G_2 -STRUCTURES AND TWISTOR THEORY

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics University of Cambridge

- Joint with Tod, Godliński, Sokolov, Doubrov.
- Bulids on Cayley, Sylvester, Penrose, Hitchin, Bryant.
 - MD, Tod arXiv:math/0502524, J. Geom. Phys. (2006)
 - MD, Godliński arXiv:math/1002.3963, Quart. J. Math. (2012)
 - MD, Sokolov arXiv:math/1002.1620. J. Geom. Phys. (2011)
 - Doubrov, MD arXiv:math/1107.2813. Ann. Glob. Anal. (2012)

• Five general points determine a conic (Appolonius of Perga 200BC)

Geometry of plane conics

• Five general points determine a conic (Appolonius of Perga 200BC)

• Fourth jet at a point determines a conic (Halphen 1879) $y^2 + \alpha x^2 + \beta xy + \gamma y + \delta x + \epsilon = 0$. Differentiate five times

$$9(y^{(2)})^2 y^{(5)} - 45y^{(2)} y^{(3)} y^{(4)} + 40(y^{(3)})^3 = 0.$$

• GL(2) structure on M = SL(3)/SL(2). $T_cM = \operatorname{Sym}^4(\mathbb{C}^2)$. Vectors=binary quartics $a_4\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$.

• GL(2) structure on M = SL(3)/SL(2). $T_cM = \operatorname{Sym}^4(\mathbb{C}^2)$. Vectors=binary quartics $a_4\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$.

• $SL(2) \subset GL(5)$. Invariant $I = 12a_4a_0 - 3a_3a_1 + (a_2)^2$.

• GL(2) structure on M = SL(3)/SL(2). $T_cM = \operatorname{Sym}^4(\mathbb{C}^2)$. Vectors=binary quartics $a_4\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$.

- $SL(2) \subset GL(5)$. Invariant $I = 12a_4a_0 3a_3a_1 + (a_2)^2$.
- Rational parametrisation: $x^2 + y^2 = 1$.

$$x = \frac{1 - \lambda^2}{1 + \lambda^2}, \quad y = \frac{2\lambda}{1 + \lambda^2}.$$

• GL(2) structure on M = SL(3)/SL(2). $T_cM = \operatorname{Sym}^4(\mathbb{C}^2)$. Vectors=binary quartics $a_4\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$.

- $SL(2) \subset GL(5)$. Invariant $I = 12a_4a_0 3a_3a_1 + (a_2)^2$.
- Rational parametrisation: $x^2 + y^2 = 1$.

$$x = \frac{1 - \lambda^2}{1 + \lambda^2}, \quad y = \frac{2\lambda}{1 + \lambda^2}.$$

• Conformal structure on M: $V \in \Gamma(TM)$ is null iff I(V) = 0.

ullet Can one define a G_2 structure on a seven-dimensional family M of rational curves?

- Can one define a G_2 structure on a seven–dimensional family M of rational curves?
- ullet Can one characterise the curves and the corresponding G_2 structures in terms of a 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

with M as its solution space?

- Can one define a G_2 structure on a seven–dimensional family M of rational curves?
- ullet Can one characterise the curves and the corresponding G_2 structures in terms of a 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

with M as its solution space? Condtions on F?

Examples from twistor theory/algebraic geometry.

- Can one define a G_2 structure on a seven–dimensional family M of rational curves?
- ullet Can one characterise the curves and the corresponding G_2 structures in terms of a 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

with M as its solution space? Condtions on F?

- Examples from twistor theory/algebraic geometry.
- Mixture of old and new: Classical invariant theory (Young, Sylvester), algebraic geometry, twistor theory (Penrose, Hitchin).

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3$$

$$d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where
$$\tau_0 \in \Lambda^0(M), \tau_1 = \Lambda^1(M), \tau_2 = \Lambda^2(M), \tau_3 \in \Lambda^3(M)$$
 satisfy
$$\tau_2 \wedge \phi = - * \tau_2, \quad \tau_3 \wedge \phi = \tau_3 \wedge * \phi = 0.$$

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3$$

$$d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where $au_0\in\Lambda^0(M), au_1=\Lambda^1(M), au_2=\Lambda^2(M), au_3\in\Lambda^3(M)$ satisfy $au_2\wedge\phi=-* au_2, \quad au_3\wedge\phi= au_3\wedge*\phi=0.$

$$\phi \to e^{3f}\phi$$
, $\tau_0 \to e^{-f}\tau_0$, $\tau_1 \to \tau_1 + 4df$, $\tau_2 \to e^f\tau_2$, $\tau_3 \to e^{2f}\tau_3$.

