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Geometry of plane conics

Five general points determine a conic (Appolonius of Perga 200BC)

Fourth jet at a point determines a conic (Halphen 1879)
y2 + αx2 + β xy + γ y + δ x+ ε = 0. Differentiate five times

9(y(2))2y(5) − 45y(2)y(3)y(4) + 40(y(3))3 = 0.
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Geometry of plane conics

GL(2) structure on M = SL(3)/SL(2). TcM = Sym4(C2).
Vectors=binary quartics a4λ

4 + a3λ
3 + a2λ

2 + a1λ+ a0.

SL(2) ⊂ GL(5). Invariant I = 12a4a0 − 3a3a1 + (a2)
2.

Rational parametrisation: x2 + y2 = 1.

x =
1− λ2

1 + λ2
, y =

2λ

1 + λ2
.

Conformal structure on M : V ∈ Γ(TM) is null iff I(V ) = 0.
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Outline

Can one define a G2 structure on a seven–dimensional family M of
rational curves?

Can one characterise the curves and the corresponding G2 structures
in terms of a 7th order ODE

y(7) = F (x, y, y′, . . . , y(6))

with M as its solution space?

Condtions on F?

Examples from twistor theory/algebraic geometry.

Mixture of old and new: Classical invariant theory (Young, Sylvester),
algebraic geometry, twistor theory (Penrose, Hitchin).
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G2 structures and Fernandez–Gray types

dφ = τ0 ∗ φ+
3

4
τ1 ∧ φ+ ∗τ3

d ∗ φ = τ1 ∧ ∗φ− τ2 ∧ φ,

where τ0 ∈ Λ0(M), τ1 = Λ1(M), τ2 = Λ2(M), τ3 ∈ Λ3(M) satisfy

τ2 ∧ φ = − ∗ τ2, τ3 ∧ φ = τ3 ∧ ∗φ = 0.

Conformal rescallings g → e2fg

φ→ e3fφ, τ0 → e−fτ0, τ1 → τ1+4df, τ2 → efτ2, τ3 → e2fτ3.

1 G2 holonomy τ0 = τ1 = τ2 = τ3 = 0. Implies g is Ricci flat.
2 Weak G2 holonomy τ1 = τ2 = τ3 = 0. Implies g is Einstein.
3 Closed G2 structure τ0 = τ1 = τ3 = 0.
4 Co–calibrated G2 structure τ1 = τ2 = 0.
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Binary sextics

Binary sextics V = C7.

V = a1λ6 + 6a2λ5 + 15a3λ4 + 20a4λ3 + 15a5λ2 + 6a6λ+ a7,

Möbius action

λ −→ λ̃ =
αλ+ β

γλ+ δ

induces GL(2,C) ⊂ GL(7,C).

Invariant of weight 6

I(V ) = a1 a7 − 6a2 a6 + 15a3 a5 − 10(a4)2,

I(V )→ (αδ−βγ)6I(V )

Index notation: A,B, . . . , C = 0, 1.
V = VABCDEF z

AzBzCzDzEzF , I(V ) = VABCDEFV
ABCDEF .

Raise with symplectic form (unique up to scale) εAB = ε[AB].

Transvectants (Grace, Young 1903), or two component spinors
(Penrose).
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Seven dimensions and G2 geometry

GL(2) structure on M ↔ binary sextic S with values in T ∗M .

V ∈ Γ(TM)→ V S.

Conformal structure g(V, V ) = I(V ).

Three–form φ(V,U,W ) = VABC
DEFUDEF

GHIWGHI
ABC .

Compatibility

g(V, V ) = 0←→ (V φ) ∧ (V φ) ∧ φ = 0.

GL(2) ⊂ (G2)
C × C∗.

Really follows from Morozov’s theorem.
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GL(2,R) structures from ODEs.

Assume that the space of solutions to the 7th order ODE

y(7) = F (x, y, y′, . . . , y(6))

has a GL(2,R) structure such that normals to surfaces y = y(x; t)
have root with multiplicity 6. Then F satisfies five contact–invariant
conditions W1[F ] = · · · = W5[F ] = 0.

x

y

t

t

t M

Lp

p
z

z

1

2

3T

Additional contact invariants: torsion of G2 structure
τ0 = . . . , τ1 = . . . , τ2 = . . . , τ3 = ∂2F/∂(y(6))2.

If τ0 = τ1 = τ2 = τ3 = 0 then g is conformally flat and y(7) = 0.
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Twistor Theory

Family of rational curves Lt parametrised by t ∈M . x→ (x, y(x; t))
with self–intersection number six in a complex surface Z. Normal
vector

δy =

6∑
α=1

δy

δtα
δtα

vanishes at zeroes of a 6th order polynomial. N(L) = O(6).

H1(L,N(L)) = 0. Kodaira Theory: TtM ∼= H0(Lt, N(Lt)).

0
H (L, N(L))                          TM
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Twistor Theory

Sections of O(6)→ CP1=homogeneous polynomials of degree 6.

GL(2) structure.

