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Abstract

The first part of this thesis is concerned with φ4 field theory on a wormhole spacetime
in 3 + 1 dimensions. This spacetime has two asymptotically flat ends connected by a
spherical throat of radius a. We show that the theory possesses a kink solution which
is linearly stable, and compare its discrete spectrum to that of the φ4 kink on R1,1.
We present some results on the non–linear resonant coupling between the discrete and
continuous spectra in the range of a where there is exactly one discrete mode.

The second part of the thesis is based on recent work by Dunajski and Mettler.
They show that a class of neutral signature Einstein manifolds M can be canonically
constructed as rank n affine bundles over projective structures in dimension n. These
have the same symmetry group as the underlying projective manifold, and are also
endowed with a natural symplectic form, which is related to the metric by an endo-
morphism of the tangent bundle that squares to the identity. Consequently, they carry
an almost para–Kähler structure.

We show that every metric within the class is a Kaluza–Klein reduction of an
Einstein metric on an R∗ bundle over M . We also show that the structures are para–c–
projectively compact in the sense of Čap–Gover, and interpret the compactification in
terms of the tractor bundle of the projective structure.

In dimension four, the manifolds M have anti–self–dual conformal curvature, and are
thus associated with a twistor space. In the presence of a symmetry, they can be reduced
to Einstein–Weyl structures in dimension three via the Jones–Tod correspondence.
Because M is also Einstein with non–zero scalar curvature, these Einstein–Weyl
structures are determined by solutions of the SU(∞)–Toda equation.

We investigate the Einstein–Weyl structures which can be obtained in this way in
terms of the symmetry group of the underlying projective surface. Several examples are
considered in detail, resulting in new, explicit solutions of the SU(∞)–Toda equation.
We focus in particular on the case where the projective structure is RPn, additionally
describing the Jones–Tod reduction from the twistor perspective.
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Chapter 1

Introduction

This thesis splits naturally into two parts. In Chapter 2, we discuss φ4 field theory on
a wormhole spacetime with two asymptotically flat ends. This theory has two distinct
vacua, and permits static, finite energy “kink” solutions which interpolate between the
two vacua as one moves from one asymptotically flat end to the other. We study the
stability of such solutions from various perspectives, with explicit comparison to the
kinks arising in φ4 theory on R1,1.

The remainder of the thesis is concerned with a class of Einstein manifolds which
can be canonically constructed from projective structures as shown in recent work by
Dunajski and Mettler [28]. A projective structure on a manifold specifies a preferred
curve in every direction at every point. It can be understood as an equivalence class of
affine connections which share the same geodesics up to parametrisation. Because it
is defined at the level of the connection rather than a first order structure such as a
metric, it is an intrinsically second order object.

Given a projective structure on a manifold N of dimension n, Dunajski and Mettler
[28] canonically construct a neutral signature Einstein metric g with non-zero scalar
curvature on a certain rank n affine bundle M → N . They thus convert a second order
object into a first order object on a larger manifold. The 2n–dimensional space M also
carries a natural symplectic form Ω, and an endomorphism J : TM → TM which is
such that J2 is the identity and g(· , ·) = Ω(· , J ·). This makes (M, g,Ω) a so–called
almost para–Kähler structure. We review their construction in Chapter 3.

In Chapter 4 we show that g arises as the Kaluza–Klein reduction of an Einstein
metric ĝ on an R∗ bundle κQ : Q → M which has curvature form κ∗

Q(Ω). We will
construct ĝ explicitly, and give an interpretation of the manifold (Q, ĝ) in terms of the
projective geometry on N .



2 Introduction

The work in Chapter 5 is based on the fact that for n = 2 (so that M has dimension
four), the conformal curvature of g is anti–self–dual. Recall that the Hodge operator ⋆
defined by a Euclidean or neutral signature metric in four dimensions is an involution
on two–forms (i.e. squares to the identity). It thus has eigenvalues ±1, and the space of
two–forms splits into the corresponding eigenspaces, which are referred to as self–dual
(SD) or anti–self–dual (ASD) respectively. Due to its index symmetries, the Weyl
conformal curvature tensor can be thought of as a map from two–forms to two–forms,
and therefore has a corresponding decomposition. Since the Weyl tensor encodes the
conformal curvature, we say that a conformal or (pseudo–)Riemannian manifold whose
Weyl tensor is ASD is equipped with an ASD conformal structure.

The field equations corresponding to anti–self–duality of the Weyl tensor in four
dimensions can be solved by a twistor construction, and are thus integrable [77]. This
means that any systems of differential equations which can be obtained from them by
symmetry reduction should also be integrable (see [55] for a review). In particular,
the class of dispersionless integrable systems in three dimensions arise in this way.
The construction [28] provides some examples of ASD conformal structures in neutral
signature which, in the presence of a (non–null) symmetry, give rise to solutions of
an integrable system called the SU(∞)–Toda field equation via (2 + 1)–dimensional
Einstein–Weyl structures. In Chapter 5 we discuss the extraction of SU(∞)–Toda
fields obtainable in this way.

In Chapter 6 we return to projective structures of any dimension, and show that
the structure (M, g,Ω) can be thought of as compactifiable in a certain sense. Recall
that a (pseudo–)Riemannian manifold (M, g) is said to be conformally compact if there
is a smooth positive function T such that T 2g smoothly extends to a manifold with
boundary M = M ∪ ∂M , and the set {m ∈ M : T (m) = 0} is a hypersurface which
coincides with the boundary ∂M . This is a useful concept because (M,T 2g) has the
same conformal structure, and hence the same causal structure, as (M, g). It has been
used to study causal structures in both general relativity [61] and quantum field theory
[83]. It is also useful for formulating the boundary conditions of conformally invariant
field equations such as those arising in Yang–Mills theory [75].

Recent work by Čap and Gover [17, 18] has generalised this idea to other geometrical
structures which admit some weakening that extends to a manifold with boundary.
One example of such a structure is an almost complex manifold (M,J), that is, a
manifold carrying a smooth endomorphism J of the tangent bundle which squares
to −Id. If (M,J) carries a connection ∇ which is correctly adapted to J , one can
define the c–projective equivalence class [∇] to which ∇ belongs, and ask whether the
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c–projective structure (M,J, [∇]) extends to a manifold with boundary M [18]. The
main goal of Chapter 6 is to adapt the work of [18] to the para–c–projective case, where
J instead squares to Id, and to show that the endomorphisms J on the manifolds
(M, g,Ω) arising in the projective to Einstein correspondence have correctly adapted
connections which admit so–called para–c–projective compactification. The result of
this is that the manifolds (M, g,Ω) can be thought of as para–c–projectively compact.

Chapter 2 has its own notation and conventions; notation and conventions for
Chapters 3 to 6 will be introduced at the beginning of Chapter 3.





Chapter 2

The φ4 kink on a wormhole
spacetime

The soliton resolution conjecture [71] states that solutions to solitonic equations with
generic initial data should, after some non–linear behaviour, eventually resolve into
a finite number of solitons plus a radiative term. This conjecture is intimately tied
to soliton stability, which has been investigated for a number of solitonic equations,
including that of φ4 theory on R1,1. In this chapter, we study a modification of this
theory on a 3 + 1 dimensional wormhole spacetime which has a spherical throat of
radius a, with a focus on the stability properties of the modified kink. In particular,
we prove that the modified kink is linearly stable, and compare its discrete spectrum to
that of the φ4 kink on R1,1. We also study the resonant coupling between the discrete
modes and the continuous spectrum for small but non–linear perturbations. Some
numerical and analytical evidence for asymptotic stability is presented for the range of
a where the kink has exactly one discrete mode. This chapter is almost identical to
the preprint [80].

2.1 Background: the φ4 kink on R1,1

One dimensional φ4 theory is well–documented in the literature (see for example [53]).
The aim of this section is to introduce some notation and some ideas about stability
which will be useful when we come to consider the modified theory.
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2.1.1 Topological stability and the kink solution

The action takes the form

S =
∫
R2

(
1
2η

ab∂aφ∂bφ+ 1
2(1− φ2)2

)
dxdt,

where xa = (t, x) are coordinates on R1,1 and ηab is the Minkowski metric with signature
(−,+). Note that it has two vacua, given by φ = ±1. Finiteness of the associated
conserved energy

E =
∫
R

(
1
2(φt)2 + 1

2(φx)2 + 1
2(1− φ2)2

)
dx, (2.1)

requires that the field lies in one of these two vacua in the limits φ± = limx→±∞[φ(x)].
We can thus classify finite energy solutions in terms of their topological charge N =
(φ+ − φ−)/2, which takes values in {−1, 0, 1}.

The equations of motion are

φtt = φxx + 2φ(1− φ2) (2.2)

and we find a static solution φ = tanh(x− c) which we call the flat kink. It interpolates
between the two vacua and thus has topological charge N = 1. The constant of
integration c can be thought of as the position of the kink. We will henceforth use
Φ0 to denote the static kink at the origin, that is, Φ0(x) = tanh(x). Since any small
departure from φ = ±1 in the limits x → ±∞ results in non–convergence of the
integral (2.1), no finite energy deformation can affect N . For this reason, we say that
the kink is topologically stable.

2.1.2 Linear stability

A second notion of stability which will be important to our discussion is linear stability.
On discarding non–linear terms, we find that small perturbations φ(t, x) = Φ0(x) +
eiω0tv0(x) satisfy the Schrödinger equation

L0v0 := −v′′
0 − 2(1− 3Φ2

0)v0 = ω2
0v0. (2.3)

The potential V0(x) = −2[1− 3Φ0(x)2] exhibits a so–called “mass gap”, meaning that
it takes a finite positive value in the limits x→ ±∞. In this case, V0(±∞) = 4. For
ω2

0 > 4, (2.3) admits a continuous spectrum of wave–like solutions.
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In addition to its continuum states, the Schrödinger operator in (2.3) has two
discrete eigenvalues with normalisable solutions given by

(
v0(x), ω0

)
=
(√

3
2 sech2(x), 0

)
and

(
v0(x), ω0

)
=
(√

3√
2

sech(x)tanh(x),
√

3
)
,

(2.4)
where we have chosen the normalisation constant such that

∫∞
−∞ v2

0(x)dx = 1.
The first of these is the zero mode of the kink. Its existence is guaranteed by

the translation invariance of (2.2), and up to a multiplicative constant it is equal to
Φ′

0(x). Excitation of this state corresponds to performing a Lorentz boost. In the
non–relativistic limit, this amounts to replacing Φ0(x) with Φ0(x− vt) for some v ≪ 1
[53].

The second normalisable solution, called an internal or discrete mode, has non–zero
frequency ω0, and is thus time periodic. In the full non–linear theory, it decays through
resonant coupling to the continuous spectrum [52]. This phenomenon is of considerable
interest in non–linear PDEs, and was studied in a more general setting in [69]. The
corresponding process in the modified theory will be discussed in Section 2.4.

Linear stability of the kink is equivalent to the Schrödinger operator L0 in (2.3)
having no negative eigenvalues, so that linearised perturbations cannot grow expo-
nentially with time. One way to see that the kink is linearly stable is via the Sturm
oscillation theorem:

Theorem 2.1.1 (Sturm). Let L be a differential operator of the form

L = − d2

dx2 + V (x)

on the smooth square integrable functions u on the interval [0,∞), with the boundary
condition u(0) = 0 (corresponding to even parity) or u′(0) = 0 (corresponding to odd
parity). Let ω2 be an eigenvalue of L with associated eigenfunction u(x;ω). Then the
number of eigenvalues of L (subject to the appropriate boundary conditions) which are
strictly below ω2 is the number of zeros of u(x;ω) in (0,∞).

Note that the symmetry of (2.3) under x 7→ −x means that any solution on the
interval [0,∞) has a corresponding solution on the interval (−∞, 0], and these solutions
can be pieced together to make a smooth solution on (−∞,∞) as long as the boundary
conditions at x = 0 are chosen to ensure parity ±1. Thus there is a one–to–one
correspondence between solutions on [0,∞) and solutions on (−∞,∞) which are
smooth at x = 0. Since the eigenfunctions (2.4) have no zeros on the interval [0,∞), it
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follows that there can be no eigenfunctions with ω2
0 < 0, and thus the kink is linearly

stable.

2.1.3 Asymptotic stability

The final notion of stability that we will consider is that of asymptotic stability.
Stated simply, asymptotic stability of the kink means that for sufficiently small initial
pertubations, solutions of (2.2) will converge locally to Φ0(x) or its Lorentz boosted
counterpart. This was proved in [45] for odd perturbations, but has not been proved
in the general case.

2.1.4 Derrick’s scaling argument

Generalisation of the finite energy φ4 kink to higher dimensional Minkowski spacetimes
is prohibited by a scaling argument due to Derrick [23]. Suppose Φn(x) is a static,
finite energy solution to the equation of motion of the φ4 theory on R1,n. Then it is a
minimiser of the (static) energy

E(Φn) =
∫ (
∇Φn(x) · ∇Φn(x) + U(Φn)

)
dnx =: E1 + E2,

where we have split E into the two components coming from the two different terms in
the integrand. Now consider a spatial rescaling x→ µx, µ > 0 and define

e(µ) = E(Φn(µx)) =
∫ (
∇(Φn(µx)) · ∇(Φn(µx)) + U(Φn(µx))

)
ddx

=
∫ (

µ2∇Φn(µx) · ∇Φn(µx) + U(Φn(µx))
)
ddx

=µ2−nE1 + µ−nE2,

where we have obtained the last line by a change of variables from x to µx.
If Φn(x) is a minimiser of E then µ = 1 must also be a stationary point of e(µ).

Evaluating the derivative yields

e′(µ) =

−nµ
−n−1E2, if n = 2

(2− n)µ1−nE1 − nµ−n−1E2, otherwise.

Since E1, E2 and µ are all positive, the derivative can only have a zero only when n

and 2− n have the same sign, which only happens when n = 1. We thus conclude that
no static, finite energy solutions to the equations of motion exist for n > 1.
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In order to construct a higher dimensional φ4 kink, we must add curvature. In the
next section we introduce a curved background, and show that a modified φ4 kink
exists on this background. We will also examine a limit in which the modified kink
reduces to the flat kink. In Section 2.3 we consider linearised perturbations around the
modified kink, proving that it is linearly stable and comparing its discrete spectrum to
that of the flat kink. In Section 2.4 we examine the mode of decay to the modified
kink in the full non–linear theory, in particular the resonant coupling of its internal
modes to the continuous spectrum.

2.2 The static kink on a wormhole

We now replace the flat R1,1 background with a wormhole spacetime (M, g), where

g = −dt2 + dr2 + (r2 + a2)(dϑ2 + sin2 ϑdϕ2)

for some constant a > 0, and −∞ < r <∞. This spacetime was first studied by Ellis
[32] and Bronnikov [9], and has featured in a number of recent studies about kinks
and their stability [5, 6]. Note the presence of asymptotically flat ends as r → ±∞,
connected by a spherical throat of radius a at r = 0.

Our action is modified by the presence of a non-flat metric:

S =
∫ (

1
2g

ab∂aφ∂bφ+ 1
2(1− φ2)2

)√−gdx,
where xa are now local coordinates on M . Variation with respect to φ gives

�gφ+ 2φ(1− φ2) = 0 (2.5)

where �gφ = 1√
−g
∂a(gab√−g∂bφ). We will always assume φ is independent of the

angular coordinates (ϑ, ϕ), so (2.5) can be written explicitly as

φtt = φrr + 2r
r2 + a2φr + 2φ(1− φ2). (2.6)

The conserved energy in the theory is given by

E =
∫ +∞

−∞

(
1
2(φt)2 + 1

2(φr)2 + 1
2(1− φ2)2

)
(r2 + a2)dr,
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which we require to be finite. This imposes the condition φ2 → 1 as r → ±∞, so that
the field lies at one of the two vacua at both asymptotically flat ends.

Static solutions φ(r) satisfy

φ′′ + 2r
r2 + a2φ

′ = − d

dφ

(
− 1

2(1− φ2)2
)
, (2.7)

which, imagining r as a time coordinate, can be thought of as a Newtonian equation of
motion for a particle at position φ moving in a potential U(φ) = −(1− φ2)/2, with a
time dependent friction term.

In addition to the two vacuum solutions, we have a single soliton solution which
interpolates between the saddle points at (−1, 0) and (1, 0) in the (φ, φ′) plane. Its
existence and uniqueness among odd parity solutions follow from a shooting argument:
suppose the particle lies at φ = 0 when r = 0. If its velocity φ′(0) is too small, it will
never reach the local maximum of the potential at φ = 1, but if φ′(0) is too large it will
overshoot the maximum so that U(φ)→ −∞ as r →∞, thus having infinite energy.
Continuity ensures that there is some critical velocity φ′(0) such that the particle
reaches φ = 1 in infinite time and has zero velocity upon arrival. This corresponds to
the non–trivial kink solution, which we call Φ(r). Time reversal implies that φ→ −1
as r → −∞, and that the anti–kink φ(r) = −Φ(r) is also a solution.

We can find Φ(r) numerically using a shooting method for the gradient at r = 0.
Figure 2.1 shows such numerically generated kinks for several values of a. Note that
the absolute value of Φ(r) is always greater than or equal to that of the flat kink Φ0(r),
and that at fixed non–zero r, the absolute value of Φ decreases as a increases. The
reason for this will become clear in Section 2.3. In Section 2.2.1 we examine Φ(r) in
the limit where a is large, finding that it reduces to the flat kink Φ0(r), and examining
its departure from the flat kink at first order in 1/a2.

We again label the values at the boundary as

φ± := lim
r→±∞

Φ(r) ∈ {±1}.

Since no finite energy deformation can change the value of the topological charge
N = (φ+ − φ−)/2 ∈ {−1, 0, 1}, we again conclude that Φ(r) is topologically stable.

2.2.1 Large a limit

As a→∞, equation (2.6) becomes the standard equation (2.2) for the flat kink. It is
thus helpful to expand the modified kink in ϵ2 := 1/a2 for small ϵ2, since we can then
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Fig. 2.1 The kink solution for several values of a, along with the flat kink Φ0(r).

solve both (2.6) and (2.10) analytically up to O(ϵ4). We shall denote the static kink
by Φϵ(r) in this limit. It satisfies

Φ′′
ϵ + 2rϵ2

ϵ2r2 + 1Φ′
ϵ = −2Φϵ(1− Φ2

ϵ). (2.8)

Setting Φϵ(r) = Φ0(r) + ϵ2Φ1(r) +O(ϵ4) we obtain at order zero the equation (2.2)
of a static kink on R1,1. This has solution Φ0(r), where we have chosen the kink at the
origin to restrict to solutions with odd parity.

At order ϵ2 we find that Φ1(r) must satisfy

Φ′′
1 + 2rsech2r = 2Φ1(2− 3sech2r).

The unique solution which is odd and decays as r → ±∞ is given by

Φ1(r) = 1
24sech2r(f1(r) + f2(r) + f3(r)),
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where

f1(r) = r
[
3− 8cosh(2r)− cosh(4r)

]
,

f2(r) = sinh(2r)
[
8log(2cosh(r))− 1

]
+ sinh(4r)log(2cosh(r)),

f3(r) = π2

2 + 6r2 + 6Li2(−e−2r),

and Li2(z) is the dilogarithm function, which is the special case s = 2 of the polyloga-
rithm

Lis(z) =
∞∑

k=1

zk

ks
.

To show that Φ1(r) is odd, note that sech2r is an even function, and that f1 and f2

are constructed from products of even and odd functions, and hence are odd. To see
that f3 is also odd, we use Landen identity for the dilogarithm:

Li2(−e−2r) + Li2(−e2r) = −π
2

6 −
1
2
[
log(e−2r)

]2
= −π

2

6 − 2r2,

thus verifying f3(r) + f3(−r) = 0.
We now turn to the behaviour of Φ1(r) as r →∞. Since sech2r ∼ 4e−2r for large r,

we need only consider terms in the {fi} of order e2r or higher. We first note that

log(2coshr) = log(er(1 + e−2r)) = r + log(1 + e−2r)
= r + e−2r +O(e−4r).

Then

f1(r) = −4re2r − r

2e4r +O(er)

f2(r) = 1
2e2r(8r + 8e−2r − 1) + 1

2e4r(r + e−2r) +O(er)

= 4re2r + r

2e4r +O(er),

so f1(r) + f2(r) = O(er). Since f3(r) = O(r2) for large r, we see that Φ1(r) vanishes
as r →∞, as we expect. Note that its vanishing as r → −∞ then follows using parity.
A plot of Φ1(r) is shown in Figure 2.2.
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Fig. 2.2 The order ϵ2 perturbation to the static kink on R1,1.

2.3 Linearised perturbations around the kink

To study the linear stability of the kink, we first plug

φ(t, r) = Φ(r) + w(t, r) (2.9)

into equation (2.6), discarding terms non–linear in w. Imposing the fact that Φ(r)
satisfies (2.7), we find

wtt = wrr + 2r
r2 + a2wr + 2w(1− 3Φ2).

For w(t, r) = eiωt(r2+a2)−1/2v(r), this becomes a one–dimensional Schrödinger equation

Lv := (−∂r∂r + V (r))v = ω2v, (2.10)

where the potential is given by

V (r) = a2

(r2 + a2)2 − 2(1− 3Φ2). (2.11)
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Fig. 2.3 The potential of the 1–dimensional quantum mechanics problem arising from
the study of stability of the soliton for values of a between a = 10 and a = 0.3.

Figure 2.3 shows the potential V (r) for several values of a. Note that for large a it
has a single well with a minimum at r = 0, close to the potential V0 corresponding
to the flat kink. As a decreases, the critical point at r = 0 becomes a maximum with
minima on either side, creating a double well. We find numerically that this happens
at about a = 0.55. Note that those potentials with a < 1/

√
2 are everywhere positive.

Proposition 2.3.1. The kink solution Φ(r) is linearly stable with respect to spherically
symmetric perturbations.

Proof. We first decompose the potential V (r) in (2.10) as V = V0 +V1 +Va, where

V0 = −2[1− 3Φ0(r)2], V1 = 6[Φ(r)2 − Φ0(r)2], Va = a2

(r2 + a2)2 .

As discussed above, we know that the operator L0 = −∂r∂r + V0 has no negative
eigenvalues. It then follows that L itself has no negative eigenvalues as long as the
functions V1(r) and Va(r) are everywhere non–negative.

The latter is obvious; to prove the former we recall that we can think of Φ(r) and
Φ0(r) as the trajectories of particles moving in a potential U(φ), where r is imagined as
the time coordinate. The particle corresponding to Φ(r) suffers an increased frictional
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force compared to Φ0(r), i.e.

