermite polynomials

Equation (4.4) with N integer is

Hn
′′ − 2zHn

′ + 2nHn = 0, n = 0, 1, ... . (4.8)

This defines Hn up to a multiplicative constant, which is fixed by demanding that the coefficient
of zn in Hn(z) is 2n. The first few polynomials are

H0(z) = 1, H1(z) = 2z, H2(z) = 4z2 − 2, H3(z) = 8z3 − 12z, ...

From (4.5) it follows that Hn is even for even n, and odd for odd n. The general form of
Hermite polynomials is given by

Proposition 4.1.1 Let Hn be a polynomial of degree n which satisfies (4.8), and is normalised
by demanding that the coefficient of zn in Hn(z) is 2n. Then

Hn(z) = (−1)nez2
( d

dz

)n

e−z2

. (4.9)

Proof. Define a generating function

G(z, s) =
∞∑

n=0

sn

n!
Hn(z)

so that

Hn(z) =
( ∂

∂s

)n

G(z, s)|s=0.

One can show (sheet 3, problem 4), that

G(z, s) = e−s2+2sz. (4.10)

The last formula will give the general form of Hermite polynomials. Rewrite (4.10) as G(z, s) =
exp (z2) exp [−(s− z)2], and note that

∂

∂s
exp [−(s− z)2] = −2(s− z) exp [−(s− z)2] = − ∂

∂z
exp [−(s− z)2].

Therefore

Hn(z) = (−1)nez2
( ∂

∂z

)n

e−(s−z)2|s=0 = (−1)nez2
( d

dz

)n

e−z2

.

2

We shall now use (4.9) to determine the normalisation constants cn appearing in (4.7)

1 =

∫ ∞

−∞
|Ψn|2dx =

√
~
mω

∫ ∞

−∞
|cn|2[Hn(z)]2e−z2

dz =

√
~
mω

|cn|2
∫ ∞

−∞
(−1)nHn(z)

( d

dz

)n

e−z2

dz.

We integrate the last formula n times by parts, and note that exp (−z2) vanishes at ±∞. This
yields

1 =

√
~
mω

|cn|2
∫ ∞

−∞
e−z2

( d

dz

)n

Hn(z)dz,
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but Hn(z) is a polynomial of nth degree, with the coefficient of zn equal to 2n. Therefore

1 =

√
~
mω

|cn|2n!2n

∫ ∞

−∞
e−z2

dz.

Finally

|cn|2 =
(mω
π~

)1/2 1

2nn!
. (4.11)

4.2 Correspondence with classical theory

From (4.6) the lowest possible energy of the oscillator is ~ω/2. This is known as the zero point
energy (in classical mechanics the lowest energy is zero, which corresponds to the particle being
at rest at the origin. In QM this is not allowed by the uncertainty principle (Section (6.6)).

Let En be the total energy of the oscillator. For the classical oscillator the motion can take
place only in those regions of space for which

V (x) =
1

2
mω2x2 6 En = ~ω

(
n+

1

2

)
, so |x| 6

√
~(2n+ 1)

mω
.

The probability of finding a particle in a classically forbidden region (i.e. outside the turning
points ±

√
~(2n+ 1)/mω is non-zero in QM [PICTURE]. The agreement between classical and

quantum probability densities improves rapidly with increasing n.

4.3 2D oscillator

Consider the potential V (x, y) = (1/2)m(ω2
1x

2 + ω2
2y

2). The Schrödinger equation (2.3) yields

− ~2

2m

(∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
+

1

2
m(ω2

1x
2 + ω2

2y
2)Ψ = EΨ.

Seek a solution of the form Ψ(x, y) = f(x)g(y). The last equation (when divided by Ψ(x, y))gives

− ~2

2m

(f ′′
f

+
g′′

g

)
+

1

2
m(ω2

1x
2 + ω2

2y
2) = E,

and

− ~2

2m
f ′′ +

1

2
mω2

1x
2f = E1f, − ~2

2m
g′′ +

1

2
mω2

2y
2g = E2g, E1 + E2 = E.

Solutions to the above equations are parametrised by non-negative integers, and are given by
(4.7) and (4.6):

fp(x) =
(mω1

π~

)1/4( 1

2pp!

)1/2

Hp

(
x

√
mω1

~

)
exp

(
− mω1x

2

2~

)
, Ep = ~ω1

(
p+

1

2

)
, p = 0, 1, ...

gq(y) =
(mω2

π~

)1/4( 1

2qq!

)1/2

Hq

(
y

√
mω2

~

)
exp

(
− mω2y

2

2~

)
, Ep = ~ω2

(
q +

1

2

)
, q = 0, 1, ...

17



The total wave function and the energy levels are

Ψpq(x, y) = fp(x)gq(y), Epq = ~ω1

(
p+

1

2

)
+ ~ω2

(
q +

1

2

)
.

A harmonic oscillator for which ω1 = ω2 = ω is called isotropic. In this case Epq = ~ω(p+q+1) =
~ω(N + 1), where N = p + q = 0, 1, ..., and Ψpq,Ψqp are linearly independent functions with
the same energy. If, for example, p = 0, q = 1 then any linear combination αΨ01 + βΨ10 will
have energy E = ~ω, so we have 2D space of eigenfunctions with this energy.

Definition 4.3.1 If the space of solutions to the TIS (2.3) with fixed energy has dimension
k > 1, then the energy is k-fold degenerate (if the space is 1D, then the energy levels are
non-degenerate).

If N is fixed, then p = 0, 1, ...N , and q = N − p, and the Nth excited states have degeneracy
N + 1 (all combinations of ΨpN−p, p = 0, ...N have this energy).
Remarks

• If the potential contains a cross term then we need to diagonalise it by an orthogonal
transformation

V (x, y) =
1

2
mω2(ax2 + 2bxy + cy2)

=
1

2
mω2(x y)

(
a b
b c

) (
x
y

)
−→ 1

2
mω2(X Y )

(
A 0
0 C

) (
X
Y

)
∂2Ψ

∂x2
+
∂2Ψ

∂y2
−→ ∂2Ψ

∂X2
+
∂2Ψ

∂Y 2
,

and use the results of the last section (here a, b, c, A, C are constant real numbers).

• In three (and more) dimensions proceed in a similar way: Transfer to normal coordinates,
and separate variables to reduce the problem to independent 1D oscillators. The total
energy will be the sum of their energies, and the wave function will be the product of
their wave functions.
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Chapter 5

The hydrogen atom

Ernesrt Rutherford [1911] (based on experiments): atoms are miniatures of solar systems.
Electrons of charge −e orbit heavy (fixed) nucleus of a positive charge Ze [PICTURE]. For
a hydrogen atom we have one electron. Classically atoms should not exist: Moving electrons
radiate the electromagnetic energy, and fall into a nucleus. The first QM explanation was given
by Bohr [1913] (using ad-hoc assumptions), and latter by Pauli [1925]. This was one of the
biggest successes of quantum theory.

Force acting on electron [PICTURE]

F (r) =
−Ze2

4πε0r2
.

The corresponding potential

V (r) =
−Ze2

4πε0r

(compare the Newtonian gravity, Mods TT), where r is the distance between the electron and
nucleus, ε0 = const (dielectric constant of vacuum), and m is the mass of the electron. The 3D
TIS is

− ~2

2m
∇2Ψ− Ze2

4πε0r
Ψ = EΨ. (5.1)

LECTURE 8

5.1 The energy spectrum of the hydrogen atom

We shall neglect the angular variables, and assume that the electron moves radially in the
central potential. This will be sufficient to determine the energy levels. The full treatment
involving the angular variables leads to spherical harmonics, and will be discussed in the course
Further Quantum Theory. If Ψ = Ψ(r), then (5.1) becomes

−~2

2m

1

r

d2

dr2
(rΨ)− Ze2

4πε0r
Ψ = EΨ.

