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GEOMETRY OF PLANE CONICS

e Five general points determine a conic (Appolonius of Perga 200BC)
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GEOMETRY OF PLANE CONICS

e Five general points determine a conic (Appolonius of Perga 200BC)

e Fourth jet at a point determines a conic (Halphen 1879)
y? + ax® + Bxy+vy+ 0 x+ e =0. Differentiate five times

9(y®)?y®) — 45y Py +40(y)? = 0.
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GEOMETRY OF PLANE CONICS

o GL(2) structure on M = SL(3)/SL(2). T.M = Sym*(C?).
Vectors=binary quartics asA* + azA? + asA? + a1\ + ao.
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GEOMETRY OF PLANE CONICS

o GL(2) structure on M = SL(3)/SL(2). T.M = Sym*(C?).
Vectors=binary quartics asA* + azA? + asA? + a1\ + ao.

o SL(2) C GL(5). Invariant I = 12a4ap — 3aza; + (az2)?.
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GEOMETRY OF PLANE CONICS

o GL(2) structure on M = SL(3)/SL(2). T.M = Sym*(C?).
Vectors=binary quartics asA* + azA? + asA? + a1\ + ao.

o SL(2) C GL(5). Invariant I = 12a4ap — 3aza; + (az2)?.
o Rational parametrisation: 22 +¢? = 1.
1— )2 2)
r=—" = ——.
1+ YT
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GEOMETRY OF PLANE CONICS

o GL(2) structure on M = SL(3)/SL(2). T.M = Sym*(C?).
Vectors=binary quartics asA* + azA? + asA? + a1\ + ao.

o SL(2) C GL(5). Invariant I = 12a4ap — 3aza; + (az2)?.
o Rational parametrisation: z2 + y? = 1.
1— )2 2X
T YT
e Conformal structure on M: V € T'(T'M) is null iff I(V) = 0.
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OUTLINE

@ Can one define a G2 structure on a seven—dimensional family M of
rational curves?
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OUTLINE

@ Can one define a G2 structure on a seven—dimensional family M of
rational curves?

@ Can one characterise the curves and the corresponding G5 structures
in terms of a 7th order ODE

yD = F(z,y,9,...,49)

with M as its solution space?
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OUTLINE

@ Can one define a G2 structure on a seven—dimensional family M of
rational curves?

@ Can one characterise the curves and the corresponding G5 structures
in terms of a 7th order ODE

yD = F(z,y,9,...,49)

with M as its solution space? Condtions on F'?

e Examples from twistor theory/algebraic geometry.
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OUTLINE

@ Can one define a G2 structure on a seven—dimensional family M of
rational curves?

@ Can one characterise the curves and the corresponding G5 structures
in terms of a 7th order ODE

yD = F(z,y,9,...,49)

with M as its solution space? Condtions on F'?
e Examples from twistor theory/algebraic geometry.

@ Mixture of old and new: Classical invariant theory (Young, Sylvester),
algebraic geometry, twistor theory (Penrose, Hitchin).
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(G5 STRUCTURES AND FERNANDEZ-GRAY TYPES

3
do TO*¢+ZT1/\¢+*T3
dx¢ = TIA*p—T2NQ,
where 79 € A°(M), 71 = AY(M), 70 = A2(M), 73 € A3(M) satisfy

ToNP=—%xTp, T3NP=T13A%¢p=0.
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(G5 STRUCTURES AND FERNANDEZ-GRAY TYPES

3
do TO*(b‘i‘ZTl/\(ﬁ-i-*Tg
dx¢ = TIA*p—T2NQ,
where 79 € A°(M), 71 = AY(M), 70 = A2(M), 73 € A3(M) satisfy

ToNP=—%xTp, T3NP=T13A%¢p=0.

o Conformal rescallings g — e¢*f g

¢ — e3f¢>, 0 — effTo, T — T+4df, T — eng, T3 — e2f7'3.
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(G5 STRUCTURES AND FERNANDEZ-GRAY TYPES

3
do TO*(b‘i‘ZTl/\(ﬁ-i-*Tg
dx¢ = TIA*p—T2NQ,
where 79 € A°(M), 71 = AY(M), 70 = A2(M), 73 € A3(M) satisfy

ToNP=—%xTp, T3NP=T13A%¢p=0.

o Conformal rescallings g — e¢*f g

¢ — e3f¢>, 0 — effTo, T — T+4df, T — eng, T3 — e2f7'3.