Φ′′
0 = −∂U

∂φ

∣∣∣∣∣
φ=Φ0

, Φ′′ + 2r
r2 + a2 Φ′ = −∂U

∂φ

∣∣∣∣∣
φ=Φ

. (2.12)

Both Φ and Φ0 interpolate between the maxima of U at φ = ±1; reaching the minimum
(φ = 0) when r = 0.

Multiplying the equations (2.12) by Φ′
0 and Φ′ respectively, then integrating from r

to ∞, we have that at every instant of time

1
2(Φ′

0)2 + U(Φ0) = 0, 1
2(Φ′)2 + U(Φ) =

∫ ∞

r

2r
r2 + a2 (Φ′)2dr. (2.13)

These equations are equivalent to conservation of energy for each of the particles. Note
that the integral on the right hand side is non–negative for r ≥ 0, and vanishes only at
r =∞. In particular, when r = 0 we have U(Φ) = U(Φ0) = −1/2, so Φ′(0) > Φ′

0(0).
This means V1(r) is initially increasing from zero.

For V1(r) to return to zero at some finite r = r0, we would need that Φ(r0) = Φ0(r0)
at a point where Φ′(r0) ≤ Φ′

0(r0). However, this is made impossible by equations (2.13),
since at such a point U(Φ) = U(Φ0) and the integral on the right hand side is positive.
Hence V1(r) remains non–negative for all r > 0, and thus for all r since it is even in r.

�

2.3.1 Finding internal modes numerically

Bound states of the potential (2.11) correspond to internal modes of the kink like the
odd solution of (2.3) in (2.4). In contrast, for frequencies greater than ω = 2, solutions
to (2.10) are interpreted as radiation. It is possible to search for bound states of (2.11)
numerically. The method for this is as follows:

1. For the chosen value of a, generate the soliton Φ(r) as described above.

2. Calculate the potential V (r).

3. For some initial guess of the eigenvalue ω2, integrate equation (2.10) numerically,
setting v(0) = 1 and v′(0) = 0 to obtain even bound states and v(0) = 0, v′(0) = 1
to obtain odd bound states.

4. Use a bisection method to find the value of ω2 for which a bound state exists.
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Fig. 2.4 Even bound states of the potential V0(r) and of the potential V (r) for two
different values of a.

This procedure will only be effective within the range of r for which Φ(r) is calculated.
For large a, the potential has both an even and an odd bound state which look

qualitatively similar to the internal modes (2.4) of the φ4 kink on R1,1. The bound
states for several values of a can be found in Figures 2.4 and 2.5. As a decreases, the
eigenvalues ω2 of the bound states increase, until they disappear into the continuous
spectrum (ω2 > 4). This disappearance will be further discussed in Section 2.3.3. The
internal mode frequencies are plotted against a in Figure 2.6. The choice of axis ticks
will be motivated in Section 2.4.

2.3.2 Large a limit

We can also perturbatively expand the eigenvalues of the eigenvalue problem (2.10).
Consider solutions to (2.6) of the form1 φϵ(r) = Φϵ(r) + eiωtvϵ(r), where vϵ is small.
These satisfy

v′′
ϵ + 2rϵ2

ϵ2r2 + 1v
′
ϵ + 2(1− 3Φ2

ϵ)vϵ = −ω2
ϵ vϵ. (2.14)

1Note that in Section 2.3 we considered perturbations v(r) which differ from vϵ(r) by a factor
of (r2 + a2)−1/2, since such perturbations are described by a Schrödinger problem. Here it will be
simpler to remove this factor; however there is a one–to–one correspondence between v(r) and vϵ(r).
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Fig. 2.5 Odd bound states of the potential V0(r) and of the potential V (r) for two
different values of a.
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Fig. 2.6 The frequencies of the internal modes of the kink plotted against the wormhole
radius a.
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Let (vϵ, ω
2
ϵ ) be a solution to (2.14) with

ω2
ϵ = ω2

0 + ϵ2ξ +O(ϵ4) and vϵ(r) = v0(r) + ϵ2v1(r) +O(ϵ4).

Our aim will be to find ξ. Substituting into (2.14), at zero order we obtain the equation
(2.3) which controls the linear stability analysis of the φ4 kink on R1,1.

The terms of order ϵ2 in (2.14) give us

v′′
1 + 2rv′

0 + 2(1− 3Φ2
0)v1 − 12Φ0Φ1v0 = −ω2

0v1 − ξv0. (2.15)

We multiply equation (2.15) by v0, and subtract from this v1 multiplied by equation
(2.3). Integrating the result from r = −∞ to r =∞, we find∫ ∞

−∞

(
v′′

1v0 − v′′
0v1

)
dr +

∫ ∞

−∞
2rv′

0v0dr − 12
∫ ∞

−∞
Φ0Φ1v

2
0dr = −ξ.

In the first term the integrand is a total derivative, and the second term is easily found
to be −1 using integration by parts. We thus obtain

ξ = 1 + 12
∫ ∞

−∞
Φ0Φ1v

2
0dr, (2.16)

which we can evaluate for each of the solutions (2.4) using the symbolic computation
facility in Mathematica. We find ξ = 2 in the case of the zero mode and ξ = π2 − 7
in the case of the first non–trivial vibrational mode. We can check these values by
finding (v, ω) numerically as described in Section 2.3.1 for a range of small values of ϵ
and comparing ω2 to the ω2

0 + ξϵ2 predicted here. The corresponding plots are shown
in Figures 2.7 and 2.8.

2.3.3 Critical values of a

It is interesting to investigate the values of a at which the internal modes disappear
into the continuous spectrum. The larger of these, at which the odd internal mode
disappears, we shall call a1. The smaller one, at which the even internal mode
disappears, we shall call a0.

The most convenient method of estimating a0 and a1 is based on the Sturm
Oscillation Theorem 2.1.1. The points at which the even and odd internal modes
disappear into the continuous spectrum are the points at which the zeros of the even
and odd eigenfunctions of L with ω2 = 4 disappear. We can thus examine the number
of zeros of the odd eigenfunction with ω2 = 4 to determine the number of odd bound
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Fig. 2.7 A comparison of the predicted and numerical calculations for the energy of
the zero mode as a function of ϵ2 for small ϵ.
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Fig. 2.8 A comparison of the predicted and numerical calculations for the energy of
the odd vibrational mode as a function of ϵ2 for small ϵ.
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states with ω2 < 4. The critical value a1 which we are searching for can then be found
using a bisection method. An equivalent method using even bound states will yield an
estimate of a0.

One problem with this method is that we need the number of zeros in the interval
(0,∞), and the shooting method we use to generate Φ(r) and V (r) is only accurate up
to a finite value of r. Since zeros of the eigenfunction with ω2 = 4 disappear at r =∞,
this limits the accuracy with which we can determine a0 and a1.

For the finite integration range which is accessible based on the shooting method,
the odd state disappears at a1 ≈ 0.8 and the even state disappears at a0 ≈ 0.3.

For a potential V(r) which decays sufficiently quickly as r → ±∞, it is well known
that the condition

I :=
∫ ∞

−∞
V(r)dr < 0 (2.17)

is sufficient to ensure that the operator −∂r∂r + V(r) has at least one bound state. In
fact, the condition I ≤ 0 is sufficient [68]. However, (2.17) is not a necessary condition:
there are potentials which have at least one bound state where (2.17) is not satisfied.
It is interesting to investigate the disappearance of our ground state in this context.

For us the relevant choice is V(r) = V (r)−4 so that V(r) vanishes at the boundaries.
We then examine the value of this integral for the critical value a = a0 when the ground
state disappears. We find that I ≈ 0 at the critical value of a0 ≈ 0.3 given above. We
can also search numerically for the value of a at which I = 0; this also occurs at around
a0 ≈ 0.3. Thus our results would be consistent with the conjecture that (2.10) has no
bound states for I > 0.

2.4 Resonant coupling of the internal modes to the
continuous spectrum

We now move on to consider time dependent perturbations of the form

φ(t, r) = Φ(r) + (r2 + a2)−1/2w(t, r),

where we consider non–linear terms in w(t, r). Substituting into (2.6) we find

wtt = −Lw + f(w), (2.18)
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where we have defined
f(w) = − 6w2Φ√

a2 + r2
− 2w3

a2 + r2 , (2.19)

suppressing the dependence of f on r to simplify the notation. We will not have much
need for the expression for f other than to note that it contains terms which are
quadratic and cubic in w.

If a is large enough to allow internal modes, then these can only decay through
resonant coupling to the continuous spectrum of L. The analogous process of decay to
the φ4 kink on R1,1 was discussed in [52], and the general theory was developed in [69].
In the following sections we investigate this decay in the case of a single internal mode,
before comparing our result with numerical data.

2.4.1 Conjectured decay rate in the presence of a single in-
ternal mode

In this section we follow the analysis in [6]. Looking at Figure 2.6, we note that for
a ∈ (0.3, 0.8) we have

spec L = {ω2} ∩ [m2,∞), ω2 < m2 < 4ω2 (2.20)

where m2 = 4. As above, we denote the unique normalised eigenfunction of L by v, so
that Lv = ω2v. We will use ⟨·, ·⟩ to denote the usual inner product on R.

We decompose the perturbation as

w(t, r) = α(t)v(r) + η(t, r), (2.21)

where v(r) refers to the single even internal mode of the kink and η is a superposition
of states from the continuous spectrum of L. Where there is only one internal mode
present, its frequency ω always lies in the upper half of the mass gap: 1 < ω < 2. This
is important because it means that 2ω lies within the continuous spectrum.

We substitute this into (2.18) and project onto and away from the internal mode
direction, obtaining the following equations for α and η:

α̈ + ω2α = ⟨v, f(αv + η)⟩ (2.22)
η̈ + Lη = P⊥f(αv + η), (2.23)
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where P⊥ is the projection onto the space of eigenstates of L which are orthogonal to
v, given by

P⊥ψ = ψ − ⟨v, ψ⟩v. (2.24)

These equations have initial conditions α(0) and η(0, r) such that

φ(0, r) = Φ(r) + (r2 + a2)−1/2(α(0)v(r) + η(0, r)), and
φ̇(0, r) = (r2 + a2)−1/2(α̇(0)v(r) + η̇(0, r)).

In the following analysis we investigate decay of α(t). Equation (2.22) has a
homogeneous solution consisting of oscillations with frequency ω. Since 2ω lies within
the continuous spectrum of L, there will be a resonant interaction between these
oscillations and the radiation modes in η with frequencies ±2ω, arising from the
term of order α2 in the right hand side of (2.23). Thus, to leading order, (2.23) is a
driven wave equation with driving frequency 2ω. This resonant part of η will have
a back–reaction on α through (2.22), which will result in decay of the internal mode
oscillations.

We now define α1 = α, ωα2 = α̇1 so that (2.22) becomesα̇1 = ωα2,

α̇2 = −ωα1 + 1
ω
⟨v, f(α1v + η)⟩,

or equivalently

Ȧ = −iωA+ i

ω

〈
v, f

(
1
2(A+ Ā)v + η

)〉
, (2.25)

where A = α1 + iα2. Next we write η1 = η, η2 = η̇1, converting (2.23) toη̇1 = η2,

η̇2 = −Lη1 + P⊥f
(

1
2(A+ Ā)v + η1

)
.

We will regard the right hand sides of (2.25) and (2.4.1) as power series in A and
η. Terms which we expect to be higher order will not be treated rigorously; for this
reason, our analysis will produce only a conjecture about the decay rate. Numerical
evidence concerning the conjecture will be discussed in Section 2.4.2.

It will be helpful to introduce the notation Op(A, η) to mean terms of at least order
p in A, Ā, η1, η2, so that A2, η2

1 and Āη1 are all examples of terms which are O2(A, η).
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Currently, the coupling between (2.25) and (2.4.1) is O2(A, η). We will write

f

(
1
2(A+ Ā)v + η1

)
=

∑
k+l≥2

fklA
kĀl +

∑
k+l≥1
n≥1

fklnη1A
kĀl

where k, l, n are non–negative, to elucidate the lowest order terms in (2.4.1). Note that
fkl and fkln are decaying functions of r defined by (2.19). We can then write

P⊥
[
f

(
1
2(A+ Ā)v + η1

)]
=

∑
k+l=2

P⊥[fkl]AkĀl +
∑

k+l=1
P⊥[fkl1η1]AkĀl +O3(A, η).

Terms in (2.25) with imaginary coefficients correspond to rotation in the complex
plane, and thus to oscillatory behaviour in α. At first order, A oscillates with frequency
ω. This is exactly the behaviour expected in the linearised theory discussed in Section
2.3. In fact, a priori, all the terms in the power series for Ȧ have coefficients which are
purely imaginary.

The next step in our analysis will be to attempt a change of variable ηi 7→ η̃i in
(2.4.1) so that its right hand side is O3(A, η̃), meaning η̃ is O(A3). It will turn out
that the required change of variables is complex. The result will be a term in (2.25)
which is O(A3) and has a real coefficient. This will be the lowest order term with a
real coefficient, and thus the key resonant damping term.

We write the change of variables as

η1 = η̃1 +
∑

k+l=2
bklA

kĀl, η2 = η̃2 +
∑

k+l=2
cklA

kĀl, (2.26)

where bkl and ckl are functions of r which are so far undetermined. Differentiating with
respect to time and using (2.25), we find

η̇1 = ˙̃η1 − iω
∑

k+l=2
bkl(k − l)AkĀl +O3(A, η̃),

η̇2 = ˙̃η2 − iω
∑

k+l=2
ckl(k − l)AkĀl +O3(A, η̃).

We equate these to the right hand sides of (2.4.1), substituting from (2.26) and requiring
that

˙̃η1 = η̃2 +O3(A, η̃), ˙̃η2 = −Lη̃1 +O3(A, η̃). (2.27)
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This yields

−iωbkl(k − l) = ckl and − iωckl(k − l) = −Lbkl + P⊥[fkl]

for k + l = 2, where we have discarded

∑
k+l=1

P⊥[fkl1η1]AkĀl =
∑

k+l=1
P⊥[fkl1η̃1]AkĀl +

∑
k+l=1
p+q=2

P⊥[fkl1bpq]Ak+pĀl+q

= O3(A)

because η̃ is at least third order in A.
The change of variables (2.26) is now given by the solution to

(
L− ω2(k − l)2

)
bkl = P⊥[fkl]. (2.28)

Because of the spectrum of L given in (2.20), for (k, l) ∈ (2, 0) ∪ (0, 2) the solution
bkl is in general a complex function of r, whilst for k = l = 1 the solution is real and
decaying. The reason for this can be understood using the variation of parameters
method for inhomogeneous ordinary differential equations.

Let g(r) be such that ⟨g, g⟩ is finite, and λ ≥ 0 a constant. The general solution of

(L− λ2)b(r) = g(r)

is given by

b(r) = Z2(r)
∫ r

−∞

1
W (r′)Z1(r′)g(r′)dr′ + Z1(r)

∫ ∞

r

1
W (r′)Z2(r′)g(r′)dr′,

where {Z1, Z2} is a basis for solutions to the homogeneous equation with Wronskian
W (r) = Z1Z

′
2 − Z2Z

′
1. The basis must be chosen so that the above integrals converge.

For k = l = 1, so that λ2 = 0 and hence λ2 < m2, we can choose a basis such that
W = 1 and Z1, Z2 are both real, and they decay to zero in the limits r → −∞ and
r →∞ respectively. Then

b11(r) = Z2(r)
∫ r

−∞
Z1(r′)P⊥[f11](r′)dr′ + Z1(r)

∫ ∞

r
Z2(r′)P⊥[f11](r′)dr′. (2.29)
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For λ2 ≥ m2, we cannot choose a real solution in general. In the case (k, l) ∈
(2, 0) ∪ (0, 2), we take as a basis the Jost functions {j±}, defined by

j±(r) ∼ e±iξr as r →∞,

where ξ =
√

4ω2 −m2. Their Wronskian is then W (j+, j−) = −2iξ, and we write the
solution as

b02(r) = b20(r) = ij−(r)
2ξ

∫ r

−∞
j+(r′)P⊥[f20](r′)dr′ + ij+(r)

2ξ

∫ ∞

r
j−(r′)P⊥[f20](r′)dr′.

(2.30)
Finally, we use (2.29) and (2.30) to change variable ηi 7→ η̃i in (2.25), obtaining

Ȧ = −iωA+ i

ω

 ∑
2≤k+l≤3

⟨v, fkl⟩AkĀl +
∑

k+l=1
p+q=2

⟨v, fkl1bpq⟩Ak+pĀl+q +O(A4)
, (2.31)

where we have ignored terms containing η̃1 since these are at least fourth order in A.
We can now see that, of the terms which we have written explicitly, the only ones that
can give a real contribution to Ȧ are those containing b02 and b20. We thus find

d

dt
|A|2 = ȦĀ+ A ˙̄A = 2Re[ȦĀ]

= 2
ω
Re
i ∑

k+l=1

(
⟨v, fkl1b20⟩Ak+2Āl+1 + ⟨v, fkl1b02⟩AkĀl+3

)+O(A5)

= − 2
ω
Im
[
⟨v, f101b20⟩(A3Ā+ A2Ā2 + AĀ3 + Ā4)

]
+O(A5).

In particular, the term A2Ā2 = |A|4 is real and non–oscillating, giving a contribution

d

dt
|A|2 ∼ − 2

ω
Im
[
⟨v, f101b20⟩

]
|A|4.

The terms A3Ā, AĀ3 and Ā4, on the other hand, would be expected to oscillate at
frequencies 2ω and 4ω at first order, and thus time average to zero.

Hence we conclude

|A| ∼
(

Γt+ 1
|A(0)|2

)−1/2

, Γ := 2
ω
Im
[
⟨v, f101b20⟩

]
. (2.32)
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The constant Γ is a function of a which can be calculated explicitly. Using (2.19)
and (2.30) gives

⟨v, f101b20⟩ =
∫ ∞

−∞
dr v(r)f101(r)

(
ij−(r)

2ξ

∫ r

−∞
j+(r′)P⊥[f20](r′)dr′

+ ij+(r)
2ξ

∫ ∞

r
j−(r′)P⊥[f20](r′)dr′

)
.

We now use the facts that f20 = vf101/4, and P⊥[f20] = f20 − ⟨v, f20⟩v. Note that f20

is an odd function of r, so in fact ⟨v, f20⟩ = 0 and so P⊥[f20] = f20. We thus obtain

⟨v, f101b20⟩ = 2i
ξ

(∫ ∞

−∞
dr
∫ r

−∞
dr′f20(r)j−(r)f20(r′)j+(r′)

+
∫ ∞

−∞
dr
∫ ∞

r
dr′f20(r)j+(r)f20(r′)j−(r′)

)
.

The two double integrals are integrals over complementary halves of the (r, r′) plane,
and thus sum to a single integral over the full plane. Hence

⟨v, f101b20⟩ = 2i
ξ

∫ ∞

−∞
f20(r)j+(r)dr

∫ ∞

−∞
f20(r′)j−(r′)dr′ = 2i

ξ
|⟨f20, j+⟩|2,

since j± are complex conjugates.
Combining this with (2.32) gives

Γ = 4
ωξ
|⟨f20, j+⟩|2.

The so–called Fermi Golden Rule then reads

|⟨f20, j+⟩| ≠ 0.

2.4.2 Numerical investigation of the conjectured decay rate

In order to integrate the PDE (2.6) to large times t, we employ the method of
hyperboloidal foliations and scri–fixing [86]. This is necessary because surfaces of
constant t can never intersect with future null infinity, as they always reach the
boundary of the spacetime at spatial infinity. In order to integrate out to large times
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Fig. 2.9 The decay of internal mode oscillations for various initial conditions when
a = 0.5.

at large r, i.e. to reach future null infinity, we define

s = t

a
−
√
r2

a2 + 1, y = arctan
(
r

a

)
,

resulting in the hyperbolic equation

∂s∂sF + 2sin(y)∂y∂sF + 1 + sin2(y)
cos(y) ∂sF = cos2(y)∂y∂yF + 2a2F (1− F 2)

cos2(y) (2.33)

for F (s, y) = φ(t, r). Then surfaces of constant s approach right future null infinity J +
R

along outgoing null cones of constant retarded time t− r, and left future null infinity
J +

L along outgoing null cones of constant advanced time t+ r. For more details see
[6, 86].

We solve the corresponding initial value problem at space–like hypersurfaces of
constant s, specifying φ(s = 0, y) and ∂sφ(s = 0, y). No boundary conditions are
required, since the principal symbol of (2.33) degenerates to ∂s(∂s± 2∂y) as y → ±π/2,
so there are no ingoing characteristics. This reflects the fact that no information comes
in from future null infinity.
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Following [5, 87] we define the auxiliary variables

Ψ = ∂yF, Π = ∂sF + siny∂yF

to obtain the first order symmetric hyperbolic system

∂sF = Π−Ψsiny (2.34)
∂sΨ = ∂y(Π−Ψsiny) (2.35)

∂sΠ = ∂y(Ψ− Πsiny) + 2tany(Ψ− Πsiny) + 2a2F (1− F 2)
cos2y

, (2.36)

which we solve numerically using the method of lines. Kreiss–Oliger dissipation is
required to reduce unphysical high–frequency noise. We also add the term−0.1(Ψ−∂yF )
to the right hand side of equation (2.35) to suppress violation of the constraint Ψ = ∂yF .

We are interested in the range of values a0 < a < a1 for which the kink has exactly
one internal mode. We find that, for fixed but arbitrary y, F (s, y) oscillates in s with a
frequency close to the internal mode frequency, and that these oscillations tend towards
a decay rate of s−1/2, as we expect from Section 2.4.1. Plots demonstrating this decay
at y = 0 for a = 0.5 are shown in Figure 2.9. Note that φ(0, s) is used as a proxy for
the internal mode amplitude, and we use a log–log scale to elucidate the dependence on
s−1/2 in the large s limit. The lines are labelled in the legend by the initial conditions
which produced them, with the exception of the gradient line 4.2s−1/2. The constant
4.2 is related to Γ as defined in (2.32).

2.4.3 Expected decay rates in other regimes

From Figure 2.6, we see that the second internal mode appears before the frequency of
the first internal mode moves out of the range (m/2,m). In the presence of more than
one internal mode, we expect complicated coupling between their amplitudes, making
the behaviour at large times very difficult to predict. However, if we restrict to odd
initial data, the solution to (2.18) remains odd. This means that the even internal
mode can never be excited, so the system effectively has only one internal mode. In
this case, the analysis in Section 2.4.1 still applies, since the frequency of the odd
internal mode always lies in the range (m/2,m), so we expect its amplitude to decay
like s−1/2.