Define

R = rΨ, and α =
4πε0~2

Zme2
, (5.2)
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and rewrite the last equation as

d2

dr2
R +

2

αr
R +

2mE

~2
R = 0. (5.3)

We aim to solve this equation subject to the following boundary conditions:

• Ψ = R/r is finite at r = 0, so limr→0R(r) = 0,

•
∫

R3 |Ψ(r)|2r2dr is finite, so limr→∞R(r) = 0.

Our strategy will be similar to the one we used to solve the harmonic oscillator.
Step 1: For large r the asymptotic behaviour is

d2

dr2
R +

2mE

~2
R ' 0,

so the energy is negative (otherwise we would have the oscillatory solution contradicting the
second boundary condition). With the definition k2 = −2mE/~2 we have R ' exp (−kr), for
large r.
Step 2: Set R(r) = f(r) exp (−kr). Equation (5.3) yields

k2e−krf − 2ke−kr df

dr
+ e−kr d2f

dr2
+

2

αr
e−krf − k2e−krf = 0.

Put ρ = r/α. Then the last equation becomes

d2

dρ2
f − 2kα

d

dρ
f +

2

ρ
f = 0. (5.4)

Now ρ = 0 is a ‘regular singular point’, so look for a solution of the form

f(ρ) = ρc

∞∑
n=0

anρ
n.

Equation (5.4) yields

∞∑
n=0

(n+ c)(n+ c− 1)anρ
n+c−2 − 2kα

∞∑
n=0

(n+ c)anρ
n+c−1 + 2

∞∑
n=0

anρ
n+c−1.

Setting n = 0 we obtain the indicial equation c(c− 1) = 0. Its solutions differ by integer. We
take c = 1 (because R/r must be finite at r = 0). The recurrence equation is

n(n+ 1)an = 2(kαn− 1)an−1. (5.5)

Now argue as for the harmonic oscillator. For large n

an

an−1

' 2kα

n
,
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and f behaves like exp (2kαρ) = exp (2kr) (so Ψ is not normalizable). Therefore the series
must terminate, and

kαn− 1 = 0, for some n = 1, 2, ... .

Recall that k2 = −2mE/~2, so the energy levels are

En =
−k2~2

2m
= − ~2

2mα2n2
=
E1

n2
. (5.6)

The energies are negative because it is conventional to take V = 0 at ∞.

Definition 5.1.1 The positive integer n is known as the principal quantum number.

The radial wave function with principal quantum number n is

Ψn(r) =
e−kr

r
f(r) = e−r/αn[a0 + a1(r/α) + ..an−1(r/α)(n−1)] = e−r/αnLn(r/α), (5.7)

where Ln is a polynomial of order n− 1 [CHECK], called the Laguerre polynomial.

Example 5.1.2 Let us normalise the ground state Ψ1(r) = a0 exp [−(r/α)] (corresponding to
n = 1)

1 =

∫
R3

|Ψ1(r)|r2 sin θdrdθdφ = 4π|a0|2
∫ ∞

0

r2e−2r/αdr.

Instead of integrating it by parts we shall perform a simple trick (often used by Richard Feyn-
man). Put β = 2/α. Then

1 = 4π|a0|2
d2

dβ2

∫ ∞

0

e−βrdr = 4π|a0|2
d2

dβ2

[
− 1

β
e−βr

]∞
0

=
8π|a0|2

β3
= π|a0|2α3,

and

Ψ1(r) =
1√
πα3

e−r/α, (5.8)

where α is given by (5.2).

The probability of the electron being in the spherical shell between r and r+dr is 4π|Ψn(r)|2r2dr.
The radial probability density for Ψ1

r2e−2r/α

has a maximum at r = α[PICTURE]. The constant α is therefore the most probable radial
distance of the electron from the nucleus (if Z = 1 the number α is called the Bohr radius).
The expectation value of r for the ground state is

< r >= 4π

∫ ∞

0

ΨirΨ1r
2dr =

3α

2
.
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5.2 Physical predictions

• For large n we have En → 0, the minimum energy to escape the nucleus. The case E > 0
corresponds to scattering states.

• Suppose that the electron jumps from level Ej to Ek (k > j). This releases energy

Ej − Ek = Ejk =
( 1

j2
− 1

k2

)
E1 = ~ωjk, (5.9)

(where we used the Planck law (1.1), and (5.6)), in the form of light (a photon). (For
j = 2 frequencies (5.9) are in visible part of electro-magnetic spectrum, called the Balmer
series. They have been measured, and provide an excellent experimental test of QM). If
an electron absorbs a photon the reverse process occurs, and the electron can jump up a
level (excitation). If an energy of an absorbed photon is large enough, the electron may
escape from the atom. If an electron occurs in the state Ej, the photon must supply −Ej

(ionization energy).

• The ‘solar system’ analogy is not good. A ‘cloud’ is (the electron spreads over a whole
atom, until measured).
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Chapter 6

The mathematical structure of
quantum theory

Imagine a thought experiment: Particle in a box[PICTURE]. We do not know where it is ,
so the wave function must be spread throughout the box. An impenetrable membrane in now
inserted dividing the box into two disconnected chambers 1, and 2. Some of the wave is trapped
in 1, some in 2, but the particle is only in one chamber. If an observation is made, and the
particle is found in 1, then the wave in chamber 2 must disappear - there is a zero probability
of finding a wave in 2. This is called a collapse of the wave function and will be discussed in
Section 8. Before the observation

Ψ = c1Ψ1 + c2Ψ2

such that Ψ1 = 0 in chamber 2, and Ψ2 = 0 in chamber 1. We have∫
chamber 1

|Ψ1|2dV = 1 =

∫
chamber 2

|Ψ2|2dV.

The normalisation condition

1 =

∫
box

|Ψ|2dV = |c1|2 + |c2|2︸ ︷︷ ︸
1

+ 2Re[c1c2

∫
box

Ψ1Ψ2dV ]

gives the orthogonality relation ∫
box

Ψ1Ψ2dV = 0.

This example generalizes to many (or infinitely many) chambers: Now

Ψ =
∑

n

cnΨn, (6.1)

where Ψn is a normalised wave function in chamber n and the summation is over all chambers.
From the normalisation condition we deduce the orthogonality relations∫

box
|Ψ|2dV = 1 −→

∫
box

ΨmΨndV = δnm =

{
1 if m = n
0 if m 6= n,

(6.2)
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where δnm is the Kronecker tensor. Analogies with the linear algebra of vectors (a1) are clear:
Equation (6.1) is an expansion of a vector Ψ in an orthogonal basis Ψn, and equation (6.2)
defines a scalar (or inner) product. The orthogonality reflects the exclusive property of mea-
surement.

6.1 Hilbert spaces

Following Paul Dirac (19??) we shall denote the state vectors by

|Ψ〉 ∈ H ‘ket’ vectors, and 〈Φ| ∈ H∗ ‘bra’ vectors.

Here H is a complex vector space with an inner product (unitary space), H∗ is its dual. The
(anti-)isomorphism between H and H∗ is

|Ψ〉 =
∑
N

cn|Ψn〉 ∼ 〈Ψ| =
∑
N

cn〈Ψn|, where cn ∈ C. (6.3)

The scalar product is
(〈Φ|, |Ψ〉) ∈ H∗ ×H −→ 〈Φ|Ψ〉︸ ︷︷ ︸

bra-ket

∈ C. (6.4)

The norm in H is defined by:

‖Ψ‖2 = 〈Ψ|Ψ〉 (= 1 for normalised states). (6.5)

The properties of the scalar product are

〈Φ|Ψ〉 = 〈Ψ|Φ〉 (6.6)

〈Φ|(α|Ψ〉+ β|Θ〉) = α〈Φ|Ψ〉+ β〈Φ|Θ〉, (6.7)

and they imply
(〈αΦ|+ 〈βΩ|)|Θ〉 = α〈Φ|Θ〉+ β〈Ω|Θ〉,

for any α, β ∈ C, |Ψ〉, |Θ〉 ∈ H, 〈Φ|, 〈Ω| ∈ H∗. Note that the QM conventions are other way
around to the algebraic conventions; The inner product is linear in a second variable and
anti-linear in a first.