@ G5 holonomy 79 = 71 = 79 = 73 = 0. Implies g is Ricci flat.
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(G5 STRUCTURES AND FERNANDEZ-GRAY TYPES

3
do TO*(b‘i‘ZTl/\(ﬁ-i-*Tg
dx¢ = TIA*p—T2NQ,
where 79 € A°(M), 71 = AY(M), 70 = A2(M), 73 € A3(M) satisfy

ToNP=—%xTp, T3NP=T13A%¢p=0.

o Conformal rescallings g — e¢*f g

¢ — e3f¢>, 0 — effTo, T — T+4df, T — eng, T3 — e2f7'3.

@ G5 holonomy 79 = 71 = 79 = 73 = 0. Implies g is Ricci flat.
@ Weak G5 holonomy 7, = 75 = 73 = 0. Implies g is Einstein.
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(G5 STRUCTURES AND FERNANDEZ-GRAY TYPES

3
do TO*(b‘i‘ZTl/\(ﬁ-i-*Tg
dx¢ = TIA*p—T2NQ,
where 79 € A°(M), 71 = AY(M), 70 = A2(M), 73 € A3(M) satisfy

ToNP=—%xTp, T3NP=T13A%¢p=0.

o Conformal rescallings g — e¢*f g
¢ — e3f¢>, 0 — effTo, T — T+4df, T — eng, T3 — e2f7'3.
@ G5 holonomy 79 = 71 = 79 = 73 = 0. Implies g is Ricci flat.

@ Weak G5 holonomy 7, = 75 = 73 = 0. Implies g is Einstein.
@ Closed G structure 79 = 71 = 73 = 0.
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(G5 STRUCTURES AND FERNANDEZ-GRAY TYPES

3
do TO*(b‘i‘ZTl/\(ﬁ-i-*Tg
dx¢ = TIA*p—T2NQ,
where 79 € A°(M), 71 = AY(M), 70 = A2(M), 73 € A3(M) satisfy

ToNP=—%xTp, T3NP=T13A%¢p=0.

o Conformal rescallings g — e¢*f g

¢ — e3f¢>, 0 — eifTo, T — T+4df, T — eng, T3 — e2f7'3.

@ G5 holonomy 79 = 71 = 79 = 73 = 0. Implies g is Ricci flat.
@ Weak G5 holonomy 7, = 75 = 73 = 0. Implies g is Einstein.
@ Closed G structure 79 = 71 = 73 = 0.

© Co—calibrated G5 structure 71 = 79 = 0.
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BINARY SEXTICS

e Binary sextics V = C7.

V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645\ + a7
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BINARY SEXTICS

e Binary sextics V = C7.
V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645\ + a7

@ Mobbius action
al+

A A=
- YA+ 0

induces GL(2,C) Cc GL(7,C).
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BINARY SEXTICS

e Binary sextics V = C7.
V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645\ + a7

@ Mobbius action
al+

A A=
- YA+ 0

induces GL(2,C) Cc GL(7,C).
@ Invariant of weight 6

(V) = a' a” —6a® a® +15a° a® — 10(a4)2,
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BINARY SEXTICS

e Binary sextics V = C7.

V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645\ + a7
@ Mobius action
al+

A=
A YA+ 0

induces GL(2,C) Cc GL(7,C).
@ Invariant of weight 6

I(V) =a' a" —6a® a® + 15a% a® — 10(a*)?, I(V) = (ad—B7)°1(V)
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BINARY SEXTICS

e Binary sextics V = C7.
V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645\ + a7

@ Mobbius action
al+

YA+ 0

A— A=

induces GL(2,C) Cc GL(7,C).
@ Invariant of weight 6

I(V) =a' a" —6a® a® + 15a% a® — 10(a*)?, I(V) = (ad—B7)°1(V)

@ Index notation: A, B,...,C =0,1.
V = Vapcprrzd2B202P2E2F (V) = VapeprprVABCPEE,
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BINARY SEXTICS

Binary sextics V = C7.
V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645\ + a7

Mobius action
al+

A A=
- YA+ 0

induces GL(2,C) Cc GL(7,C).
Invariant of weight 6

I(V) =a' a" —6a® a® + 15a% a® — 10(a*)?, I(V) = (ad—B7)°1(V)

Index notation: A,B,...,C =0,1.
V = Vapcprrzd2B202P2E2F (V) = VapeprprVABCPEE,

Raise with symplectic form (unique up to scale) 48 = lAB],
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BINARY SEXTICS

e Raise with symplectic form (unique up to scale

Binary sextics V = C7.
V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645\ + a7

