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We show how the manifold T�SUð2; 2Þ arises as a symplectic reduction from eight copies of the twistor
space. Some of the constraints in the twistor space correspond to an octahedral configuration of 12 complex
light rays in the Minkowski space. We discuss a mechanism to break the conformal symmetry down to the
twistorial parametrization of T�SLð2;CÞ used in loop quantum gravity.
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I. INTRODUCTION

A twistor space T ¼ C4 is a complex-four-dimensional
vector space equipped with a pseudo-Hermitian inner
product Σ of signature (2,2) and the associated natural
symplectic structure [1,2]. In [3] Tod has shown that the
symplectic form induced on a five-dimensional real surface
of projective twistors which are isotropic with respect to Σ
coincides with the symplectic form on the space of null
geodesics in the 3þ 1-dimensional Minkowski spaceM. In
the same paper it was demonstrated that the Souriau
symplectic form [4] on the space of massive particles in
M with spin arises as a symplectic reduction from T × T . In
a different context it was shown in [5–8] that a cotangent
bundle T�G to a Lie group G arises from T if G ¼ SUð2Þ
and T × T if G ¼ SLð2;CÞ. In these references the Darboux
coordinates were constructed from spinors and twistors,
respectively.
The aim of this paper is to extend these constructions to

the case when G ¼ SUð2; 2Þ, the covering group of the
conformal group SOð4; 2Þ=Z2 of M. The starting point for
our construction will be the 64-dimensional real vector
space consisting of two copies of T 4 ≡ T × T × T × T . The
symplectic reduction from T 4 × T4 to the 30-dimensional
manifold T�SUð2; 2Þ will be realized by imposing a set of
constraints: the second-class incidence constraints stating
that the four twistors in each copy of T4 are nonisotropic
and pairwise orthogonal with respect to Σ and the first-class
helicity and phase constraints (see Sec. III C for details).

All these constraints are conformally invariant when
expressed in the Minkowski space M. The incidence
constraints have a natural geometric interpretation in terms
of four twistors in a single twistor space: they describe a
tetrahedron in T , whose vertices correspond to twistors and
faces to dual twistors. This configuration is self-dual in a
sense to be made precise in Sec. II. In the Minkowski space
this tetrahedron corresponds to an octahedral configuration
of 12 complex null rays.
Our main motivation to perform this analysis is to further

explore the mathematical relations between twistor theory
and loop quantum gravity (LQG) [6–12]. The building
blocks of LQG are Penrose’s SUð2Þ spin networks, with an
important conceptual difference. Penrose regarded the
quantum labels on these networks to describe only the
conformal structure of spacetime, specifically angles [13].
To introduce a notion of scale, he envisaged extending the
theory to the Poincaré group, or better to SUð2; 2Þ that is
semisimple. The associated conformal spin networks and
their geometric interpretation have never been used in
quantum gravity models, but these ideas then flew into the
construction of twistors, which are SUð2; 2Þ spinors. In
LQG, on the other hand, the use of Ashtekar-Barbero
variables underpinning the theory allows one to interpret
the SUð2Þ Casimir directly in terms of areas, thus intro-
ducing scales. It is nonetheless still an open and intriguing
question to develop Penrose’s original program and show if
and how a notion of scale relevant for quantum gravity can
be introduced via the translation and dilation generators of
SUð2; 2Þ and how it can be compared with the one used in
LQG through some mechanism for conformal symmetry
breaking. To that end, one needs to establish a precise
relation between SUð2; 2Þ spin networks and the SUð2Þ
ones used in LQG. As a first step in this direction, we
consider the classical counterpart to this question. Recall in
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fact that the spin network Hilbert space L2½G; dμHaar� with
its holonomy-flux algebra is, for any Lie group G, the
quantization of the canonical Poisson algebras of the
cotangent bundle T�G. We can thus ask how the classical
phase space T�SUð2Þ used in LQG can be embedded in
T�SUð2; 2Þ. Our work answers this question. We provide a
uniform parametrization of T�SUð2Þ, T�SLð2;CÞ and
T�SUð2; 2Þ in terms of twistors. The embedding is iden-
tified by a hypersurface where the dilatation generators
match. This matching breaks conformal symmetry in a way
that, unlike in standard twistor theory, does not require
introducing the infinity twistor.
The paper is organized as follows. In the next section we

shall introduce the twistor space T of the Minkowski space,
and to prepare the ground for the constraint analysis we
shall construct an octahedral configuration of complex rays
in MC out of four non-null incident twistors. In Sec. III we
shall consider a set of constraints on a product T 4 × T4 of
eight twistor spaces and implement a symplectic reduction
to the canonical symplectic form on T�SUð2; 2Þ. Finally in
Sec. IV we shall comment on the conformal symmetry
breaking of our construction down to T�SLð2;CÞ and
T�SUð2Þ and on the physical applications of our results.