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3$$

$$d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where
$$au_0\in\Lambda^0(M), au_1=\Lambda^1(M), au_2=\Lambda^2(M), au_3\in\Lambda^3(M)$$
 satisfy
$$au_2\wedge\phi=-* au_2, \quad au_3\wedge\phi= au_3\wedge*\phi=0.$$

ullet Conformal rescallings $g o e^{2f}g$

$$\phi \to e^{3f}\phi$$
, $\tau_0 \to e^{-f}\tau_0$, $\tau_1 \to \tau_1 + 4df$, $\tau_2 \to e^f\tau_2$, $\tau_3 \to e^{2f}\tau_3$.

1 G_2 holonomy $au_0 = au_1 = au_2 = au_3 = 0$. Implies g is Ricci flat.

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3$$

$$d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where
$$au_0\in\Lambda^0(M), au_1=\Lambda^1(M), au_2=\Lambda^2(M), au_3\in\Lambda^3(M)$$
 satisfy
$$au_2\wedge\phi=-* au_2, \quad au_3\wedge\phi= au_3\wedge*\phi=0.$$

$$\phi \to e^{3f}\phi$$
, $\tau_0 \to e^{-f}\tau_0$, $\tau_1 \to \tau_1 + 4df$, $\tau_2 \to e^f\tau_2$, $\tau_3 \to e^{2f}\tau_3$.

- **1** G_2 holonomy $\tau_0 = \tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Ricci flat.
- **②** Weak G_2 holonomy $\tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Einstein.

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3$$

$$d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where
$$au_0\in\Lambda^0(M), au_1=\Lambda^1(M), au_2=\Lambda^2(M), au_3\in\Lambda^3(M)$$
 satisfy
$$au_2\wedge\phi=-* au_2, \quad au_3\wedge\phi= au_3\wedge*\phi=0.$$

$$\phi \to e^{3f}\phi$$
, $\tau_0 \to e^{-f}\tau_0$, $\tau_1 \to \tau_1 + 4df$, $\tau_2 \to e^f\tau_2$, $\tau_3 \to e^{2f}\tau_3$.

- **1** G_2 holonomy $\tau_0 = \tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Ricci flat.
- ② Weak G_2 holonomy $\tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Einstein.
- **3** Closed G_2 structure $\tau_0 = \tau_1 = \tau_3 = 0$.

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3$$

$$d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where
$$au_0\in\Lambda^0(M), au_1=\Lambda^1(M), au_2=\Lambda^2(M), au_3\in\Lambda^3(M)$$
 satisfy
$$au_2\wedge\phi=-* au_2, \quad au_3\wedge\phi= au_3\wedge*\phi=0.$$

$$\phi \to e^{3f}\phi$$
, $\tau_0 \to e^{-f}\tau_0$, $\tau_1 \to \tau_1 + 4df$, $\tau_2 \to e^f\tau_2$, $\tau_3 \to e^{2f}\tau_3$.

- **1** G_2 holonomy $\tau_0 = \tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Ricci flat.
- **②** Weak G_2 holonomy $\tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Einstein.
- **3** Closed G_2 structure $\tau_0 = \tau_1 = \tau_3 = 0$.
- ① Co-calibrated G_2 structure $\tau_1 = \tau_2 = 0$.

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$\lambda \longrightarrow \tilde{\lambda} = \frac{\alpha\lambda + \beta}{\gamma\lambda + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$\lambda \longrightarrow \tilde{\lambda} = \frac{\alpha\lambda + \beta}{\gamma\lambda + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^1 a^7 - 6a^2 a^6 + 15a^3 a^5 - 10(a^4)^2,$$

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$\lambda \longrightarrow \tilde{\lambda} = \frac{\alpha\lambda + \beta}{\gamma\lambda + \delta}$$

induces $GL(2,\mathbb{C}) \subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^1 a^7 - 6a^2 a^6 + 15a^3 a^5 - 10(a^4)^2, \ I(V) \to (\alpha \delta - \beta \gamma)^6 I(V)$$