For general initial data and wormhole radii a > a1, we cannot produce a concrete
conjecture about the decay rate. However, we expect the behaviour of the system to
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depend on the locations of the two internal mode frequencies within the mass gap.
The analysis in Section 2.4.1 for a single internal mode suggests that for frequencies
less than m/2, a real contribution to Ȧ does not appear until at least O(A4). In
this case, we require another change of variable in the radiation equation to rule out
the contribution of the radiative term at higher order. We then expect to solve an
equivalent of (2.28) where k+ l = 3 to find the required change of variable. If 9ω2 < m2

so that the solution is still real, we can proceed by induction, changing the variable
until the solution is complex. A real contribution to (2.31) will only be obtained
for k + l = N such that N2ω2 > m2. This would mean a real contribution to Ȧ at
O(AN+1), and hence result in a decay rate of s−1/N . Further detail can be found in [6].

Although the presence of a second internal mode complicates the dynamics, we
still expect the smallest N such that the even internal mode frequency ω satisfies
N2ω2 > m2 to be an important factor in the behaviour at large s. The axis ticks in
Figure 2.6 show the value of N for a range of a.





Chapter 3

The projective to Einstein
correspondence N →M

The purpose of this chapter is to introduce the preliminaries that are required to
understand the remainder of the thesis. We will first review projective geometry,
including the Cartan and tractor bundles associated with a projective structure, before
moving on to the projective to Einstein correspondence of [28]. We begin with some
notation and conventions.

Notation and conventions

• We use Rn to mean the real vector space of dimension n, and Rn to mean its
dual. We think of vectors in Rn as column vectors, and vectors in Rn as row
vectors.

• We will projectivise vector spaces by line projectivisation, that is, we will take
the space of unoriented lines through the origin, unless stated otherwise.

• When we refer to the projective to Einstein correspondence, the projective
manifold will be called N and will have dimension n, whilst the Einstein manifold
will be called M and will have dimension 2n.

• We use the letter π for maps to N , and the letter κ for maps to M . We will
attach subscripts to π and κ to give information about the preimage or the
significance of the map.

• We use lower case Latin indices i, j, k, · · · = 1, . . . , n for tensorial objects on N

and a, b, c, · · · = 1, . . . , 2n for tensorial objects on M .
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• We use ⊙ and ∧ to denote the symmetrised and antisymmetrised tensor product
respectively. That is,

A⊙B = 1
2(A⊗B +B ⊗ A), A ∧B = 1

2(A⊗B −B ⊗ A).

We also occasionally write A2 for A ⊙ A, and in Chapter 5 we will sometimes
omit the ⊙ altogether.

• Where indices have been symmetrised or antisymmetrised over, we will enclose
them in round or square brackets respectively.

• Our conventions for differential forms are

(dω)ab...c = ∂[aωb...c], (η ∧ ω)a...d = η[a...bωc...d],

ω = ωa...b dx
a ∧ · · · ∧ dxb, Fab dx

a ∧ dxb = F[ab] dx
a ⊗ dxb.

• We use to denote a contraction between a vector and a form.

• The Riemann curvature tensor R d
abc of a connection ∇a is defined by

(∇a∇b −∇b∇a)Xd = R d
abc X

c,

where X is any vector field.

• The Ricci tensor is defined by the contraction Rbc = R a
abc .

3.1 Projective Geometry

Our discussion follows Eastwood [31].

Definition 3.1.1. A projective structure (N, [∇]) on a manifold N is an equivalence
class [∇] of torsion–free affine connections on N which have the same geodesics as
unparametrised curves.

The following proposition converts definition 3.1.1 to a more operational form.

Proposition 3.1.2. Two torsion–free connections ∇ and ∇ belong to the same pro-
jective class if and only if their components Γi

jk and Γi

jk are related by

Γi

jk − Γi
jk = δi

jΥk + δi
kΥj (3.1)
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for some one–form Υ.

Proof. We denote by V the vertical sub–bundle of T (TN), where πT : TN → N

is the tangent bundle to N . A connection defines a splitting of the exact sequence

0 −→ V −→ T (TN) −→ π∗
TTN −→ 0 (3.2)

so that each ξ ∈ TxN has a unique pull–back in the horizontal sub–bundle complemen-
tary to Vx. The integral curves of these pull–backs, when projected down to N , then
define the geodesics of the connection.

Any two connections are related by some δΓk
ij, which satisfies δΓk

ij = δΓk
(ij) as long

as both connections are torsion–free. A change of connection is equivalent to a change
in the splitting of (3.2). At ξ ∈ TxN , the change is given by the homomorphism from
TxN to TxN = Vx defined by the contraction ξiΓk

ij. Thus the two connections define
the same geodesics if and only if ξiξjΓk

ij is a multiple of ξk for all ξi. This is true if
and only if there is a one–form Υi such that (3.1) is satisfied.1

�

One can show that the curvature of a connection ∇ in the projective class can be
uniquely decomposed as

R l
ijk = W l

ijk + 2δl
[iPj]k − 2P[ij]δ

l
k, (3.3)

where the Weyl projective curvature tensor, W l
ijk , is trace free, and the Schouten

tensor, Pij, is given in terms of the Ricci tensor by

Pij = 1
n− 1R(ij) + 1

n+ 1R[ij].

The objects W l
ijk and Pij transform as

W
l

ijk = W l
ijk , Pij = Pij −∇iΥj + ΥiΥj (3.4)

under a change of representative connection (3.1). Note that for n = 2 the Weyl tensor
always vanishes.

A projective structure in dimension n is said to be flat if it is diffeomorphic to the
real projective space RPn with its standard flat projective structure.

1To see this, take some one–form ωi and note that 2ξiξjδk
(iΥj)ωk vanishes if and only if ξkωk does.
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Definition 3.1.3. The real projective space RPn of dimension n is the space of unori-
ented lines through the origin in Rn+1, thought of as RPn = (Rn+1\{0})/R∗, where the
quotient identifies points P ∈ Rn+1 under the equivalence relation

(P 0, . . . , P n) ∼ (cP 0, . . . , cP n) ∀ c ∈ R∗.

The geodesics on RPn are given by planes through the origin in Rn+1 under the projection
πP : Rn+1 → RPn.

Remark 3.1.4. Let P denote a non–zero point in Rn+1 with coordinates (P 0, . . . , P n)T ,
and let [P ] denote the corresponding point in RPn, labelled by homogeneous coordinates.
In a patch U0 where P 0 ≠ 0, we can write [P ] = [1, P 1/P 0, . . . , P n/P 0]T and define
inhomogeneous coordinates on RPn by

(x1, . . . , xn) = (P 1/P 0, . . . , P n/P 0).

If we combine this with coordinate patches Ui where P i ̸= 0, i = 1, . . . , n, we can build
an atlas for RPn.

Remark 3.1.5. The flat projective structure on RPn has a special duality property which
we now discuss. Consider the set of hyperplanes through the origin in Rn+1. These
can be specified by their normal vector, which is defined only up to multiplication by
R∗. Let us denote such a hyperplane by a non–zero row vector L ∈ Rn+1. A point
P ∈ Rn+1 lies in the hyperplane defined by L if and only if L · P = 0.

When we projectivise the Rn+1, any P ̸= 0 descends to a point [P ] ∈ RPn, and any
hyperplane descends to a hypersurface [L] ⊂ RPn. The incidence relation L · P = 0
is now equivalent to the point [P ] lying in the hypersurface [L]. The homogeneous
coordinates [L] parametrise a second projective space which we think of as the dual to
the RPn parametrised by [P ], and denote RPn.

Remark 3.1.6. Real projective space can be viewed as homogeneous space as follows.
The group SL(n + 1,R) acts from the left via the fundamental representation on
coordinates (P 0, . . . , P n)T in Rn+1, and this descends to a transitive action on RPn. By
the orbit stabiliser theorem, RPn = SL(n+ 1,R)/S, where S is a subgroup stabilising
a point. If we choose the point [1, 0, . . . , 0]T , the elements of S are matrices of the
general form deta−1 b

0 a


for some a ∈ GL(n,R) and b ∈ Rn.
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Remark 3.1.7. The necessary and sufficient condition for flatness of a projective structure
depends on the dimension of the manifold on which it is defined. In dimension n > 2,
a projective structure is flat if and only if its Weyl projective curvature tensor vanishes.
However, for n = 2 the projective Weyl tensor is always vanishing. It can be shown
that a projective structure on a surface is flat if and only if the Cotton tensor ∇[iPj]k

vanishes for any choice of representative connection.

3.1.1 The Cartan bundle

One way of understanding the construction in [28] is via the Cartan bundle [20] of the
projective structure (N, [∇]) (see also [43, 66]). Cartan geometries generalise Klein’s
Erlangen programme [41], a study of homogeneous spaces G/S, to the curved case,
in which the total space G is replaced by a principal right S-bundle over a manifold
N such that the tangent space to N at every point is isomorphic to the Lie algebra
quotient g/s. Since projective structures are modelled on RPn, which can be viewed as
a homogeneous space, they constitute a type of Cartan geometry.

In the Riemannian case, the model space is Rn ∼= Euc(n)/SO(n). The corresponding
Cartan geometry is a general, curved Riemannian manifold. One has an obvious subclass
of frames which are “adapted” to the metric, i.e. those which are orthonormal. We can
thus think of a curved Riemannian manifold as a principal SO(n) bundle whose tangent
spaces are modelled on Rn ∼= Euc(n)/so(n). We say that Riemannian manifolds are
Cartan geometries of type (Euc(n), SO(n)).

The theory of Cartan geometries was developed as part of Cartan’s method of
moving frames. The idea is to pick out some adapted frames for manifolds equipped
with some non-metric structure. The bundle of such frames over a manifold is then a
principal bundle πG : G → N with structure group S.

The bundle G is equipped with a g-valued one-form θ called the Cartan connection.
It defines an isomorphism θ : TuG → g at every point u ∈ G such that the vertical
subspace VuG ⊂ TuG is mapped to s and the horizontal subpace HuG ⊂ TuG is defined
as the inverse image of g/s. Note that it is not a connection in the usual sense of a
principal bundle connection, since it takes value in a Lie algebra larger than that of
the structure group. Further details can be found in [66].

In the projective case, if we choose the point which is stabilised by S to be
[1, 0, . . . , 0], the Cartan connection can be written as a matrix

θ =
−trφ η

ω φ

 , (3.5)
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where ω, η and φ are one-forms valued in Rn, Rn and gl(n,R) respectively. We will
refer to the components of ω and η with respect to the natural basis of sl(n+ 1,R) as
{ω(i)} and {η(i)}, so that ω(i) and η(i) are both one-forms taking values in R.

Definition 3.1.8. The Cartan geometry of a projective structure (N, [∇]) consists of
a principal right S–bundle πG : G → N , where the right–action of some s ∈ S on G
is denoted by Rs, and a one–form θ on G called the Cartan connection, which takes
values in sl(n+ 1,R). The Cartan connection can be written in the form (3.5) and has
the following properties:

1. θu : TuG → sl(n+ 1,R) is an isomorphism for all u ∈ G;

2. θ(ξv) = v for all fundamental vector fields ξv on G;

3. R∗
sθ = Ad(s−1)θ = s−1θs for all s ∈ S.

4. If ξ is a vector field on G with the property that η(ξ) = φ(ξ) = 0 and ω(ξ) ∈
Rn\{0}, then the integral curve of ξ projects down to a geodesic on N and
conversely every geodesic of [∇] arises in this way.

5. The sl(n+ 1,R)-valued curvature two-form Θ satisfies

Θ = dθ + θ ∧ θ =
0 L(ω ∧ ω)

0 W (ω ∧ ω)

 , (3.6)

where L and W are smooth curvature functions valued in Hom(Rn ∧ Rn,Rn)
and Hom(Rn ∧ Rn,Rn ⊗ Rn) respectively. The function W represents the Weyl
projective curvature tensor appearing in (3.3).

Remark 3.1.9. The Cartan geometry of a projective structure is unique in the sense
that for any two Cartan geometries (π̂G : Ĝ → N, θ̂) and (πG : G → N, θ) of type
(SL(n + 1,R), S) satisfying the above properties there is a S–bundle isomorphism
ν : G → Ĝ such that ν∗θ̂ = θ.
Remark 3.1.10. For every open set U ⊂ N , projective vector fields on U are in one-to-
one correspondence with vector fields on π−1

G (U) which preserve θ and are equivariant
under the principal S–action.

3.1.2 Tractor bundles

The Cartan connection also gives us a unique connection on any bundle associated to
G via some S–module. In particular, let B be a vector space and ρB : S → GL(B) a
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representation of S acting on B. We can construct an associated bundle

πB : G ×ρB B → N

where points in G ×ρB B are equivalence classes of pairs [u, v], where u ∈ G and v ∈ B,
up to the equivalence relation

(u1, v1) ∼ (u2, v2) ⇔ ∃ s such that u2 = u1s, v2 = ρB(s−1)v1.

We thus obtain a vector bundle over N whose fibres are diffeomorphic to B. A
section σ̃ : N → G×ρB B is represented by a map σ : G → B which is equivariant in the
sense that σ(us) = ρB(s−1)σ(u) for all s ∈ S. Importantly, any such bundle inherits a
connection from the Cartan connection θ on G. The concept of an associated bundle
applies to any principal bundle, but we call vector bundles which are associated to a
Cartan bundle tractor bundles, and the connections that they inherit from the Cartan
connection are called tractor connections.

A particularly important example of a vector bundle associated to G is the cotractor
bundle, which defined by the canonical action of S on Rn+1 given by (s, L) 7→ Ls−1.
We call this bundle πT : T ∗ → N . In order to describe its connection, we consider a
section represented by σ : G → Rn+1 and define the one–form

dσ − σθ. (3.7)

This turns out to be a semi–basic2 one–form satisfying

R∗
s(dσ − σθ) = (dσ − σθ)s,

making σ 7→ dσ − σθ an equivariant connection on T ∗.
Although this construction of T ∗ relies on the Cartan bundle, it is possible to

construct it independently. In order to do so we need the notion of a projective density.
2Recall that a semi–basic form on a fibre bundle G → N is a form which is a linear combination,

with coefficients parametrised by the fibres, of basic forms on G (i.e. forms which are the pull-backs of
forms on N).
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Projective densities

From the projective change of connection (3.1) we can derive the corresponding change
in ∇χ for some m–form χ on N :

∇iχjk...l = ∇iχjk...l − (m+ 1)Υiχjk...l − (m+ 1)Υ[iχjk...l]. (3.8)

In particular, for a volume form (m = n) we find

∇iχjk...l = ∇iχjk...l − (n+ 1)Υiχjk...l,

where the final term in (3.8) has vanished because it contains a symmetrisation over
n+ 1 indices. We can write this in a more compact way as

∇iχ = ∇iχ− (n+ 1)Υiχ.

Note that for sections τ of the bundle E(w) := (Λn)−w/(n+1) we have

∇iτ = ∇iτ + wΥiτ. (3.9)

We called such sections projective densities of weight w, and for any vector bundle
B → N we write B(w) for the tensor product of B with E(w). For example, T ∗N(w)
is the bundle of one–forms with projective weight w, and for sections µi of T ∗N(w) we
have

∇iµj = ∇iµj + (w − 1)Υiµj −Υjµi. (3.10)

The cotractor bundle

We can now define the cotractor bundle πT : T ∗ → N . For a choice of connection in
the projective class we identify

T ∗ = E(1)⊕ T ∗N(1), (3.11)

so that a section can be represented by a pair τ
µi

 . (3.12)
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Under a change of projective connection (3.1), this splitting changes according to
 τ
µi

 =
 τ

µi + Υiτ

 . (3.13)

Note the exact sequence

0 −→ T ∗N(1) −→ T ∗ V−→ E(1) −→ 0, (3.14)

where we call the map V the projective canonical tractor3. A choice of connection in
the projective class defines a splitting (3.11) of (3.14).

The bundle T ∗ admits a projectively invariant tractor connection given by

∇T
i

 τ
µj

 =
 ∇iτ − µi

∇iµj + Pijτ

 , (3.15)

where ∇ is the choice of projective connection and Pij is its Schouten tensor. This
turns out to agree with (3.7). Under a change of projective connection (3.1), we find

∇T
i

 τ
µj

 = ∇T
i

 τ

µj + Υjτ


=
 ∇iτ − (µi + Υiτ)
∇i(µj + Υjτ) + Pijτ


=
 ∇iτ + Υiτ − (µi + Υiτ)
∇i(µj + Υjτ)−Υj(µi + Υiτ) + (Pij −∇iΥj + ΥiΥj)τ

 ,
where we have used (3.13) in the first line, (3.15) in the second and (3.9), (3.10) and
(3.4) in the third. After some cancellation, we identify

∇T
i

 τ
µj

 =
 ∇iτ − µi

∇iµj + Υj∇iτ −Υjµi + Pijτ


=
 ∇iτ − µi

∇iµj + Pijτ

 = ∇T
i

 τ
µj


3In fact V is a section of a bundle T (1), where T can be identified with a direct sum E(1)⊕ TN(1)

given a choice of connection in the projective class. The natural pairing between T and T ∗ defines
the map V : T ∗ → E(1).
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using (3.15) and the change of splitting (3.13) adapted to the tensor product of T ∗N

and T ∗ of which the derivative is a section.
Any tensor product of T , T ∗ and E(1) is equipped with a tractor connection which is

inherited from the connection on the standard cotractor bundle. Equivalently, any such
tensor product can be thought of as an associated vector bundle to the Cartan bundle
G, with its connection inherited from the Cartan connection via the corresponding
representation of S. It is this connection, with its special equivariance property, that
allows us to construct an Einstein metric as an invariant of the projective structure.
This construction is the subject of the following section.

3.2 The projective to Einstein correspondence

Consider a quotient of the total space G of the Cartan bundle by GL(n,R), which is
embedded in S in the obvious way:

GL(n,R) ∋ a 7−→
deta−1 0

0 a

 ∈ S. (3.16)

It is easily verified that
deta−1 0

0 a

0 η

ω 0

deta−1 0
0 a

−1

=
 0 ηa−1deta−1

(deta)aω 0

 ,
for any a ∈ GL(n,R), meaning that due to the equivariance property of the Cartan
connection, the natural contraction ηω := ∑

i η(i) ⊗ ω(i) defined by θ is preserved by
the adjoint action of this GL(n,R) subgroup. It thus descends to a naturally defined
object on the quotient M = G/GL(n,R).

Theorem 3.2.1. [28] There exist a metric and two–form (g,Ω) on M = G/GL(n,R)
such that the quotient map κq : P →M gives

κ∗
qg = Sym(ηω) (3.17)

κ∗
qΩ = Ant(ηω), (3.18)

where Sym and Ant denote the symmetric and anti-symmetric parts of the (0, 2) tensor
ηω. Moreover, Ω is closed as a consequence of the Bianchi identity satisfied by the
curvature two–form (3.6), g is Einstein with non-zero scalar curvature, and the two
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are related by an endomorphism J satisfying J2 = Id. Hence (g,Ω) is an almost
para–Kähler structure on M .

Remark 3.2.2. The full proof of Theorem 3.2.1 only appears explicitly in [28] in the
case n = 2, although it can be generalised to n > 2. This generalisation is discussed
in their appendix. They show that the Ricci scalar of g is 24 in the case n = 2. In
Chapter 4 we will need the Ricci scalar for general n. We will calculate this under the
assumption (stated without proof in [28]) that g is Einstein.
Remark 3.2.3. The quotient M turns out to be an affine bundle over N with structure
group S, i.e. S acts affinely on the fibres of πM : M → N , and sections of this bundle
are in one-to-one correspondence with representative connections ∇ ∈ [∇]. This means
that given some choice of connection ∇ ∈ [∇] we have a diffeomorphism κA : T ∗N →M

with which we can pull back the pair (g,Ω). In canonical local coordinates (xi, ζi) on
the cotangent bundle, we find

κ∗
Ag = dζi ⊙ dxi − (Γk

ijζk − ζiζj − Pij)dxi ⊙ dxj, (3.19)
κ∗

AΩ = dζi ∧ dxi + Pijdx
i ∧ dxj, i, j = 1, . . . , n.

Here Γi
jk are the connection components of the representative connection ∇ that we

chose, and its Schouten tensor is denoted Pij. This can be shown to be projectively
invariant in the sense that a different choice of ∇ ∈ [∇] corresponds to shifting the
fibre coordinates ζi, i.e. metrics on T ∗N resulting from pulling back g using different
representative connections are isometric. Explicitly, a projective transformation (3.1)
corresponds to a change

ζi −→ ζi + Υi. (3.20)

Remark 3.2.4. In fact, the metric and symplectic form (3.19) turn out to belong to a
one-parameter family {(gΛ,ΩΛ) ; Λ ̸= 0}, which can be written in local coordinates as

gΛ = dζi ⊙ dxi − (Γk
ijζk − Λζiζj − Λ−1Pij)dxi ⊙ dxj (3.21)

ΩΛ = dζi ∧ dxi + 1
ΛPijdx

i ∧ dxj, i, j = 1, . . . , n. (3.22)

Metrics of the form (3.21) are a subclass of so-called Osserman metrics. More details
can be found in [16]. They are all Einstein with non–zero scalar curvature 24Λ, but
for Λ ̸= 1 the relation to projective geometry is lost. For the remainder of the thesis
we will write g for gΛ=1 unless stated otherwise. Note that {gΛ} will be the subject of
Chapter 4, whilst in Chapters 5 and 6 we will restrict our attention to g because the
projective geometry is a key aspect of the content of these chapters.
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Remark 3.2.5. One could also consider taking a quotient of G by a different subgroup
of S. The R∗ bundle over M which we will discuss in Chapter 4 will turn out to be a
quotient of G by SL(n,R).

Remark 3.2.6. As mentioned above, in the special case where the (N, [∇]) is a projective
surface, M has dimension four, and so anti–self–duality is defined. It turns out that
both the symplectic form Ω and the conformal curvature of g are ASD. Both of these
facts will play an important role in Chapter 5.

Remark 3.2.7. Note that an endomorphism J which squares to the identity defines
two n–dimensional sub–bundles of the tangent bundle TM defined at each m ∈ M
as the vector subspaces of TmM which have eigenvalues ±1 with respect to J . These
sub–bundles form a pair of smooth distributions D± in TM . Further discussion of the
endomorphism J will appear in Chapter 6.