The vector space H is usually infinite. We shall assume that it is complete in the following
sense: Whenever {|Ψn〉 ∈ H} is a sequence of vectors, such that

∀ε>0∃Nε∈Z‖Ψn〉 − |Ψm〉| < ε for all m,n > Nε

than there exists a limit vector |Ψ〉 ∈ H, such that ‖Ψn〉−|Ψ〉| −→ 0 (i.e. any Cauchy sequence
in H is convergent).

Definition 6.1.1 A Hilbert space is a complex inner product space which is complete.

The state space is assumed to be a Hilbert space (strictly speaking a Hilbert space is ‘to small’
to contain the eigenstates of position and momentum operators. Instead, one uses a space of
tempered distributions).
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Example 6.1.2 H = L2(Rn) (where n = 1, 2, 3 are important cases) is a space of complex-
valued functions such that

‖f‖2 =

∫
Rn

|f(x)|2dnx <∞. (6.8)

This example is very important in wave mechanics. In fact we used it in the first half of the
course. The scalar product is given by

〈f |g〉 =

∫
Rn

fgdnx. (6.9)

It is well defined as a consequence of (6.8).

Example 6.1.3 H = Cn. Let

|f〉 =

 f1
...
fn

 , |g〉 =

 g1
...
gn

 , where fi, gi ∈ C.

The scalar product is

〈f |g〉 =
n∑

i=1

f igi ∈ C. (6.10)

6.2 Linear operators

Observables in QM are described by certain linear transformations. Let Â : H −→ H be a
linear operator (transformation) on H, i.e.

Â(α|Ψ〉+ β|Φ〉) = αÂ|Ψ〉+ βÂ|Φ〉 (6.11)

where α, β ∈ C. The linear operators (from now on called just operators) can be added and
multiplied:

(αÂ+ βB̂)|Ψ〉 = αÂ|Ψ〉+ βB̂|Ψ〉, (ÂB̂)|Ψ〉 = Â(B̂|Ψ〉).
Therefore they form an associative algebra. Note that an operator Â may be defined only on a
subspace D(Â) of H, called the domain of Â.

Definition 6.2.1 The commutator of two operators Â, B̂ is

[Â, B̂] := ÂB̂ − B̂Â. (6.12)

The commutators do not usually vanish, so operator algebras are non-commutative. Properties
of commutators:

Proposition 6.2.2 For operators all Â, B̂, Ĉ, the commutator satisfies

[Â, B̂] = −[B̂, Â] (6.13)

[αÂ+ βB̂, Ĉ] = α[Â, Ĉ] + β[B̂, Ĉ] (6.14)

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ (Leibnitz rule) (6.15)

[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0 (Jacobi identity). (6.16)
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Proof. Similar to identities for Poisson brackets.

2

Remark A vector space (for example of operators) equipped with bi-linear product satisfying
(6.13), (6.14), and (6.16) is called Lie algebra.

Definition 6.2.3 The adjoint of a linear operator Â is the unique linear transformation Â∗

that satisfies
(〈Φ|Â∗)|Ψ〉 = 〈Φ|(Â|Ψ〉) (6.17)

for all |Ψ〉, |Φ〉 ∈ D(Â). The operator is called self-adjoint (or incorrectly Hermitian in the
physics literature) if Â = Â∗.

Remark. We shall usually rewrite formula (6.17) as 〈Â∗Φ|Ψ〉 = 〈Φ|ÂΨ〉. Formulae (6.6,6.17)
imply

〈Ψ|Â∗Φ〉 = 〈ÂΨ|Φ〉 = 〈Φ|ÂΨ〉.
For self-adjoint operators it makes sense to write 〈Φ|Â|Ψ〉.

Definition 6.2.4 Let |Ψ〉 6= 0 be a vector such that

Â|Ψ〉 = a|Ψ〉 (6.18)

for some a ∈ C. Then |Ψ〉 is called an eigen-vector and a is called an eigen-value of Â.

Example 6.2.5 Let H = L2(Rn) be the Hilbert space from the Example 6.1.2. Now |f〉 =
f(x1, ..., xn). Examples of operators are

X̂1f := x1f D̂1f :=
∂f

∂x1

, 1̂f := f.

These are multiplication operator, differentiation operator, and identity operator respectively.
There are many more examples. Note that

D̂1(X̂1f)− X̂1(D̂1f) = (D̂1(x1))f, so [D̂1, X̂1] = 1̂.

Example 6.2.6 Let H = Cn be the Hilbert space from the Example 6.1.3.

Â|f〉 =

 A11 . . . A1n
...

. . .
...

An1 . . . Ann


 f1

...
fn

 ,

so linear operators are represented by n×n complex matrices. What is the matrix corresponding
to Â∗? Let |f〉, |g〉 ∈ Cn. The formula

〈Â∗f |g〉 = 〈f |Âg〉

has the following matrix counterpart

n∑
i,j

(A
∗
ijf j)gi =

n∑
i,j

f i(Aijgj).
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Changing i to j in the RHS, and comparing coefficients of fjgi we find that

A∗ = A
T

(6.19)

The matrix A∗ is called a Hermitian conjugate of A. Hermitian matrices are those for which
A∗ = A. In the finite-dimensional case the self-adjoint operators are represented by Hermitian
matrices.

6.3 Postulates of quantum mechanics

Wave mechanics of Schrödinger was preceded by a matrix mechanic of Heisenberg (1925). The
general mathematical scheme containing both mechanics as special cases was later proposed by
von-Neumann, Weyl, Wigner and others.

1. Each physical system is described by an element of a Hilbert space H (a state vector),
which contains all information about the system.

2. Superposition principle. If |Ψ1〉, and |Ψ2〉 are state vectors then α|Ψ1〉 + β|Ψ2〉 (for
α, β ∈ C) is also a possible state vector.

3. The observables (dynamical variables, like position, momentum, energy, ...) are repre-
sented by self-adjoint operators in H.

4. The result of measuring an observable (corresponding to) Â is one of the eigenvalues of
Â. If a state vector is

|Ψ〉 =
∑

n

cn|Ψn〉, (6.20)

where |Ψn〉s are eigen-vectors of Â ( i.e, Â|Ψn〉 = an|Ψn〉), then a measurement will give
an eigen-value an with the probability |cn|2. After the measurement the state vector
‘collapses’ into one of the eigen-states |Ψn〉.

Consequence: Statistical aspect of QM. If we prepare many copies of the same state, and
measure Â at the same instant of time, the average answer will be

∑
n an|cn|2. Calculate

Â|Ψ〉 =
∑

n

ancn|Ψn〉, 〈Ψ|ÂΨ〉 =
∑

n

cnan〈Ψ|Ψn〉.

The orthogonality of |Ψn〉, and equation (6.20) imply cn = 〈Ψ|Ψn〉. Therefore the expectation
value of an observable Â is a state |Ψ〉 is

EΨ(Â) =
〈Ψ|ÂΨ〉
〈Ψ|Ψ〉

(= 〈Â〉Ψ). (6.21)

The results of our measurement should be given by real numbers. For this to be consistent we
have to prove

Proposition 6.3.1 For every |Ψ〉 ∈ H the expectation value EΨ has the following properties:
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1. EΨ(1̂) = 1.

2. EΨ(Â) is real for all self-adjoint operators Â.

3. EΨ(αÂ+ βB̂) = αEΨ(Â) + βEΨ(B̂) for all linear operators Â, B̂ and all α, β ∈ C.

Proof.

1.

EΨ(1̂) =
〈Ψ|Ψ〉
〈Ψ|Ψ〉

= 1.