Mobius action
al+

A A=
- YA+ 0

induces GL(2,C) Cc GL(7,C).
Invariant of weight 6

I(V) =a' a" —6a® a® + 15a% a® — 10(a*)?, I(V) = (ad—B7)°1(V)

Index notation: A,B,...,C =0,1.
V = Vapcprrzd2B202P2E2F (V) = VapeprprVABCPEE,
) cAB — [AB]

e Transvectants (Grace, Young 1903), or two component spinors

(Penrose).
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SEVEN DIMENSIONS AND (G5 GEOMETRY

e GL(2) structure on M < binary sextic S with values in T* M.

V eD(TM) = VJ8S.
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SEVEN DIMENSIONS AND (G5 GEOMETRY

e GL(2) structure on M < binary sextic S with values in T* M.
Vel (TM) = VIS

e Conformal structure g(V, V) = I(V).
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SEVEN DIMENSIONS AND (G5 GEOMETRY

e GL(2) structure on M < binary sextic S with values in T* M.
Vel (TM) = VIS

e Conformal structure g(V, V) = I(V).
o Three—form ¢(V,U, W) = VapcPErUppr W ABC.
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SEVEN DIMENSIONS AND (G5 GEOMETRY

e GL(2) structure on M < binary sextic S with values in T* M.
Vel (TM) = VIS

e Conformal structure g(V, V) = I(V).
Three—form ¢(V, U, W) = VapcPEFrUppr® ™ WP

Compatibility

gV, V)=0+— (VIe)AN(VId)ANp=0.

Dunasskl (DAMTP, CAMBRIDGE) RATIONAL CURVES 18 OCTOBER 2011 T/17



SEVEN DIMENSIONS AND (G5 GEOMETRY

e GL(2) structure on M < binary sextic S with values in T* M.
Vel (TM) = VIS

e Conformal structure g(V, V) = I(V).
Three—form ¢(V, U, W) = VapcPEFrUppr® ™ WP

Compatibility

gV, V)=0+— (VIe)AN(VId)ANp=0.

o GL(2) C (G2)® x C*.
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SEVEN DIMENSIONS AND (G5 GEOMETRY

e GL(2) structure on M < binary sextic S with values in T* M.
Vel (TM) = VIS

e Conformal structure g(V, V) = I(V).
Three—form ¢(V, U, W) = VapcPEFrUppr® ™ WP

Compatibility

gV, V)=0+— (VIe)AN(VId)ANp=0.

o GL(2) C (G2)® x C*. Really follows from Morozov's theorem.
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GL(2,R) STRUCTURES FROM ODEs.

@ Assume that the space of solutions to the 7th order ODE

y D = F(z,y,9,...,99)

has a GL(2,R) structure such that normals to surfaces y = y(z;1)
have root with multiplicity 6. Then F’ satisfies five contact—invariant
conditions W1 [F| = --- = W5[F]| = 0.

> e s M
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GL(2,R) STRUCTURES FROM ODEs.

@ Assume that the space of solutions to the 7th order ODE
y' =F(z,y,y,... .y

has a GL(2,R) structure such that normals to surfaces y = y(z;1)
have root with multiplicity 6. Then F’ satisfies five contact—invariant
conditions W1 [F| = --- = W5[F]| = 0.

> e s M

=3
[
= G
=
- -

o Additional contact invariants: torsion of G9 structure
N=..., 1L =...,T2=...,73=0%F/d(y9)2.
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GL(2,R) STRUCTURES FROM ODEs.

@ Assume that the space of solutions to the 7th order ODE

y D = F(z,y,9,...,99)

has a GL(2,R) structure such that normals to surfaces y = y(z;1)
have root with multiplicity 6. Then F’ satisfies five contact—invariant
conditions W1 [F| = --- = W5[F]| = 0.