3.2.1 Symmetries of M

Recall that a projective vector field on any manifold with a connection generates a one–
parameter family of transformations which preserve the geodesics of that connection
up to parametrisation. Projective vectors fields thus naturally arise as the symmetries
of a projective structure. Explicitly, a vector field K̂ is projective if it satisfies

L
K̂

Γk
ij = δk

i Υj + δk
j Υi (3.23)

for some 1-form Υ, where Γk
ij are the connection components, and their Lie derivative

is defined by4

L
K̂

Γk
ij ≡

∂2K̂k

∂xi∂xj
+ K̂m∂Γk

ij

∂xm
− Γm

ij

∂K̂k

∂xm
+ Γk

im

∂K̂m

∂xj
+ Γk

mj

∂K̂m

∂xi
. (3.24)

One consequence of the symmetry property of the Cartan connection discussed
in remark 3.1.10 is that for every open set U ⊂ N we have an isomorphism between
the Lie algebra of projective vector fields on U and the Lie algebra of vector fields
on π−1

G (U) preserving the natural contraction ηω. Such vector fields must descend to
vector fields on π−1

M (U) preserving (g,Ω). In fact, it can be shown that every Killing
vector field of (M, gΛ) is also symplectic with respect to ΩΛ and is therefore the lift of
a projective vector field on (N, [∇]).

4Despite the fact that connection components are not tensorial objects, one can still define their Lie
derivative with respect to a vector K̂ by considering how they transform when one moves infinitesimally
along the curve defined by K̂. See [85] for further details.
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Explicitly, for every projective vector field K̂ of (N, [∇]) there is a corresponding
symmetry K of (M, gΛ,ΩΛ) given in local coordinates by

K = K̂ − ζi
∂K̂j

∂xi

∂

∂ζj

+ 1
ΛΥi

∂

∂ζi

, (3.25)

where Υi is defined by (3.23).

3.2.2 Tractor perspective

From the tractor perspective, the space M will turn out to be the projectivised cotractor
bundle of N with an RPn−1 sub–bundle removed from each fibre. We can understand
what this RPn−1 sub–bundle is as follows.

On the total space of T ∗ we pull back πT : T ∗ → N along πT to get π∗
T (T ∗)→ T ∗ as

a vector bundle over the total space T ∗. By construction this bundle has a tautological
section W ∈ Γ(π∗

T (T ∗)). We also have π∗
T (T (w)) for any weight w, and we shall write

simply V ∈ Γ(π∗
T (T (1))) for the pull back to T ∗ of the canonical tractor V on N .

Now define
κP : T ∗ −→M := P(T ∗) (3.26)

by the fibre–wise projectivisation, and use πM for the map

πM :M→ N.

We denote by ET ∗(w′), for w′ ∈ R, the line bundle on P(T ∗) whose sections correspond
to functions f : π∗

T T ∗ → R that are homogeneous of degree w′ in the fibres of
π∗

T T ∗ → P(T ∗). For any weight w we also have E(w) on N and its pull back to the
bundle π∗

ME(w)→ P(T ∗). We define the product of these two density bundles on M
as

E(w,w′) := π∗
T E(w)⊗ ET ∗(w′).

On T ∗ there is a canonical density τ ∈ Γ(π∗
T E(1)) given by

τ := V W,

Note that τ is homogeneous of degree 1 up the fibres of the map κP : T ∗ →M. Thus
τ determines, and is equivalent to, a section (that we also denote) τ of the density
bundle E(1, 1). So M is stratified according to whether or not τ is vanishing, and we
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write Z(τ) to denote, in particular, the zero locus of τ . We will show in Chapter 6
that M can be identified with M\Z(τ).

3.2.3 The model case

When (N, [∇]) is the flat projective structure RPn, the metric and symplectic form
(3.19) reduce to

g = dζi ⊙ dxi + ζiζj dx
i ⊙ dxj, Ω = dζi ∧ dxi, i, j = 1, . . . , n. (3.27)

In this case the Cartan bundle of N is just SL(n + 1,R), and M is simply the Lie
group quotient SL(n+ 1,R)/GL(n,R). The cotractor bundle has zero curvature, and
although it is not trivial, the restriction of P(T ∗) to the set Z(τ) ̸= 0 is. We can thus
write M as

M = {([P ], [L]) ∈ RPn × RPn | P · L ̸= 0}.

As discussed in Section 3.1, a point [L] ∈ RPn represents a line [L] ⊂ RPn which
passes through P ∈ RPn if and only if L · P = 0. In Chapter 5 we will show that for
n = 2, the conformal structure on M can be obtained by demanding that two pairs
([P ], [L]) and ([P̃ ], [L̃]) are null–separated if there exists a line which contains the three
points ([P ], [P̃ ], [L] ∩ [L̃]).

We also find in the model case that the symplectic form Ω is parallel with respect to
the Levi–Civita connection g∇ of g, meaning that the endomorphism J of TM which
relates g and Ω is also parallel. As a result of this, the distributions D± defined by the
two n–dimensional eigen–bundles of J are parallel in the sense that g∇ξ1ξ2 ∈ Γ(D±)
for all ξ1 ∈ Γ(TM), ξ2 ∈ Γ(D±). This makes the distributions Frobenius integrable,
meaning that the Lie bracket of any two sections of D± is also a section of D±, or
equivalently (as shown by Frobenius) that each of the two distributions is tangent to a
foliation by sub–manifolds of dimension n at every point.

To see that a parallel distribution is necessarily Frobenius integrable, note that the
Lie bracket can be written

[ξ1, ξ2] = ∇ξ1ξ2 −∇ξ2ξ1 ∈ Γ(D) for all ξ1, ξ2 ∈ Γ(D),

where D is a distribution which is parallel with respect to a connection ∇. The
Frobenius integrability of D± makes (M, g,Ω) not only almost para–Kähler but also
para–Kähler. Further discussion about this distinction can be found in Chapter 6.



Chapter 4

An Einstein metric on an R∗ bundle
over M

In this chapter, we show that there is a canonical Einstein metric on an R∗ bundle over
M , with a connection whose curvature is the pull–back of the symplectic structure
from M . This metric is interesting in the context of Kaluza–Klein theory. The material
covered here is based on material appearing in [30].

4.1 The model case

We first note that the flat projective structure on RPn gives a one–parameter family
of 2n–dimensional Einstein spaces M which are so–called Kaluza–Klein reductions of
quadrics in R2n+2 endowed with a flat neutral signature metric. When R2n+2 carries
such a metric, we call it Rn+1,n+1. Note that the phrase Kaluza–Klein refers to a
classical unified field theory of gravitation and electromagnetism. We will use it to
mean the construction of g from a metric in dimension 2n+ 1 of the form

g ± f 2(A+ dt)2,

where g, A and f are a metric, Maxwell potential and function on M .
For N = RPn, the family {(gΛ,ΩΛ) ; Λ ̸= 0} is given by

gΛ = dxi ⊙ dζi + Λζiζjdx
i ⊙ dxj (4.1)

ΩΛ = dζi ∧ dxi.
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Proposition 4.1.1. The Einstein spaces M carrying metric and symplectic form
(4.1) are projections from the (2n+ 1)–dimensional quadrics Q ⊂ Rn+1,n+1 given by
PαLα = 1

Λ , where P,L ∈ Rn+1 are coordinates on Rn+1,n+1 such that the metric is
given by

ĝ = dPαdLα,

under the embedding

Pα =

x
iet, α = i = 1, . . . , n

et, α = n+ 1

Lα =


ζie−t, α = i = 1, . . . , n

e−t

(
1
Λ − xkζk

)
, α = n+ 1

(4.2)

following Kaluza–Klein reduction by the vector ∂
∂t
.

Proof. We find the basis of coordinate 1-forms {dPα, dLα} to be

dPα =

et(dxi + xidt), α = i = 1, . . . , n
etdt, α = n+ 1

dLα =


e−t(dζi − ζidt), α = i = 1, . . . , n

−e−t

[(
1
Λ − xkζk

)
dt+ xkdζk + ζkdx

k

]
, α = n+ 1.

The metric is then given by

ĝ = et(dxi + xidt)⊙ e−t(dζi − ζidt) − etdt⊙ e−t

[( 1
Λ − x

kζk

)
dt+ xkdζk + ζkdx

k

]
= dxi ⊙ dζi + (xidζi − ζidx

i)⊙ dt − (xiζi)dt2

− dt⊙
[( 1

Λ − x
kζk

)
dt+ xkdζk + ζkdx

k

]

= dxi ⊙ dζi −
1
Λdt

2 − 2ζidx
i ⊙ dt

= dxi ⊙ dζi + Λζiζjdx
i ⊙ dxj − Λ

(
dt

Λ + ζidx
i
)2
,

which is clearly going to give gΛ under Kaluza–Klein reduction by ∂
∂t

.

�
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Note that the symplectic form Ω is the exterior derivative of the potential term
ζidx

i, implying a possible generalisation to the curved case.

4.2 The general case

We now return to a general projective structure (N, [∇]), corresponding to the metric
and symplectic form (3.21,3.22). Since symplectic form picks out the antisymmetric
part of the Schouten tensor, it has the fairly simple form

ΩΛ = dζi ∧ dxi −
∂[iΓk

j]k

Λ(n+ 1)dx
i ∧ dxj.

By inspection, this can be written ΩΛ = dA, where

A = ζidx
i − Γk

ik

Λ(n+ 1)dx
i.

This is a trivialisation of the Kaluza–Klein bundle which we are about to construct.
Note that for Λ = 1, under a change of projective connection (3.1) the corresponding
change in the fibre coordinates (3.20) ensures that Ω and A are unchanged.

Motivated by the Kaluza–Klein reduction in the flat case, we consider the following
metric.

Theorem 4.2.1. The metric

ĝΛ = gΛ − Λ
(
dt

Λ +A
)2

(4.3)

on an R∗ bundle κQ : Q →M is Einstein, with Ricci scalar 2n(2n+ 1)Λ.

Proof. We prove this using the Cartan formalism. Our treatment parallels a
calculation by Kobayashi [42], who considered principal circle bundles over Kähler
manifolds in order to study the topology of the base. For the remainder of this chapter
we will suppress the constant Λ, writing ĝ ≡ ĝΛ, g ≡ gΛ and Ω ≡ ΩΛ since the proof
applies to any choice Λ ̸= 0 within this family.

Consider a frame

ea =

dx
i, a = i = 1, . . . , n

dζi − (Γk
ijζk − Λζiζj − Λ−1Pij)dxj, a = i+ n = n+ 1, . . . 2n.

(4.4)
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In this basis the metric takes the form

g = e1 ⊙ en+1 + · · ·+ en ⊙ e2n. (4.5)

We are interested in the metric

ĝ = −e0 ⊙ e0 + g, (4.6)

where
e0 =

√
Λ
(
dt

Λ +A
)
.

Note that for Λ < 0 one can instead take the absolute value of Λ inside the square
root, and change the sign of e0 ⊙ e0 in the definition of ĝ.

We reserve Latin indices a, b, . . . for the 2n-metric components 1, . . . , 2n and allow
Greek indices µ, ν, . . . to take values 0, 1, . . . , 2n. The dual basis to {eµ} will be denoted
{Eµ} and will act on functions as vector fields in the usual way. We wish to find the
new connection 1-forms ψ̂µ

ν (defined by deµ = −ψ̂µ
ν ∧ eν) in terms of the old ones ψa

b

(defined by dea = −ψa
b ∧ eb). Hence we examine de0 to find ψ̂0

a.

de0 =
√

ΛdA =
√

ΛΩabe
a ∧ eb = −ψ̂0

a ∧ ea =⇒
ψ̂0

a =
√

ΛΩ[ab]e
b =
√

ΛΩabe
b, ψ̂a

0 =
√

ΛΩa
be

b.

Since dea is unchanged, we have that

ψ̂a
0 ∧ e0 + ψ̂a

b ∧ eb = ψa
b ∧ eb,

thus

ψ̂a
b ∧ eb = ψa

b ∧ eb −
√

ΛΩa
be

b ∧ e0 =⇒ ψ̂a
b = ψa

b +
√

ΛΩa
be

0.

We now calculate the curvature 2-forms Ψ̂µ
ν = dψ̂µ

ν + ψ̂µ
ρ ∧ ψ̂ρ

ν = 1
2R̂

µ
ρσν eρ ∧ eσ in

terms of Ψa
b = dψa

b + ψa
c ∧ ψc

b, where R̂ µ
ρσν is the Riemann tensor of Q. Note that
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we use the notation ψa
b = ψa

bce
c.

Ψ̂a
b = dψ̂a

b + ψ̂a
c ∧ ψ̂c

b + ψ̂a
0 ∧ ψ̂0

b

= dψa
b +
√

Λd(Ωa
be

0) + ψa
c ∧ ψc

b +
√

ΛΩa
ce

0 ∧ ψc
b

+
√

ΛΩc
bψ

a
c ∧ e0 + ΛΩa

[cΩ|b|d]e
c ∧ ed

= Ψa
b +
√

ΛEc(Ωa
b)ec ∧ e0 + Λ(Ωa

bΩcd + Ωa
[cΩ|b|d])ec ∧ ed

+
√

Λ(Ωc
bψ

a
cd − Ωa

cψ
c
bd)ed ∧ e0

= Ψa
b +
√

Λg∇cΩa
be

c ∧ e0 + Λ(Ωa
bΩcd + Ωa

[cΩ|b|d])ec ∧ ed.

Ψ̂0
a = dψ̂0

a + ψ̂0
b ∧ ψ̂b

a

=
√

ΛE[c(Ω|a|b])ec ∧ eb −
√

ΛΩabψ
b
c ∧ ec +

√
ΛΩbce

c ∧ (ψb
a +
√

ΛΩb
ae

0)
=
√

Λ(E[d(Ω|a|b])− Ωacψ
c
[bd] + Ωc[dψ

c
|a|b])ed ∧ eb + ΛΩbcΩb

ae
c ∧ e0

=
√

Λg∇[cΩ|a|d]e
c ∧ ed + ΛΩbcΩb

ae
c ∧ e0.

Hence we have that

R̂ a
cdb = R a

cdb + 2Λ(Ωa
bΩcd + Ωa

[cΩ|b|d])
R̂ a

c0b =
√

Λg∇cΩa
b

R̂ 0
cda = 2

√
Λg∇[cΩ|a|d]

R̂ 0
c0a = ΛΩbcΩb

a,

and thus, using R̂µν = R̂ ρ
ρµν ,

R̂00 = ΛΩbcΩbc = −2nΛ = 2nΛĝ00

R̂b0 =
√

Λg∇cΩc
b = 0

R̂db = Rdb + 2Λ(Ωc
bΩcd + 1

2Ωc
cΩbd −

1
2Ωc

dΩbc)− ΛΩcdΩc
b

= Rdb + 2ΛΩ c
b Ωdc

= 2(n+ 1)Λgdb − 2Λgdb = 2nΛgdb = 2nΛĝdb.

Note that we have used the facts that g is Einstein with Ricci scalar 4n(n+ 1)Λ
and the symplectic form Ω is divergence–free; these are justified in Lemmas 4.2.3 and
4.2.2 below. Since ĝa0 = 0, we conclude that

R̂µν = 2nΛĝµν = R̂

2n+ 1 ĝµν ,
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i.e. ĝ is Einstein with Ricci scalar 2n(2n+ 1)Λ.

�

Physically, this is a Kaluza–Klein reduction with constant dilation field and where
the Maxwell two-form is related to the reduced metric by Ω c

a Ωcb = gab. This is what
allows both the reduced and lifted metric to be Einstein. A more general discussion
can be found in [64].

From the Cartan perspective, ĝΛ=1 can be thought of as a metric on the (2n+ 1)–
dimensional space obtained by taking a quotient κ̂q : G → G/SL(n,R) = Q of the
Cartan bundle, where we embed SL(n,R) ⊂ GL(n,R) in S as in (3.16) but with a

now denoting an element of SL(n,R) (so that deta−1 = 1). This new subgroup acts
adjointly on θ as 1 0

0 a

−trφ η

ω φ

1 0
0 a−1

 =
−trφ ηa−1

aω φ

 ,
so not only is the inner product ηω invariant but also the (0, 0)-component θ0

0 = −trφ,
which is a scalar one-form whose exterior derivative is constrained by (3.6) to be
dθ0

0 = −θ0
i ∧ θi

0 = −Ant(η ∧ ω). Thus, denoting by A the object on Q = G/SL(n,R)
which is such that κ̂∗

qA = trφ, we have that dA = Ω (where we are now taking Ω to be
defined on Q by κ̂∗

qΩ = Ant(η ∧ ω)).
We then have a natural way of constructing a metric ĝ on Q as a linear combination

of g and e0 ⊙ e0, where e0 is A up to addition of some exact one-form. It turns out
that there is choice (4.6) of linear combination with e0 = A such that ĝ is Einstein.
The fact that this metric is exactly (4.3) can be verified by constructing the Cartan
connection of (N, [∇]) explicitly in terms of a representative connection ∇ ∈ [∇].

4.2.1 Ricci scalar of gΛ and divergence of ΩΛ

Lemma 4.2.2. The symplectic form Ω ≡ ΩΛ on M is divergence–free. In index
notation,

g∇cΩcb = 0.

Proof. In the basis (4.4) we have g as above (4.5) and

Ω =
n∑

i=1
ei ∧ ei+n =⇒ Ωab =

n∑
i=1

δi
[aδ

i+n
b] .
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Note that from now on we will omit the summation sign and use the summation
convention regardless of whether i, j indices are up or down. As in Section 4.1, we look
for ψa

b by considering dea (recall that i, j = 1, . . . , n and a, b = 1, . . . , 2n):

dei = 0
dei+n = −(El(Γk

ij)ζk − Λ−1El(Pij))dxl ∧ dxj − (Γk
ij − 2Λζ(iδ

k
j))dζk ∧ dxj

= −(El(Γk
ij)ζk − Λ−1El(Pij))el ∧ ej

−(Γk
ij − 2Λζ(iδ

k
j))(ek+n + (Γl

kmζl − Λζkζm − Λ−1Pkm)em) ∧ ej

=
[
Λ−1Em(Pij)− Em(Γk

ij)ζk + Λ−1Γk
ijPkm − Γk

ijΓl
kmζl + ΛΓk

ijζmζk

+2Λζ(i(Γl
j)mζl − Λζj)ζm − Λ−1Pj)m)

]
em ∧ ej + (2Λζ(iδ

k
j) − Γk

ij)ek+n ∧ ej

=
[
Λ−1∇mPij − (∇mΓk

ij)ζk − 2ζ(iPj)m
]
em ∧ ej + (2Λζ(iδ

k
j) − Γk

ij)ek+n ∧ ej.

Note that we have used ∇ to denote the chosen connection on N with components
Γi

jk; it is a different object to the Levi–Civita connection g∇ on M . Next we wish to
read off the spin connection ψa

b such that dea = −ψa
b ∧ eb and the following index

symmetries are satisfied:

ψi
j = 1

2ψi+n j = −1
2ψj i+n = −ψj+n

i+n,

ψi
j+n = 1

2ψi+n j+n = −1
2ψj+n i+n = −ψj

i+n,

ψi+n
j = 1

2ψi j = −1
2ψj i = −ψj+n

i .

We find that

ψi+n
k+n = (2Λζ(iδ

k
j) − Γk

ij)ej = −ψk
i

ψi+n
j =

[
2(∇[iΓl

j]k)ζl − 2Λ−1∇[iPS
j]k − Λ−1∇kPA

ij + 2ζ(jPk)i − 2ζ(iPk)j
]
ek =: Aijke

k

ψi
j+n = 0.

One can check that these satisfy both the index symmetries above and are such that
dea = −ψa

b ∧ eb, and we know from theory that there is a unique set of ψa
b that have

both of these properties. Note that we have used PS and PA to denote the symmetric
and antisymmetric parts of P in order to avoid too much confusion from having multiple
symmetrisation brackets in the indices.
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We are now ready to calculate the divergence of Ω. Since it is covariantly constant
in this basis, we obtain

g∇cΩab = −ψd
acΩdb − ψd

bcΩad = −ψd
acΩdb + ψd

bcΩda = 2Ωd[aψ
d
b]c.

We can split the right hand side into

Ωdaψ
d
bc = Ωkaψ

k
bc + Ωk+n aψ

k+n
bc

= δi
[kδ

i+n
a] ψk

bc + δi
[k+nδ

i+n
a] ψk+n

bc

= 1
2

(
−δk+n

a δi
bδ

j
c(2Λζ(iδ

k
j) − Γk

ij)− δk
aδ

l+n
b δj

c(2Λζ(kδ
l
j) − Γl

kj)− δk
aδ

l
bδ

m
c Aklm

)
.

The first two terms are the same but with a↔ b, so are lost in the antisymmetrisation.
Thus

g∇cΩab = −δk
[aδ

l
b]δ

m
c Aklm.

Tracing amounts to contracting this with gac:

g∇cΩcb = −δk
[aδ

l
b]g

acδm
c Aklm = −δk

[aδ
l
b]g

amAklm,

but gam is non-zero only when a = m + n > n and δk
[aδ

l
b] is non-zero only when

a = k ≤ n or a = l ≤ n. We can therefore conclude that the right hand side is zero
and Ω is divergence-free.

�

Lemma 4.2.3. The metric g ≡ gΛ corresponding to a projective structure (N, [∇]) in
dimension n has Ricci scalar

R = 4n(n+ 1)Λ.

Proof. We calculate the Ricci scalar of g (given that it’s Einstein, as stated in the
appendix of [28]) via the curvature two-forms Ψa

b = dψa
b +ψa

c∧ψc
b = 1

2R
a

cdb e
c∧ed. We

are only interested in non-zero components of the Ricci tensor such as Ri j+n = R c
c i j+n .

In fact, we will calculate only Rm+n j, for which we need to consider R i
l m+n j and

R l+n
k+n m+n j , i.e. we need only calculate Ψi

j and Ψl+n
j.

Ψi
j = d

(
(Γi

jk − 2Λζ(jδ
i
k))ek

)
+ ψi

k ∧ ψk
j + ψi

k+n ∧ ψk+n
j .
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The last term vanishes since ψk+n
j = 0, and the middle term only has components that

look like 1
2R

i
lmj e

l ∧ em, so the only term we are interested in is

−2Λdζ(jδ
i
k)e

k = −2Λδi
(k(ej)+n + (Γl

j)mζl − Λζj)ζm − Λ−1Pj)m)em) ∧ ek.

Again, discarding the em ∧ ek term gives

−Λ(δi
ke

j+n ∧ ek + δi
je

k+n ∧ ek) = 1
2R

i
l m+n j e

l ∧ em+n + 1
2R

i
m+n l j e

m+n ∧ el,

so we conclude
R i

l m+n j = Λ(δi
jδ

m
l + δi

lδ
m
j ).

The other Riemann tensor component we need to know to calculate Rm+n j = R c
c m+n j

is R i+n
l+n m+n j , so we examine

Ψi+n
j = dψi+n

j + ψi+n
k ∧ ψk

j + ψi+n
k+n ∧ ψk+n

j ,

but none of these terms have el+n ∧ em+n components, so R i+n
l+n m+n j = 0. Hence

Rm+n j = δi
lR

i
l m+n j = Λ(δm

j + nδm
j ) = Λ(n+ 1)δm

j .

