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We solve the metrisability problem for the six Painlevé equations, and more gen-
erally for all 2nd order ordinary differential equations with the Painlevé property,
and determine for which of these equations their integral curves are geodesics
of a (pseudo) Riemannian metric on a surface. Published by AIP Publishing.
https://doi.org/10.1063/1.4998147

I. INTRODUCTION

A geometric approach to nonlinear 2nd order ordinary differential equations (ODEs) was initiated
in the work of Liouville21 and developed by Cartan. A general 2nd order ODE defines a path geometry
on a surface U coordinatised by the dependent and independent variables: there is a unique integral
curve through each point of U in each direction. The paths are unparametrised geodesics of a torsion-
free connection ∇ on TU with Christoffel symbols Γc

ab if and only if the ODE is of the form

d2y

dx2
=A3(x, y)

( dy
dx

)3
+ A2(x, y)

( dy
dx

)2
+ A1(x, y)

( dy
dx

)
+ A0(x, y), (1.1)

where
A0 =−Γ

2
11, A1 = Γ

1
11 − 2Γ2

12, A2 = 2Γ1
12 − Γ

2
22, A3 = Γ

1
22. (1.2)

Conversely, with any ODE of the form (1.1), one can associate a projective structure2,25 that is
an equivalence class of torsion-free connections which share the same unparametrised geodesics.
Two connections ∇ and ∇̂ belong to the same projective equivalence class if their geodesic flows
on TU project to the same foliation of P(TU). Equivalently, there exists a one-form Υ on U such
that

Γ̂
a
bc = Γ

a
bc + Υbδ

a
c + Υcδ

a
b. (1.3)

Definition 1.1. A second order ODE is called metrisable if its integral curves are unparametrised
geodesics of a Levi–Civita connection of some (pseudo) Riemannian metric.

A problem of characterising metrisable ODEs by differential invariants was posed by Liouville,21

who has reduced it to an overdetermined system of linear PDEs (see Theorem 2.1 in Sec. II). The
complete solution was provided relatively recently,1 where it was shown that an ODE is metrisable
if and only if three point invariants of differential orders five and six vanish and certain genericity
assumptions hold.

A different approach was developed by Painlevé, Kowalevskaya, and Gambier who studied 2nd
order ODEs in the complex domain.16,24

Definition 1.2. The ODE y′′ = R(x, y, y′), where R is a rational function of y and y′ has the
Painlevé property (PP) if its movable singularities (i.e., singularities whose locations depend on the
initial conditions) are poles.

The solutions of equations with the Painlevé property are single-valued thus giving rise to proper
functions on C. There exist fifty canonical types of second order ODEs with PP up to the change of
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variables

y→Y (x, y)=
a(x)y + b(x)
c(x)y + d(x)

, x→X(x)= φ(x), (1.4)

where functions (a, b, c, d, φ) are analytic in x. Forty-four of these are solvable in terms of ‘known’
functions (sine, cosine, elliptic functions or in general solutions to linear ODEs). The remaining six
types define new transcendental functions and are given by the Painlevé equations

y′′ = 6y2 + x, PI

y′′ = 2y3 + xy + α, PII

y′′ =
1
y

y′2 −
1
x

y′ + α
y2

x
+
β

x
+ γy3 +

δ

y
, PIII

y′′ =
1
2y

y′2 +
3
2

y3 + 4xy2 + 2(x2 − α)y +
β

y
, PIV

y′′ =

(
1
2y

+
1

y − 1

)
y′2 −

1
x

y′ +
(y − 1)2

x2

(
αy +

β

y

)
+ γ

y
x

+ δ
y(y + 1)

y − 1
, PV

y′′ =
1
2

(
1
y

+
1

y − 1
+

1
y − x

)
y′2 −

(
1
x

+
1

x − 1
+

1
y − x

)
y′+

+
y(y − 1)(y − x)

x2(x − 1)2

[
α + β

x

y2
+ γ

x − 1

(y − 1)2
+ δ

x(x − 1)

(y − x)2

]
. PVI

Here α, β, γ, and δ are constants. Thus PVI belongs to a four-parameter family of ODEs, etc. Some
work towards characterising the Painlevé equations by point invariants of (1.1) has been done in
Refs. 17, 13, and 18.