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$\lambda \longrightarrow \tilde{\lambda} = \frac{\alpha\lambda + \beta}{\gamma\lambda + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^1 a^7 - 6a^2 a^6 + 15a^3 a^5 - 10(a^4)^2, \ I(V) \to (\alpha \delta - \beta \gamma)^6 I(V)$$

 $\begin{array}{l} \bullet \ \ \text{Index notation:} \ A,B,\ldots,C=0,1. \\ V=V_{ABCDEF}z^Az^Bz^Cz^Dz^Ez^F, \quad I(V)=V_{ABCDEF}V^{ABCDEF}. \end{array}$

Binary Sextics

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$\lambda \longrightarrow \tilde{\lambda} = \frac{\alpha\lambda + \beta}{\gamma\lambda + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^1 a^7 - 6a^2 a^6 + 15a^3 a^5 - 10(a^4)^2, \ I(V) \to (\alpha \delta - \beta \gamma)^6 I(V)$$

- Index notation: $A, B, \dots, C = 0, 1$. $V = V_{ABCDEF} z^A z^B z^C z^D z^E z^F, \quad I(V) = V_{ABCDEF} V^{ABCDEF}.$
- Raise with symplectic form (unique up to scale) $\varepsilon^{AB} = \varepsilon^{[AB]}$.

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$\lambda \longrightarrow \tilde{\lambda} = \frac{\alpha\lambda + \beta}{\gamma\lambda + \delta}$$

induces $GL(2,\mathbb{C}) \subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^1 a^7 - 6a^2 a^6 + 15a^3 a^5 - 10(a^4)^2, \ I(V) \to (\alpha \delta - \beta \gamma)^6 I(V)$$

- Index notation: $A, B, \dots, C = 0, 1$. $V = V_{ABCDEF} z^A z^B z^C z^D z^E z^F, \quad I(V) = V_{ABCDEF} V^{ABCDEF}.$
- Raise with symplectic form (unique up to scale) $\varepsilon^{AB} = \varepsilon^{[AB]}$.
- Transvectants (Grace, Young 1903), or two component spinors (Penrose).

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

• Conformal structure g(V, V) = I(V).

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

- Conformal structure g(V, V) = I(V).
- Three-form $\phi(V, U, W) = V_{ABC}{}^{DEF} U_{DEF}{}^{GHI} W_{GHI}{}^{ABC}$.

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

- Conformal structure g(V, V) = I(V).
- Three-form $\phi(V, U, W) = V_{ABC}{}^{DEF} U_{DEF}{}^{GHI} W_{GHI}{}^{ABC}$.
- Compatibility

$$g(V,V) = 0 \longleftrightarrow (V \, \lrcorner \, \phi) \wedge (V \, \lrcorner \, \phi) \wedge \phi = 0.$$

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

- Conformal structure g(V, V) = I(V).
- Three-form $\phi(V, U, W) = V_{ABC}{}^{DEF} U_{DEF}{}^{GHI} W_{GHI}{}^{ABC}$.
- Compatibility

$$g(V,V) = 0 \longleftrightarrow (V \,\lrcorner\, \phi) \wedge (V \,\lrcorner\, \phi) \wedge \phi = 0.$$

• $GL(2) \subset (G_2)^{\mathbb{C}} \times \mathbb{C}^*$.

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

- Conformal structure g(V, V) = I(V).
- Three-form $\phi(V, U, W) = V_{ABC}{}^{DEF} U_{DEF}{}^{GHI} W_{GHI}{}^{ABC}$.
- Compatibility

$$g(V,V) = 0 \longleftrightarrow (V \, \lrcorner \, \phi) \wedge (V \, \lrcorner \, \phi) \wedge \phi = 0.$$

• $GL(2) \subset (G_2)^{\mathbb{C}} \times \mathbb{C}^*$. Really follows from Morozov's theorem.

$GL(2,\mathbb{R})$ STRUCTURES FROM ODEs.

Assume that the space of solutions to the 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

has a $GL(2,\mathbb{R})$ structure such that normals to surfaces y=y(x;t) have root with multiplicity 6. Then F satisfies five contact-invariant conditions $W_1[F]=\cdots=W_5[F]=0$.

$GL(2,\mathbb{R})$ STRUCTURES FROM ODES.