2. Since Â is self-adjoint we have

EΨ(Â) =
〈Ψ|ÂΨ〉
〈Ψ|Ψ〉

=
〈ÂΨ|Ψ〉
〈Ψ|Ψ〉

=
〈Ψ|ÂΨ〉
〈Ψ|Ψ〉

= EΨ(Â).

3. Follows from (6.6), and the linearity of operators.

2

Remarks.

• If |Ψ〉 is an eigenvector of Â with eigenvalue a, then

EΨ(Â) =
〈Ψ|a|Ψ〉
〈Ψ|Ψ〉

= a, (6.22)

and Proposition (6.3.1) tells us that the eigenvalues of self-adjoint operators are real.

• Let Â be self-adjoint, and let Â|Ψ1〉 = a1|Ψ1〉, Â|Ψ2〉 = a2|Ψ2〉, with a1 6= a2. Then

〈ÂΨ1|Ψ2〉 − 〈Ψ1|ÂΨ2〉 = 0 = (a1 − a2)〈Ψ1|Ψ2〉

but a1 = a1 from the first remark, so 〈Ψ1|Ψ2〉 = 0, i.e. |Ψ1〉, and |Ψ2〉 are orthogonal.

How does this abstract formulation relates to the Schrödinger equation? Take H = L2(R3),
and choose the position representation, that is |Ψ〉 = Ψ(x1, x2, x3) ∈ L2(R3).

Definition 6.3.2 The position operators X̂j, and momentum operators P̂j, j = 1, 2, 3 are given
by multiplication operators, and differentiation operators respectively (compare (2.1)):

X̂j = xj, P̂j =
~
i

∂

∂xj

(or P̂ = −i~∇). (6.23)

The Hamiltonian operator, defined on twice-differentiable functions, is

Ĥ =

∑3
j=1 P̂

2
j

2m
+ V (X̂j) = − ~2

2m
∇2 + V (xj) (6.24)

corresponds to the energy observable.
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Conclusion. The time independent Schrödinger equation (2.3) is just an assertion that |Ψ〉 is
an eigen-state of Ĥ corresponding to eigenvalue E. Indeed,

Ĥ|Ψ〉 = E|Ψ〉, (6.25)

and (6.23, 6.24) imply (2.3).

Proposition 6.3.3 The operators X̂j, and P̂j defined by (6.23) are self-adjoint.

Proof. We shall proof it in one dimension (the proof for n = 3 goes exactly the same).
Position : From Example 6.1.2

〈X̂Φ|Ψ〉 =

∫
R
xΦ(x)Ψ(x)dx =

∫
R

Φ(x)xΨ(x)dx = 〈Φ|X̂Ψ〉.

Momentum: Use integration by parts

〈P̂Φ|Ψ〉 =

∫
R

~
i

dΦ

dx
Ψdx = −~

i

(
[ΦΨ]∞−∞ −

∫
R

Φ
dΨ

dx
dx

)
= 0 +

∫
R

Φ
~
i

dΨ

dx
dx = 〈Φ|P̂Ψ〉.

6.4 Time evolution in QM

Postulate 5: The state vector undergoes an unitary evolution; Write

|Ψ(t)〉 = Û(t)|Ψ(0)〉, (6.26)

where Û(t) is an unitary operator, that is it satisfies Û∗Û = 1̂. Let |Θ〉 be an eigenstate of Û ,
i.e. Û |Θ〉 = u|Θ〉. Then

Û∗Û |Θ〉 = uu|Θ〉 = |Θ〉,
therefore u = exp (iα), where α ∈ R. Put Û = exp (iα̂), (the exponent is defined formally, by
the Taylor expansion) and note that

Û∗ = exp[−iα̂∗)] = Û−1 = exp[−iα̂)]

α̂ = α̂∗ and α̂ is self-adjoint. Differentiating (6.26) with respect to t yields

d

dt
|Ψ(t)〉 = i

( d

dt
α̂(t)

)
exp [iα̂(t)]|Ψ(0)〉 =

1

i~
Ĥ(t)|Ψ(t)〉,

where the Hamiltonian is defined by

Ĥ(t) = −~
d

dt
α̂(t).

Therefore the state vector develops is time according to the abstract time-dependent Schrödinger
equation

i~
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉. (6.27)

When Ĥ doesn’t depend on time then the analysis simplifies, and the unitary evolution is
given by Û(t) = exp [−itĤ/~], and (6.26) gives a formal solution to (6.27). Note that

〈Ψ(t)|Ψ(t)〉 = 〈Û(t)Ψ(0)|Û(t)Ψ(0)〉 = 〈Ψ(0)|Û∗(t)Û(t)Ψ(0)〉 = 〈Ψ(0)|Ψ(0)〉

which confirms the results of Proposition 2.3.3.
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Proposition 6.4.1 Let Â(t) be an observable and let |Ψ(t)〉 be a normalized solution to the
time dependent Schrödinger equation. Then

d

dt
〈Â(t)〉 = 〈 ∂

∂t
Â(t)〉+

i

~
〈Ψ|[Ĥ, Â]|Ψ〉. (6.28)

Proof. Problem sheet 5.

2

If Â doesn’t explicitly depend on time, then the expectation value 〈Â〉 is conserved iff Â
commutes with the Hamiltonian. Then Â is called a conserved quantity. Compare it with the
known formula from classical mechanics

df

dt
=
∂f

∂t
+ {H, f}, where {H, f} =

3∑
i=1

∂H

∂pi

∂f

∂xi

− ∂H

∂xi

∂f

∂pi

,

and note the correspondence between classical Poisson brackets, and the commutators

{H, f} −→ i

~
[Ĥ, f̂ ].

6.5 Commutation relations and canonical quantisation

Explore the relation between the commutators and the Poisson brackets in classical mechanics.
Take H = L2(R), and recall that P̂ = −i~d/dx, X̂ = x. We shall show that

[P̂ , X̂] = −1̂i~. (6.29)

Indeed, let Ψ(x) ∈ L2(R), then

P̂ X̂Ψ = P̂ (X̂Ψ) = −i~ d

dx
(xΨ) = −i~Ψ− i~x

dΨ

dx
= −i~Ψ + X̂P̂Ψ,

so (P̂ X̂ − X̂P̂ )Ψ = −i~Ψ. Analogous result holds in three dimensions:

Proposition 6.5.1 In three dimensions, the canonical commutation relations are[
P̂j, X̂k

]
= −δjk1̂i~,

[
X̂j, X̂k

]
= 0,

[
P̂j, P̂k

]
= 0. (6.30)

Proof. The proof of the first relation is analogous to the derivation (6.29). The second relation
is trivial, finally the third one holds because ∂j∂k = ∂k∂j, for j, k = 1, 2, 3.

2

Note the resemblance of the Poisson brackets relations

{pj, xk} = δjk, {xj, xk} = 0, {pj, pk} = 0.

The idea of a quantisation: To quantise a classical system, each function f on a classical phase
space (i.e. a function of positions and momentas) should be replaced by a self- adjoint operator
Q̂(f) is such a way that Q is a linear map, Q̂(1) = 1̂, and for any pair of functions f and g

[Q̂(f), Q̂(g)] = −i~Q̂({f, g}) (6.31)

(clearly works if p and x are replaced by (6.23) - canonical quantisation). It inspired the
mathematics of the last 30 years. Because of the operator ordering problem it is not always
possible quantise a given classical system without ambiguities.
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6.6 The Heisenberg uncertainty Principle

Definition 6.6.1 The dispersion of an operator Â in the state |Ψ〉 is

∆Ψ(Â) =

√
EΨ(Â2)− [EΨ(Â)]2. (6.32)

Proposition 6.6.2 Let Â, B̂, and Ĉ be self-adjoint operators satisfying the commutation rela-
tions [Â, B̂] = iĈ. Then for any vector |Ψ〉 ∈ H

EΨ(Â2)EΨ(B̂2) >
1

4
EΨ(Ĉ)2. (6.33)

Proof. First calculate ‖(Â− isB̂)Ψ‖2 for s ∈ R:

(Â− isB̂)∗(Â− isB̂) = Â2 − is[Â, B̂] + s2B̂2 = Â2 + sĈ + s2B̂2.