The aim of this paper is to determine which of the Painlevé equations are metrisable. In Sec. II,
we shall prove the following.

Theorem 1.3. The only metrisable Painlevé equations are as follows:

1. Painlevé III, where α = γ = 0 or β = δ = 0.
2. Painlevé V, where γ = δ = 0.
3. Painlevé VI, where α = β = γ = 0 and δ = 1/2.

If α = β = γ = δ = 0 then the projective structures defined by PIII and PV are flat. The metrisable
PVI projective structure is also flat.

The flatness of a projective structure is equivalent to the existence of a point transformation
(x, y)→ (X(x, y), Y (x, y)) such that the corresponding ODE (1.1) becomes

d2Y

dX2
= 0. (1.5)

Here we recall that a second order ODE y′′ = R(x, y, y′) is equivalent to (1.5) under a point transfor-
mation if and only if it is of the form (1.1) and the following quantities, called Liouville invariants,
vanish:

L1 =
2
3
∂2A1

∂x∂y
−

1
3
∂2A2

∂x2
−
∂2A0

∂y2
+ A0

∂A2

∂y
+ A2

∂A0

∂y
− A3

∂A0

∂x
− 2A0

∂A3

∂x
−

2
3

A1
∂A1

∂y
+

1
3

A1
∂A2

∂x
,

L2 =
2
3
∂2A2

∂x∂y
−

1
3
∂2A1

∂x2
−
∂2A3

∂x2
− A3

∂A1

∂x
− A1

∂A3

∂x
+ A0

∂A3

∂y
+ 2A3

∂A0

∂y
+

2
3

A2
∂A2

∂x
−

1
3

A2
∂A1

∂y
.

In Sec. III, we shall clarify a connection between the metrisability of Painlevé equations and
the existence of first integrals: all metrisable cases are reducible to quadratures. In Sec. IV, we shall
extend the analysis to the remaining forty-four equations with PP.

We end this introduction with a comment about the formalism used in the paper: it is elementary
and admittedly brute force (which should make the results and their proofs accessible to undergraduate
students). There are other more sophisticated approaches using Cartan and tractor connections or
twistor theory which could be adopted in line with Refs. 1, 9, 17, 14, and 15.
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II. PROOF OF THE MAIN THEOREM

Our approach to proving Theorem 1.3 is based on the seminal result of Liouville.

Theorem 2.1 (Roger Liouville21). A projective structure corresponding to the second order
ODE (1.1) is metrisable on a neighbourhood of a point p ∈ U if and only if there exist functions ψ1,
ψ2, ψ3 defined on a neighbourhood of p such that ∆≡ψ1ψ3 − ψ2

2 , 0 at p and the equations

∂ψ1

∂x
=

2
3

A1ψ1 − 2A0ψ2, (2.1a)

∂ψ3

∂y
= 2A3ψ2 −

2
3

A2ψ3, (2.1b)

∂ψ1

∂y
+ 2

∂ψ2

∂x
=

4
3

A2ψ1 −
2
3

A1ψ2 − 2A0ψ3, (2.1c)

∂ψ3

∂x
+ 2

∂ψ2

∂y
= 2A3ψ1 −

4
3

A1ψ3 +
2
3

A2ψ2, (2.1d)

hold on the domain of definition. The corresponding metric is then given by

g=∆−2(ψ1dx2 + 2ψ2dxdy + ψ3dy2). (2.2)

The system (2.1a)–(2.1d) is overdetermined, as there are more equations than unknowns. In
Ref. 1, the integrablity conditions were established in terms of point invariants (1.1). The invariants
obstructing metrisability vanish identically for the projective structures arising from all six Painlevé
equations, as these equations are non-generic in the sense explained in Ref. 1: we will see that a
non-trivial solution to (2.1a)–(2.1d) always exists, but it is degenerate as in general ψ2 = ψ3 = 0. Thus
the metrisability analysis of the Painlevé equations needs to be carried over by analysing the linear
system (2.1a)–(2.1d) directly on a case by case basis.