II. TWELVE COMPLEX NULL RAYS FROM
A TWISTOR TETRAHEDRON

The twistor program of Roger Penrose [1] is a geometric
framework for physics that aims to unify general relativity
and quantum mechanics with space-time events being
derived objects that correspond to compact holomorphic
curves in a complex manifold known as the projective
twistor space PT . There are now many applications of
twistors in pure mathematics and theoretical physics (see
[14] for a recent review). Our presentation below focuses
on the simplest case of twistor space corresponding to the
flat Minkowski space.
A twistor space T ¼ C4 is a complex four-dimensional

vector space equipped with a pseudo-Hermitian inner
product Σ of signature (2, 2)

ΣðZ; ZÞ ¼ Z1Z̄3 þ Z2Z̄4 þ Z3Z̄1 þ Z4Z̄2; ð1Þ

where ðZ1; Z2; Z3; Z4Þ are coordinates in T .
Let T� be the dual vector space, and let PT ¼ CP3 be a

projectivization of T . LetPN ¼ fZ ∈ PT ;ΣðZ; ZÞ ¼ 0g be
a real five-dimensional surface in PT . The points in PN
are referred to as null twistors and correspond to real
null light rays in Minkowski space [2,15]. A dual twistor
W ∈ PT� corresponds to a projective plane W≡fZ∈PT ;
WðZÞ¼0g⊂PT . We say that Z and W are incident if Z lies
on the plane given byW. In this case the α plane Z and the β
planeW in the complexified Minkowski spaceMC intersect
in a null geodesic. See Fig. 1.
Let Z ∈ PT be a non-null twistor. We can use Σ to

identify the conjugation Z̄ with an element of PT�. Thus Z̄

is a dual twistor corresponding to a two-plane CP2 in the
projective twistor space PT . The plane Z̄ intersects the
hypersurface PN in a real three-dimensional surface—the
Robinson congruence in the Minkowski space. The point Z
lies on the plane Z̄ iff Z ∈ PN. Then the complex α plane Z
meets the complex β plane Z̄ in a real null geodesics inMC.
Assume that this does not happen.
Let Z1 and Z2 be two non-null twistors. They are

incident if Z1 belongs to the plane Z̄2 in PT and Z2

belongs to the plane Z̄1. The two planes Z̄1 and Z̄2 intersect
in a holomorphic line X̄12 in PT . Now let us add a non-null
twistor Z3. It will be incident with Z1 and Z2 only if it lies
on the holomorphic line X̄12 above. Thus, given an incident
non-null pair Z1, Z2, there exists a one-parameter family of
Z3 ∈ PT such that Z1, Z2, and Z3 are mutually incident.
The plane Z̄3 intersects the line X̄12 in a unique point Z4

and the four twistors Zi, i ¼ 1;…; 4, satisfy

ΣðZi; ZjÞ ¼ 0; i ≠ j: ð2Þ
It is not possible to construct a set fZig of more than four
twistors such that (2) holds: the four twistors correspond to
four vertices of a tetrahedron in PT , see Fig. 2. The dual
twistors are the faces of this tetrahedron. A fifth twistor Z5

cannot be added in a way that makes all sets of three points
collinear (or such that the plane Z̄5 intersects all faces of the
tetrahedron).
Let Xij ≅ CP1 be a holomorphic line in PT joining two

twistors Zi and Zj, and let X̄ij ≅ CP1 be a holomorphic line
inPT arising as the intersection of the planes Z̄i and Z̄j. Then

X12 ¼ X̄34; X13 ¼ X̄24; etc:;

which resembles the self-duality condition. The line Xij

corresponds to a unique point of intersection of two α planes
Zi andZj inMC. Similarly, the line X̄ij corresponds to a point
of intersection of two β planes Z̄i and Z̄j inMC. If i ≠ j, then

Z

Z

W

W

W

Z

PTPT*

MC

FIG. 1. Twistor incidence and null rays.
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the α plane Zi intersects the β plane Z̄j in a complex null
geodesics (a light ray) Rij̄, as shown in Fig. 3.
This leads to the octahedral configuration of 12 complex

null rays arising as intersections of incident α and β planes,
Fig. 4. The six vertices of the resulting octahedronO inMC
correspond to the six lines Xij in PT . The 12 edges ofO are
complex null rays.