Therefore
〈(Â− isB̂)Ψ|(Â− isB̂)Ψ〉 = 〈Ψ|(Â− isB̂)∗(Â− isB̂)Ψ〉

= EΨ(Â2) + sEΨ(Ĉ) + s2EΨ(B̂2) > 0.

The above quadratic expression is non-negative. As a polynomial in s, it has no real roots, or
it has one repeated root. Therefore the discriminant satisfies

EΨ(Ĉ)2 − 4EΨ(Â2)EΨ(B̂2) 6 0,

which gives (6.33).

2

LECTURE 13
Corollary 6.6.3 (The Heisenberg’s Uncertainty Principle) The dispersions of the posi-
tion and momentum are related by

∆Ψ(P̂ )∆Ψ(X̂) >
~
2
. (6.34)

Proof. Let
Â = P̂ − EΨ(P̂ )1̂, B̂ = X̂ − EΨ(X̂)1̂.

Note that

EΨ(Â2) = EΨ(P̂ 2 − 2EΨ(P̂ )P̂ + EΨ(P̂ )21̂) = ∆Ψ(P̂ )2, EΨ(B̂2) = ∆Ψ(X̂)2.

Then, since 1̂ commutes with all operators

[Â, B̂] = [P̂ , X̂] = −i~1̂,

so that Ĉ = −~1̂. Therefore (6.32) and Proposition 6.6.2 imply

∆Ψ(P̂ )2∆Ψ(X̂)2 = EΨ(Â2)EΨ(B̂2) >
1

4
~2,

and (6.34) follows on taking the positive square roots.

2

States for which (6.34) is an equality are called minimal uncertainty states. Implication of
Heisenberg’s principle: The greater accuracy with which we know the position of the particle,
the less we know about its momentum. The Planck’s constant determines the scale of quantum
fuzziness.
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6.7 Commuting observables and parity

Applying (6.34) to the case when [Â, B̂] = 0 yields a trivial result

∆Ψ(Â)∆Ψ(B̂) > 0.

It is possible to achieve the lower bound if one or both dispersions vanish.

Proposition 6.7.1 The dispersion of Â in the state |Ψ〉 vanishes iff Â|Ψ〉 = a|Ψ〉.
Proof. Assume Â|Ψ〉 = a|Ψ〉. From (6.22) EΨ(Â) = a, therefore

(EΨ(Â)1̂− Â)|Ψ〉 = 0. (6.35)

We also have the identity
EΨ([EΨ(Â)1̂− Â]2) = ∆Ψ(Â)2,

from which it is clear that ∆Ψ(Â) = 0 iff (6.35) is satisfied.

2

If |Ψ〉 is an eigenvector of both Â and B̂ then both observables can be measured precisely.

Proposition 6.7.2 Let Â and B̂ be self-adjoint operators on the Hilbert space H , and let HA,
and HB denote the subspaces spanned by eigenvectors of Â and B̂ respectively. Let HA,B denote

the span of vectors that are simultaneously eigenvectors for both Â and B̂. Then

[Â, B̂] = 0 implies HA,B = HA ∩HB.

Proof. As in a1 algebra.

2

Remark. IfH admits an orthonormal basis of eigenvectors for Â, thenHA = H, and [Â, B̂] = 0
implies

HA,B = H ∩HB = HB.

Therefore all eigenvectors of B̂ are in span of vectors which are simultaneously eigenvectors of
both operators. This motivates:

Definition 6.7.3 The observables corresponding to commuting operators are said to be com-
patible, or simultaneously measurable.

Example. Take H = L2(R) and consider the one-dimensional wave mechanics. Define the
parity operator by

P̂Ψ(x) := Ψ(−x). (6.36)

For proofs of the following statements see sheet 6, question 1. Note that P̂2 = 1̂, so the only
possible eigenvalues of P̂ are 1 and −1. It easily follows that P̂ is self-adjoint. Consider a
particle moving in a potential such that V (x) = V (−x). It follows that [P̂ , Ĥ] = 0, and by
Proposition 6.7.2 we can find eigenvectors of Ĥ, which are also eigenvectors of P̂ . Indeed, if
ĤΨ = EΨ, then

Ψ+ :=
Ψ(x) + Ψ(−x)

2
, Ψ− :=

Ψ(x)−Ψ(−x)
2

satisfy the Schrödinger equation (with V (x) = V (−x)), and P̂Ψ+ = Ψ+, P̂Ψ− = −Ψ−.
Remark. Equation (6.28) implies that P̂ is a conserved quantity.
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Chapter 7

The algebra of the harmonic oscillator

Can one use the algebraic methods developed in the last two Sections, to solve ‘real QM prob-
lems’? We shall re-derive the results of Section 4, without referring to Schrödinger equation,
and wave mechanics.

Proposition 7.0.4 Let Â be an operator such that

[Â, Â∗] = 1̂. (7.1)

The eigenvalues of an operator N̂ = Â∗Â are non-negative integers.

Proof. We have
N̂∗ = (Â∗Â)∗ = Â∗(Â∗)∗ = N̂ ,

so N̂ is self adjoint and from Proposition 6.3.1 it follows that it has real eigenvalues. Calculate
the commutators:

[N̂ , Â] = [Â∗Â, Â] = Â∗[Â, Â] + [Â∗, Â]Â = −Â,

[N̂ , Â∗] = [Â∗Â, Â∗] = Â∗[Â, Â∗] + [Â∗, Â∗]Â = Â∗,

where we used the Leibniz rule (6.15) for commutators.
Assume that N̂ has at least one eigenvector. Let |n〉 be an eigenvector of N̂ corresponding

to a real eigenvalue n ∈ R i.e. N̂ |n〉 = n|n〉. We shall show that n is a non-negative integer,
and that N̂ has infinitely many eigen-vectors. Calculate

N̂Â|n〉 = ([N̂ , Â] + ÂN̂)|n〉 = −Â|n〉+ nÂ|n〉 = (n− 1)Â|n〉, (7.2)

so either Â|n〉 = 0, or Â|n〉 is an eigenvector of N̂ with eigenvalue (n− 1). Similarly

N̂Â∗|n〉 = ([N̂ , Â∗] + Â∗N̂)|n〉 = Â∗|n〉+ nÂ∗|n〉 = (n+ 1)Â∗|n〉. (7.3)

Either Â∗|n〉 = 0, or Â∗|n〉 is an eigen-vector of N̂ with eigen-value (n+1). When is Â|n〉 = 0?

‖Â|n〉‖2 = 〈Ân|Ân〉 = 〈n|Â∗Â|n〉 = 〈n|N̂ |n〉 = n〈n|n〉 = n‖|n〉‖2

The LHS is non-negative so n > 0, and

Â|n〉 = 0, iff n = 0. (7.4)
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Now

‖Â∗|n〉‖2 = 〈Â∗n|Â∗n〉 = 〈n|ÂÂ∗|n〉 = 〈n|1̂ + N̂ |n〉 = (n+ 1)〈n|n〉 = (n+ 1)‖|n〉‖2,

so from (7.4) Â∗|n〉 is never 0.
Fix n 6= 0. Then Â|n〉, Â2|n〉, Â3|n〉, ... are all eigen states of N̂ with eigen-values (n −

1), (n− 2), (n− 3), ..., unless one of them vanishes. This means that (for non-negative integer
k) Âk|n〉 = 0 or Âk|n〉 is an eigen-vector of N̂ with an eigen-value (n−k) ∈ R. If k > n > k−1
then n− k 6 0, which is not allowed as an eigenvalue unless Âk|n〉 = 0 (from (7.4)), in which
case n− k = 0, and

n = k, k = 0, 1, 2, ... .