Assume that the space of solutions to the 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

has a $GL(2,\mathbb{R})$ structure such that normals to surfaces y=y(x;t) have root with multiplicity 6. Then F satisfies five contact–invariant conditions $W_1[F]=\cdots=W_5[F]=0$.

• Additional contact invariants: torsion of G_2 structure $\tau_0 = \dots, \tau_1 = \dots, \tau_2 = \dots, \tau_3 = \partial^2 F / \partial (y^{(6)})^2$.

$GL(2,\mathbb{R})$ STRUCTURES FROM ODES.

Assume that the space of solutions to the 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

has a $GL(2,\mathbb{R})$ structure such that normals to surfaces y=y(x;t) have root with multiplicity 6. Then F satisfies five contact–invariant conditions $W_1[F]=\cdots=W_5[F]=0$.

- Additional contact invariants: torsion of G_2 structure $\tau_0 = \dots, \tau_1 = \dots, \tau_2 = \dots, \tau_3 = \partial^2 F / \partial (y^{(6)})^2$.
- If $\tau_0 = \tau_1 = \tau_2 = \tau_3 = 0$ then g is conformally flat and $y^{(7)} = 0$.

TWISTOR THEORY

• Family of rational curves L_t parametrised by $t \in M$. $x \to (x, y(x; t))$ with self-intersection number six in a complex surface Z. Normal vector

$$\delta y = \sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}$$

vanishes at zeroes of a 6th order polynomial. $N(L)=\mathcal{O}(6).$

TWISTOR THEORY

• Family of rational curves L_t parametrised by $t \in M$. $x \to (x, y(x;t))$ with self-intersection number six in a complex surface Z. Normal vector

$$\delta y = \sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}$$

vanishes at zeroes of a 6th order polynomial. $N(L) = \mathcal{O}(6)$.

• $H^1(L, N(L)) = 0$. Kodaira Theory: $T_t M \cong H^0(L_t, N(L_t))$.

TWISTOR THEORY

• Sections of $\mathcal{O}(6) \to \mathbb{CP}^1$ =homogeneous polynomials of degree 6.

TWISTOR THEORY

• Sections of $\mathcal{O}(6) \to \mathbb{CP}^1$ =homogeneous polynomials of degree 6. GL(2) structure.

TWISTOR THEORY

- Sections of $\mathcal{O}(6) \to \mathbb{CP}^1$ =homogeneous polynomials of degree 6. GL(2) structure.
- In practice: $f(x,y,t_{\alpha})=0$ with rational parametrisation $x=p(\lambda,t_{\alpha}),y=q(\lambda,t_{\alpha}).$ Polynomial in λ giving rise to a null vector is given by

$$\sum_{\alpha} \frac{\partial f}{\partial t_{\alpha}} |_{\{x=p,y=q\}} \delta t_{\alpha}.$$

THREE EXAMPLES

- Example 1.
 - Rational curve: cuspidial cubic. (Neil 1657).
 - 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
 - Co-calibrated G_2 structure on SU(2,1)/U(1). (MD, Doubrov 2011).

Three examples

- Example 1.
 - Rational curve: cuspidial cubic. (Neil 1657).
 - 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
 - Co-calibrated G_2 structure on SU(2,1)/U(1). (MD, Doubrov 2011).
- Example 2.
 - Rational curve: Bihorn sextic.
 - 7th order ODE: (Wilczynski).
 - Closed G_2 structure (MD, Godliński 2010).

Three examples

- Example 1.
 - Rational curve: cuspidial cubic. (Neil 1657).
 - 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
 - Co-calibrated G_2 structure on SU(2,1)/U(1). (MD, Doubrov 2011).
- 2 Example 2.
 - Rational curve: Bihorn sextic.
 - 7th order ODE: (Wilczynski).
 - Closed G_2 structure (MD, Godliński 2010).
- Example 3.
 - Rational curve: (MD, Sokolov 2010).
 - 7th order ODE: (Noth 1904).
 - Weak G_2 holonomy on SO(5)/SO(3) (Bryant 1987).

• Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma xy^2 + \cdots + \delta = 0$.

• Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- $\bullet \ PSL(3) \ \text{acts on} \ \mathbb{CP}^9 \qquad P_{\alpha\beta\gamma} \to N^\delta{}_\alpha N^\epsilon{}_\beta N^\phi{}_\gamma P_{\delta\epsilon\phi}.$

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- PSL(3) acts on \mathbb{CP}^9 $P_{\alpha\beta\gamma} \to N^{\delta}{}_{\alpha}N^{\epsilon}{}_{\beta}N^{\phi}{}_{\gamma}P_{\delta\epsilon\phi}$.
 Smoth cubic $y^2 = x(x-1)(x-c)$.