Setting this equal to R
2n
gm+n j = R

4n
δm

j we find

R = 4n(n+ 1)Λ,

as required.

�





Chapter 5

Einstein–Weyl structures and
SU(∞)–Toda fields

In this chapter, we focus on the four dimensional Einstein manifolds that arise from
the projective to Einstein correspondence in the case n = 2. As discussed in Chapter 3,
it is shown in [28] that the Einstein manifolds in this subclass have ASD Weyl tensor,
and are therefore associated with a twistor space [62]. If they also carry a Killing
vector field arising from a symmetry of the underlying projective surface, one can
extract solutions of the SU(∞)–Toda equation via symmetry reduction to Lorentzian
Einstein–Weyl structures in 2 + 1 dimensions [40, 74].

The aim of this chapter is to investigate the Einstein–Weyl structures obtainable in
this way, resulting in several examples of new, explicit solutions of the Toda equation.
We also give an explicit criterion for a vector field that generates a symmetry of a
Weyl structure, and prove some results about the Einstein manifold and corresponding
twistor space arising from the flat projective surface RP2. The content of this chapter is
based on some of the work in [30] and was done in collaboration with Maciej Dunajski.

In the case n = 2 we will write the metric and symplectic form as

g = dzA′ ⊙ dxA′ − (ΓC′
A′B′zC′ − zA′zB′ − PA′B′)dxA′ ⊙ dxB′

, (5.1)
Ω = dzA′ ∧ dxA′ + PA′B′dxA′ ∧ dxB′

, A′, B′, C ′ = 0, 1. (5.2)

where we have replaced {ζi} with {zA′} and shifted the indices from i, j = 1, 2 to
A′, B′ = 0, 1. This is helpful for the twistorial calculations because it agrees with the
usual notation for two–component spinor indices. Note that a change of projective
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connection is now given by

ΓC′

A′B′ → ΓC′

A′B′ + δC′

A′ ΥB′ + δC′

B′ ΥA′ , zA′ → zA′ + ΥA′ , A′, B′, C ′ = 0, 1. (5.3)

5.1 Background

5.1.1 Anti–self–duality, spinors and totally null distributions

Let M be an oriented four dimensional manifold with a metric g of signature (2, 2).
The Hodge operator ∗ on the space of two forms is an involution, and induces a
decomposition [2]

Λ2(T ∗M) = Λ2
−(T ∗M)⊕ Λ2

+(T ∗M) (5.4)

of two-forms into ASD and SD components, which only depends on the conformal class
of g. The Riemann tensor of g can be thought of as a map R : Λ2(T ∗M)→ Λ2(T ∗M)
which admits a decomposition under (5.4):

R =



C+ + R
12 φ

φ C− + R
12


. (5.5)

Here C± are the SD and ASD parts of the Weyl conformal curvature tensor1, φ is
the trace-free Ricci curvature, and R is the scalar curvature which acts by scalar
multiplication. The metric g is Einstein if φ = 0, and the corresponding conformal
structure [g] is ASD if C+ = 0. We will call g conformally ASD if it has ASD Weyl
tensor. If both of these conditions are satisfied then the Riemann tensor is also ASD.

Two–component spinors

The symmetry group of a metric in signature (2, 2) decomposes under the Lie group
isomorphism

SO(2, 2) ∼= SL(2,R)× SL(2,R)/Z2.

1Note this is a different object to the projective Weyl tensor discussed in Chapter 3.
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Locally there exist real rank two vector bundles S,S′ (spin bundles) over M such that
[63]

TM ∼= S⊗ S′ (5.6)

is a canonical bundle isomorphism. We will use the usual notation ιA ∈ Γ(S), πA′ ∈
Γ(S′), where A,A′ = 0, 1. There are unique skew–symmetric sections ε ∈ Γ(S⊗ S) and
ε′ ∈ Γ(S′ ⊗ S′), and one can argue that

gabξ
aξ̃b = εABεA′B′ξAA′

ξ̃BB′ (5.7)

for vector fields ξ, ξ̃ on M . The bundles S and S′ inherit connections from g∇ for which
ε, ε′ are parallel.

We identify S with its dual according to

ιA = ιBεBA, ιA = εABιB,

and similarly for S′. Note that the contraction is always over adjacent indices descending
to the right, and εABεCB = δ A

C . In higher valence spinors, the relative order of primed
and unprimed indices is unimportant.

A vector ξ ∈ Γ(TM) is called null if g(ξ, ξ) = 0. For ξ̃ = ξ the right hand side of
(5.7) is just the determinant of ξAA′ viewed as a matrix, so any null vector is of the
form ξ = ι⊗ π where ι, and π are sections of S and S′ respectively. The antisymmetry
of ε means that ε(ι, ι) = 0 for any section ι ∈ Γ(S) (and similarly for any π ∈ S′), so
the converse is also true (i.e. any vector that can be written V = ι⊗ π is null).

Since the symplectic structures εAB, εA′B′ are the unique skew–symmetric two–index
spinors up to scale, any spinor of valence n which is skew on a pair of indices can be
factorised as the tensor product of a spinor of valence n− 2 and either ε or ε′. This
leads to the decomposition of a two–form Fab = FAA′BB′ = FABA′B′ as

FABA′B′ = εABΦA′B′ + εA′B′ΨAB,

where ΦA′B′ = Φ(A′B′) and ΨAB = Ψ(AB). One can show using an analogous decom-
position of the volume form that ΦA′B′ and ΨAB are the SD and ASD parts of Fab

respectively.
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The nonlinear graviton

Any two dimensional distribution on a four–manifold M can be expressed as the kernel
of a two–form, and we define a distribution to be (A)SD if the corresponding two–form
is (A)SD. Taking any ιA ∈ Γ(S), the two–form ιAιBεA′B′ defines an ASD distribution
Dβ = {ιAwA′

, wA′ ∈ Γ(S′)} which is totally null in the sense that g(ξ, ξ̃) = 0 for all
ξ, ξ̃ ∈ Γ(D). We call this a β–distribution. Note that it is only defined up to scale,
which means that there is an RP1 worth of β–planes at every point in M . Given
any πA′ ∈ Γ(S′), one can similarly define a totally null SD distribution called an
α–distribution by

Dα = {ιAπA′
, ιA ∈ Γ(S)} = span{πA′eAA′}, (5.8)

where {eAA′} is a null tetrad of vector fields.
An α–surface (respectively β–surface) is a two dimensional surface in M which is

tangent to an α–(β–)distribution at every point. A foliation by α–surfaces exists if and
only if the corresponding distribution (5.8) is Frobenius integrable. Penrose’s nonlinear
graviton Theorem [62] states that a maximal, three dimensional family of α–surfaces
exists in M if and only if its conformal curvature is ASD, i.e. C+ = 0. Existence of
such a family is equivalent to the distribution (5.8) being integrable for any πA′ . We
can state this condition as integrability of the lift of the distribution (5.8) to S′. This
is given by

D = span{LA := πA′ ẽAA′}, (5.9)

where the vectors
ẽAA′ = eAA′ − ΓC′

AA′B′πB′ ∂

∂πC′

are the lifts of the null tetrad {eAA′} to S′, and ΓC′
AA′B′ are the components of the spin

connection on S′, which is inherited from the Levi–Civita connection of g on TM . We
call D the twistor distribution.

In fact, Penrose considers four dimensional complex manifolds2 M carrying a metric
which is holomorphic in the sense that the metric components depend on the coordinates
on M and not on their complex conjugates. Then S,S′ are complex vector bundles
over M and ε, ε′ are holomorphic symplectic forms. A real conformally ASD metric in
a given signature can then be obtained by choosing the correct reality conditions. In
neutral signature, complex conjugation is a map from S to itself (or from S′ to itself)

2Note that familiar facts from real geometry such as a unique Levi–Civita connection and the
Frobenius theorem carry over to holomorphic geometry. See [47] for details.
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which simply replaces each component of a spinor with its complex conjugate. Thus
the reality conditions in neutral signature amount to identifying spinors with their
complex conjugates.

The twistor space T of M is then defined as the three dimensional complex manifold
comprising the set of all α–surfaces in M . Each point m ∈M corresponds to a subset
Lm ⊂ T of α–surfaces which pass through m. Since an α–surface at m is defined by
a πA′ ∈ S′|m up to scale, Lm is an embedding CP1 ⊂ T . The correspondence space
F = M × CP1 has local coordinates (xa, λ) := (xa, π0′/π1′), where πA′ parametrises
the set of α–surfaces through the point in M with coordinates xa. Note that F can be
obtained from the primed spin bundle S′ →M by projectivising each fibre, and carries
a distribution D̃ = span{L̃A} given by the push forward of the twistor distribution D
to F = P(S′). We also call D̃ the twistor distribution. Note that F has the alternative
definition F = {(Z,m) ∈ T ×M : Z ∈ Lm}, leading to the double fibration

M ← F → T ,

where the map F → T is the quotient of F by the leaves of the distribution D̃. A
twistor function is a function on F which is constant along D̃.

The nonlinear graviton allows us to express an ASD conformal structure in terms
of the algebraic geometry of T . First note that if two points m1,m2 ∈ M are null–
separated, then the corresponding curves Lm1 ,Lm2 intersect at a single point. This
is because any null geodesic must have a tangent vector field of the form ιAπA′ for
some sections ιA ∈ Γ(S) and πA′ ∈ Γ(S′), and thus the geodesic is contained within the
unique α–surface spanned by πA′eAA′ . This unique α–surface corresponds to the point
in T where the curves Lm1 ,Lm2 meet.

In order to understand this correspondence at an infinitesimal level and thereby
explicitly recover an ASD conformal structure from T , we need to understand the
normal bundle N(Lm) := ∪Z∈Lm{TZT /TZLm} over a CP1 embedding Lm. This is
evidently a complex vector bundle, and in fact it is a holomorphic vector bundle,
meaning that the total space is a complex manifold and the projection N(Lm)→ Lm

is holomorphic. It is thus subject to the following theorem due to Birkhoff and
Grothendieck (see for example [58] for a proof).

Theorem 5.1.1 (Birkhoff–Grothendieck). Any rank k holomorphic vector bundle over
CP1 is isomorphic to a direct sum of k complex line bundles O(ni), 1 ≤ i ≤ k, each
with first Chern class ni.
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The first Chern class completely classifies complex line bundles topologically. For us,
O(n), n ∈ Z will mean a line bundle over CP1 = U0 ∪ U1, where Ui = {Zi ̸= 0} ⊂ CP1

for homogeneous coordinates [Z0, Z1]T on CP1, with transition functions such that
local trivialisations (λi, vi) ∈ Ui × C are related on the overlap by v1 = λ−n

0 v0, where
λ0 = λ−1

1 = Z1/Z0. Note that O(−n) is dual to O(n), and O(n) is the tensor product
of n copies of O(1). A section of O(n) is represented by functions σi(λi) such that
(λ0, σ0(λ0)) and (λ1, σ1(λ1)) correspond to the same point, i.e.

σ1(λ1) = λ−n
0 σ0(λ0).

If we expand these as power series in the local coordinates and use the fact that
λ1 = λ−1

0 , we find by equating coefficients that they are polynomials of degree at most
n, making the space of global holomorphic sections (n+ 1)–dimensional for n ≥ 0.

The nonlinear graviton Theorem can now be stated as follows.

Theorem 5.1.2 ([62]). There is a one–to–one correspondence between holomorphic
ASD conformal structures and three dimensional complex manifolds containing a four
parameter family of CP1 embeddings with normal bundle O(1)⊕O(1).

From the results of Kodaira [44] we have that a vector at a point m ∈M corresponds
to a holomorphic section of the normal bundle O(1) ⊕ O(1) of the curve Lm in T

(which we know from above belongs to a four dimensional space). Penrose shows that
we obtain an ASD conformal structure from T by defining a vector to be null if the
corresponding holomorphic section of O(1)⊕O(1) has a zero. This is the infinitesimal
version of the intersection condition on Lm1 and Lm2 above.

(Anti–)self–duality in the sense of Calderbank

Although a β–distribution is intrinsically ASD in the sense that it is defined by an ASD
two–form, there are two subclasses of β–distribution which we shall call Calderbank–SD
or Calderbank–ASD. In [14], Calderbank associates to any given β–distribution a unique
connection. When the curvature of this connection is (A)SD, the β–distribution is called
Calderbank–(A)SD. This has nothing to do with the anti–self-duality of the two–form
defining the β–distribution; in a sense, a β–distribution which is Calderbank–ASD is
doubly ASD. See [14] (also [82]) for further details.

We can express Calderbank (anti–)self–duality in twistor language as follows. Let
Dβ be a β–distribution defined by an ASD two–form Σab = ιAιBϵA′B′ , and such that
the spinor ιA satisfies

∇A′(AιB) = AA′(AιB) (5.10)
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where dA is an (A)SD Maxwell field. Then Dβ is Calderbank–(A)SD.

Local characterisation of the Einstein manifolds (M, g)

A general ASD metric depends, in the real–analytic category, on six arbitrary functions
of three variables [27]. Theorem 3.2.1 gives an explicit subclass of such metrics which
are additionally constrained by the following local characterisation.

Theorem 5.1.3 ([28]). Let (M, g) be an real ASD Einstein manifold with scalar
curvature 24 admitting a totally null distribution Dβ which is Calderbank–ASD and
parallel in the sense that g∇ξ ξ̃ ∈ Γ(Dβ) for all ξ ∈ Γ(TM), ξ̃ ∈ Γ(Dβ). Then (M, g)
is conformally flat, or it is locally isometric to (5.1).

In our coordinates Dβ is the kernel of the two–form Σ = dx0′ ∧ dx1′ , and can be
written as Dβ = span{∂/∂z0′ , ∂/∂z1′}. We find that

g∇Σ = 6A⊗ Σ, (5.11)

where dA = Ω, and Ω is the symplectic form on M . Writing Σab = ιAιBϵA′B′ , (5.11)
implies (5.10) for a rescaling of A, so it is the anti–self–duality of Ω which makes D
Calderbank–ASD.

In Section 5.4 we will consider the model case where M is constructed from the flat
projective structure on RP2. In this case, we can explicitly describe the ASD Maxwell
two–form Ω in terms of the twistor space of M , and we will find that M carries a
so–called pseudo–hyper–Hermitian structure, in which A plays an important role.

5.1.2 Einstein–Weyl structures

Definition 5.1.4. A Weyl Structure (W ,D , [h]) is a conformal equivalence class of
metrics [h] on a manifold W along with a fixed torsion–free affine connection D which
preserves any representative h ∈ [h] up to conformal class. That is, for some one-form
ϕ,

Dh = ϕ⊗ h.

A pair (h, ϕ) uniquely defines the connection and hence the Weyl structure, so we
can alternatively specify a Weyl structure as a triple (W , h, ϕ). However, there is an
equivalence class of such pairs which define the same Weyl structure. These are related
by transformations

h→ ρ2h, ϕ→ ϕ+ 2dln(ρ), (5.12)
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where ρ is a smooth, non-zero function on W. Physically, the Weyl condition in
Lorentzian signature corresponds to the statement that null geodesics of the conformal
structure [h] are also geodesics of the connection D .

If additionally the symmetric part of the Ricci tensor of D is a scalar multiple of h,
then W is said to carry an Einstein–Weyl structure. This condition is invariant under
(5.12). A trivial Einstein–Weyl structure is one whose one–form ϕ is closed, so that it
is locally exact and thus may be set to zero by a change of scale (5.12). Then D is
the Levi–Civita connection of some representative h ∈ [h], and this representative is
Einstein.

In three dimensions, the Einstein–Weyl equations give a set of five non–linear partial
differential equations on the pair (h, ϕ) which are integrable by the twistor transform
of Hitchin [39].

Theorem 5.1.5 ([39]). There is a one–to–one correspondence between three dimen-
sional Einstein–Weyl structures and two dimensional complex manifolds containing a
three parameter family of CP1 embeddings with normal bundle O(2).

The conformal structure [h] is obtained by demanding that a vector on W is null if
and only if the corresponding section of O(2) has a single zero. This condition is
equivalent to the quadratic function σ(λ) which represents the section having vanishing
discriminant.

Hitchin’s results can be regarded as a reduction of Penrose’s twistor transform for
ASD conformal structures by the following theorem of Jones and Tod.

Theorem 5.1.6. [40]

1. Let (M, g) be a neutral signature, conformally ASD four–manifold with a confor-
mal Killing vector K. Let

h = |K|−2g − |K|−4K⊙K, ϕ = 2
|K|2 ⋆ (K ∧ dK), (5.13)

where |K|2 = g(K,K), K = g(K, ·) and ⋆ is the Hodge operator defined by g.
Then (h, ϕ) is a solution of the Einstein–Weyl equations on the space of orbits
W of K in M .

2. Given an Einstein–Weyl structure (W , h, ϕ) there is a one–to–one correspondence
between solutions (V , α) to the abelian monopole equation

dV + 1
2ϕV = ⋆hdα. (5.14)
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on W, where V is a function and α is a one–form, and conformally ASD
four–metrics

g = V h− V −1(dx+ α)2 (5.15)

over W with an isometry K = ∂/∂x.

If a metric with ASD Weyl tensor has more than one conformal symmetry, then distinct
Einstein–Weyl structures are obtained on the space of orbits of conformal Killing
vectors which are not conjugate with respect to an isometry [60].

5.1.3 The SU(∞)–Toda equation

The SU(∞)–Toda equation is given by

UXX + UY Y = ϵ(eU)ZZ , where U = U(X, Y, Z), and ϵ = ±1 (5.16)

Equation (5.16) has originally arisen in the context of complex general relativity
[35, 8, 65], and then in Einstein–Weyl [79] and (in Riemannian context, with ϵ = −1)
scalar–flat Kähler geometry [48]. It belongs to a class of dispersionless systems integrable
by the twistor transform [55, 25, 3], the method of hydrodynamic reduction [34], and
the Manakov–Santini approach [51]. The equation is nevertheless not linearisable
and most known explicit solutions admit Lie point or other symmetries (there are
exceptions - see [11, 12, 54, 67]).

The SU(∞)–Toda equation is related to a subclass of Einstein–Weyl structures by
the following result of Tod which improved the earlier result of Przanowski [65].

Theorem 5.1.7. [74] Let (W , h, ϕ) be an Einstein–Weyl structure arising from the
first part of Theorem 5.1.6, under the additional assumption that the ASD conformal
structure (M, [g]) has a representative g ∈ [g] which is Einstein with non–zero Ricci
scalar. Then there exists h ∈ [h], and coordinates (X, Y, Z) on an open set in W
such that (assuming the signature of h is (2, 1) and the one–form dZ corresponds to a
time–like vector)

h = eU(dX2 + dY 2)− dZ2, ϕ = 2UZdZ (5.17)

and the function U = U(X, Y, Z) satisfies the SU(∞)–Toda equation (5.16) with ϵ = 1.

Note that the assumptions about the signature of h and the timelike character of
dZ in the above theorem are satisfied for all the Einstein–Weyl structures that can be
obtained from the projective to Einstein correspondence. An invariant procedure for
obtaining the coordinate system (X, Y, Z) is discussed in section 5.2.1.
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5.1.4 Projective structures on a surface

Recall (see, for example, [10]) that a projective structure on a surface can be locally
specified by a single second order ordinary differential equation: taking coordinates (x, y)
on the surface we find that geodesics on which ẋ ̸= 0 can be written as unparametrised
curves y(x) such that

y′′ + a0(x, y) + 3a1(x, y)y′ + 3a2(x, y)(y′)2 + a3(x, y)(y′)3 = 0, (5.18)

where the coefficients {ai} are given by the projectively invariant formulae

a0 = Γ1
00, 3a1 = −Γ0

00 + 2Γ1
01, 3a2 = −2Γ0

01 + Γ1
11, a3 = −Γ0

11.

Hitchin [39] solves the complexified version of (5.18) by the following twistor
transform theorem.

Theorem 5.1.8. There is a one–to–one correspondence between

• equivalence classes under coordinate transformations of complex ordinary dif-
ferential equations of the form (5.18), where the coefficients ai are holomorphic
functions of x and y, and

• complex surfaces containing a two parameter family of CP1 embeddings with
normal bundle O(1).

In the case of the ordinary differential equation resulting from the flat projective
structure on CP2, the corresponding twistor space, whose points correspond to projective
lines in CP2, is the dual projective surface CP2, and its CP1 embeddings are given
by projective lines in CP2. In analogy with the nonlinear graviton, we can define the
correspondence space F such that a point in F is given by a point p ∈ CP2 and a
projective line (or equivalently a direction) through p. This makes F the projectivised
tangent bundle P(TCP2), or equivalently P(TCP2).

As we saw in Chapter 3, the maximally symmetric projective surface RP2 has
symmetry group SL(3,R). In fact, the possible symmetry groups of projective surfaces
are SL(3,R), SL(2,R), the two dimensional affine group, and R. A partial classification
is given in [46].

1. On the flat projective surface RP2 described in Section 3.1.3, geodesics y(x)
are described in inhomogeneous coordinates (x, y) = (P 0/P 2, P 1/P 2) by the
ordinary differential equation

y′′ = 0.
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2. The punctured plane R2\{0} has symmetry group SL(2,R) acting via its
fundamental representation. In this case there is a one parameter family of
projective structures falling into three distinct equivalence classes. For simplicity
we will consider only one of the classes, with geodesics y(x) described by the
differential equation

y′′ = −(y − xy′)3, (5.19)

where (x, y) are standard Euclidean coordinates on R2.

3. The two dimensional Lie group of affine transformations on R, which
we denote Aff(1), is generated by the unique non–abelian two dimensional Lie
algebra {v1, v2}, where we choose a basis such that [v1, v2] = v1. We can choose
coordinates on Aff(1) such that these correspond to vector fields

∂

∂y
,

∂

∂x
+ y

∂

∂y
,

and using invariance under these vector fields, the geodesic equation can be cast
in the form [33]

y′′ = e−2x(y′)3 + A1y
′ + A2e

x,

where A1 and A2 are constants.

4. The general projective surface with a symmetry, after a choice of coordi-
nates such that the symmetry is ∂

∂x
, corresponds to a set of geodesics y(x) which

satisfy an ordinary differential equation that can be written uniquely in the form
[33]

y′′ = A(y)(y′)3 +B(y)(y′)2 + 1. (5.20)

Note that each of these classes of projective structures forms a subset of the next, and
this can be seen explicitly by some changes of coordinates. For example, the general
projective surface with a symmetry is flat when A(y) = B(y) = 0.