Proof of Theorem 1.3. The metrisability of Painlevé equations depends on the values of the
parameters (α, β, γ, δ). When necessary, we will indicate them in parentheses in front of the equation
label, for instance, PII(α), PIII(α, β, γ, δ), and so on. The Painlevé equations do not have a cubic
term in y′ [so that A3 = 0 in Eq. (1.1) which makes step 2 possible]. A general approach to seek
solutions to the metrisability problem of this kind of projective structure is the following:

Step 1. Calculate the invariants of Ref. 1. If they do not vanish identically, then there is no non-trivial
solution to (2.1a)–(2.1d).
Step 2. Solve Eq. (2.1b) for ψ3.
Step 3. Substitute ψ3 in (2.1d) and solve it for ψ2.
Step 4. Apply the integrability condition ∂x∂yψ1 = ∂y∂xψ1, ∀x, y, to the remaining equations (2.1a)
and (2.1c).
Step 5. If step 4 is successful, solve Eqs. (2.1a) and (2.1c).

Step 1 is optional because it is equivalent to step 4. After steps 2 and 3, in general, we end up with a
solution for ψ2 and ψ3 depending on arbitrary functions of one variable. Step 4 is then necessary to fix
those functions up to constants of integration. The above steps may be troublesome to be performed
by hand, but they are easily implemented on the computer.

We find that Painlevé I, II, and IV are never metrisable. On the other hand, PIII, PV, and PVI
are metrisable for special values of parameters, as we discuss below. The values of the parameters
are found in step 4. For other choices of parameters, step 4 forces us to choose ψ2 = ψ3 = 0 which
leads to a degenerate solution. An obvious degenerate solution is the trivial one ψi = 0. However, for
the Painlevé equations, there always exist non-trivial solutions to the Liouville system (2.1a)–(2.1d)
spanning a 1-dimensional space, which is the maximal dimension allowed for degenerate solutions
(cf. Lemma 4.3 of Ref. 1). To see this, set ψ2 = ψ3 = 0. Then, (2.1a)–(2.1d) reduce to a closed
overdetermined system for ψ1 which has a non-vanishing solution if and only if ∂yA1 = 2∂xA2. It
is straightforward that this condition is fulfilled by all equations PI–PVI, which explains why all
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invariants of Ref. 1 vanish for Painlevé equations. The degenerate solutions corresponding to each
Painlevé equation are, up to a multiplicative constant, given by

PI, PII :ψ1 = 1, PIII :ψ1 =
y4/3

x2/3
, PIV :ψ1 = y2/3,

PV :ψ1 =
(1 − y)4/3y2/3

x2/3
, PVI :ψ1 = (x − y)2/3

[
(y − 1)y
(x − 1)x

]2/3

.

• Painlevé III. Applying steps 2 to 5 implies that a metric exists if and only if

α = γ = 0 or β = δ = 0.

Both cases are essentially the same since the change of coordinates y 7→ y�1 induces PIII(α,
β, γ, δ) → PIII(�β, �α, �δ, �γ) and all results from one case can be recovered from the
other through this map. Therefore, we only present the detailed results for β = δ = 0. If all
parameters are zero, then the projective structure is flat (which can be seen by evaluating the
Liouville invariants L1, L2). If β = δ = 0 and (α, γ) , (0, 0), there exists a two-dimensional
family of solutions to (2.1a)–(2.1d) giving rise to the metric

g=Ω

(
B − Axy(2α + γxy)

Ax2
dx2 +

2
xy

dxdy +
1

y2
dy2

)
, where (2.3)

Ω=A−1(A − B + 2Aαxy + Aγx2y2)−2.