III. SYMPLECTIC REDUCTION TO T�SUð2;2Þ
Our strategy will be to pick two linearly independent sets

of four twistors and construct an element G of GLð4;CÞ
mapping one set to the other. We shall then impose a set of
constraints on both sets which will guarantee that G is
unitary and has a unit determinant. Some of these constraints
will be first class and some second class with respect to the
twistor symplectic structure, and we will show (by explicit
computation of Poisson brackets) how the symplectic
structure on T�SUð2; 2Þ arises as a symplectic reduction
from the symplectic structure on eight copies of T .

A. Notation

In what follows we shall denote components of a twistor
Z ∈ T by Zα, α ¼ 1;…; 4, and components of the corre-
sponding dual twistor by Z̄α ≡ Σα _βZ̄

_β, where

Σα_β ¼
�

0 12
12 0

�
ð3Þ

is a matrix of the (2, 2) inner product Σ from Sec. II. The
imaginary part of Σ gives the twistor space a Poisson
structure:

fZα; Z̄βg ¼ iδαβ; ð4Þ
which is invariant under SUð2; 2Þ transformations of T .
These are generated via a Hamiltonian action:

fMab; Zαg ¼ Γabα
βZβ; where Mab ≔ Z̄αΓabα

βZβ

and a; b ¼ 0;…; 5: ð5Þ
The matrices Γab ≡ ð1=2Þ½Γa;Γb� are constructed out
of the six generators Γa of the Clifford algebra in (4þ 2)
dimensions, and they form a representation of spinð4; 2Þ.
They also form 15 out of the 16 generators of uð2; 2Þ. The
last one is the trivial identity element (normalized by 1=2)
and corresponds to the helicity

U ≔
1

2
Z̄αδ

α
βZβ ¼ s: ð6Þ

B. Unitary transformations

Let ðZ1; Z2; Z3; Z4Þ ∈ T 4 ≡ T × T × T × T be four
twistors such that the holomorphic volume

Z ≔
1

4!
ϵijklϵαβγδZα

i Z
β
jZ

γ
kZ

δ
l ≠ 0: ð7Þ

Here, for each fixed i ¼ 1;…; 4 the symbol Zα
i denotes the

four components of Zi with respect to the standard basis of
T . We shall use a summation convention with the Latin
indices α; β;…, and our formulas will be SUð2; 2Þ invariant
in these indices. The Greek indices i; j; k;… are reminis-
cent of the internal twistor indices in the twistor particle

Z 1

Z1Z 2

Z2 Z3

Z3

Z4

Z4
X12

X13

X34

X24

X14

X23

FIG. 2. A tetrahedron in PT . Vertices are the incident twistors,
faces are the dual twistors and the edges are lines corresponding
to points of intersections of α planes in MC.

Z3

Z4

Z1
Z2

12X

R13

R
23

R24

R14

FIG. 3. An intersection of an α plane Zi with a β plane Z̄j is a
null ray Rij̄.
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41

31
13

43

42

X32

FIG. 4. The octahedral configuration of 12 complex null
rays in MC.
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program [16,17]. Parts of our construction will break the
internal symmetry, in which case we will write explicitly
the sums over internal indices. This makes the resulting
formulas somewhat ugly. We set

Zi
α ≔

1

6Z
ϵijklϵαβγδZ

β
jZ

γ
kZ

δ
l ð8Þ

and verify that
P

i Z
α
i Z

i
β ¼ δαβ , Zi

αZα
j ¼ δij and also

Z̄iα ≔ ΣαβZ̄i
β. The condition (7) guarantees that the twistors

Zi form a basis of C4. We require it to be orthogonal with
respect to the inner product Σ, i.e.,

I∶ ρij ≡ ΣðZi; ZjÞ ¼ 0 ∀ i ≠ j; ð9Þ

so that ρij ¼ 2siδij is a diagonal matrix. With (9) holding

we have jZj2 ¼I 16s1s2s3s4 and Z̄iα ¼I 1=ð2siÞZα
i and vari-

ous resolutions of the identity:

X
i

1

2si
Zα
i Z̄iβ¼I δαβ; Z̄iαZj

α¼I 1

2si
δij;

X
i

2siZi
αZ̄iβ¼I δβα:

ð10Þ
Consider a second set of four twistors ðZ̃1; Z̃2; Z̃3; Z̃4Þ ∈

T ≡ T × T × T × T . We assume the twistors within each
set to be linearly independent and incident—a condition
that we still refer to as I . Thus we have two orthogonal
bases for C4, and we can construct a matrix that maps one
orthogonal basis into the other, which will give a dyadic
representation of a unitary transformation. Consider the
GLð4;CÞ matrix

Gα
β ¼

X
i

Z̃α
i Z̄iβffiffiffiffiffiffi

2si
p ffiffiffiffiffiffi

2s̃i
p ; ð11Þ

as well as its Hermitian conjugate G† defined by
ΣðGðAÞ; BÞ ¼ ΣðA;G†BÞ. If we further impose the match-
ing of the helicities,

h∶ si ¼ s̃i; ð12Þ
thenGmaps Z̃i to Zi and is unitary on the constraint surface
Ĉ ¼ I ∪ h. To further restrict G ∈ SUð2; 2Þ we need the
additional constraint

Φ ≔ argZ − arg Z̃ ¼ 0;

which imposes detðGÞ ¼ 1, since detG ¼ ZZ̃=
ð16 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s1s2s3s4s̃1s̃2s̃3s̃4
p Þ.
Summarizing, the matrix (11) is unitary with respect to Σ

when the twistors satisfy the incidences I and helicity
matching h conditions and special unitary when they further
satisfy the Φ condition. These are a total of 4þ 12þ 12þ
1 ¼ 29 real conditions on a space of 64 real dimensions;
therefore, the unitary matrices so described are completely
arbitrary.

C. Symplectic structure on T�SUð2;2Þ
Before presenting our main result, let us fix some

notations and provide explicit expressions for the sym-
plectic manifold T�SUð2; 2Þ ≃ SUð2; 2Þ × suð2; 2Þ�. Let
Mab ¼ −Mba form a basis of the Lie algebra suð4; 2Þ:

½Mab;Mcd� ¼ ηacMbd − ηadMbc þ ηbdMac − ηbcMad

≕ − fabcdefMef; ð13Þ

with a ¼ 0;…; 5, and ηab ¼ diagð−þþþþ−Þ. We para-
metrize the base manifold with a Σ-unitary unimodular
4 × 4 matrix Gα

β and the algebra with the generators in the
fundamental irrep, which can be written as a traceless 4 × 4

matrix themselves using Mα
β ¼

P
a<b M

abΓabα
β, where

Γab are generators of spinð4; 2Þ introduced earlier. There
are two versions of the isomorphism, taking M to be either
left-invariant or right-invariant vector fields. Choosing the
first option for M, we denote M̃ the right-invariant vector
fields obtained by adjoint action:

M̃α
β ¼ −ðGMG−1Þαβ: ð14Þ

The cotangent bundle carries a natural symplectic structure,
with the potential given by the inner product between the
left- or right-invariant Maurer-Cartan form and the corre-
sponding vector fields (see e.g., [18]),

ΘT�SUð2;2Þ ¼TrðM̃dGG−1Þþ c:c:

¼ 1

2
TrðM̃dGG−1Þ−1

2
TrðMG−1dGÞþ c:c: ð15Þ

This results in the following Poisson brackets:

fGα
β; Gγ

δg ¼ 0; fMab;Gα
βg ¼ iðGΓabÞαβ;

fM̃ab; Gα
βg ¼ −iðΓabGÞαβ; ð16aÞ

fMab; M̃cdg ¼ 0; fMab;Mcdg ¼ −fabcdefMef;

fM̃ab; M̃cdg ¼ −fabcdefM̃ef; ð16bÞ

where fabcdef are the structure constants given by (13). The
brackets in the first line of (16) above give the identification
of left- and right-invariant vector fields as, respectively,
right and left derivatives.
In the T�Uð2; 2Þ case we have an additional generator,

the center of the algebra (6), corresponding toMα
β having a

trace; and the determinant detG is a pure phase but not
necessarily 1. These two quantities form a canonical pair
disentangled from the rest of the algebra (16):

fMab; detGg ¼ 0; fU; detGg ¼ 2i detG;�
U; Ĝα

β ≔
Gα

β

ðdetGÞ1=4
�

¼ 0: ð17Þ
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D. Symplectic structure on T8 and reduction to
T�SUð2;2Þ