> B s
.
= =
=
= s

o Additional contact invariants: torsion of G9 structure
=371 = ...,72 =...,73 :82F/a(y(6))2
o If ) =7 =7 = 713 = 0 then g is conformally flat and y(7) = 0.
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TWISTOR THEORY

e Family of rational curves L; parametrised by t € M. x — (z,y(x;t))
with self—intersection number six in a complex surface Z. Normal

Sy = Z ;t?i St

vanishes at zeroes of a 6th order polynomial. N(L) = O(6).

vector
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TWISTOR THEORY

e Family of rational curves L; parametrised by t € M. x — (z,y(x;t))
with self—intersection number six in a complex surface Z. Normal

0y
dy = —0tq
y= Z 5.
vanishes at zeroes of a 6th order polynomial. N(L) = O(6).
o HY(L,N(L)) = 0. Kodaira Theory: T;M =2 H°(L;, N(Ly)).

vector

HYL, N(LY) ™

—

2011 9 /17
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TWISTOR THEORY

@ Sections of O(6) — CP!=homogeneous polynomials of degree 6.
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TWISTOR THEORY

@ Sections of O(6) — CP!=homogeneous polynomials of degree 6.
GL(2) structure.
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TWISTOR THEORY

@ Sections of O(6) — CP!=homogeneous polynomials of degree 6.
GL(2) structure.

e In practice: f(x,y,t,) = 0 with rational parametrisation
x =p(\ta),y = q(\ ty). Polynomial in A giving rise to a null vector
is given by
of

. 3704 |{w=p,y=q}5t0<'
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THREE EXAMPLES

Q@ Example 1.
o Rational curve: cuspidial cubic. (Neil 1657).
o 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
o Co—calibrated G5 structure on SU(2,1)/U(1). (MD, Doubrov 2011).
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THREE EXAMPLES

Q@ Example 1.

o Rational curve: cuspidial cubic. (Neil 1657).

o 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).

o Co—calibrated G5 structure on SU(2,1)/U(1). (MD, Doubrov 2011).
@ Example 2.

e Rational curve: Bihorn sextic.

o 7th order ODE: (Wilczynski).

o Closed G5 structure (MD, Godlinski 2010).
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THREE EXAMPLES

Q@ Example 1.
o Rational curve: cuspidial cubic. (Neil 1657).
o 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
o Co—calibrated G5 structure on SU(2,1)/U(1). (MD, Doubrov 2011).
@ Example 2.
e Rational curve: Bihorn sextic.
o 7th order ODE: (Wilczynski).
o Closed G5 structure (MD, Godlinski 2010).
@ Example 3.
o Rational curve: (MD, Sokolov 2010).
o 7th order ODE: (Noth 1904).
o Weak G4 holonomy on SO(5)/SO(3) (Bryant 1987).
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics az® + By + yaxy? +--- + 6 = 0.
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics az® + By3 + yxy? + - -+ + § = 0. Better:
Pop, 29ZP 77 =0, where 21/ 23 = 2, 2% /73 = y.
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics az® + By3 + yxy? + - -+ + § = 0. Better:
Pop, 29ZP 77 =0, where 21/ 23 = 2, 2% /73 = y.
o PSL(3) actson CP? Pz, — N°,NsN?, Ps.s.

/\/QJ¥

- =0,
.0
.0
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics az® + By3 + yxy? + - -+ + § = 0. Better:
Pop, 29ZP 77 =0, where 21/ 23 = 2, 2% /73 = y.
o PSL(3) actson CP? Pz, — N°,NsN?, Ps.s.
@ Smoth cubic y? = x(x — 1)(z — ¢).

/\/QJ¥

- =0,
.0
.0
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics az® + By3 + yxy? + - -+ + § = 0. Better:
Pop, 29ZP 77 =0, where 21/ 23 = 2, 2% /73 = y.
o PSL(3) actson CP? Pz, — N°,NsN?, Ps.s.
@ Smoth cubic y? = x(x — 1)(z — ¢).
@ Nodal cubic 3% = 23 — 22.

/\/QJ¥

- =0,
.0
.0
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics az® + By + yaxy? + --- + 6 = 0. Better:
Pop, 29ZP 77 =0, where 21/ 23 = 2, 2% /73 = y.
o PSL(3) actson CP? Pz, — N°,NsN?, Ps.s.
@ Smoth cubic y? = z(x — 1)(z — ¢).
@ Nodal cubic 3% = 23 — 22.
@ Cuspidal cubic y? = 23.
7D orbit M = PSL(3,C)/C*.