The metric admits a one-parameter family of isometries (x, y) 7→ (eεx, e�εy). Setting r = xy
and θ = ln |x| and rescaling the metric by A3 yields

g=
1(

−C + 2αr + γr2)2 r2
dr2 −

1(
−C + 2αr + γr2) dθ2,

where C = B/A � 1 is a constant. By rescaling r, we can set either α to 1 if α , 0 or γ to γ/|γ|
if γ , 0.

If α = β = γ = δ = 0, we have a six-dimensional family of solutions to (2.1a)–(2.1d); all
rise to metrics of constant curvature. The projective structure is flat, and PIII(0, 0, 0, 0) can be
put in the form (1.5) with Y = ey and X = ln x.

• Painlevé V. The projective structure is metrisable if and only if γ = δ = 0 and is projectively
flat if and only if α = β = γ = δ = 0.

If γ = δ = 0 and (α, β) , (0, 0), we have a two-dimensional family of solutions giving
rise to the metric

g=
y

A2x2[By + 2A(β − αy2)]
dx2 +

y

A(y − 1)2[By + 2A(β − αy2)]2
dy2, (2.4)

which admits (x, y) 7→ (eεx, y) as one-parameter family of isometries, Defining r = y, θ = ln
|x|, the metric becomes

g=
r

A3(r − 1)2[Cr + 2(β − αr2)]2
dr2 +

r

A3[Cr + 2(β − αr2)]
dθ2,

where C = B/A. By redefining C, B, and θ we can set either β to β
|β | if β , 0 or α to α

|α | if
α , 0.

If α = β = γ = δ = 0, there exists a six-dimensional family of solutions to the Liouville
system, each giving rise to a projectively flat metric. Equation PV(0, 0, 0, 0) can be put in the

form (1.5) with Y = ln

(
1+
√

y
√

1−y

)
and X = ln x.

• Painlevé VI. PVI is metrisable if and only if α = β = γ = 0, δ = 1
2 . In this case, PVI has a

solution given in terms of the elliptic integral3,12,22

∫ y(x)

0

dw
√
w(w − 1)(w − x)

= aω1(x) + bω2(x), (2.5)
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where the right-hand side is the general solution of the Picard-Fuchs equation

4x(x − 1)ω′′(x) + 4(2x − 1)ω′(x) + ω(x)= 0, (2.6)

with a and b constants. Since the constants of integration appear linearly in (2.5), the projective
structure is flat (this is actually the definition of projective flatness used by Liouville21). In
fact, PVI

(
0, 0, 0, 1

2

)
is equivalent to (1.5) in the variables Y = 1

ω2(x) ∫
y

0
dw√

w(w−1)(w−x)
, X = ω1(x)

ω2(x) .

□

A. Coalescence

The first five Painlevé equations PI–PV can be derived from PVI by the process of coalescence
of the parameters.16 In particular, PIII arises from PV in the limit ε → 0 where

x 7→ x2, y 7→ 1 + εxy, α 7→
γ

8ε2
+
α

4ε
, β 7→−

γ

8ε2
, γ 7→

ε β

4
, δ 7→

ε2δ

8
.

We can use this process to recover the metric (2.3) of PIII(α, 0, γ, 0) from a metric of PV(α, β, 0, 0).
To do so, it is necessary to start with (2.4) with the constants of integration

A=

(
4γ

2αε + γ

) 2
3

, B=
(−αε + γ)(4αε + 2γ)

1
3

ε2γ
1
3

.

Then, in the limit ε → 0, we find the metric (2.3) with AIII = 1 and BIII = 1 − 4α2

γ , where we have
attached the index III to indicate that these constants AIII and BIII correspond to the metric of
PIII(α, 0, γ, 0). This is valid only if γ , 0. In the case γ = 0, we need A = 42/3AIII and
B= 2αAIII +(−AIII +BIII )ε

22/3ε
, so we still have freedom to choose two constants of integration AIII and BIII .