Let us consider T8 and split the eight twistors into two
sets Zα

i and Z̃α
i , i ¼ 1;…4, with Poisson brackets

fZα
k; Z̄jβg ¼ iδkjδαβ; fZ̃α

k;
¯̃Zjβg ¼ −iδkjδαβ: ð18Þ

Under these brackets, the scalar products in each set form a
closed glð4;CÞ algebra,1

fρmj; ρklg ¼ −iδmlρkj þ iδjkρml;

fρ̃mj; ρ̃klg ¼ iδmlρ̃kj − iδjkρ̃ml; ð19aÞ
whose centers are U ¼ P

i si and Ũ ¼ P
i s̃i. The other

conformal invariant quantities, the holomorphic volumes Z
and Z̃, commute with the off-diagonal scalar products,
whereas any helicity shifts the phase:

fρmj;Zg ¼ −iZδmj; f2sm;Zg ¼ −iZ ∀ m;

and similarly for the tilded set, but with opposite signs.
We now look for constraints capable of reducing this

64-dimensional symplectic manifold to T�SUð2; 2Þ.
The unitarity discussion earlier has already identified a
candidate set of constraints: the incidence conditions I ,
the helicity matching conditions h, and the unimodular
condition Φ. The constraint algebra is given by (19a)
above together with

fhi; hjg ¼ 0; fhm; ρjkg ¼ −
i
2
δmkρjm þ i

2
δmjρmk;

fhm; ρ̃jkg ¼ −
i
2
δmkρ̃jm þ i

2
δmjρ̃mk; ð19bÞ

fhm;Φg ¼ 0; fΦ; ρmjg ¼ 0 ∀ m ≠ j;

fΦ; ρ̃mjg ¼ 0 ∀ m ≠ j: ð19cÞ

These brackets are all zero on the I surface, except for

fρmj; ρjmg ¼ 2iðsm − sjÞ; fρ̃mj; ρ̃jmg ¼ −2iðs̃m − s̃jÞ:
ð20Þ

Therefore, hi and Φ are always first class. The inci-
dences are generically second class; some or all become
first class on measure-zero subsets of the phase space
where two or more helicities match. In the generic case,
symplectic reduction by h and I gives a space of
dimensions

dimðT 8Þ − 4 × 2 − 12 − 12 ¼ 32 ¼ dimðT�Uð2; 2ÞÞ;

and a further reduction by Φ brings it down to
30 ¼ dimðT�SUð2; 2ÞÞ. For the symplectic reduction to
work, however, we have to remove some regions of the
initial phase space. First, our construction of the group
element requires non-null twistors and linearly indepen-
dent in each sector. Any parallel pair will imply the
vanishing of either Z or Z̃ and thus detG ¼ 0.
Furthermore, the counting above shows that we want
the incidence conditions to be second class; therefore,
we must exclude within each sector twistors with the
same helicity.
Let T8⋆ be the subspace of T8 satisfying the following

anholonomic restrictions:
(i) The twistors within each group of four are linearly

independent and non-null.
(ii) The twistors within each group of four have different

helicities, si ≠ sj and s̃i ≠ s̃j for i ≠ j.

Proposition.—The symplectic reduction of T8⋆ by the
helicity matching and incidence constraints

hi ¼ si − s̃i ¼ 0 ðfour real; first classÞ; ð21aÞ

ρij¼0¼ ρ̃ij ∀ i≠ j ð12 complex; second classÞ; ð21bÞ

describes a symplectic space of 32 real dimensions iso-
morphic to T�Uð2; 2Þ, parametrized by

Gα
β ≔

X4
i¼1

Z̃α
i Z̄iβffiffiffiffiffiffi

2si
p ffiffiffiffiffiffi

2s̃i
p ; Mab ¼

X4
i¼1

Z̄iαΓabα
βZ

β
i ;

M̃ab ¼ −
X4
i¼1

¯̃ZiαΓabα
βZ̃

β
i ;

U ¼
X4
i¼1

si; Ũ ¼ −
X4
i¼1

s̃i; ð22Þ

with Gα
β ∈ Uð2; 2Þ, and ðMab;UÞ and ðM̃ab; ŨÞ, respec-

tively, left-invariant and right-invariant vector fields iso-
morphic to the uð2; 2Þ algebra.
A further reduction by the additional constraint