In practice: f(x, y, tα) = 0 with rational parametrisation
x = p(λ, tα), y = q(λ, tα). Polynomial in λ giving rise to a null vector
is given by ∑

α

∂f

∂tα
|{x=p,y=q}δtα.
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Three examples

1 Example 1.

Rational curve: cuspidial cubic. (Neil 1657).
7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
Co–calibrated G2 structure on SU(2, 1)/U(1). (MD, Doubrov 2011).

2 Example 2.

Rational curve: Bihorn sextic.
7th order ODE: (Wilczynski).
Closed G2 structure (MD, Godliński 2010).

3 Example 3.

Rational curve: (MD, Sokolov 2010).
7th order ODE: (Noth 1904).
Weak G2 holonomy on SO(5)/SO(3) (Bryant 1987).
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Ex 1. Cocalibrated G2 from cuspidal cubics.

Irreducible plane cubics αx3 + βy3 + γxy2 + · · ·+ δ = 0.

Better:
PαβγZ

αZβZγ = 0, where Z1/Z3 = x, Z2/Z3 = y.

PSL(3) acts on CP9 Pαβγ → N δ
αN

ε
βN

φ
γPδεφ.

1 Smoth cubic y2 = x(x− 1)(x− c).

Genus one.

2 Nodal cubic y2 = x3 − x2.

Genus zero. X

3 Cuspidal cubic y2 = x3.

Genus zero. X

7D orbit M = PSL(3,C)/C∗.

[Z1, Z2, Z3]→ [aZ1, a4Z2, a−5Z3]

.

T

CP

CP

2

1

1
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Ex 1. Cocalibrated G2 from cuspidal cubics.

Set σ = N−1dN ∈ Λ1(SL(3,C))⊗ sl(3,C).

g = 2σ32 � σ23 +
1

2
σ31 � σ13 −

2

5
σ12 � σ21 −

1

40
(4σ11 − σ22)2.

Signature (3, 4) on M = SL(3,R)/R∗.
Signature (4, 3) on M = SU(3)/U(1). eiθ 0 0

0 e4iθ 0
0 0 e−5iθ

 , θ ∈ R Aloff–Wallach space N(1, 4).

Riemannian signature on M = SU(2, 1)/U(1).

X

Co–calibrated G2 structure dφ = λ ∗ φ+ τ, d ∗ φ = 0.
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Example 2: Closed G2 from bihorn sextics.

(y +Q(x))2 + P (x)3 = 0, where

Q(x) = q0 + q1x+ q2x
2 + q3x

3, P (x) = p3(x− p2)(x− p1).

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

Two double points and one irregular quadruple point at ∞. g = 0.

x(λ) =
p1 + p2λ

2

λ2 + 1
, y(λ) = p3

3/2(p1 − p2)3
λ3

(λ2 + 1)3
−Q(x(λ)).

7th order ODE y(7) =
21

5

y(6)y(5)

y(4)
− 84

25

(y(5))3

(y(4))2
.

Closed Riemannian G2 structure - explicit but messy.
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Example 3: Weak G2 from submaximal ODE

Contact geometry: (x, y) ∈ Z, (x, y, z) ∈ P (TZ), contact form
ω = dy− zdx. Generators of contact transformations, H = H(x, y, z)

XH = −(∂zH)∂x + (H − z∂zH)∂y + (∂xH + z∂yH)∂z.

Lie 1: Maximal contact Lie algebra on Z = R2 is ten–dimensional
(isomorphic to sp(4)) and is generated by

1, x, x2, y, z, xz, x2z − 2xy, z2, 2yz − xz2, 4xyz − 4y2 − x2z2.
Lie 2: Maximal dimension of the contact symmetry algebra of an
ODE of order n > 3 is (n+ 4) (saturated by y(n) = 0).
7th order ODE with 10D contact symmetries (submaximal ODE)

10(y(3))3y(7) − 70(y(3))2y(4)y(6) − 49(y(3))2(y(5))2

+280(y(3))(y(4))2y(5) − 175(y(4))4 = 0.

Two real forms of G2 structures on Sp(4)/SL(2), one of which is a
Riemannian homogeneous space SO(5)/SO(3) (Bryant 1987).
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Example 3: Weak G2 from submaximal ODE

(
c4y + c1 + c2x+ c3x

2
)3

+ 3
(
c4y + c1 + c2x+ c3x

2
)(

3 (c5x+ c6)
4 − 6 (c5x+ c6)

2 (1− c7x)2 − (1− c7x)4
)

+12 (c5x+ c6)
(

3 (c5x+ c6)
4 (1− c7x) + (1− c7x)5

)
= 0.

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

–1 –0.5 0.5 1 1.5

Discriminant of this cubic (in y) is a 3rd power of a quartic with
equianharmonic cross–ratio.
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Discriminant of this cubic (in y) is a 3rd power of a quartic with
equianharmonic cross–ratio.
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Outlook

Twistor theory of G2–structures.

Special structures - depending on functions of three variables. General
G2 structures depend on functions of six variables.

Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.

Conformal structures from binary quantics:

Quadratic - double root.
Quadric - equianharmonic cross ratio.
Sextic (relevant in this talk) -??
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