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- PSL(3) acts on \mathbb{CP}^9 $P_{\alpha\beta\gamma} \to N^{\delta}{}_{\alpha}N^{\epsilon}{}_{\beta}N^{\phi}{}_{\gamma}P_{\delta\epsilon\phi}$.

 - 2 Nodal cubic $y^2 = x^3 x^2$.

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- PSL(3) acts on \mathbb{CP}^9 $P_{\alpha\beta\gamma} \to N^{\delta}{}_{\alpha}N^{\epsilon}{}_{\beta}N^{\phi}{}_{\gamma}P_{\delta\epsilon\phi}$.

 - ② Nodal cubic $y^2 = x^3 x^2$.
 - Ouspidal cubic $y^2 = x^3$.
 To orbit $M = PSL(3, \mathbb{C})/\mathbb{C}^*$.

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- PSL(3) acts on \mathbb{CP}^9 $P_{\alpha\beta\gamma} \to N^{\delta}{}_{\alpha}N^{\epsilon}{}_{\beta}N^{\phi}{}_{\gamma}P_{\delta\epsilon\phi}.$

 - ② Nodal cubic $y^2 = x^3 x^2$.
 - $\begin{array}{l} \textbf{O} \quad \text{Cuspidal cubic } y^2 = x^3. \\ \text{7D orbit } M = PSL(3,\mathbb{C})/\mathbb{C}^*. \ [Z^1,Z^2,Z^3] \rightarrow [aZ^1,a^4Z^2,a^{-5}Z^3]. \end{array}$

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- PSL(3) acts on \mathbb{CP}^9 $P_{\alpha\beta\gamma} \to N^{\delta}{}_{\alpha}N^{\epsilon}{}_{\beta}N^{\phi}{}_{\gamma}P_{\delta\epsilon\phi}.$
 - Smoth cubic $y^2 = x(x-1)(x-c)$. Genus one.
 - 2 Nodal cubic $y^2 = x^3 x^2$. Genus zero. \checkmark
 - $\begin{array}{ll} \text{Ouspidal cubic } y^2=x^3. & \text{Genus zero.} \quad \checkmark \\ \text{7D orbit } M=PSL(3,\mathbb{C})/\mathbb{C}^*. \ [Z^1,Z^2,Z^3] \rightarrow [aZ^1,a^4Z^2,a^{-5}Z^3]. \end{array}$

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

• Signature (3,4) on $M=SL(3,\mathbb{R})/\mathbb{R}^*$.

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

- Signature (3,4) on $M = SL(3,\mathbb{R})/\mathbb{R}^*$.
- Signature (4,3) on M=SU(3)/U(1).

$$\left(\begin{array}{ccc} e^{i\theta} & 0 & 0 \\ 0 & e^{4i\theta} & 0 \\ 0 & 0 & e^{-5i\theta} \end{array}\right), \quad \theta \in \mathbb{R} \quad \mathsf{Aloff-Wallach\ space}\ N(1,4).$$

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

- Signature (3,4) on $M = SL(3,\mathbb{R})/\mathbb{R}^*$.
- Signature (4,3) on M=SU(3)/U(1).

$$\left(\begin{array}{ccc} e^{i\theta} & 0 & 0 \\ 0 & e^{4i\theta} & 0 \\ 0 & 0 & e^{-5i\theta} \end{array} \right), \quad \theta \in \mathbb{R} \quad \text{Aloff-Wallach space } N(1,4).$$

• Riemannian signature on M = SU(2,1)/U(1).