Φ ¼ argZ − arg Z̃ ¼ 0 ð23Þ

imposes detG ¼ 1, removes U from the phase space, and
describes a symplectic space of 30 real dimensions iso-
morphic to T�SUð2; 2Þ, parametrized by (22) above.
Therefore, T8⋆==C ≃ T�SUð2; 2Þ with C ¼ h ∪ I ∪ Φ.
Proof.—To prove the symplectic reduction we need to

show that the reduced variables commute with all the
constraints, are all independent, and generate the Poisson
algebra of T�SUð2; 2Þ. Because of the presence of second-
class constraints, which we have not explicitly solved, the
reduced algebra is defined a priori through the Dirac
bracket

1For the reader familiar with spin foam models, we point out
that ρij are used to construct the holomorphic simplicity con-
straints introduced in [19].
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fF;GgD ≔ fF;Gg −
X
i≠j

fF; ρijgfρij; ρ̄ijg−1fρ̄ij; Gg

þ fF; ρ̄ijgfρ̄ij; ρijg−1fρij; Gg
þ fF; ρ̃ijgfρ̃ij; ¯̃ρijg−1f ¯̃ρij; Gg
þ fF; ¯̃ρijgf ¯̃ρij; ρ̃ijg−1fρ̃ij; Gg:

The only nonvanishing entries of the Dirac matrix are

fρmj; ρ̄mjg¼ 2iðsm− sjÞ; fρ̃mj; ¯̃ρmjg¼−2iðs̃m− s̃jÞ;

thus, the Dirac matrix has zeros everywhere except on 2 × 2
blocks along the diagonal. The inverse is then easy to
compute, being given by a matrix with the same structure
and elements given by minus the inverse of the original
entries.
For the algebra generators, we have

fhi;Mα
βg ¼ 0; fρij;Mα

βg ¼ 0; fΦ;Mα
βg ¼ 0;

fhi; Ug ¼ 0; fρij; Ug ¼ 0; fΦ; Ug ¼ 2:

The commutation with the second-class constraints means
that the Dirac bracket for the algebra generators coincides
with the Poisson bracket. For the group elements, we have

(with shorthand notation Gα
i β ≔

Z̃α
i Z̄iβffiffiffiffiffi

2si
p ffiffiffiffiffi

2s̃i
p )

fhi; Gα
βg ¼ 0;

fΦ; Gα
βg ¼ 1

2

X
i

�
Z̃α
i Z

i
βffiffiffiffiffiffi

2si
p ffiffiffiffiffiffi

2s̃i
p þ

¯̃ZiαZ̄iβffiffiffiffiffiffi
2si

p ffiffiffiffiffiffi
2s̃i

p

−Gα
i β

�
1

2si
þ 1

2s̃i

��
¼I ;h0;

fρkj; Gα
βg ¼ i

Z̃α
j Z̄kβffiffiffiffiffiffiffi

2sk
p ffiffiffiffiffiffiffi

2s̃k
p þ iρkj

�
Gα

kβ

2si
−
Gα

j β

2sj

�
¼I ;hi Z̃

α
j Z̄kβ

2sk
;

ð24Þ

fρ̃kj; Gα
βg ¼ i

Z̃α
j Z̄kβffiffiffiffiffiffiffi

2sk
p ffiffiffiffiffiffiffi

2s̃k
p þ iρkj

�
Gα

kβ

2sk
−
Gα

j β

2sj

�
¼I ;hi Z̃

α
j Z̄kβ

2sk
:

ð25Þ

Even though the group element does not commute with the
incidence constraints, its Dirac bracket with itself coincides
with the Poisson bracket, thanks to opposite contributions
from the two sets:

X
i≠j

fGα
β; ρijgfρij; ρ̄ijg−1fρ̄ij; Gγ

δg

þ fGα
β; ρ̃ijgfρ̃ij; ¯̃ρijg−1f ¯̃ρij; Gγ

δg ¼I ;h 0:

Therefore, the Dirac bracket of all reduced variables
coincides with the Poisson bracket. Furthermore, this

shows also that G and M are gauge invariant with respect
to all first-class constraints in T8⋆. We are left to check that
they satisfy the right algebra, namely (16).
This means that ðGα