III. REDUCIBILITY AND FIRST INTEGRALS

The metrisable cases of PIII and PV do not define new transcendental functions but admit a
quadrature and are reducible to 1st order ODEs. We shall explain this in the context of Theorem 1.3
using the following lemma.

Lemma 3.1. Let
g=E(x, y)dx2 + 2F(x, y)dxdy + G(x, y)dy2

be a metric on U which admits a linear first integral K = K1(x, y)ẋ + K2(x, y)ẏ. Then

I(x, y, y′)=
1

(K1 + K2y′)2

(
E + 2Fy′ + Gy′2

)
(3.1)

is a first integral of the unparametrised geodesic equation (1.1).

Proof. Set xa = (x, y) and consider the geodesic equations for g parametrised by t,

ẍa + Γa
bcẋbẋc = 0. (3.2)

Let t be a value of the affine parameter such that ẋ , 0 (if no such t exists, then swap x and y). Using
the chain rule d/dx = ẋ�1d/dt to eliminate t between the two equations, (3.2) yields (1.1) with (1.2).
The geodesic Hamiltonian H = gabẋaẋb is a first integral of (3.2), but it depends on ẋ, so it does not
give rise to a first integral of (1.1). However dividing H by the square of the linear first integral K is
independent on ẋa and yields the first integral (3.1) for (1.1).

□

Let us apply this lemma to the metrisable Painlevé cases. In the case of PIII(α, 0, γ, 0) and
PV(α, β, 0, 0), we shall recover the known first integrals.12

• Painlevé III. The metric (2.3) admits a Killing vector x∂x � y∂y which gives rise to a first
integral (3.1) for PIII(α, 0, γ, 0),

I = x2
(

y′

y

)2

+ 2x
y′

y
− 2αxy − γx2y2.
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• Painlevé V. The metric (2.4) admits a Killing vector K = x∂x which leads to a first integral for
PV(α, β, 0, 0),

I =
1
y

(
xy′

y − 1

)2

+
2β
y
− 2αy.

• Painlevé VI. The first integrals in this case are linear in y′,3 and we will construct them from
the Killing vectors (rather than a quadratic integral) of the associated metric g = dX2 + dY2.
The ratios of linear integrals Ẏ and YẊ �XẎ by a linear integral Ẋ give dY /dX and Y �XdY /dX.
Evaluating these integrals by implicitly differentiating Y and using the ODE satisfied by the
Wronskian of (2.6) gives

I =
y′B(x)√

y(y − 1)(y − x)
+
∫ y

0

[
A(x) +

B(x)
2(w − x)

]
dw

√
w(w − 1)(w − x)

, (3.3)

where A and B are solutions to the Picard-Fuchs adjoint equations




A′(x) =B(x) 1
4x(x−1) ,

B′(x) =−B(x) 1−2x
x(x−1) − A(x).

A prolongation of the metrisability equations (2.1a)–(2.1d) leads to a closed system of six linear
PDEs for six unknowns.1 The dimension m([∇]) of the vector space of solutions to this system is
called the degree of mobility of the projective structure. In the generic, non-metrisable case, m([∇])
= 0, and in the projectively flat case, m([∇]) = 6. The Koenigs theorem19 states that m([∇]) , 5. The
construction below applies to projective structures where m([∇]) > 1.

Proposition 3.2. If a projective structure [∇] in two dimensions admits two linearly independent
solutions ψ(1) and ψ(2) to the metrisability equations (2.1a)–(2.1d), then

I(x, y, y′) :=
ψ(1)

1 + 2ψ(1)
2 y′ + ψ(1)

3 y′2

ψ(2)
1 + 2ψ(2)

2 y′ + ψ(2)
3 y′2

(3.4)

is a first integral of the unparametrised geodesic equation (1.1).
If there exists a linear combination of ψ(1) and ψ(2) which is degenerate, then any metric g

compatible with [∇] admits a Killing vector.