5.1.5 From projective surfaces to SU(∞)–Toda fields

The whole construction can now be summarised in the following diagram

Projective structure with symmetry Thm 3.2.1−→ ASD Einstein with symmetry
↓ ↓Thm 5.1.6 (5.21)

Solution to SU(∞) Toda Thm 5.1.7←− Einstein–Weyl.
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We now consider each of the above projective structures in turn, constructing the
corresponding ASD Einstein manifold (M, g) and discussing some examples of Einstein–
Weyl structures and SU(∞)–Toda fields that can be obtained from them.

5.2 The most general case

Consider the most general Einstein–Weyl structure arising from the combination of
Theorem 3.2.1 and Theorem 5.1.6. Because of the correspondence (3.25) between
symmetries of (M, g) and symmetries of the projective surface (N, [∇]), the construction
must begin with the general projective surface with at least one symmetry.

By trial and error, we chose a representative connection for (5.20) such that the
metric (5.1) had the simplest possible form. The choice of connection we took was

Γ0
11 = A(y), Γ1

00 = −1, Γ1
11 = −B(y)

with all other components vanishing. Note that this choice of connection has a
symmetric Ricci tensor, so the Schouten tensor is also symmetric and the symplectic
form (5.2) pulls back to just dzA′ ∧ dxA′ . Thus we can write the Maxwell potential
A which is such that dA = Ω as A = zA′dxA′ . Writing xA′ = (x, y), zA′ = (p, q), the
resulting metric (5.1) is

g = (B(y) +p2 + q)dx2 + 2(pq+A(y))dxdy+ (−A(y)p+B(y)q+ q2)dy2 +dxdp+dydq.

(5.22)
Factoring by K = ∂

∂x
following the algorithm of Theorem 5.1.6, equation (5.13) gives

the following form for the Einstein–Weyl structure.

Proposition 5.2.1. The most general Einstein–Weyl structure arising from the proce-
dure (5.21) is locally equivalent to

h = 1
V

(
(Bq − Ap+ q2)dy + dq

)
dy −

(
(pq + A)dy + 1

2dp
)2
, (5.23)

ϕ = V (4dq + 2pdp), where V = (B + p2 + q)−1.

Here (p, q, y) are local coordinates on W, A(y), B(y) are arbitrary functions of y, and
the solution to the monopole equation (5.14) arising from the second part of Theorem
5.1.6 is the pair (V , α), where

α = V (pq + A)dy + V

2 dp.
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5.2.1 Solution to the SU(∞)–Toda equation

The procedure for extracting the corresponding solution to the SU(∞)–Toda equation
is given in [74] (see also [48] and [26]). It involves finding the coordinates (X, Y, Z)
that put the metric (5.23) in the form (5.17). Given an ASD Einstein metric (M, g)
with a Killing vector K

1. The conformal factor c : M → R+ given by

c = |dK + ∗gdK|g−1/2

has a property that the rescaled self–dual derivative of K

ϑ ≡ c3
(1

2(dK + ∗gdK)
)

is parallel with respect to c2g. The metric c2g is para–Kähler with self–dual
para–Kähler form ϑ, and admits a Killing vector K, as LK(c) = 0.

2. Define a function Z : M → R to be the moment map:

dZ = K ϑ. (5.24)

It is well defined, as the Kähler form is Lie–derived along K.

3. Construct the Einstein–Weyl structure of Theorem 5.1.6 by factoring (M, c2g) by
K. Restrict the metric h to a surface Z = Z0 = const, and construct isothermal
coordinates (X, Y ) on this surface:

γ ≡ h|Z=Z0 = eU(dX2 + dY 2), U = U(X, Y, Z0).

To implement this step chose an orthonormal basis of one–forms such that
γ = e1

2 + e2
2. Now (X, Y ) are solutions to the linear system of first order partial

differential equations

(e1 + ie2) ∧ (dX + idY ) = 0.

4. Extend the coordinates (X, Y ) from the surface Z = Z0 to W . This may involve
a Z–dependent affine transformation of (X, Y ).
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Implementing the Steps 1–4 on MAPLE we find that if A = 0, and B = B(y) is
arbitrary, then the SU(∞)–Toda solution is given implicitly by

X = −8e−2
∫

B(y)dyZ3p

(Z2p2 + 4)2 , Y =
∫

e−2
∫

B(y)dydy + e−2
∫

B(y)dy(−2Z4p2 + 8Z2)
(Z2p2 + 4)2 .

U = ln
(

(Z2p2 + 4)3

64Z2

)
+ 4

∫
B(y)dy. (5.25)

We can check that this is indeed a solution using the fact that the SU(∞)–Toda
equation is equivalent to d⋆h dU = 0. We have also checked by performing a coordinate
transformation of (5.16) to the coordinates (y, p, Z).

To simplify the form of (5.25) set

G =
∫

exp
(
− 2

∫
B(y)dy

)
, T = 2Z2

Z2p2 + 4 .

Then (5.25) becomes

eU = Z4

8T 3(G′)2 , Y = G+G′T
(4T
Z2 − 1

)
, X2 = 4T 4(G′)2

Z2

( 2
T
− 4
Z2

)
.

Eliminating (T, y) between these three equations gives one relation between (X, Y, Z)
and U which is our implicit solution. The elimination can be carried over explicitly if
G = yk for any integer k, or if G = exp y. In the latter case the solution is given by

4Y 2eU(eUX2 − Z2)3 + (2e2UX4 − 3eUX2Z2 + Z4 + 2Z2)2 = 0.

We can also consider the flat projective structure with A = B = 0, in which case
the coordinate p can be eliminated between

eU =
(

(Z2p2 + 4)3

64Z2

)
, X = − 8Z3p

(Z2p2 + 4)2

by taking a resultant. This yields

eU(eUX2 − Z2)3 + Z4 = 0.

Note that even the flat projective surface can yield a non–trivial solution to the Toda
equation; further discussion can be found in Section 5.4.5.
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5.2.2 Two monopoles

The Einstein–Weyl structures (W , h, ϕ) in (5.23) that we have constructed in Proposi-
tion 5.2.1 are special, as they belong to the SU(∞)–Toda class. The general solution
to the SU(∞)–Toda equation depends (in the real analytic category) on two arbitrary
functions of two variables, but the solutions of the form (5.23) depend on two functions
of one variable. The additional constraints on the solutions can be traced back to
the four dimensional ASD conformal structures which give rise (by the Jones–Tod
construction) to (5.23). In what follows we shall point out how some of the additional
structure on W arises as a couple of solutions to the abelian monopole equation.

Let us call the solution (V , α) arising in Proposition 5.2.1 the Einstein monopole,
as the resulting conformal class contains an Einstein metric (5.22). The second solution
(VM , αM) (which we shall call the Maxwell monopole) arises as a symmetry reduction
of the ASD Maxwell potential

A = pdx+ qdy = −VMK + αM ,

where K is the Killing one–form, and we find

VM = −pV , αM = qdy − pα.

5.3 The submaximally symmetric case

Choosing a representative connection from the projective class defined by (5.19), we
obtain from (5.1) an Einstein metric

g = (p2 − xy2p− y3q + 4y2)dx2 + 2(pq + x2yp+ xy2q − 4xy)dxdy
+(q2 − x3p− x2yq + 4x2)dy2 + dxdp+ dydq

(5.26)

on M , again with z0 =: p, z1 =: q, having Killing vectors

K1 = x
∂

∂x
− p ∂

∂p
− y ∂

∂y
+ q

∂

∂q
, K2 = x

∂

∂y
− q ∂

∂p
, K3 = y

∂

∂x
− p ∂

∂q
.

These are lifts of the projective vector fields corresponding to the sl(2,R) elements

v1 =
ϵ 0

0 −ϵ

 v2 =
0 0
ϵ 0

 v3 =
0 ϵ

0 0

 .
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To obtain an example of a Jones–Tod reduction of (5.26), we factor by K3. Choosing
coordinates

r = p2

y2 , z = 2 ln(y2), w = xp+ yq,

gives an Einstein–Weyl structure

h = −dr2 − 2drdw − w(w2 + r − 5w + 4)dz2 + 2(r − w + 4)dzdw, (5.27)

ϕ = 1
r − w + 4dr −

3w
r − w + 4dz −

4
r − w + 4dw.

The solution to the SU(∞)–Toda equation (5.16) which determines the Einstein–Weyl
structure (5.27) is described by an algebraic curve f(eU , X, Y, Z) = 0 of degree six in
eU and degree twelve in the other coordinates. This solution has been found following
the Steps 1-4 in Section 5.2.1, and is given by

64e6UX6(X + Y )3(X − Y )3 − 92e5UX4Z2(X + Y )3(X − Y )3

+48e4UX2Z2(5X6Z2 − 14X4Y 2Z2 + 13X2Y 2Z2 − 4Y 4Z2 + 9X4 + 27X2)
+8e3UZ4(−20X6Z2 + 48X4Y 2Z2 − 36X2Y 4Z2 + 8Y 6Z2 − 81X4 − 243X2Y 2)

+3e2UZ4(20X4Z4 − 36X2Y 2Z4 + 16Y 4Z4 + 108X2Z2 + 216Y 2Z2 + 243)
+6eUZ8(−2X2Z2 + 2Y 2Z2 − 9) + Z12

= 0.

Note that the formulae (5.27) are independent of the coordinate z, and therefore
have a symmetry. This was unexpected because there is no other symmetry of (M, g)
that commutes with K3. However, it is possible for symmetries to appear in the
Einstein–Weyl structure without a corresponding symmetry of the ASD conformal
structure. This can be seen from the general formula (5.15); the function V may
depend on the coordinate z so that g depends on z even though h does not. For
example, the Gibbons-Hawking metrics [37] give a trivial Einstein–Weyl structure with
the maximal symmetry group, but the four-metric is in general not so symmetric. Our
discovery of this unexpected symmetry motivated a more concrete description of a
symmetry of a Weyl structure.
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Definition 5.3.1. An infinitesimal symmetry of a Weyl structure (W ,D , [h]) is a
vector field K which is both an affine vector field with respect to the connection3 D and
a conformal Killing vector with respect to the conformal structure [h].

Proposition 5.3.2. Given an infinitesimal symmetry K of a Weyl structure (W ,D , [h])
in dimension N , and a representative h ∈ [h] such that Dh = ϕ ⊗ h, there exists a
smooth function f :W → R such that

LKh = fh, LKϕ = 1
N
d[K d(ln(det(h)))]. (5.28)

Proof. The first equation follows immediately from the fact that K is a conformal
Killing vector of h. It remains to evaluate the Lie derivative of the one–form ϕ along
the flow of K given that LKh = fh and LKΓi

jk = 0, where Γi
jk are the components of

the connection D . We do this by considering the Lie derivative of Dh:

LK(Dihjk) = LK(∂ihjk)− LK(Γl
jihlk + Γl

kihjl)
= LK(∂ihjk)− f(Γl

jihlk + Γl
kihjl).

Now

LK(∂ihjk) = Kl∂l∂ihjk + (∂iKl)∂lhjk + (∂jKl)∂ihlk + (∂kKl)∂ihjl

= ∂i[Kl∂lhjk + (∂jKl)hlk + (∂kKl)hjl]− (∂i∂jKl)hlk − (∂i∂kKl)hjl.

The term with square brackets is just

∂i(LKhjk) = ∂i(fhjk) = f∂ihjk + ∂ifhjk,

so we have

LK(Dihjk) = fDihjk + ∂ifhjk − (∂i∂jKl)hlk − (∂i∂kKl)hjl.

Setting this equal to LK(ϕihjk) = (LKϕi)hjk + fϕihjk and cancelling fϕihjk with
fDihjk, we find

(LKϕi)hjk = ∂ifhjk − (∂i∂jKl)hlk − (∂i∂kKl)hjl

=⇒ LKϕi = ∂if −
2
N
∂i∂jKj. (5.29)

3Recall that an affine vector field of a connection D is one which preserves its components, i.e.
LKΓi

jk = 0.
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Finally, we note that

∂i∂jKj = N

2 ∂if −
1
2∂i[K d(ln(det(h))].

This follows from tracing the expression LKhij = fhij:

LKhij = Kk∂khij + (∂iKk)hkj + (∂jKk)hik = fhij

=⇒ Kkhij∂khij + 2∂kKk = Nf

=⇒ 2∂i∂kKk = N∂if − ∂i(Kkhjl∂khjl)

and recalling that hjl∂khjl = ∂kln(det(h)). Substituting into (5.29) then yields the
result.

�

We can easily verify the invariance of (5.28) under Weyl transformations. Let (h̄, ϕ̄)
be a new metric and one–form related to the old ones by (5.12). Then

LKϕ̄ = LKϕ+ 2d[K dln(ρ)]

from (5.12), and from (5.28) we have

LKϕ̄ = 1
N
d[K d(ln(ρ2Ndet(h)))]

= 1
N
d[K d(ln(det(h)))] + 2N

N
d[K dln(ρ)]

= LKϕ+ 2d[K dln(ρ)],

as above. Note that the function f in (5.28) will change according to

f̄ = f + 2K dlnρ.

In the case of the Weyl structure (5.27), the infinitesimal symmetry is

K = ∂

∂z
.

Since we have chosen a scale such that K is in fact a Killing vector of h, we have that
K d(ln(det(h)) = 0, so the one–form ϕ is also preserved by K. This is consistent with
the fact that it has no explicit z–dependence.
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5.4 The model case

In the following section we discuss the four–manifold (M, g) obtained from the maxi-
mally symmetric flat projective surface N = RP2. In this case, g is not only almost
para–Kähler but in fact para–Kähler, since the symplectic form Ω is parallel with
respect to the Levi–Civita connection of g. Choosing a representative connection with
ΓC′

A′B′ = 0 gives g as

g = dzA′ ⊙ dxA′ + zA′zB′dxA′ ⊙ dxB′
. (5.30)

We begin by discussing the conformal structure of (5.30), both explicitly and in
terms of its twistor space. We then note a pseudo–hyper–Hermiticity property which is
unique to the model case, and find some special structure on the twistor space. Finally,
we present a classification of the Einstein–Weyl structures which can be obtained
from (5.30) by Jones–Tod factorisation, and exhibit an explicit example of such a
factorisation from the twistor perspective, reconstructing the conformal structure on
W from minitwistor curves.

5.4.1 Conformal Structure on M

Recall that points P ∈ R3 and L ∈ R3 respectively define lines and planes in R3 which
are preserved by multiplication of P,L by members of R∗, and that these lines and
planes respectively descend to points [P ] and lines [L] in RP2. In what follows we
will drop the square brackets and understand points [P ] ∈ RP2 and lines [L] ∈ RP2

to be represented by vectors P ∈ R3 and L ∈ R3. Let M ⊂ RP2 × RP2 be the set of
non–incident pairs (P,L).

Proposition 5.4.1. Two pairs (P,L) and (P̃ , L̃) are null–separated with respect to
the conformal structure (5.30) if there exists a line which contains the three points
(P, P̃ , L ∩ L̃).

Proof. First note that the null condition of Proposition 5.4.1 defines a co–dimension
one cone in TN : generically there is no line through three given points. To make
explicit the condition for such a line to exist, consider two pairs (P,L) and (P̃ , L̃) of
non–incident points and lines. By thinking of L, L̃ as normal vectors to planes in R3,
we see that L + tL̃ is a plane which intersects L and tL at their intersection, thus
defining a line in RP2 which intersects the lines L, L̃ ⊂ RP2 at their intersection.
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If P, P̃ , L∩ L̃ are co–linear then there exists t such that both P and P̃ lie on L+ tL̃,
i.e.

P · (L+ tL̃) = 0, P̃ · (L+ tL̃) = 0. (5.31)

Eliminating t from (5.31) gives

(P · L)(P̃ · L̃)− (P̃ · L)(P · L̃) = 0.

Setting P̃ = P + dP, L̃ = L+ dL yields a metric g representing the conformal structure

g = dP · dL
P · L − 1

(P · L)2 (L · dP )(P · dL).

We can use the normalisation P · L = 1, so that P · dL = −L · dP , and

g = dP · dL+ (L · dP )2. (5.32)

We take affine coordinates

P = [xA′
, 1], L = [zA′ , 1− xA′

zA′ ] (5.33)

with a normalisation P · L = 1 to recover the metric (5.30).

�

5.4.2 Twistor space of M

To understand (M, [g]) from the twistor perspective, we need to move to the complex
picture. In what follows, we will view M as the set of non–incident pairs in CP2×CP2.
Let F12(C3) ⊂ CP2 × CP2 be set of incident pairs (p, l), so that p · l = 0. Note that,
since l and p correspond to planes and lines in C3 respectively, and since p · l = 0 is the
condition for the line p lying in the plane l, F12(C3) coincides with the flag manifold
of type (1, 2) in C3, i.e. the collection of one and two dimensional vector subspaces
(p, l) in C3 such that p ⊂ l. This is the twistor space of (M, g). A CP1 embedding
corresponding to a point (P,L) ∈M consists of all lines l thorough P , and all points
p = l ∩ L:

P · l = 0, p · L = 0, p · l = 0. (5.34)
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Let (P,L) and (P̃ , L̃) be points in M . These uniquely define a point p = L∩L̃ ∈ CP2

and line l ⊂ CP2 such that P, P̃ ∈ l given by

p = L ∧ L̃, l = P ∧ P̃ ,

where [L ∧ L̃]α = ϵαβγLαL̃β etc. The pair (p, l) lies in F12 if p lies on l, i.e. if p · l = 0,
so that (P,L) and (P̃ , L̃) are null–separated with respect to the conformal structure
(5.31). Then (p, l) is the intersection of the CP1 embeddings corresponding to (P,L)
and (P̃ , L̃).

We shall now give an explicit parametrisation of twistor lines, and show how
the metric (5.32) arises from the Penrose condition [62, 78]. Let P ∈ CP2. The
corresponding l ∈ CP2 is represented by some normal vector which is perpendicular to
P in C3, i.e.

l = P ∧ π, where π ∼ aπ + bP, (5.35)

where a ∈ C∗, b ∈ C. Thus π parametrises a projective line CP1, and by making a
choice of b we can take π = [π0′

, π1′
, 0], where πA′ = [π0′

, π1′ ] ∈ CP1. The constraint
P · l = 0 now holds. To satisfy the remaining constraints in (5.34) we take

p = L ∧ l = (L · π)P − (L · P )π. (5.36)

Substituting (5.33) gives the corresponding twistor line parametrised by [π] ∈ CP1

pα = [(zB′πB′)xA′ − πA′
, zB′πB′ ], lα = [πA′ ,−πB′xB′ ], (5.37)

where the spinor indices are raised and lowered with ϵAB and its inverse.
We shall now derive the expression for the conformal structure using the nonlinear

graviton prescription described in Section 5.1.1. To compute the normal bundle, let
([l(π, P, L)], [p(π, P, L)]) be the twistor line corresponding to a point m = (P,L) in M .
The vector in the direction of a nearby point (P + δP, L + δL) corresponds to the
neighbouring line ([l + δl], [p+ δp]), where from (5.35) and (5.36) we have

δl = δP ∧ π, δp = (δL · π)P + (L · π)δP − δ(L · P )π.

The lines (l + δl, p+ δp) and (l, p) define a section of the normal bundle to (l, p),
which has a zero if and only if this vector is null. Vanishing of the section is equivalent
to intersection of the two lines, and this happens if there exists some [π] such that
l + δl ∼ l and p+ δp ∼ p (note that the intersection point, if it exists, is unique, since
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projective lines in CP2 cannot meet more than once). We thus find

l + δl ∼ l ⇐⇒ π ∼ δP = [δx0′
, δx1′

, 0].

And p+ δp ∼ p ⇐⇒

0 = p∧δp = (L·π)2P∧δP−(L·P )(δL·π)π∧P−(L·π)δ(L·P )P∧π−(L·P )(L·π)π∧δP.

Substituting π ∼ δP , we find that all terms on the right hand side are proportional to
P ∧ δP = [0, 0, xB′

dxB′ ], with

(L · δP )2 − (L · δP )δ(L · P ) + (L · P )(δL · δP ) = 0.

Setting L · P = 1 this gives the conformal structure (5.32).

5.4.3 Pseudo–hyper–Hermitian structure on M

A pseudo–hyper–complex structure on a four manifold M is a triple of endomorphisms
I1, I2, I3 of TM which satisfy

I2
1 = −Id, I2

2 = I2
3 = Id, I1I2I3 = Id,

and such that c1I1 + c2I2 + c3I3 is an integrable complex structure for any point on the
hyperboloid c2

1− c2
2− c2

3 = 1. A neutral signature metric g on a pseudo–hyper–complex
four–manifold is pseudo–hyper–Hermitian if

g(ξ, ξ) = g(I1ξ, I1ξ) = −g(I2ξ, I2ξ) = −g(I3ξ, I3ξ)

for any vector field ξ on M .
Given a pseudo–hyper–complex structure (M, {I1, I2, I3}) and any vector field ξ

on M , the frame (ξ, I1ξ, I2ξ, I3ξ) defines a conformal structure on M . With a natural
choice of orientation which makes the fundamental two–forms of I1, I2, I3 self–dual,
this conformal structure is ASD.

Let ΣA′B′ be a basis of SD two–forms on M . The following result is proved in [24]
(see also [7]) in the Riemannian (i.e. hyper–complex) case.
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Theorem 5.4.2 ([24]). A four–manifold M equipped with a neutral signature metric g
is pseudo–hyper–Hermitian if there exists a one–form A depending only on g such that

dΣA′B′ + A ∧ ΣA′B′ = 0.

In fact, this condition is necessary and sufficient for hyper–Hermiticity [24, 7]. Given
some (M, g) which is conformally ASD, it can also be shown (see Lemma 2 in [24] and
Theorem 7.1 in [13]) that a lack of vertical ∂/∂π terms in the twistor distribution (5.9)
implies hyper–Hermiticity of (M, g).

Proposition 5.4.3. The Einstein metric (5.30) is pseudo–hyper–Hermitian.

Proof. The null frame for the 4-metric is

e0A′ = dxA′
, e1A′ = dzA′ + zA′(zB′dxB′), so that g = εA′B′εABe

AA′
eBB′

. (5.38)

Thus the forms Σ = dx0′ ∧ dx1′ and Ω = dzA′ ∧ dxA′ are ASD. The basis of SD two
forms is spanned by

dx ∧ dq + q2dx ∧ dy, dx ∧ dp− dy ∧ dq + 2pqdx ∧ dy, −dy ∧ dp+ p2dx ∧ dy

or, in a more compact notation, by ΣA′B′ = dx(A′ ∧ dzB′) + zA′
zB′Σ. We can verify that

dΣA′B′ + 2A ∧ ΣA′B′ = 0, (5.39)

where A = zA′dxA′ is such that dA = Ω, so from Theorem 5.4.2 we have that M carries
a hyper–Hermitian structure, and in fact the corresponding ASD Maxwell field dA = Ω
coincides with the one arising from the para–Kähler structure on M via (5.11).