2

Remarks

• We have only assumed the commutation relations (7.1), and not the actual form of the
operators Â, and Â∗.

• All non-negative integers are possible eigen-values. If k ∈ Z+ is and eigen-value, then we
can get down to 0 applying Â k times. Conversely, by applying Â∗ we can ‘climb up’, and
construct eigen-states corresponding to all positive integers. This motivates the following
definition:

Definition 7.0.5 Operators Â, and Â∗ are known as respectively lowering (or annihilation),
and rising (or creation) operators. The operator N̂ = Â∗Â is known as the number operator.

Proposition 7.0.6 For normalised eigenvectors of N̂ we have

Â|n〉 =
√
n|n− 1〉, Â∗|n〉 =

√
n+ 1|n+ 1〉. (7.5)

Proof. Recall that N̂ |n〉 = n|n〉. By (7.2) Â|n〉 is an eigenvector of N̂ with an eigenvalue n−1,
so Â|n〉 = cn−1|n− 1〉, and

1 = 〈n− 1|n− 1〉 =
1

|cn−1|2
〈n|Â∗Â|n〉 =

n

|cn−1|2
.

Choose cn−1 =
√
n. Similarly

1 = 〈n+ 1|n+ 1〉 =
1

|dn+1|2
〈n|ÂÂ∗|n〉 =

1

|dn+1|2
〈n|([Â, Â∗] + Â∗Â)|n〉 =

n+ 1

|dn+1|2

so dn+1 =
√
n+ 1.

2

LECTURE 15
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7.1 The harmonic oscillator once again

Return to the one-dimensional harmonic oscillator with Hamiltonian

Ĥ =
P̂ 2

2m
+

1

2
mω2X̂2

where P̂ , and X̂ are self adjoint operators satisfying [P̂ , X̂] = −i~1̂. We do not want to refer
to a particular representation (6.23). Define

â =
1√

2mω~
(P̂ − imωX̂), â∗ =

1√
2mω~

(P̂ + imωX̂). (7.6)

Calculate

â∗â =
1

2mω~
(P̂ + imωX̂)(P̂ − imωX̂) =

1

2mω~

(
P̂ 2 − imω[P̂ , X̂] +m2ω2X̂2

)
=

1

~ω
(Ĥ − 1

2
~ω1̂).

Therefore

Ĥ = ~ωâ∗â+
1

2
~ω1̂. (7.7)

Proposition 7.1.1 The eigenvalues of Ĥ are

En =
(
n+

1

2

)
~ω, n = 0, 1, 2, ... (7.8)

Proof. Calculate the commutator

[â, â∗] =
1

2mω~
[P̂ − imωX̂, P̂ + imωX̂]

=
1

2mω~

(
[P̂ , P̂ ] + imω[P̂ , X̂]− imω[X̂, P̂ ] +m2ω2[X̂, X̂]

)
=

2imω[P̂ , X̂]

2mω~
= 1̂.

Operators â, and â∗ satisfy [â, â∗] = 1, which is (7.1), and (from Proposition 7.0.4) the eigen-
values of â∗â are n = 0, 1, .... Therefore the eigenvalues of Ĥ given by (7.7) are (7.8).

2

Let N̂ = â∗â, and N̂ |n〉 = n|n〉 (as in 7.0.4). Equation (7.7) implies that

N̂ |n〉 =
( Ĥ

~ω
− 1

2
1̂
)
|n〉 = n|n〉,−→ Ĥ|n〉 = ~ω

(
N̂ +

1

2
1̂
)
|n〉 = ~ω

(
n+

1

2

)
|n〉

and |n〉 is an eigenstate of Ĥ corresponding to energy (7.8). From (7.5)

â∗|n〉 =
√
n+ 1|n+ 1〉 −→ |n〉 =

1√
n!

(â∗)n|0〉, (7.9)

where |0〉 is a ground state corresponding to E = ~ω/2. So far we didn’t refer to the explicit
form of P̂ , and X̂. Now we shall use (6.23) to prove
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Proposition 7.1.2 Let H = L(R). In the position representation (6.23) the normalised eigen-
vector Ψn corresponding to an energy eigenvalue (7.8) is given by

1√
n!

(mω
π~

)1/4( ~
2mω

)n/2( d

dx
− mω

~
x
)n

exp [−(mωx2)/(2~)]. (7.10)

Proof. From now on we shall replace |n〉 by Ψn. From (7.6, 6.23)

â =
1√

2mω~
(−i~ d

dx
− imωx), â∗ =

1√
2mω~

(−i~ d

dx
+ imωx).

From (7.4) âΨ0 = 0, which yields

∂Ψ0

∂x
= −mω

~
xΨ0, so Ψ0 = c0 exp [−(mωx2)/(2~)].

The constant c0 is fixed by 〈Ψ0|Ψ0〉 = 1 to be (mω
π~ )1/4 (see (4.11). The formula (7.10) follows

from (7.9).

2
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Chapter 8

Measurement and paradoxes

8.1 Measurement in quantum mechanics

In classical physics it is assumed that disturbances to the system during a measurement could
be kept below any given level of tolerance. In QM this is not the case. Recall the fourth
postulate of QM, and assume that we want to measure an observable Â with discrete and non-
degenerate spectrum, such that normalised eigenvectors Â|Φn〉 = an|Φn〉 form an orthogonal
basis for the Hilbert space. Consider the equation

|Ψ〉 =
∑

n

|Φn〉〈Φn|Ψ〉 =
∑

n

P̂A
n |Ψ〉,

Where P̂A
n := |Φn〉〈Φn| is a projection operator. It can act both on bra, and ket vectors, and

it projects the state vectors onto an eigenvector of Â, with an eigenvalue an. The relations

(P̂A
n )2 = |Φn〉〈Φn|Φn〉〈Φn| = P̂A

n , (P̂A
n )∗ = |Φn〉〈Φn| = |Φn〉〈Φn| = P̂A

n

define a projection operator. The resolution of identity is given by

1̂ =
∑

n

|Φn〉〈Φn|.

The measurement of changes |Ψ〉 to P̂A
n |Ψ〉. Unlike the unitary time evolution the measurement

usually changes the norm of the wave function

|Ψ〉 −→ P̂A
n |Ψ〉

R process. Collapse of the wave func-
tion. Non-deterministic, non-unitary
‖|P̂A

n Ψ〉‖2 6= ‖|Ψ〉‖2.

Change of the wave function is nonlocal. The moment that the energy of a harmonic oscillator
is measured to be ~ω/2 the wave function is transmuted to a multiple of Ψ0 throughout the
entire universe. This contradicts the common sense, and the theory of relativity.

|Ψ(t1)〉 −→ |Ψ(t2)〉
U process. Deterministic unitary
evolution (6.26).
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U −→ U

↓ R

U −→ .

The R process is not described by the standard formalism of Schrödinger equation. Does it
really happen. Is R a change of our knowledge of the state, or is it a change in the state itself?

8.2 The Einstein–Rosen–Podolsky paradoxes

The conservation laws provide information about one part of entangled system in terms of
another. The stationary atom decays into two parts [PICTURE]. Observables xA + xB =
const, pA − pB = const can be measured with an arbitrary precision as

[X̂A + X̂B, P̂A − P̂B] = 0

If one chooses to measure the momentum of B, and a position of A, then (by combining
information, and using conservation laws), one should be able to give both the position and the
momentum of B, beating the uncertainty principle.

One would expect that the measurement of A by should not depend on anything what has
happened to B (the locality assumption).

Einstein (EPR 1935) used this paradox to support his opinion, that QM is incomplete. He
claimed that any observable possesses an objectively existing value, which is determined by a
state vector, and a set of hidden variables. His mistake (!) was to treat two particle separately.
According to QM they are entangled, and form a sort of biparticle. The famous result John Bell
showed that any theory which reproduces results of QM must posses some non-local features

8.3 Violation of Bell’s inequalities

Let P(R \ S) be the probability of the event that R occurs but S does not.