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2\odot\sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1\odot\sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2\odot\sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

- Signature (3,4) on $M = SL(3,\mathbb{R})/\mathbb{R}^*$.
- Signature (4,3) on M=SU(3)/U(1).

$$\left(\begin{array}{ccc} e^{i\theta} & 0 & 0 \\ 0 & e^{4i\theta} & 0 \\ 0 & 0 & e^{-5i\theta} \end{array} \right), \quad \theta \in \mathbb{R} \quad \text{Aloff-Wallach space } N(1,4).$$

• Riemannian signature on M = SU(2,1)/U(1). \checkmark

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

- Signature (3,4) on $M = SL(3,\mathbb{R})/\mathbb{R}^*$.
- $\bullet \ {\rm Signature} \ (4,3) \ {\rm on} \ M = SU(3)/U(1).$

$$\left(\begin{array}{ccc} e^{i\theta} & 0 & 0 \\ 0 & e^{4i\theta} & 0 \\ 0 & 0 & e^{-5i\theta} \end{array}\right), \quad \theta \in \mathbb{R} \quad \mathsf{Aloff-Wallach\ space}\ N(1,4).$$

- Riemannian signature on M = SU(2,1)/U(1). \checkmark
- Co-calibrated G_2 structure $d\phi = \lambda * \phi + \tau$, $d*\phi = 0$.

• $(y + Q(x))^2 + P(x)^3 = 0$, where

$$Q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3, \quad P(x) = p_3 (x - p_2)(x - p_1).$$

• $(y + Q(x))^2 + P(x)^3 = 0$, where

$$Q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3, \quad P(x) = p_3 (x - p_2)(x - p_1).$$

ullet Two double points and one irregular quadruple point at ∞ . g=0.

$$x(\lambda) = \frac{p_1 + p_2 \lambda^2}{\lambda^2 + 1}, \quad y(\lambda) = p_3^{3/2} (p_1 - p_2)^3 \frac{\lambda^3}{(\lambda^2 + 1)^3} - Q(x(\lambda)).$$

• $(y + Q(x))^2 + P(x)^3 = 0$, where

$$Q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3, \quad P(x) = p_3 (x - p_2)(x - p_1).$$

• Two double points and one irregular quadruple point at ∞ . g = 0.

$$x(\lambda) = \frac{p_1 + p_2 \lambda^2}{\lambda^2 + 1}, \quad y(\lambda) = p_3^{3/2} (p_1 - p_2)^3 \frac{\lambda^3}{(\lambda^2 + 1)^3} - Q(x(\lambda)).$$

7th order ODE
$$y^{(7)} = \frac{21}{5} \frac{y^{(6)}y^{(5)}}{y^{(4)}} - \frac{84}{25} \frac{(y^{(5)})^3}{(y^{(4)})^2}.$$

• $(y + Q(x))^2 + P(x)^3 = 0$, where

$$Q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3, \quad P(x) = p_3 (x - p_2)(x - p_1).$$

• Two double points and one irregular quadruple point at ∞ . g = 0.

$$x(\lambda) = \frac{p_1 + p_2 \lambda^2}{\lambda^2 + 1}, \quad y(\lambda) = p_3^{3/2} (p_1 - p_2)^3 \frac{\lambda^3}{(\lambda^2 + 1)^3} - Q(x(\lambda)).$$

7th order ODE
$$y^{(7)} = \frac{21}{5} \frac{y^{(6)} y^{(5)}}{y^{(4)}} - \frac{84}{25} \frac{(y^{(5)})^3}{(y^{(4)})^2}.$$

• Closed Riemannian G_2 structure - explicit but messy.

• Contact geometry: $(x,y) \in Z$, $(x,y,z) \in P(TZ)$, contact form $\omega = dy - z dx$. Generators of contact transformations, H = H(x,y,z) $X_H = -(\partial_z H) \partial_x + (H - z \partial_z H) \partial_y + (\partial_x H + z \partial_y H) \partial_z.$

- Contact geometry: $(x,y) \in Z$, $(x,y,z) \in P(TZ)$, contact form $\omega = dy z dx$. Generators of contact transformations, H = H(x,y,z) $X_H = -(\partial_z H) \partial_x + (H z \partial_z H) \partial_y + (\partial_x H + z \partial_y H) \partial_z.$
- Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^2$ is ten-dimensional (isomorphic to $\mathfrak{sp}(4)$) and is generated by

$$1, x, x^2, y, z, xz, x^2z - 2xy, z^2, 2yz - xz^2, 4xyz - 4y^2 - x^2z^2.$$

- Contact geometry: $(x,y) \in Z$, $(x,y,z) \in P(TZ)$, contact form $\omega = dy z dx$. Generators of contact transformations, H = H(x,y,z) $X_H = -(\partial_z H) \partial_x + (H z \partial_z H) \partial_y + (\partial_x H + z \partial_y H) \partial_z.$
- Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^2$ is ten-dimensional (isomorphic to $\mathfrak{sp}(4)$) and is generated by

$$1, x, x^2, y, z, xz, x^2z - 2xy, z^2, 2yz - xz^2, 4xyz - 4y^2 - x^2z^2.$$

• Lie 2: Maximal dimension of the contact symmetry algebra of an ODE of order n > 3 is (n + 4) (saturated by $y^{(n)} = 0$).