Alternatively, note that the twistor distribution (5.9), having chosen the basis
(5.38), is given by

L0 = πA′ ∂

∂xA′ + (zB′πB′)zA′
∂

∂zA′
, L1 = πA′ · ∂

∂zA′
, (5.40)

which have no vertical terms. We can easily verify that it is Frobenius integrable, as
[L0, L1] = −(πA′

zA′)L1. The SD part of the spin connection is given in terms of A as
ΓAA′B′C′ = −2AA(B′εC′)A′ .

�

In the next section we shall show how to encode A in the twisted–photon Ward bundle
over the twistor space of (M, g).
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5.4.4 A line bundle over the twistor space of M

Ward [76] shows that there is a correspondence between ASD Maxwell potentials on M
and C∗ bundles over T which are trivial on twistor lines4. The purpose of this section
is to uncover the C∗ bundle over T corresponding to the ASD Maxwell potential
A = zA′dxA′ on M .

The twistor space F12 described in Section 5.4.2 can be identified with the projec-
tivised tangent bundle P(TCP2) of the minitwistor space of the flat projective structure,
since a point (p, l) in F12 ⊂ CP2 ×CP2 consists of a point l ∈ CP2, and a line p ⊂ CP2

through l which we can identify with a direction in the tangent space TlCP2. Thus the
twistor space of M is the correspondence space (in a twistorial sense) of CP2 and its
twistor space CP2. An obvious C∗ bundle over P(TCP2) is TCP2.

Proposition 5.4.4. The C∗ bundle TCP2 → P(TCP2) = F12 is trivial on twistor lines,
and corresponds via Ward’s twisted photon construction to the ASD Maxwell potential
A on M .

Proof. There are many open sets needed to cover P(TCP2), but it is sufficient to
consider two: U , where (l1, ̸= 0, p2 ̸= 0), and (l2/l1, l3/l1, p3/p2) are coordinates, and Ũ
where (l1 ̸= 0, p3 ̸= 0), and (l2/l1, l3/l1, p2/p3) are coordinates. Now consider the total
space of TCP2, and restrict it to the intersection of (pre–images in TCP2 of) U and Ũ .
The coordinates on TCP2 in these region are (l2/l1, l3/l1, p2/p1, p3/p1), and the fibre
coordinates over τ over U and τ̃ over Ũ are related by5

τ̃ = exp(F )τ, where F = ln (p2/p3).

Now we follow the procedure of [76]: restrict F to a twistor line, and split it. The
holomorphic splitting is F = f − f̃ , where f = ln (p2) is holomorphic in the pre–image
of U in the correspondence space, and f̃ = ln (p3) is holomorphic in the pre–image of
Ũ . Note that F is a twistor function, but f, f̃ are not. Therefore LAF = 0, where the
twistor distribution LA is given by (5.40). This implies that LAf = LAf̃ . Since each
side of this equation is holomorphic on an open subset of CP1, and since CP1 can be
covered with such subsets, both sides are globally holomorphic and therefore linear in

4Recall that a principal bundle P → T with structure group G is trivial if there exists a map
χ : P → T × G. Let {χα : Uα → T × G} be local trivialisations related by transition functions
Fαβ = χβ ◦ χ−1

α ∈ G. If Fαβ = fβf
−1
α for some splitting elements fα, fβ ∈ G on Uα,Uβ respectively,

then there exist χ̃α = f−1
α ◦ χα and χ̃β = f−1

β ◦ χβ such that F̃αβ = f−1
β fβf

−1
α fα = Id, so that the

bundle is trivial.
5Here we are following Ward [76], and thinking of a C∗ bundle.
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πA′ by the Liouville theorem. Hence

LAf = LAf̃ = πA′AAA′

for some one–form A on M .
To construct this one–form recall the parametrisation of twistor curves (5.37). This

gives
f = ln (zA′πA′), f̃ = ln ((zA′πA′)x1′ − π1′)

and
L1(f) = L1(f̃) = 0, L0(f) = L0(f̃) = πA′

zA′ .

Therefore A1A′ = 0,A0A′ = zA′ which gives A = zA′dxA′ , and dA is indeed the ASD
para–Kähler structure Ω.

�

5.4.5 Factoring the model to Einstein–Weyl

As stated above, we expect distinct Einstein–Weyl structures if we factor M by
conformal Killing vectors which are not conjugate with respect to an isometry [60].
We can thus classify the Einstein–Weyl structures obtainable from the model by first
classifying its symmetries up to conjugation.

Proposition 5.4.5. The non–trivial Einstein–Weyl structures obtainable from the ASD
Einstein metric (5.30) by the Jones–Tod correspondence consist of a two parameter
family, and two additional cases which do not belong to this family.

Proof. Since we have an isomorphism between the Lie algebra of projective vector
fields on (N, [∇]) and the Lie algebra of Killing vectors on (M, g), the problem of
classifying the symmetries of (5.30) is reduced to a classification of the infinitesimal
projective symmetries of RP2, i.e. the near–identity elements of SL(3,R), up to
conjugation.

Non–singular complex matrices are determined up to similarity by their Jordan
normal form (JNF). While real matrices do not have such a canonical form, all of the
information they contain is determined (up to similarity) by the JNF that they would
have if they were considered as complex matrices. Thus we can still discuss the JNF
of a real matrix, even if it cannot always be obtained from the real matrix by a real
similarity transformation. The possible non–trivial Jordan normal forms of matrices in
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SL(3,R) are shown below.

l1 0 0
0 l2 0
0 0 1/l1l2



l 0 0
0 l 0
0 0 1/l2



l 1 0
0 l 0
0 0 1/l2




1 1 0
0 1 0
0 0 1




1 1 0
0 1 1
0 0 1


It is possible that two matrices in SL(3,R) with the same JNF may be related by

a complex similarity transformation, and thus not conjugate in SL(3,R). However, if
the JNF is a real matrix, then the required similarity transformation just consists of
the eigenvectors and generalised eigenvectors of the matrix, which must also be real
since they are defined by real linear simultaneous equations. This means we only have
to worry about matrices with complex eigenvalues, and since these occur in complex
conjugate pairs, they will only be a problem when we have three distinct eigenvalues.

In this case, we can always make a real similarity transformation such that the
matrix is block diagonal, with the real eigenvalue in the bottom right. Then we have
limited choice from the 2× 2 matrix in the top left. Let us parametrise such a 2× 2
matrix by a, b, c, d ∈ R as follows:1 + aϵ bϵ

cϵ 1 + dϵ

 .
This has characteristic polynomial

χ(l) = l2 − (2 + ϵ(a+ d))l + 1 + (a+ d)ϵ+ (ad− bc)ϵ2.

Evidently the important degrees of freedom are a+ d and ad− bc, so we can use these
to encode every near–identity element of the class with three distinct eigenvalues. The
bottom–right entry will be determined by our choice of a+ d and ad− bc.

Taking a projective vector field on RP2, we can find the corresponding Killing
vector of (5.30) using (3.25), and factor to Einstein–Weyl using (5.13). We find by
explicit calculation that vector fields arising from the second and fourth JNFs above
give trivial Einstein–Weyl structures, so restricting to the non–trivial cases we have a
two parameter family of Einstein–Weyl structures coming from the first class, and two
additional Einstein–Weyl structures coming from the third and fifth, as claimed.

�
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5.4.6 An example of the mini–twistor correspondence

Below we investigate a one parameter subfamily of the two parameter family. We use
the holomorphic vector field on the twistor space F12 (see Section 5.4.2) corresponding
to the chosen symmetry, and reconstruct the conformal structure [h] on W using
minitwistor curves (in the sense of [39]) on the space of orbits. Take a ∈ R and

K = P 1 ∂

∂P 1 − L1
∂

∂L1
+ aP 2 ∂

∂P 2 − aL2
∂

∂L2
, (5.41)

In order to preserve the relations

p · L = 0, P · l = 0, p · l = 0,

the corresponding holomorphic action on (p, l) must be p 7→ gp, l 7→ lg−1, thus the
holomorphic vector field KT on F12 is

KT = p1 ∂

∂p1 − l1
∂

∂l1
+ ap2 ∂

∂p2 − al2
∂

∂l2
.

In order to factor F12 by this vector field, we must find invariant minitwistor
coordinates (Q,R). In addition to satisfying KT (Q) = KT (R) = 0, they must be
homogeneous of degree zero in (P,L). We choose

Q = p1l1
p2l2

, R = (l1)a

l2(l3)a−1 .

Substituting in our parametrisation (5.37) and using the freedom to perform a Möbius
transformation on π, we obtain

Q = (λz − r − 1)λ
wλ+ λ− rw

z

(5.42)

R = λa
(
− λ− w

z

)1−a

,

where we have defined λ = π0′/π1′ , and the Einstein–Weyl coordinates

r = xp, w = yq, z = xaq.

Note these are invariants of the Killing vector (5.41).
Next we wish to use these minitwistor curves to reconstruct the conformal structure

of the Einstein–Weyl space. In doing so we follow [60]. The tangent vector field to a
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fixed curve is given by
ξT = ∂Q

∂λ

∂

∂Q
+ ∂R

∂λ

∂

∂R
,

Hence we can write the normal vector field as

ξN = dQ
∂

∂Q
+ dR

∂

∂R
mod ξT

=
(
∂R

∂λ

)−1(
dQ

∂R

∂λ
− dR∂Q

∂λ

)
∂

∂Q
,

where
dQ = ∂Q

∂r
dr + ∂Q

∂w
dw + ∂Q

∂z
dz

and similarly for dR. Calculating ξN using (5.42), we find

ξN ∝ (η1λ
2 + η2λ+ η3)

∂

∂Q
,

where

η1 = z2(w + 1)dz − z3dw,

η2 = −2zrwdz + z2(a+ 2r)dw − z2dr,

η3 = rw(1 + r)dz − zr(1 + r)dw − azwdr.

The discriminant of this quadratic in λ then gives a representative h ∈ [h] of our
conformal structure:

h = 4(r2w + rw2 + rw)dz2 − 4zw(a(w + 1) + r)dzdr + 4zr(r − aw + 2w + 1)dzdw
−z2dr2 + 2z2(2aw + a+ 2r)dwdr − z2(a2 + 4r(a− 1))dw2.

(5.43)

This is the same conformal structure that we obtain by Jones-Tod factorisation of the
metric (5.30) by (5.41) using the formula (5.13).



Chapter 6

Para–c–projective compactification
of M

In [18] the concept of c–projective compactification was defined. It is based on almost c–
projective geometry [15], an analogue of projective geometry defined for almost complex
manifolds, i.e., even–dimensional manifolds M carrying a smooth endomorphism J

of TM which satisfies J2 = −Id. In c–projective geometry, the equivalence class
of torsion–free connections is replaced by an equivalence class of connections which
are adapted to the almost complex structure J in a natural way. In this chapter we
discuss a notion of compactification which is modified to the “para” case, i.e. where
the endomorphism J squares to Id rather than −Id. We show that the natural almost
para–complex structure J on any manifold M arising in the projective to Einstein
correspondence admits a type of compactification which we call para–c–projective. The
content of this chapter is based on material appearing in [29]. It was undertaken in
collaboration with Maciej Dunajski and Rod Gover.

6.1 Background and definitions

The purpose of this section is to introduce the definitions which are required to state
the main results of [18].

6.1.1 Almost (para–)complex geometry

Definition 6.1.1. The Nijenhuis tensor of an endomorphism J of TM is defined by

N (ξ1, ξ2) := [ξ1, ξ2]− [Jξ1, Jξ2] + J([Jξ1, ξ2] + [ξ1, Jξ2]), (6.1)
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where ξ1, ξ2 are vector fields on M and [· , ·] denotes the Lie bracket of vector fields.
This is equivalent to

N a
bc = Jd

[b∂|d|J
a
c] − Jd

[b∂c]J
a
d. (6.2)

Let M be a complex manifold of (complex) dimension n, in the sense of having
complex coordinates and complex transition functions. Then multiplication of the
coordinates by i defines an endomorphism J of TM which squares to −Id, so complex
manifolds are a subset of almost complex manifolds. In this case, J has eigenvalues ±i,
and the corresponding splitting of TM into eigen–bundles is Frobenius integrable. The
Newlander–Nirenberg theorem describes complex manifolds in terms of the Nijenhuis
tensor (6.1) of J .

Theorem 6.1.2 ([59]). An almost complex manifold (M,J) is a complex manifold if
and only if the Nijenhuis tensor of J vanishes. In this case, we call the almost complex
structure J integrable.

As discussed in Chapter 3, an endomorphism J which squares to Id defines an
analogous splitting of the tangent bundle into sub–bundles with eigenvalues ±1, and
this splitting is also Frobenius integrable if and only if the Nijenhuis tensor of J
vanishes. We thus call an almost para–complex structure J with vanishing Nijenhuis
tensor a para–complex structure, and say that in this case J is integrable. In all the
definitions below, the word almost can be removed if the (para–)complex structure J
is integrable.

Definition 6.1.3. A (para–)Hermitian metric on an almost (para–)complex manifold
(M,J) is a metric g satisfying

g(J · , J ·) = ±g(· , ·),

where the minus sign corresponds to the “para” case. The triple (M,J, g) then defines
an almost (para–)Hermitian manifold.

Note that every (para–)Hermitian manifold has a naturally defined two–form
Ω(· , ·) = g(· , J ·) which is (para–)Hermitian in the sense that

Ω(J · , J ·) = ±Ω(· , ·),

and can alternatively be specified as (M,J,Ω) or (M, g,Ω). An almost (para–)Kähler
manifold (M,J, g) is a (para–)Hermitian manifold whose associated two–form is closed,
meaning M carries compatible complex, pseudo–Riemannian and symplectic structures.
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The manifolds M arising in the projective to Einstein correspondence are almost
para–Kähler, and para–Kähler when the underlying projective structure is flat [28].

6.1.2 Almost (para–)CR structures and contact distributions

Definition 6.1.4. An almost (para–)CR structure (Z,H, J) on a manifold Z is a sub–
bundle H ⊂ TZ of the tangent bundle together with a fibre–preserving endomorphism
J : H→ H which satisfies J2 = Id or J2 = −Id depending on whether or not we are
talking about the “para” case.

We will be interested in the case where H is a hyperplane distribution on Z; then
(Z,H, J) is called an almost (para–)CR structure of hypersurface type. An almost
(para–)complex structure (M,J) of dimension 2n defines an almost (para–)CR structure
of hypersurface type on any hypersurface Z ⊂M given by the restriction of J to the
hyperplane distribution H := TZ ∩ J(TZ) on Z. Note that this distribution must
have dimension 2n− 2. An almost (para–)CR structure is a (para–)CR structure if
and only if the splitting of H into eigen–bundles induced by J is Frobenius integrable.

We can define the notion of non–degeneracy for an almost (para–)CR structure as
follows. The Lie bracket of vector fields induces an antisymmetric R–bilinear operator
Γ(H) × Γ(H) → Γ(TZ/H) which in fact is also bilinear over smooth functions on
Z. This means it is induced by a bundle map L : H × H → TZ/H which is called
the Levi bracket. Since it takes values in a line bundle it can be thought of as an
antisymmetric bilinear form called the Levi form. Degeneracy (or not) of the almost
(para–)CR structure is defined as degeneracy (or not) of the Levi form. Note that
the Levi form also defines a symmetric bilinear form hH(· , ·) = L(· , J ·) as long as
L is (para–)Hermitian with respect to J , and that this symmetric bilinear form is
non–degenerate if and only if L is.

Definition 6.1.5. A contact structure on a manifold Z of dimension 2n − 1 is a
hyperplane distribution H ⊂ TZ specified as the kernel of a one–form β on Z which
satisfies the complete non–integrability condition

β ∧ (dβ ∧ · · · ∧ dβ)︸ ︷︷ ︸
n−1 times

̸= 0. (6.3)

The complete non–integrability condition can be thought of as the opposite of
Frobenius integrability of the hyperplane distribution, see for example [1].
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6.1.3 Connections and (para–)c–projective equivalence

Definition 6.1.6. A connection on an almost (para–)complex manifold (M,J) is called
complex if it preserves J .

Note that, in contrast to a metric connection, it is not always possible to define
a complex connection which is torsion–free. In fact, this is possible if and only if
the Nijenhuis tensor (6.1) of J vanishes. However, one can always define a complex
connection whose torsion is equal to the Nijenhuis tensor of J up to a constant
multiplicative factor [15]. Such connections are called minimal.

Definition 6.1.7. Two affine connections ∇ and ∇ on an almost (para–)complex
manifold (M,J) are called (para–)c–projectively equivalent if there is a one–form Υa

on M such that their components Γa
bc and Γa

bc are related by

Γa

bc − Γa
bc = δa

b Υc + δa
c Υb ± (ΥdJ

d
bJ

a
c + ΥdJ

d
cJ

a
b), (6.4)

where the plus corresponds to the case J2 = Id and the minus corresponds to the case
J2 = −Id.

Note that the para–c–projective change of connection differs from the c–projective
case in the signs of some of the terms, to account for the fact that J squares to the
Id rather than −Id. It is easy to show that if ∇ is complex then so is ∇, and the
index symmetry of the right hand side of (6.4) means that if ∇ is minimal then so
is ∇. An almost (para–)c–projective structure on a manifold M comprises an almost
(para–)complex structure J and a (para–)c–projective equivalence class [∇] of complex
minimal connections.

We note here for later use that c–projective geometry in 2n dimensions can be
expressed as a Cartan geometry. The model Lie group quotient is G/S, where

G = {g ∈ SL(2n+ 2,R) : gJ = Jg},

and J is an endomorphism of R2n+2 which squares to −Id. This can be identified with
SL(n+ 1,C). The subgroup S is the stabiliser subgroup of a complex line in Cn+1, or
equivalently a real plane in R2n+2. Since a complex line in Cn+1 projects to a point in
CPn, CPn can be realised as G/S. More details can be found in [15]. Although the
para–c–projective case has non been studied in detail, we expect the construction to
be analogous, with J instead squaring to the identity on R2n+2.
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6.1.4 Para–c–projective compactification

We now specialise to the “para” case, where J2 = Id. Note that all the corresponding
results for J2 = −Id can be found in [18].

Definition 6.1.8. Let (M,J) be an almost para–complex manifold, and let ∇ be a
complex minimal connection. The structure (M,J) admits a para–c–projective com-
pactification to a manifold with boundary M = M ∪ ∂M if there exists a function
T : M → R such that the zero locus Z(T ) is the boundary ∂M ⊂M , the differential dT
does not vanish on ∂M , and the connection ∇, related to ∇ by (6.4) with Υ = dT/(2T ),
extends to M .

It follows easily from this definition that the endomorphism J on M naturally
extends to all of M by parallel transport with respect to ∇. It thus defines an almost
para–CR structure on the hyperplane distribution H defined by Hm := Tm∂M ∩
J(Tm∂M) for all m ∈ ∂M . It can be shown that this almost para–CR structure is
non–degenerate if and only if for any local defining function T the one–form β = dT ◦J ,
whose restriction to ∂M has kernel H, satisfies the complete non–integrability condition
(6.3) making H a contact distribution on ∂M .

To see this, first note that β(ξ) = 0 ∀ ξ ∈ Γ(H) implies dβ(· , ·) = −β([· , ·]), so the
restriction of dβ to H × H represents the Levi form L. This means that the almost
para–CR structure on ∂M is non–degenerate if and only if the restriction of dβ(ξ, ·) to
H is non–zero for all non–zero ξ ∈ Γ(H). But this is equivalent to the non–integrability
condition (6.3).

Another result of lemma 5 of [18] is that dβ is Hermitian on ∂M if and only if the
Nijenhuis tensor (6.1) of J takes so–called asymptotically tangential values. This is
equivalent to the following statement in index notation:(

N a
bc∇aT

)∣∣∣∣
T =0

= 0. (6.5)

Note in particular that Hermiticity of dβ on ∂M implies Hermiticity of dβ on H, and
hence the existence of a non–degenerate metric hH(· , ·) = dβ(· , J ·)|H on H. Both of
these facts also apply in the “para” case.

Although c–projective compactification is defined for any almost complex manifold,
the definition can be applied to pseudo–Riemannian metrics g which are Hermitian
with respect to the almost complex structure so long as there exists a connection which
preserves both g and J and has minimal torsion. Such Hermitian metrics are said to
be admissible. Note that such a connection, if it exists, is uniquely defined, since the
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conditions that it be complex and minimal determine its torsion. It is thus given by
the Levi–Civita connection of g plus a constant multiple of the Nijenhuis tensor (6.1)
of J .

The first main result of [18] is Theorem 8 in this reference, which gives a local form
for an admissible Hermitian metric which is sufficient for the corresponding c–projective
structure to be c–projectively compact. The theorem is stated below, adapted to the
para–c–projective case. The proof can be obtained by a trivial adaptation of the
arguments in [18], and so further details may be obtained from that source.

Theorem 6.1.9 ([18]). Let M be a smooth manifold with boundary ∂M and interior
M . Let J be an almost para–complex structure on M , such that ∂M is non–degenerate
and the Nijenhuis tensor N of J has asymptotically tangential values. Let g be an
admissible pseudo–Riemannian Hermitian metric on M . For a local defining function
T for the boundary defined on an open subset U ⊂ M , put β = dT ◦ J and, given a
non–zero real constant C, define a Hermitian tensor field hT,C on U ∩M by

hT,C := Tg + C

T
(dT 2 − β2).

Suppose that for each x ∈ ∂M there is an open neighbourhood U of x in M , a local
defining function T defined on U , and a non–zero constant C such that

• hT,C admits a smooth extension to all of U

• for all vector fields ξ1, ξ2 on U with dT (ξ2) = β(ξ2) = 0, the function hT,C(ξ1, Jξ2)
approaches Cdβ(ξ1, ξ2) at the boundary.

Then g is c–projectively compact.

Note that the statement in Theorem 6.1.9 does not depend on the choice of T .
Different choices of T result in rescalings of the one–form β on the boundary by a
nowhere vanishing function.

6.2 Compactifying the Dunajski–Mettler Class

In order to construct the para–c–projective compactification of the manifolds M arising
in the projective to Einstein correspondence, we will need to understand them from a
tractor perspective. This is the goal of the following subsection.
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6.2.1 Tractor construction of M

In Section 3.2.2 it was shown that the projectivised cotractor bundle of N is stratified
by the canonical density τ = V W , where V is the pull back of the canonical tractor
along πT : T ∗ → N and W is the tautological section of π∗

T (T ∗). It is easily verified
that the zero locus Z(τ) of τ is a smoothly embedded hypersurface in M := P(T ∗).
In the following theorem, we show that M\Z(τ) can be identified with M .

Theorem 6.2.1. [29] There is a metric g and two–form Ω on M\Z(τ) determined
by the canonical pairing of the horizontal and vertical subspaces of T (T ∗). The pair
(g,Ω) agrees with (3.19).