β;Mα
βÞ span the 32-dimensional

reduced phase space. We have also already proved that G is
unitary, and we now show that on shell of the constraints it
relates M and M̃ via the adjoint action, since

M̃ab¼I ;h −
X
i

Z̄iαðG−1ΓabGÞαβZβ
i ¼ −ðGMG−1Þαβ:

It remains to show that they satisfy the right brackets.
To that end, we compute

fGα
β; Gγ

δg ¼
X
kj

Z̃α
kZ̃

γ
jffiffiffiffi

s̃k
p ffiffiffiffi

s̃j
p

�
Z̄kβffiffiffiffi
sk

p ;
Z̄jδffiffiffiffisjp

�

þ Z̄kβZ̄jδffiffiffiffi
sk

p ffiffiffiffisjp
�

Z̃α
kffiffiffiffi
s̃k

p ;
Z̃γ
jffiffiffiffi
s̃j

p
�

¼ i
2

X
k

Z̃α
kZ̄kβZ̃

γ
jZ̄jδ

sksj

× ðs−1k − s−1k þ s̃−1k − s̃−1k Þ≡ 0; ð26Þ

fMab;Gα
βg¼ iðGΓabÞαβ; fM̃ab;Gα

βg¼−iðΓabGÞαβ:
ð27Þ

As for the brackets of the algebra generatorsM, they follow
immediately by linearity from the ones with a single
twistor. We remark that no constraints were used: the
Poisson brackets reproduce the right algebra on the whole
of T8⋆. The role of the constraints is truly to restrict the
matrix to be unitary and special unitary.
For the final step leading to T�SUð2; 2Þ, note the Poisson

algebra we obtained is separable, since ðU; detGÞ form a
canonical pair with brackets (17), as can be easily verified
using

fZ;Mabg ¼ iZ
X
k

Zk
αΓabα

βZ
β
k ¼ iZTrðΓabÞ≡ 0

[except of course ifM ¼ U is the Uð1Þ generator, in which
case we get correctly 2iZ]. Then, to reduce to T�SUð2; 2Þ,
we simply impose detG ¼ 1 as a (first-class, real) con-
straint, whichmodules outU ¼ P

isi as a gauge orbit. Since
we already know that two helicities need to have opposite
signs, we can fix U ¼ 0 without loss of generality. ▪
Three remarks are in order. Firstly, when two or

more twistors in the same set have the same helicity,
some or all of the incidence constraints become first class.
The symplectic reduction describes a smaller phase space
not parametrized by a unitary group element, because
fρij; Gα

βg ≉ 0. Secondly, since the helicities can always
be made to match in projective twistor space, this shows the
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importance of using the full twistor space for our sym-
plectic reduction to work.
Finally, instead of working with eight copies of twistor

space, we could have picked a pair of self-dual tetrahedra T
and T̃ in CP3 from Sec. II. By construction of these
tetrahedra, the incidence constraints ρij ¼ ρ̃ij ¼ 0 have
already been imposed. To impose the helicity constraints
hi ¼ 0 we assign four different colors to vertices of each
tetrahedron and define G as a Σ-unitary matrix acting
on a configuration space of self-dual tetrahedra and
preserving colors of vertices. If we interpret Z ¼ ZðTÞ
as a holomorphic volume of the tetrahedron T, then
the final constraint Φ ¼ 0 is that G preserves the phase
of this holomorphic volume, which can also be put in a
form

Z ¼ 1

6

X
i;j;k;l

ϵijklIαβIγδZα
i Z

β
jZ

γ
kZ

δ
lDijkl; ð28Þ

where Iαβ is the infinity twistor andDijkl ≡ jXij − Xklj2 are
squared distances between the vertices of the octahedron
from Fig. 4 in Sec. II taken with respect to the holomorphic
metric on MC.
The only other context where a volume of a polygon

in the twistor space plays a role in physics is the
amplituhedron of [20]. It remains to be seen whether
there is any connection between the amplituhedron and
our work.