Proposition 8.3.1 For any events Q,R, and S we have

P(Q \R) + P(R \ S) > P(Q \ S). (8.1)

Proof. Any point q ∈ (Q \ S) is either in R or not in R. In the first case it is in (R \ S) and
otherwise it is in (Q \R). Therefore (Q \ S) ⊆ (Q \R) ∪ (R \ S) which implies (8.1).

2

Any theory based on local realism should satisfy (8.1).
Let H = C2 be spanned by two orthogonal vectors |ξ〉,and |η〉 which represent vertical

and horisontal polarisations respectively. A photon polarised at an angle θ to the vertical is
described by

|Ψ(θ)〉 = |ξ〉 cos θ + |η〉 sin θ.
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Each filter [PICTURE] act as measuring apparatus, and corresponds to a projection operator.
After passing through vertically polarized filter, the particle is described by

|ξ〉〈ξ|Ψ(θ)〉 = cos θ|ξ〉.

The probability of a photon passing through the filter is therefore cos2 θ.
Let r be a filter and let R denote the event that a photon passes through r. This event will

occur with probability P(R). Let s be a second filter at an angle φ to r. Photon which has
been transmitted by r will be transmitted by s with probability cos2 φ. The probability that a
photon transmitted by r will not be transmitted by s is

P(R \ S) = P(R)(1− cos2 φ) = P(R) sin2 φ. (8.2)

Consider a third filter q, at angle θ to s and θ− φ to r PICTURE, and let Q be the event that
a photon passes through q. We similarly calculate that

P(Q \R) = P(Q) sin2 (θ − φ), P(Q \ S) = P(Q) sin2 θ.

The Bell inequality (8.1)

P(Q \R) + P(R \ S)− P(Q \ S) > 0.

It is experimentally possible to arrange P(Q) = P(R), and the last formula becomes

sin2 (θ − φ) + sin2 φ− sin2 θ > 0.

Take 0 < θ = 2φ < π/2. Then (8.2) yields

2 sin2 φ− sin2 2φ = 2 sin2 φ− 4 sin2 φ cos2 φ = 2 sin2 φ(1− 2 cos2 φ) > 0

which is not true for small φ. We reach a contradiction, because P(R \S) and P(Q\S) in (8.2)
are not independent. The measurement at q has affected the measurement at r.

A naive view would suggest that insertion of the middle filter must result in more photons
being stopped. Assume that he particle passed through q. If the filter r is not there, the photon
will pass to the region III with probability cos2 θ, which is zero if θ = π/2 If we insert the
middle filter back, the probability of getting to III will be

cos2 (θ − φ) cos2 φ = cos2 (π/2− φ) cos2 φ = sin2 φ cos2 φ.

which is positive for most angles. Therefore the middle filter, gives a photon a better chance
of passing to region III.

Imagine an atom which emits two identically polarized photons A, and B , traveling (by
conservation of momentum) in opposite directions. We arrange for each photon to meet a
polarizing filter rA, and rB at some large distant from the atom. The behavior of photons
at filters must be corelated. But if rA, and rB are widely separated and the light signal
communicating the result of measurement of A would arrive to rB only after the measurement
of B had occurred. So we would expect that the transmition of B by rB should not depend on
anything what has happened to A (the locality assumption).

But according to quantum theory the polarization state of A must change whenever B
passes through a filter. We can choose to insert the filter B after photons left the atom. How
does A know that we shall measure B.

Alain Aspect [1981] experimentally verified the violation of triangle inequalities. Probability
that A passes through rA changes if we measure B.
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8.4 Schrödinger’s cat

The EPR type paradoxes do not prove that the quantum theory is incomplete. They only
teach us that the intuition we developed in the study of classical mechanic fails when applied
to the quantum world. System which are far apart can be entangled together, and can not be
considered separately. No contradiction - there is no way of using entanglement to send signals
faster than light.

Another group of paradoxes is associated with collapse (reduction) of the wave function.
The following one was given by Schrödinger (1935) as a reaction to the EPR paper.

Imagine a cat inside a closed black box with a vial of cyanide, and a radioactive atom which
has a probability of 1/2 of decaying in one hour. If the atom decays, then the cyanide is released,
and the cat dies. If it does not decay, then the cyanide is not released, and the cat stays alive.
The paradox arises, because the atom (as a microscopic object) must is described by laws of
quantum theory. After one hour, and before it is observed the atom is in a superposition of
being decayed and undecayed. The cat is corelated with the atom, and is in a superposition of
being dead and alive

|ΨCAT〉 =
1√
2

(
|dead〉+ |alive〉

)
(8.3)

But we do not observe cats in this state!

• Many worlds The reduction process doesn’t exist. All changes in time are U processes,
and take place according to a linear Schrödinger’s equation. a measurement is made, the
universe branches into many different worlds, in each of which just one of the measured
outcomes occurs (Everett 1957). This point of view is popular in quantum cosmology.

• Open system Systems are never isolated. They interact with an outside world (mea-
suring apparatus) by many different forces. The cat is therefore entangled with the
environment (otherwise we couldn’t observe it at all). Collapse of the wave function is
an approximation to the unitary evolution. Problem: According to this interpretation all
processes should be reversable in time. We don’t see it (perhaps) because we don’t live
long enough. (decoherence).

• Hidden variables Any observable possesses an objectively existing value, which is de-
termined by a state vector, and a set of (non-local) hidden variables. Compare problem
4 sheet 1.
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Sheet One

1. A particle of mass m moves freely within the interval [−a, a] on the x axis. Assume that
the wave function vanishes for |x| > a, and show that the stationary states are of the
form

ψ(x, t) =

{
1√
a
exp (− iEnt

~ ) cos (nπx
2a

) for odd n
1√
a
exp (− iEnt

~ ) sin (nπx
2a

) for even n

with energy levels En given by

En =
n2π2~2

8ma2
.

Find a probability that the particle described by ψn lies between −a and x ∈ [−a, a].
What happens to this probability when n becomes very large?

2. A particle moves within a ball of radius R in R3 under the influence of the constant
potential V0 > 0. Show that there are continuous wave functions of the form Ψ(r) (inde-
pendent of angles and vanishing at r = R) that satisfy the time independent Schrödinger’s
equation. Find the energy levels, and the mean position of the particle.

3. A particle in a one-dimensional potential well

V (x) =

{
0 for x ∈ (0, a)
∞ otherwise.

is in a state described by the wave function Ψ(x) = Ax(a − x), where A is a constant.
By expanding the wave function in terms of separable solutions

Ψn(x) =

√
2

a
sin

(nπx
a

)
, n = 1, 2, ...

(see equation (3.15)) find the probability distribution for the different energies of the
particle.

4. Show that the wave function

ψ(x, t) = a(x, t)exp
( iS(x, t)

~

)
satisfies the time dependent Schrödinger equation if and only if the real functions a and
S satisfy the coupled system of equations

∂S

∂t
+
|∇S|2

2m
+ V =

~2

2m

∇2a

a
, (8.4)

∂(a)2

∂t
+ div

(a2

m
∇S

)
= 0. (8.5)

Remark. In the classical limit of quantum mechanics (when ~2 is neglected), the first
equation involves only S and is essentially equivalent to classical equations of motion of
the particle. Can you see the interpretation of the second equation?
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Figure 8.1: Emission of electrons from metals.

Sheet Two

1. ‘Quantum theory in finite universe’: A particle of mass m moves freely (V = 0) on a
circle of circumference L. Consider a particle incident from the left, and use the fact that
a normalised time-dependent wave function must be a single valued function of position
(ie. Ψ(x) = Ψ(x+L)) to show that the energy levels are discrete. Find the energy levels.
Take the limit L→∞ and interpret your results.