Proof. The constancy of (3.4) could be established by explicitly evaluating dI on solutions to
(2.1a)–(2.1d), which gives 0. Below, we shall use a less direct method that will allow us to prove
both parts of the proposition. Two connections ∇ and ∇̂ belong to the same projective equivalence
class [∇] if there exists a one-form Υ on U such that (1.3) holds. Consider a connection D ∈ [∇] with
Christoffel symbols given by

Π
1
11 =

1
3

A1, Π
1
12 =

1
3

A2, Π
1
22 =A3, Π

2
11 =−A0, Π

2
21 =−

1
3

A1, Π
2
22 =−

1
3

A2. (3.5)

Set ψ1 = σ11, ψ2 = σ12, and ψ3 = σ22. Then the metrisability equations (2.1a)–(2.1d) are equivalent
to the Killing tensor equation1

D(aσbc)= 0. (3.6)

Therefore σ(i) (i = 1, 2) are Killing tensors, and I (i)(t) :=σ(i)
11ẋ2 + 2σ(i)

12ẋẏ +σ(i)
22ẏ2 are conserved along

geodesics of D
d
dx

I(x, y(x), y′(x))=
1
ẋ

d
dt

I (1)(t)

I (2)(t)
= 0,

where we have used ẏ/ẋ = y′ to write I = I (1)/I (2).
For the second part, the projective structure is metrisable (this is true even if both ψ(i) are

degenerate, as there always exists a non-degenerate linear combination, i.e., two degenerate solutions
can only differ by a constant multiple. See Lemma 4.3 in Ref. 1). Without loss of generality, say that
ψ(2) is degenerate. Then there exists a non-vanishing one-form ω such that σ(2)

ab =ωaωb. Then the
metrisability equations (3.6) yield

D(aωb)= 0.
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The Levi-Civita connection∇ of the metric g = σ/∆2 is obtained from D by applying a transformation
(1.3) with an equi-tensor Υa =∇a

(
− 1

2 ln |∆|
)
, and we verify that

∇(aKb)= 0,

where K = ∆�1ω. Thus K is a linear first integral of the geodesic flow of g.
□

Remarks.

• Not all projective structures with m([∇]) > 1 admit a linear first integral. The metrics6

g1 = (X(x) − Y (y))
(
dx2 + dy2

)
and g2 =

(
1

Y (y)
−

1
X(x)

) (
dx2

X(x)
+

dy2

Y (y)

)
are projectively equivalent with an unparametrised geodesic equation

y′′ +
1

2 (X(x) − Y (y))

(
Y ′ + X ′y′ + Y ′y′2 + X ′y′3

)
= 0. (3.7)

These metrics in general do not admit a Killing vector, but clearly m([∇]) > 1. The first integral
(3.4) is

I =
Y (y) + X(x)y′2

1 + y′2
.

• Each Painlevé equation admits a degenerate solution to the metrisability equations. This implies
that the corresponding projective class [∇] contains a representative ∇ which has a symmetric
Ricci tensor and admits a linear first integral. In Ref. 5, it was shown that for such affine
connections ν5 = 0, where ν5 is a point invariant for (1.1) defined by Liouville.21 This is in
agreement with Ref. 13, where it was stated that ν5 vanishes for all Painlevé equations.

• A more invariant way to define the connection (3.5) is as follows. Pick a connection ∇ ∈ [∇]
and set

Π
c
ab = Γ

c
ab −

1
3
Γ

d
daδ

c
b −

1
3
Γ

d
dbδ

c
a.