=,
e @
g
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics az® + By + yaxy? + --- + 6 = 0. Better:
Pop, 29ZP 77 =0, where 21/ 23 = 2, 2% /73 = y.
o PSL(3) actson CP? Pz, — N°,NsN?, Ps.s.
@ Smoth cubic y? = z(x — 1)(z — ¢).
@ Nodal cubic 3% = 23 — 22.
@ Cuspidal cubic y? = 23.
7D orbit M = PSL(3,C)/C*. [Z}, 22, 73] — [aZ",a*Z2, a5 23],

=,
e @
g
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics az® + By + yaxy? + --- + 6 = 0. Better:
Pop, 29ZP 77 =0, where 21/ 23 = 2, 2% /73 = y.
o PSL(3) actson CP? Pz, — N°,NsN?, Ps.s.
@ Smoth cubic y? = z(x — 1)(z —¢).  Genus one.
@ Nodal cubic y? = 23 — 22, Genus zero.
@ Cuspidal cubic y? = 23. Genus zero.
7D orbit M = PSL(3,C)/C*. [Z', 22, 2% — [aZ",a* 22, a~5 Z7].
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set 0 = N~1dN € AY(SL(3,C)) ®5(3,C).

1 2 1
g=20" 0%+ 50'31 ®o'y— 5012 ® 0% — 4*0(4011 —o%)2.
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set 0 = N~1dN € AY(SL(3,C)) ®5(3,C).

1 2 1
g=20" 0%+ 50'31 ®o'y— 5012 ® 0% — 4*0(4011 —o%)2.

e Signature (3,4) on M = SL(3,R)/R*.

Dunasskl (DAMTP, CAMBRIDGE) RATIONAL CURVES 18 OCTOBER 2011 13 /17



Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set 0 = N~1dN € AY(SL(3,C)) ®5(3,C).
g=20" 0%+ 10'31 ®o'y— g012 ® 0% — i(4011 —o%)2.
2 5 40

e Signature (3,4) on M = SL(3,R)/R*.
e Signature (4,3) on M = SU(3)/U(1).

e 0 0
0 &4 0 , 0 R Alof~Wallach space N(1,4).
0 0 e
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set 0 = N~1dN € AY(SL(3,C)) ®5(3,C).
g=20" 0%+ 10'31 ®o'y— g012 ® 0% — i(4011 —o%)2.
2 5 40

e Signature (3,4) on M = SL(3,R)/R*.
e Signature (4,3) on M = SU(3)/U(1).

e 0 0
0 &4 0 , 0 R Alof~Wallach space N(1,4).
0 0 e

e Riemannian signature on M = SU(2,1)/U(1).
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set 0 = N~1dN € AY(SL(3,C)) ®5(3,C).
=203 05+ 1U?’ Ooly— 2012 ®o? — i(4011 - 022)2
2 3 2 1 3 5 1 40 .

e Signature (3,4) on M = SL(3,R)/R*.
e Signature (4,3) on M = SU(3)/U(1).

e 0 0
0 &4 0 , 0 R Alof~Wallach space N(1,4).
0 0 e

e Riemannian signature on M = SU(2,1)/U(1). v
o Co—calibrated Go structure dp =X x o+ 7, dx ¢ = 0.
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EXAMPLE 2: CLOSED (Go FROM BIHORN SEXTICS.

o (y+Q(x))*+ P(x)% =0, where

Q(z) = g0 + q1z + @2* + q32°,  P(z) = p3(z — p2)(z — p1).
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EXAMPLE 2: CLOSED (Go FROM BIHORN SEXTICS.

o (y+Q(x))*+ P(x)% =0, where

Q(z) = g0 + q1z + @2* + q32°,  P(z) = p3(z — p2)(z — p1).

e Two double points and one irregular quadruple point at co. g = 0.

)\3
m —Q(z(N)).

p1 + paX?
z(A) = ﬁa y(\) :P33/2(P1 —p2)°
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)\3
NZ+1)3
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EXAMPLE 2: CLOSED (Go FROM BIHORN SEXTICS.

o (y+Q(x))*+ P(x)% =0, where

Q(z) = g0 + q1z + @2* + q32°,  P(z) = p3(z — p2)(z — p1).

e Two double points and one irregular quadruple point at co. g = 0.
)\3
NZ+1)3

_ p1+paN?

() = PPy = pa (1 — po)? Qz(N).