• Contact geometry: $(x,y) \in Z$, $(x,y,z) \in P(TZ)$, contact form $\omega = dy - z dx$. Generators of contact transformations, H = H(x,y,z) $X_H = -(\partial_z H) \partial_x + (H - z \partial_z H) \partial_y + (\partial_x H + z \partial_y H) \partial_z.$

• Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^2$ is ten-dimensional (isomorphic to $\mathfrak{sp}(4)$) and is generated by

$$1, x, x^2, y, z, xz, x^2z - 2xy, z^2, 2yz - xz^2, 4xyz - 4y^2 - x^2z^2.$$

- Lie 2: Maximal dimension of the contact symmetry algebra of an ODE of order n>3 is (n+4) (saturated by $y^{(n)}=0$).
- 7th order ODE with 10D contact symmetries (submaximal ODE)

$$10(y^{(3)})^3 y^{(7)} - 70(y^{(3)})^2 y^{(4)} y^{(6)} - 49(y^{(3)})^2 (y^{(5)})^2 +280(y^{(3)})(y^{(4)})^2 y^{(5)} - 175(y^{(4)})^4 = 0.$$

• Contact geometry: $(x,y) \in Z$, $(x,y,z) \in P(TZ)$, contact form $\omega = dy - z dx$. Generators of contact transformations, H = H(x,y,z) $X_H = -(\partial_z H) \partial_x + (H - z \partial_z H) \partial_y + (\partial_x H + z \partial_y H) \partial_z.$

• Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^2$ is ten-dimensional (isomorphic to $\mathfrak{sp}(4)$) and is generated by

$$1, x, x^2, y, z, xz, x^2z - 2xy, z^2, 2yz - xz^2, 4xyz - 4y^2 - x^2z^2.$$

- Lie 2: Maximal dimension of the contact symmetry algebra of an ODE of order n>3 is (n+4) (saturated by $y^{(n)}=0$).
- 7th order ODE with 10D contact symmetries (submaximal ODE)

$$10(y^{(3)})^3 y^{(7)} - 70(y^{(3)})^2 y^{(4)} y^{(6)} - 49(y^{(3)})^2 (y^{(5)})^2 +280(y^{(3)})(y^{(4)})^2 y^{(5)} - 175(y^{(4)})^4 = 0.$$

• Two real forms of G_2 structures on Sp(4)/SL(2), one of which is a Riemannian homogeneous space SO(5)/SO(3) (Bryant 1987).

$$(c_4y + c_1 + c_2x + c_3x^2)^3 + 3(c_4y + c_1 + c_2x + c_3x^2)$$

$$(3(c_5x + c_6)^4 - 6(c_5x + c_6)^2(1 - c_7x)^2 - (1 - c_7x)^4)$$

$$+12(c_5x + c_6)(3(c_5x + c_6)^4(1 - c_7x) + (1 - c_7x)^5) = 0.$$

$$(c_4y + c_1 + c_2x + c_3x^2)^3 + 3(c_4y + c_1 + c_2x + c_3x^2)$$

$$(3(c_5x + c_6)^4 - 6(c_5x + c_6)^2(1 - c_7x)^2 - (1 - c_7x)^4)$$

$$+12(c_5x + c_6)(3(c_5x + c_6)^4(1 - c_7x) + (1 - c_7x)^5) = 0.$$

Discriminant of this cubic (in y) is a 3rd power of a quartic with equianharmonic cross-ratio.

• Twistor theory of G_2 -structures.

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.

- Twistor theory of G_2 -structures.
 - ullet Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.

- Twistor theory of G_2 -structures.
 - ullet Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:
 - Quadratic double root.

Outlook

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:
 - Quadratic double root.
 - Quadric equianharmonic cross ratio.

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General ${\cal G}_2$ structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:
 - Quadratic double root.
 - Quadric equianharmonic cross ratio.
 - Sextic (relevant in this talk) -??