The object Γd
da is not a 1-form, and thusΠc

ab does not transform as an affine connection in gen-
eral, but only under coordinate transformations of constant Jacobian. So once we choose this
representative, we can only apply this kind of coordinate transformations in (3.6). Thomas25

introduced the terminology equi-transformation for coordinate changes preserving the volume
(of Jacobian identically 1), projective connection for Πc

ab, and equi-tensor for entities such as
Γd

ad transforming like tensors under equi-transformations.
• In Ref. 23, it was shown that all two-dimensional projective structures are locally Weyl-

metrisable. For a given ODE (1.1), finding an explicit expression for the Weyl connection
reduces to constructing a point transformation such that A0 = A2 and A1 = A3. This should in
principle be possible of all six Painleve equations, but the resulting ODEs may not have the
Painlevé property if the point transformation is not of the form (1.4).

• In the recent work,20 some connections between the Painlevé property and Lie point sym-
metries have been uncovered. While the problems studied in Ref. 20 are different than those
addressed in our work, some of the results appear to be related. In particular, among the six
Painlevé transcendents only PIII and PV have non-trivial symmetry algebras and that only for
special values of the parameters.

IV. METRISABILITY OF EQUATIONS WITH THE PAINLEVÉ PROPERTY

All fifty equivalence classes of 2nd order ODEs with the Painlevé property are of the form (1.1)
and so they define projective structures. Six of them are the Painlevé equations and their metrisabil-
ity is determined by Theorem 1.3. In this section, we summarise the results of the analysis of the
remaining forty-four cases listed in Ref. 16 in their most general form. We use the same number-
ing as this reference. We can divide these equations into five sets, according to their metrisability
properties:
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1. Metrisable with one degenerate solution and 4 > m([∇]) > 1: II, III, VII, VIII, XII, XVIII, XIX,
XXI, XXIII, XXIX, XXX, XXXIII, XXXVIII, XLIV, XLIX.

2. Metrisable with degenerate solution and m([∇]) = 4: XXII, XXXII.
3. Non-metrisable but admitting a degenerate solution: XIV, XX, XXXIV.
4. Not metrisable and no non-trivial solutions to the metrisability equations: V, X, XV, XVI, XXIV,

XXV, XXVI, XXVII, XXVIII, XXXV, XXXVI, XL, XLII, XLVII, XLV, XLVI, XLVIII.
5. Metrisable and projectively flat: I, VI, XI, XVII, XXXVII, XLI, XLIII.

The Painlevé equations are IV, IX, XIII, XXXI, XXXIX, and L, which we did not include in the list
but would fit in group 3 in general. The metrisable cases all admit a degenerate solution (thus their
metrics admit a Killing vector, from Proposition 3.2), and their ODEs admit a quadratic first integral.

The submaximal (i.e., degree of mobility m([∇]) = 4) equations XXII and XXXII are related by
a point transformation which is however not rational. The ODE XXXII

y′′ =
1
2y

(1 + (y′)2)

is metrisable by g = y(dx2 + dy2). The four quadratic first integrals for the parametrised geodesic
motion give rise to three functionally dependent integrals quadratic in y′. Two independent integrals
are as follows:

I1 =
1
y

(1 + (y′)2), I2 = 2y′ −
x
y

(1 + (y′)2).

V. SUMMARY

We have established which 2nd order ODEs with the Painlevé property are metrisable, i.e., all
their integral curves are geodesics of some (pseudo) Riemannian metric. Out of the six Painlevé
equations only PIII(α, 0, γ, 0), PIII(0, β, 0, δ), PV(α, β, 0, 0), and PVI(0, 0, 0, 1/2) are metrisable,
the last case being projectively flat. In all cases, the metrisable equations with PP admit a first integral,
and the degree of mobility is at least two. Thus metrisability picks out non-transcendental cases in
the Painlevé analysis.

It would be interesting to extend Theorem 1.3 to systems of two second-order ODEs,

y′′ =F(x, y, z, y′, z′), z′′ =G(x, y, z, y′, z′). (5.1)

It is known how to characterise the systems resulting from a three-dimensional projective struc-
ture,4,7,11 and some necessary and sufficient conditions for metrisability have recently been con-
structed in Refs. 8 and 10. The classification of systems (5.1) which admit that the Painlevé property
is however missing.
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