2. In studying the emission of electrons from metals, it is necessary to take into account
that electrons with an energy sufficient to leave the metal may be reflected at the metal
surface. This motivates the following problem: Consider a one dimensional model with a
potential V which is equal to −V0 for x < 0 and equal to 0 for x > 0 (outside the metal
(Figure 1) ). Determine the reflection coefficient at the metal surface for an electron with
energy E > 0.

3. Calculate the reflection and transmition coefficients for a beam of particles of energy
E > V0 > 0 incident from x = −∞ on the potential barrier

V (x) =

{
V0 for x ∈ [0, a]
0 otherwise.

If k2 = 2mE/~2 and k̃ = 2m(E − V0)/~2 are fixed find the values of a for which the
transmition coefficient has its maximum and minimum values.

4. A beam with energy ~2k2/2m and density |A|2 is incident from large positive values of x,
parallel to x axis, on a potential barrier of the form

V (x) =


0 if x > a,
−V0 if 0 < x < a,
∞ if x < 0,

where V0 > 0 is a constant. Show that the wave function for x > a can be written as

Ψ(x) = A[exp(−ikx) + exp(i[kx+ φ])], φ ∈ R and find exp (iφ).
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Sheet Three

1. A particle of mass m moves in the rectangular box 0 < x < a, 0 < y < b, 0 < z < c
under the influence of zero potential (assume V = ∞ outside this region). Show that the
permitted energies of the system are

Eqrs =
~2π2

2m

(q2

a2
+
r2

b2
+
s2

c2

)
,

where q, r, s are positive integers. In case when a = b = c find normalised wave functions
corresponding to the energy 11~2π2/2ma2.

2. A one-dimensional harmonic oscillator carries a charge e and is placed in a uniform electric
field E = const, so that the potential becomes

V (x) =
1

2
mω2x2 − eEx.

Show that each energy level is reduced by e2E2/2mω2. What are the new wave functions?
[Hint: replace x by a new variable].

3. A two dimensional harmonic oscillator has Hamiltonian

H =
1

2m
(p2

x + p2
y) +

1

2
mω2(5x2 + 6xy + 5y2)

Find the energy levels and calculate the associated degeneracy of the lowest three energy
levels.

4. The Hermite polynomial Hn(z) satisfies the differential equation

d2Hn

dz2
− 2z

dHn

dz
+ 2nHn = 0, n = 0, 1, ...

is defined so that the coefficient of zn is 2n. The generating function is defined by

G(z, s) =
∞∑

n=0

Hn(z)sn

n!
.

Prove that

• dHn

dz
= 2nHn−1(z),

• ∂G
∂z

= 2sG, and ∂2G
∂z2 − 2z ∂G

∂z
+ 2s∂G

∂s
= 0.

Deduce that G(z, s) = exp(−s2 + 2sz).
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Figure 8.2: Spherical potential well.

Sheet Four

1. Consider a particle in a spherical potential well (Figure 1)

V (r) =

{
−V for r ∈ [0, a]
0 otherwise,

where V > 0 is a constant. Find the normalised wave function Ψ = Ψ(r) and the condition
for energy levels.

2. Use the polar coordinates to write the time independent Schrödinger equation for two-
dimensional model of the hydrogen atom. By considering separable solutions Ψ(r, θ) =
F (r)G(θ), show that the energy levels are of the form −κ/(2n + 1)2, where κ a positive
constant, and n = 0, 1, 2, ... . Find the degeneracy of each level.

3. In terms of the parabolic coordinates

u = r(1− cos θ), v = r(1 + cos θ), w = φ.

Schrödinger equation for the 3D hydrogen atom can be written as

− ~2

2m

( 4

u+ v

[ ∂
∂u

(
u
∂Ψ

∂u

)
+

∂

∂v

(
v
∂Ψ

∂v

)]
+

1

uv

∂2Ψ

∂w2

)
− e2

2πε0(u+ v)
Ψ = EΨ.

By considering separable solutions Ψ(u, v, w) = F (u)G(v)H(w) show that the bound
states have energies

EN = − 1

2N2

e2

4πε0α
,

where α is the Bohr radius and N = 1, 2, ... . What is the degeneracy of the energy level
EN?
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Sheet Five

1. Show that if Â is a linear operator on H such that

〈Ψ|ÂΨ〉/〈Ψ|Ψ〉

is real for all states |Ψ〉, then Â must be self-adjoint.

Let (r, θ, φ) be spherical polar coordinates. Show that operator −i~∂/∂r is not self-adjoint
on the wave functions, but −i~(∂/∂r + 1/r) is self-adjoint.

Let Â and B̂ be self-adjoint operators. Show that i[B̂, Â] is also self-adjoint.

2. A quantum mechanical system with only three independent states is described by the
Hilbert space H = C3. The Hamiltonian operator is

Ĥ = ~ω

 1 2 0
2 0 2
0 2 −1


Find the eigenvalues, and the eigenvectors of Ĥ. At time t = 0 the system is in the state 1

0
0

 .

Find the state vector |Ψ(t)〉 at a subsequent time t. Let p1, p2 and p3 denote the proba-
bilities of observing the system in the states 1

0
0

 ,

 0
1
0

 ,

 0
0
1


respectively. Show that 0 6 p2 6 1/2.

3. Let Â, B̂, Ĉ be operators. Prove the Leibnitz rule, and the Jacobi identity:

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ, [Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0.

Let Â(t) be an observable and let |Ψ(t)〉 be a normalised solution to the time dependent
Schrödinger equation. Show that

d

dt
〈Â(t)〉 = 〈 ∂

∂t
Â(t)〉+

i

~
〈Ψ|[Ĥ, Â]|Ψ〉.

4. A particle of mass m moves along the x axis under the influence of a potential V (X̂) =
mω2X̂2/2. Show that

EΨ

( P̂ 2

2m

)
EΨ

(
V (X̂)

)
>

(~ω
4

)2

.
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Sheet Six

1. Take H = L2(R) and consider the parity operator

P̂Ψ(x) := Ψ(−x).

Note that P̂2 = 1̂, and deduce that the only possible eigenvalues of P̂ are 1 and −1. Show
that P̂ is self-adjoint. Consider a particle moving in a potential such that V (x) = V (−x).
Show that [P̂ , Ĥ] = 0 and find eigenvectors of Ĥ, which are also eigenvectors of P̂ . Find
the expectation value of the position operator for a system in a non-degenerate energy
state.

2. The operator B̂ satisfies the relations

B̂2 = 0, B̂∗B̂ + B̂B̂∗ = 1̂.

Let Ŵ := B̂∗B̂. Find [Ŵ , B̂∗] and [Ŵ , B̂], and show that Ŵ is a self-adjoint projection,
that is Ŵ 2 = Ŵ = Ŵ ∗. Obtain a matrix representation for B̂, B̂∗, and Ŵ in which Ŵ is
diagonal.

3. A charged particle moving in the plane perpendicular to a magnetic field B has Hamil-
tonian

Ĥ =
1

2m

[(
P̂1 +

1

2
eX̂2B

)2

+
(
P̂2 −

1

2
eX̂1B

)2]
.

Show that the allowed energy eigenvalues are(
n+

1

2

) |eB|~
m

, n = 0, 1, 2, ... .

4. Show that if Ĥ|Ψ〉 = E|Ψ〉 then for any operator Â we have 〈Ψ|[Ĥ, Â]Ψ〉 = 0. Suppose
that Ĥ = T̂ + V̂ , where T̂ = P̂ 2/2m and V̂ = kX̂N , where k ∈ C is a constant.

(a) By taking Â = X̂ show that EΨ(P̂ ) = 0.

(b) By taking Â = X̂P̂ derive the virial theorem, 2EΨ(T̂ ) = NEΨ(V̂ ).

(c) Deduce that EΨ(T̂ ) = NE/(N + 2), and find ∆Ψ(P̂ ).

(d) When V̂ = mω2X̂2/2 show that

∆Ψ(P̂ )∆Ψ(X̂) =
E

ω
.
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