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As an application of the method of [4], we find the metric and connection on the 
space of conics in CP2 determined as the solution space of the ODE (1). These 
calculations underpin the twistor construction of the Radon transform on conics in 
CP2 described in [5]. Two further examples of the method are provided.
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1. General theory

In [4], a particular fifth-order ODE whose solutions are the conics in CP2 was noted as an example for 
which the Wünschmann conditions were satisfied, and a torsion-free, GL(2) (or paraconformal) connection 
exists on the moduli space M of solutions, while the ODE is not contact equivalent to the trivial fifth-order 
equation y(5) = 0. (The fact that this ODE has solutions which are these conics goes back at least to 
Halphen [8] and may go back to Monge [10].) In this note we spell out all the steps to finding the metric and 
curvature properties of M . These calculations are interesting in their own right, for illustrating the method, 
and they crucially underpin the twistor construction of the Radon transform on conics in CP2 described 
in [5].
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We begin then with the fifth-order ODE

y(5) = Λ(x, y, p, q, r, s) = −40
9
r3

q2 + 5rs
q

(1)

where p = y′ (which doesn’t appear yet), q = y′′, r = y′′′ and s = y′′′′. With the conventions of [4] we 
calculate the partial derivatives of Λ as

Λx = 0 = Λ0 = Λ1,Λ2 = 80
9
r3

q3 − 5rs
q2 ,Λ3 = 5s

q
− 40

3
r2

q2 ,Λ4 = 5r
q
,

and it is straightforward to verify that the Wünschmann conditions, as in [4], are satisfied so that the moduli 
space of solutions M admits a torsion-free, GL(2) (or paraconformal) connection, defined from Λ and its 
derivatives.

Write the solution as

y = Z(x,Xa),a = 1 . . . 5,

where Xa are coordinates on M , and concrete indices are bold. It will eventually be convenient to use 
(y, p, q, r, s) at some fixed x for Xa, when we’ll write them (y, p, q, r, s).

To say that M has a torsion-free, GL(2)-connection [4] is to say that the tangent bundle is a symmetric 
fourth paper of a complex rank-2 spinor bundle, with compatible torsion-free connection preserving the 
spinor symplectic form. Following the method of [4], we impose

∇aZ := Z,a = ιAιBιCιD,

where ιA is a spinor field (and abstract indices are italic). With a slight change from [4] we shall suppose

ι′A = PoA

where prime means d/dx and P is to be found, and oAιA = 1 or equivalently the spinor symplectic form is

εAB := oAιB − oBιA

and is independent of x.
This entails

o′A = QιA,

with Q also to be found. Compress notation by introducing a constant spinor αA and writing ι = ιAα
A, o =

oAα
A. Then with ta = αAαBαCαD write dy = taZa etc. Then

dy = ι4

dp = (dy)′ = (Zat
a)′ = (ι4)′ = 4Poι3,

dq = (dp)′ = 4PQι4 + 4P ′oι3 + 12P 2o2ι2,

and

dr = (dq)′ = Aι4 + Boι3 + Co2ι2 + 24P 3o3ι
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with A, B, C, D to be found. By differentiating we obtain

A = 8P ′Q + 4PQ′, B = 4P ′′ + 40P 2Q,C = 36PP ′.

Next

ds = Eι4 + Foι3 + Go2ι2 + Ho3ι + 24P 4o4

with E, F, G, H to be found, and again by differentiating one calculates

E = A′ + BQ,F = B′ + 4PA + 2QC,G = C ′ + 3PB + 72P 3Q,H = 144P 2P ′.

At the next stage, from (1) we have

Z(5)
a = Λ2Z

′′
a + Λ3Z

′′′
a + Λ4Z

′′′′
a

so that

(ds)′ = taZ(5)
a = Λ2dq + Λ3dr + Λ4ds.

Calculating the left-hand-side and equating coefficients gives:

• From o4 a differential equation for P :

96P 3P ′ + HP = 24P 4Λ4,

whence

240P 3P ′ = 120P 4 r
q = 120P 4Z

′′′

Z ′′

which integrates to give

P = (Z ′′)1/2 = q1/2.

• From o3ι an algebraic equation for Q which solves as

Q = 1
48

(Z ′′′)2

(Z ′′)5/2
= 1

48
r2

q5/2 .

• There should then be three identities from the remaining three terms, but we defer considering them 
for a moment.