Proof. Considering first the total space T ∗ and then its tangent bundle, note that
there is an exact sequence

0→ π∗
T T ∗ → T (T ∗)→ π∗

T TN → 0, (6.6)

where we have identified π∗
T T ∗ as the vertical sub-bundle of T (T ∗). The tractor

connection on the vector bundle T ∗ → N is equivalent to a splitting of this sequence,
identifying π∗

T TN with a distinguished sub–bundle of horizontal subspaces in T (T ∗)
so that we have

T (T ∗) = π∗
T TN ⊕ π∗

T T ∗. (6.7)

We move now to the total space ofM := P(T ∗), and we note that again the tractor
(equivalently, Cartan) connection determines a splitting of the tangent bundle T (PT ∗)
in which the second term of the display (6.7) is replaced by a quotient of π∗

T T ∗(0, 1)
[19]. Indeed, if we work at a point m ∈ P(T ∗), observe that π∗

T T ∗(0, 1) has a filtration

0 −→ E(0, 0)m
Wm−−→ π∗

MT ∗(0, 1)|m −→ π∗
MT ∗(0, 1)|m/⟨Wm⟩ −→ 0 (6.8)

where, as usual, W is the canonical section. But away from Z(τ), we have that W
canonically splits the appropriately re-weighted pull back of the sequence (3.14)

0 −→ π∗
MT ∗N(1, 1) −→ π∗

MT ∗(0, 1) V/τ−−→ E(0, 0) −→ 0.

This identifies the quotient in (6.8), and thus we have canonically

T (P(T ∗) \ Z(τ)) = π∗
MTN ⊕ π∗

MT ∗N(1, 1).
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It follows that on M :=M\Z(τ) there is canonically a metric g and symplectic form
Ω taking values in E(1, 1), given by

g(w1, w2) = 1
2

(
ΠH(w1) ΠV (w2) + ΠH(w2) ΠV (w1)

)
and

Ω(w1, w2) = 1
2

(
ΠH(w1) ΠV (w2)− ΠH(w2) ΠV (w1)

)
where

ΠH : TM → π∗
MTN and ΠV : TM → π∗

MT ∗N(1, 1)

are the projections. Then we obtain the metric and symplectic form by

g := 1
τ

g and Ω := 1
τ

Ω. (6.9)

What remains to be done, is to show that (6.9) agrees with the form obtained in [28]
once a trivialisation of T ∗ → N has been chosen.

Let x ∈ N and let U ⊂ N be an open neighbourhood of x with local coordinates
(x1, . . . , xn) such that TxN = span(∂/∂x1, . . . , ∂/∂xn). The connection (3.15) gives a
splitting of T (T ∗) into the horizontal and vertical sub-bundles

T (T ∗) = H(T ∗)⊕ V(T ∗),

as in (6.7). To obtain the explicit form of this splitting, let σα, α = 0, 1, . . . , n be
components of a local section of T ∗ in the trivialisation over U . Then

∇T σβ = dσβ − γα
βσα,

where γβ
α = γβ

iαdx
i, and the components of the co-tractor connection γβ

iα are given in
terms of the connection ∇ on N , and its Schouten tensor, and can be read–off from
(3.15):

γ0
i0 = 0, γj

i0 = δj
i , γk

ij = Γk
ij, γ0

ij = −Pij.

In terms of these components we can write

H(T ∗) = span
(
∂

∂xi
+ γβ

iασβ
∂

∂σα

, i = 1, . . . , n
)
,

V(T ∗) = span
(
∂

∂σα

, α = 0, 1, . . . , n
)
.
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Setting ζi = σi/σ0, where τ = σ0 ̸= 0 on the complement of Z(τ), we can compute the
push forwards of these subspaces to P(T ∗) \ Z(τ):

κ∗H(T ∗) = span
(
hi ≡

∂

∂xi
− (Pij + ζiζj − Γk

ijζk) ∂

∂ζj

)
, κ∗V(T ∗) = span

(
vi ≡ ∂

∂ζi

)
.

The non–zero components of the metric (6.9) are given by

g(vi, hj) = δi
j.

This is identical to the form appearing in [28].

�

Remark 6.2.2. Note that the shift (3.20) in the fibre coordinates ζi corresponding to
a change of projective connection can be motivated from the change (3.13) in the
splitting of T ∗ and the definitions of σi and ζi.

Remark 6.2.3. We can also understand P(T ∗) \ Z(τ) as an affine bundle modelled on
T ∗N . Given a connection in the projective class and hence a decomposition (3.11),
there is a smooth fibre bundle isomorphism

κA : T ∗N → P(T ∗) \ Z(τ). (6.10)

given by
T ∗

xN ∋ ζi 7→ [(1, ζi)] = [(τ, τζi)] ∈ P(T ∗
x ) \ Z(τ). (6.11)

6.2.2 The compactification theorem

As noted in Chapter 3, in the model case where N = RPn and [∇] is projectively flat,
the manifold M = SL(n+ 1,R)/GL(n,R) can be identified with the projectivisation
of Rn+1×Rn+1 \Z, where Z denotes the set of incident pairs (point, hyperplane). The
compactification procedure described in the Theorem 6.2.4 below will, for the model,
attach these incident pairs back to M , and more generally (in case of a curved projective
structure (N, [∇])) will attach the zero locus of τ back into P(T ∗). The boundary
∂M ∼= Z(τ) from definition 6.1.8 will play the role of a submanifold separating two
open sets in P(T ∗) which have τ > 0 and τ < 0 respectively. The method of the proof
will be to show that near the boundary Z(τ) = 0 of M the metric (3.19) can be put in
the local normal form of Theorem 6.1.9.
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Theorem 6.2.4. The Einstein almost para–Kähler structure (M, g,Ω) given by (3.19)
admits a para–c–projective compactification M . The (2n− 1)–dimensional boundary
∂M ∼= Z(τ) of M carries a contact structure together with a conformal structure and
an almost para–CR structure defined on the contact distribution.

Proof. In the proof below we shall explicitly construct the boundary ∂M together
with the contact structure and the associated conformal structure on the contact
distribution. We shall first deal with the model case (3.27), and then explain how the
addition of non–vanishing projective curvature modifies the compactification.

Now consider an open set U ⊂M given by ζix
i > 0, and define the function T on

U by
T = 1

ζixi
. (6.12)

We shall attach a boundary ∂U to the open set U such that T extends to a function T
on U ∪ ∂U , and T is the defining function for this boundary. We then investigate the
geometry on M in the limit T → 0. It is clear from above that the zero locus of T will
be contained in the zero locus Z(τ) of τ , and therefore belongs to the boundary of M .
We will use T as a defining function for M in an open set U ⊂M . The strategy of the
proof is to extend T to a coordinate system on U , such that near the boundary the
metric g takes a form as in Theorem 6.1.9.

First define β ∈ Λ1(M) M by

ξ β = J(ξ) dT, or equivalently βa = Ωacg
bc (g∇bT ), a, b, c = 1, . . . , 2n (6.13)

where J is the para–complex structure of (g,Ω) and ξ is a vector field on M . Using
(3.27) this gives

β = 2T (1− T )ζidx
i − dT.

We need n open sets U1, . . . ,Un such that ζk ̸= 0 on Uk to cover the zero locus of T .
Here we chose k = n, and use a coordinate system given by

(T, Z1, . . . , Zn−1, X
1, . . . , Xn−1, Y ),

where T is given by (6.12) and

ZA = ζA

ζn

, XA = xA, Y = xn, where A = 1, . . . , n− 1.
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We compute

β = 2(1− T )dY + ZAdX
A

K
− dT, ζn = 1

KT
, where K ≡ Y + ZAX

A,

and substitute
ζidx

i = 1
KT

(dY + ZAdX
A)

into (3.19). This gives

g = β2 − dT 2

4T 2 + 1
T
hT , (6.14)

where

hT = 1
4(1− T )(β2 − dT 2) + 1

K

(
dZA ⊙ dXA − 1

2(1− T )X
AdZA ⊙ (β + dT )

)

is regular at the boundary T = 0. This is in agreement with the asymptotic form in
Theorem 6.1.9 (see [18] for further details).

The restriction of hT to ∂M gives a metric on the distribution H = Ker(β|T =0)

β|T =0 = 2dY + ZAdX
A

Y + ZAXA
,

hT |T =0 = 1
4(β|T =0)2 + 1

2(Y + ZAXA)(2dZA ⊙ dXA −XAdZA ⊙ (β|T =0)). (6.15)

Note that T is only defined up to multiplication by a positive function. Changing the
defining function in this way results in a conformal rescaling of β|T =0, thus the metric
on the contact distribution is also defined up to an overall conformal scale. We shall
choose the scale so that the contact form is given by β0 ≡ Kβ|T =0 on T (∂M), with
the metric on H given by

hH = dZA ⊙ dXA. (6.16)

We now move on to deal with the curved case where the metric on M is given by
(3.19). The coordinate system (T, ZA, X

A, Y ) is as above, and the one–form β in (6.13)
is given by

β = 2T (1− T )ζidx
i − dT + 2T 2(Pij − Γk

ijζk)xidxj,
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or in the (T, ZA, X
A, Y ) coordinates,

β = 2(1− T )ZAdX
A + dY

K
− dT

+2T 2

(PAB −
ΓC

ABZC + Γn
AB

TK

)
XAdXB +

(
PnB −

ΓC
nBZC + Γn

nB

TK

)
Y dXB

+
(

PAn −
ΓC

AnZC + Γn
An

TK

)
XAdY +

(
Pnn −

ΓC
nnZC + Γn

nn

TK

)
Y dY

.
Guided by the formula (6.14) we define

hT = Tg − 1
4T (β2 − dT 2),

which we find to be

hT = 1
4(1− T )(β2 − dT 2) + 1

K

(
dZA ⊙ dXA − 1

2(1− T )X
AdZA ⊙ (β + dT )

)
− 1
K

(
(ΓC

ABZC + Γn
AB)dXA ⊙ dXB + (ΓC

nnZC + Γn
nn)dY ⊙ dY

+ 2(ΓC
AnZC + Γn

An)dXA ⊙ dY
)

+ T (PABdX
A ⊙ dXB + 2PAndX

A ⊙ dY + PnndY ⊙ dY ).

This is smooth as T → 0.
Restricting hT to T = 0 yields a metric which differs from (6.15) by the curved

contribution given by the components of the connection, but not the Schouten tensor.
Substituting dY = Kβ|T =0/2− ZAdX

A, disregarding the terms involving β|T =0 in hT ,
and conformally rescaling by K yields the metric

hH = (dZA − ΞABdX
B)⊙ dXA, where (6.17)

ΞAB = ΓC
ABZC + Γn

AB + (ΓC
nnZC + Γn

nn)ZAZB − 2(ΓC
AnZC + Γn

An)ZB

defined on the contact distribution H = Ker(β0), where β0 = 2(dY + ZAdX
A).

We now invoke Theorem 6.1.9, verifying by explicit computation that the remaining
two conditions are satisfied. The first of these conditions is that the metric hT is
compatible with the Levi–form of the almost para–CR structure on the boundary. The
second is that the Nijenhuis tensor takes asymptotically tangential values, i.e. that
(6.5) is satisfied.
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Both of these can be checked by computing the almost para–complex structure J
in the (T, ZA, X

A, Y ) coordinates. We find

J := J |T =0 = − ∂

∂XA
⊗ dXA + ∂

∂Y
⊗ dY + ∂

∂ZA

⊗ dZA + ∂

∂T
⊗ dT

− ZB

K

∂

∂T
⊗ dXB − 1

K

∂

∂T
⊗ dY

−
(
ΓD

ABZD + Γn
AB

) ∂

∂ZA

⊗ dXB +
(
ΓD

nBZD + Γn
nB

)
ZC

∂

∂ZC

⊗ dXB

−
(
ΓD

AnZD + Γn
An

) ∂

∂ZA

⊗ dY +
(
ΓD

nnZD + Γn
nn

)
ZC

∂

∂ZC

⊗ dY.
(6.18)

Restricting to vectors in H amounts to substituting dY = β0/2− ZAdX
A and disre-

garding the terms involving β0 as above, so that

J |H =− ∂

∂XA
⊗ dXA + ZA

∂

∂Y
⊗ dXA + ∂

∂ZA

⊗ dZA + ∂

∂T
⊗ dT

− 2ZB

K

∂

∂T
⊗ dXB − ΞAB

∂

∂ZA

⊗ dXB

and the boundary compatibility condition is satisfied.
For the Nijenhuis condition, note that we need only consider components of N with

a = T to verify (6.5). Let us use the notation J (T ) for the one–form comprising the
∂/∂T components of J . We find this to be

J (T ) =
(
− ZB

K
+ T [2ZB + (ΓD

ABZD + Γn
AB)XA + (ΓD

nBZD + Γn
nB)Y ]

K

− T 2[PABX
A + PnBY ]

)
dXB

+
(
− 1
K

+ T [2 + (ΓD
AnZD + Γn

An)XA + (ΓD
nnZD + Γn

nn)Y ]
K

− T 2[PAnX
A + PnnY ]

)
dY.

Note that this agrees with (6.18) when T = 0. Using the formula (6.2), we now
calculate

N a
bc

g∇aT |T =0 =
(
J d

[b∂|d|J
(T )

c] − J d
[b∂c]J

(T )
d

)∣∣∣∣
T =0

to verify (6.5).
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�

Remark 6.2.5. In the case if n = 2 let us use coordinates (x, y, z) = (X1, Y, Z1) on ∂M ,
then (6.17) yields

hH = dz ⊙ dx− [Γ2
11 + (Γ1

11 − 2Γ2
12)z + (Γ2

22 − 2Γ2
12)z2 + Γ1

22z
3]dx⊙ dx,

which is transparently invariant under the projective changes (3.1) of ∇. In the
two-dimensional case the projective structures (N, [∇]) are equivalent to second order
ordinary differential equations (5.18) whose integral curves C are the unparametrised
geodesics of ∇. The curves C are integral submanifolds of a differential ideal I =<
β0, β1 >, where

β0 = dy + zdx, β1 = dz −
(

Γ2
11 + (Γ1

11 − 2Γ2
12)z + (Γ2

22 − 2Γ1
12)z2 + Γ1

22z
3
)
dx

are one–forms on a three–dimensional manifold Z = P(T ∗N) with local coordinates
(x, y, z). If f : C → Z is an immersion, then f ∗(β0) = 0, f ∗(β1) = 0 is equivalent to
(5.18) as long as β2 ≡ dx does not vanish. In terms of these three one–forms the contact
structure, and the metric on the contact distribution are given by β0, hH = β1 ⊙ β2.

6.3 An alternative approach to Theorem 6.2.4

It would be possible to show that the structures (M, g,Ω) arising in the projective to
Einstein correspondence are para–c–projectively compact using a purely tractor–based
approach, without relying on Theorem 6.1.9 and the local form (3.19). The basis for
this alternative method is the curved orbit decompositions appearing in [19], which
arise from holonomy reductions of Cartan geometries.

Recall first that a connection θ on a principal S–bundle π : G →M defines a unique
horizontal lift of any smooth curve on M , and the we can define the holonomy group
of θ based at u ∈ G as

Holu(θ) = {s ∈ S | u can be joined to us by the
horizontal lift of a loop in M based at π(u)}.

Then Holu(θ) is a subgroup of S, and if M is connected then holonomy groups at
different basepoints are related by conjugation in S. We can thus forget about the
basepoint u by defining Hol(θ) as a conjugacy class of subgroups of S. Any subgroup
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H such that Hol(θ) ⊂ H ⊂ S defines a reduced bundle G ×S G/H with structure group
H on which θ induces a connection.

Although the Cartan connection is not a principal bundle connection in the usual
sense, one can still define a notion of holonomy for Cartan connections, and it turns out
[19] that a parallel section of an associated tractor bundle defines a Cartan holonomy
reduction by a subgroup H ⊂ S. The subgroup H decomposes the homogeneous model
G/S into H–orbits, and it turns out that there is a corresponding decomposition of
G/S in the curved case, with reduced Cartan geometries arising on the orbits. This is
the origin of the name curved orbit decomposition. In the c–projective case, the model
is decomposed into a pair of open orbits separated by a closed submanifold. The open
orbits carry almost Kähler metrics and the closed orbit carries an almost CR structure.

By our construction above it follows that M has a canonical para–c–projective
geometry. In the following section, we realise the model in terms of an orbit de-
composition of a Lie group quotient, which we expect to be the homogeneous model
for a para–c–projective Cartan bundle. We conjecture that a full description of the
corresponding Cartan connection would lead to a proof of Theorem 6.2.4 using the
general Cartan holonomy theory in [19].

6.3.1 The model case

Recall from Section 3.2.3 that the flat projective structure on N = RPn gives rise to
the neutral signature para–Kähler Einstein metric (3.27) on the manifold

M ={([P ], [L]) ∈ RPn × RPn | P · L ̸= 0}
=M\Z(τ),

where M was the projectivised cotractor bundle P(T ∗) of RPn and Z was the zero
locus of the density τ , or equivalently the set of incident pairs in RPn × RPn.

Here we shall instead take N to be the sphere Sn with its standard flat projective
structure where the geodesics are great circles, so that N is orientable in all dimensions
and the cotractor bundle is trivial. Note that Sn is a double cover of RPn which consists
of the set of oriented lines in Rn+1. We obtain it by taking an analogous quotient of
Rn+1 where points are considered equivalent only up to multiplication by a positive
number. We call this ray projectivisation and denote it P+(Rn+1).
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Replacing RPn with Sn allows us to write the cotractor bundle of N as T ∗ = Sn×R3,
and if we also projectivise the fibres by ray projectivisation, we obtain a larger manifold

M̃ = P+(T ∗) = Sn × Sn,

where Sn is the dual to Sn in the same sense that RPn is dual to RPn. Then M̃
contains two copies of M which are separated by the hypersurface Z(τ). We now
express this decomposition of M̃ as an orbit decomposition.

Consider first two vector spaces V,W each isomorphic to Rn+1, and view each as a
representation space for an SL(n+ 1,R) action. Define G := SL(V)× SL(W) with its
action on V×W. We can write

P+(V)× P+(W) = G/S =
(
SL(V)/PV

)
×
(
SL(W)/PW

)
where PV (respectively PW ) is the parabolic subgroup in SL(V) that stabilises a point
[V ] in P+(V) (respectively [W ] ∈ P+(W)), and S is the group product PV × PW which
itself is a parabolic subgroup of the semisimple group G. Since the action of SL(V)
descends to a transitive action on the ray projectivisation P+(V) and similarly SL(W)
acts transitively on P+(W), we have that G := SL(V)× SL(W) acts transitively on
the manifold P+(V)× P+(W).

Note that we may consider V and W as the ±1 eigenspaces of the single vector
space V⊕W equipped with an endomorphism J such that J2 = 1. Then the quotient
G/S is exactly analogous to the model for c–projective geometry discussed in Section
6.1.3. We can therefore expect G/S to be the model for para–c–projective geometry.

Now introduce an additional structure which breaks the G symmetry. Namely we
fix an isomorphism

I : W→ V∗

where V∗ denotes the dual space to V. The subgroup H ∼= SL(n + 1,R) of G that
fixes this may be identified with SL(V) which acts on a pair (V,W ) ∈ V× V∗ by the
defining representation and on the first factor and by the dual representation on the
second factor. Note in particular that this action preserves W (V ).

Given this structure we may now (suppress I and) write

M̃ = P+(V)× P+(V∗).
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The H action on M̃ has two open orbits and a closed orbit. The last is the incidence
space

Z = {([V ], [W ]) ∈M | W (V ) = 0}

which sits as smooth orientable separating hypersurface in M̃. Then there are the
open orbits

M+ = {([V ], [W ]) ∈M |W (V ) > 0} and M− = {([V ], [W ]) ∈M |W (V ) < 0}.

We may think of Z as the ‘boundary’ (at infinity) for the open orbits M±, each of
which is a copy of our para–Kähler Einstein manifold M .

We therefore have an orbit decomposition of the homogeneous space G/S, where
the additional structure I has induced a reduction of the holonomy group by H. Based
on the results of [19] for the analogous c–projective case, we expect the closed orbit Z
to carry a para–CR structure and the open orbits M± to carry para–Kähler metrics
which are induced by the dual pairing between V and V∗ just as we saw in Section
6.2.1.





Chapter 7

Concluding Remarks

We use this chapter to discuss some of the open questions which remain unanswered
by the work presented here.

We began by discussing a modified φ4 theory on a wormhole spacetime, finding that
there is a kink solution and that it is topologically and linearly stable. We investigated
its asymptotic stability for the range of a where exactly one discrete mode is present.
It would be interesting to expand the investigation in Section 2.4 to the case when
both discrete modes are present. This problem is much more complicated because of
the extra terms which arise from the amplitude of the second internal mode. Similar
problems have been discussed in [81], although no such analysis has been done for
non–linear Klein–Gordon equation of this type with two discrete modes. The φ4 theory
on the wormhole presents a useful setting to undertake such analysis because the kink
has exactly two discrete modes for any a > a1, and because their frequencies can be
controlled by the parameter a.

The modified φ4 model shares an interesting property with the modified sine–Gordon
theory on the same wormhole spacetime [6]. In both cases, we expect a discontinuous
change in decay behaviour when a moves out of the range a0 < a < a1. Insight from
the φ4 case may help to elucidate the character of such discontinuous changes.

In this thesis, we have considered the manifolds M arising in the projective to
Einstein correspondence from a number of different perspectives. However, there
remain several open questions. In Chapter 4 we showed that a second Einstein metric
can be canonically constructed on an R∗–bundle over M , and interpreted this space
in terms of the Cartan bundle of the projective structure. It would be interesting to
understand what this larger manifold is from the tractor perspective.

In Chapter 5 we constructed several examples of Einstein–Weyl structures arising
as Jones–Tod reductions of the Einstein manifolds M in the special case n = 2, where
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M has ASD conformal curvature, and extracted corresponding solutions to the SU(∞)–
Toda equation. Although we produced many local expressions for Einstein–Weyl
structures, we were unable to provide a coordinate and scale invariant local character-
isation of the Einstein–Weyl structures which are obtainable from the projective to
Einstein correspondence. We know that they belong to the SU(∞)–Toda class, and
we showed in Section 5.2.2 that they carry two solutions to the Abelian monopole
equation, but it would be interesting to try and extend this result to a complete local
characterisation.

Finally, in Chapter 6 we showed that the manifolds M are para–c–projectively
compact using a local form of the metric. A more fundamental understanding of this
result could be obtained by realising M in terms of the curved orbit decomposition of
a para–c–projective structure, viewed as a Cartan holonomy reduction.
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