IV. BREAKING THE CONFORMAL SYMMETRY

In twistor theory it is common to break the conformal
symmetry introducing an infinity twistor, which specifies
the asymptotic structure of the conformally flat metric [2].
The choice of infinity twistor determines if the remaining
symmetry is Poincaré or the (anti–)de Sitter. Here we are
interested instead in a different reduction that takes us
directly to SLð2;CÞ, since this is the local gauge group of
general relativity. As shown in [9], this reduction can be
achieved without using the infinity twistor but rather requir-
ing conservation of the dilatations between the two sets of
twistors. This means that we preserve not only the pseudo-
Hermitian structure Σ, but also γ5. Since γ5 is the equivalent
in the Clifford algebra of the Hodge dual, it is clear that
preserving this structure fixes scales. And from the suð2; 2Þ
algebra we see that this condition breaks translations and
conformal boosts, allowing only the Lorentz subalgebra.
On the dilatation constraint surface, the description of

the remaining Lorentz algebra in T8⋆ becomes largely
redundant. Building on the results of [6], we know it is
enough to work with a pair of twistors only. To eliminate
the redundancy, we thus impose the additional constraints
Z1 ¼ Z2 ¼ Z3 ¼ Z4 and Z̃1 ¼ Z̃2 ¼ Z̃3 ¼ Z̃4.
On shell of these constraints, I and Φ become trivial,

and h reduces to a single equation. This, together with

dilatation constraint, forms a pair of first-class constraints,
and we recover the symplectic reduction to T�SLð2;CÞ
already established in [6–8]. The final reduction to
T�SUð2Þ relevant to LQG is done introducing a timelike
direction, which identifies an SUð2Þ subgroup of SLð2;CÞ
and a Hermitian structure k · k2. From the twistorial view-
point, the constraint achieving this reduction is the inci-
dence of two twistors on the same chosen timelike
direction. See [9] for a review.2 As a side comment of
mathematical interest, it is known [22] that T�SUð2Þ ≅
C4=C� obtained in this way is the maximal coadjoint
orbit of SUð2; 2Þ and that SUð2; 2Þ and Uð1Þ form a
Howe pair. It may be interesting to establish a precise
relation between the Howe pairs and the reduction pre-
sented in Sec. III.
Coming back to our physical motivations, the work

presented has two applications. First, the twistorial para-
metrization of T�SUð2; 2Þ obtained provides a convenient
starting point to construct SUð2; 2Þ spin networks and their
holonomy-flux algebra through a generalized Schwinger
representation. The flux operators will be the standard
holomorphic algebra operators used in quantum twistor
theory, whereas the holonomy operators can be built
from a suitable operator ordering of (11). Secondly, our
classical results are sufficient to deduce how the geometric
interpretation of LQG spin networks should be seen
from the perspective of SUð2; 2Þ spin networks. The
reduction discussed above from T�SUð2; 2Þ to T�SUð2Þ
acts trivially on the algebra generators; hence, the spin label
j describing LQG’s quantum of area is simply the SUð2Þ
Casimir with respect to the canonical timelike direction
NI ¼ ð1; 0; 0; 0Þ, namely with respect to the canonical
3-vector (1, 0, 0, 0, 1, 1) inE4;2. The effect on the holonomy
is less trivial. In particular, the SLð2;CÞ matrix element is
given by

hAB¼
ω̃AπB− π̃AωBffiffiffiffiffiffi

πω
p ffiffiffiffiffiffiffi

π̃ ω̃
p ≈

i
2

ffiffiffi
s

p
ffiffiffiffiffiffi
πω

p
ffiffiffĩ
s

p
ffiffiffiffiffiffiffi
π̃ ω̃

p ðGA
BþϵACðG _C

_DÞϵDBÞ

ð29Þ

on shell of the constraints, whereGA
B andG _C

_D are the 2 × 2

diagonal blocks of (11). Here ðωA; πAÞ are the spinor
constituents of Zα, and πω ≔ πAω

A. The LQG SUð2Þ
holonomy carrying the extrinsic curvature of the quantum
space can be recovered from the Lorentz holonomy as
explained in [6], and the embedding (29) shows how it
determines the argument of an SUð2; 2Þ spin network. From
these considerationswe can also remark that the LQGarea is
invariant under the SUð2; 2Þ dilatations, whereas the
extrinsic geometry is affected, in agreement with [9].

2See also [21] for related reductions to the little groups ISOð2Þ
and SUð1; 1Þ stabilizing, respectively, a null and a spacelike
direction.
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A suggestion in line with Penrose’s original program is
to introduce a notion of scale not from the Casimirs but
directly from the eigenvalues of the dilatation generator D.
Such interpretation is at odds with LQG, and we have
clarified why. On the other hand, it may be relevant to allow
one to extend the spin network construction of the Hilbert
space of loop quantum gravity to more general theories like
Poincaré gauge theory of gravity or conformal gravity.
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