7th order ODE = — - —

o Closed Riemannian G structure - explicit but messy.
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EXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

e Contact geometry: (z,y) € Z, (x,y,2) € P(T'Z), contact form
w = dy — zdx. Generators of contact transformations, H = H (z,y, 2)

Xy =—(0.H)0; + (H — 20,H)0y + (8, H + 20,H)0..
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EXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

e Contact geometry: (z,y) € Z, (x,y,2) € P(T'Z), contact form
w = dy — zdx. Generators of contact transformations, H = H (z,y, 2)

Xy =—(0.H)0; + (H — 20,H)0y + (8, H + 20,H)0..
o Lie 1: Maximal contact Lie algebra on Z = R? is ten—dimensional

(isomorphic to sp(4)) and is generated by

1, 2,22, Y, 2, T2, 2z — 2xy, 22, 2yz — z22, doyz — 4y2 — 2222
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EXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

e Contact geometry: (z,y) € Z, (x,y,2) € P(T'Z), contact form
w = dy — zdx. Generators of contact transformations, H = H (z,y, 2)

Xy =—(0.H)0; + (H — 20,H)0y + (8, H + 20,H)0..
o Lie 1: Maximal contact Lie algebra on Z = R? is ten—dimensional

(isomorphic to sp(4)) and is generated by

1, 2,22, Y, 2, T2, 2z — 2xy, 22, 2yz — z22, doyz — 4y2 — 2222

o Lie 2: Maximal dimension of the contact symmetry algebra of an
ODE of order n > 3 is (n + 4) (saturated by (™ = 0).
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EXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

e Contact geometry: (z,y) € Z, (x,y,2) € P(T'Z), contact form
w = dy — zdx. Generators of contact transformations, H = H (z,y, 2)

Xy =—(0.H)0; + (H — 20,H)0y + (8, H + 20,H)0..

o Lie 1: Maximal contact Lie algebra on Z = R? is ten—dimensional
(isomorphic to sp(4)) and is generated by

1, 2,22, Y, 2, T2, 2z — 2xy, 22, 2yz — z22, doyz — 4y2 — 2222

o Lie 2: Maximal dimension of the contact symmetry algebra of an
ODE of order n > 3 is (n + 4) (saturated by (™ = 0).
e 7th order ODE with 10D contact symmetries (submaximal ODE)

10(y@)Py ™ — 70(5*)2y Wy — 49(y*)*(5*))?
+280(y) (y™)?y® — 175(y™W)* = 0.
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EXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

e Contact geometry: (z,y) € Z, (x,y,2) € P(T'Z), contact form
w = dy — zdx. Generators of contact transformations, H = H (z,y, 2)

Xy =—(0.H)0; + (H — 20,H)0y + (8, H + 20,H)0..

o Lie 1: Maximal contact Lie algebra on Z = R? is ten—dimensional
(isomorphic to sp(4)) and is generated by

1, 2,22, Y, 2, T2, 2z — 2xy, 22, 2yz — z22, doyz — 4y2 — 2222

o Lie 2: Maximal dimension of the contact symmetry algebra of an
ODE of order n > 3 is (n + 4) (saturated by (™ = 0).
e 7th order ODE with 10D contact symmetries (submaximal ODE)

10(y@)Py ™ — 70(5*)2y Wy — 49(y*)*(5*))?
+280(y) (y™)?y® — 175(y™W)* = 0.

e Two real forms of Gy structures on Sp(4)/SL(2), one of which is a
Riemannian homogeneous space SO(5)/SO(3) (Bryant 1987).
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EXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

(cay + 1+ com + 03x2)3 +3 (cay + 1 + 2w + c32?)
(3 (esx +c6)* — 6 (524 c6)* (1 — erz)® — (1 — 0733)4)

+12 (esz + c6) (3 (csz 4 c6)* (1 — erz) + (1 — C7x)5) =0.
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EXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

(cay + 1+ com + 03x2)3 +3 (cay + 1 + 2w + c32?)
(3 (esx +c6)* — 6 (524 c6)* (1 — erz)® — (1 — 0733)4)

+12 (esz + c6) (3 (csz 4 c6)* (1 — erz) + (1 — C7x)5) =0.

Discriminant of this cubic (in y) is a 3rd power of a quartic with
equianharmonic cross—ratio.
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OUTLOOK

o Twistor theory of Go—structures.
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@ Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.
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o Twistor theory of Go—structures.
o Special structures - depending on functions of three variables. General
(5 structures depend on functions of six variables.
@ Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.
o Conformal structures from binary quantics:

e Quadratic - double root.
e Quadric - equianharmonic cross ratio.
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OUTLOOK

o Twistor theory of Go—structures.
o Special structures - depending on functions of three variables. General
(5 structures depend on functions of six variables.
@ Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.
o Conformal structures from binary quantics:

e Quadratic - double root.
e Quadric - equianharmonic cross ratio.
o Sextic (relevant in this talk) -77?
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