This choice of P and Q imply

A = − r3

8q3 + rs
6q2 , B = 2s

q1/2 − r2

6q3/2 , C = 18r,

and then

E = s2

2 + r2s
3 − 319 r4

4 , F = 28 rs
3/2 − 151 r3

5/2 ,
6q 6q 864 q 3 q 18 q
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G = 24s + r2

q , H = 72q1/2r.

Now it is straightforward to check that the three identities hold.
Note the inverse relation between the basis defined by the spinor dyad (call this the spinor pentad) and 

the coordinate basis:

e1 := ι4 = dy

e2 := oι3 = 1
4P dp

e3 := o2ι2 = 1
12q (dq − r

2qdp − r2

12q2 dy)

e4 := o3ι = 1
24qP

(
dr − 3r

2qdq + ( 19r2

24q2 − s
2q )dp + ( r3

4q3 − rs
6q2 )dy

)

e5 := o4 = 1
24q2

(
ds − 3r

q dr + (−2s
q + 53r2

12q2 )dq + ( rs
6q2 − 17r3

72q3 )dp + (− s2

6q2 + r2s
2q3 − 323r4

864q4 )dy
)

By a general argument the metric may be obtained from the spinor symplectic form as

gABCD.PQRS = δ K
(A δ L

B δ M
C δ N

D)εKP εLQεMRεNS ,

which is equivalent to

g = 2e1 � e5 − 8e2 � e4 + 6e3 � e3, (2)

but in the next section we follow a different route.

2. Metric

We obtain the contravariant metric in the chosen coordinates by starting from the condition gabZaZb = 0
and differentiating repeatedly. We use the expressions for the coordinate basis in terms of the spinor pentad 
to find at once

0 = g(dy, dy) = g(dy, dp) = g(dy, dq) = g(dy, dr) = g(dp, dp) = g(dp, dq),

then

g(dy, ds) = ZaZ ′′′′
a = 24P 4 so g(dp, dr) = Z ′ aZ ′′′

a = −24P 4

and then

g(dq, dq) = Z ′′ aZ ′′
a = 24P 4,

where recall that P 2 = q.
Next

g(dp, ds) = Z ′ aZ ′′′′
a = −144P 3P ′ so g(dq, dr) = Z ′′ aZ ′′′

a = 48P 3P ′,

and recall 2P 3P ′ = qr.
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For the rest a harder calculation gives

g(dq, ds) = 48qs − 32r2, g(dr, dr) = 56r2 − 24qs,

and finally

g(dr, ds) = 160
3

r3

q − 16rs, g(ds, ds) = 104s2 − 320r2s
q + 2560

9
r4

q2 .

The contravariant metric is then

(gab) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 24q2

0 0 0 −24q2 −72qr
0 0 24q2 24qr 48qs− 32r2

0 −24q2 24qr 56r2 − 24qs 160
3

r3

q − 16rs
24q2 −72qr 48qs− 32r2 160

3
r3

q − 16rs 104s2 − 320 r2s
q + 2560

9
r4

q2

⎞
⎟⎟⎟⎟⎟⎠

,

with coordinates ordered (y, p, q, r, s).
This inverts to:

(gab) =

⎛
⎜⎜⎜⎜⎜⎝

r2s
24q5 − 5r4

162q6 − s2
72q4

rs
72q4 − r3

54q5
13
72

r2

q4 − s
12q3 − r

8q3 (24q2)−1

∗ s
24q3 − r2

18q4
r

24q3 −(24q2)−1 0
∗ ∗ (24q2)−1 0 0
∗ ∗ 0 0 0
∗ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

where ∗ indicates a term fixed by symmetry.

• Now we can check directly that

(gabdXadXb)′ = 0,

so that the metric is independent of the fixed but arbitrary choice we made of x, and also check that it 
agrees with (2).

• Note also that gyy = r2s
24q5 − 5r4

162q6 − s2
72q4 is constant: this is a first-integral of (1).

• A Maple calculation shows that the metric is Einstein with scalar curvature R = −60. That this 
is Einstein is to be expected from the general theory of symmetric spaces, as the space of conics 
is the symmetric space SL(3, C)/SO(3, C). This space contains two real forms: the positive definite 
SL(3, R)/SO(3, R), and pseudo–Riemannian SL(3, R)/SO(1, 2), where the metric has signature (2, 3). 
This later case is what we obtain if (1) is regarded as a real ODE, and (x, y) are taken to be real. In [5]
the Riemannian form was used.

• The Laplacian has no first-order derivatives and so is just

Δ = gab∂a∂b.

Equivalently, the coordinates are harmonic.
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3. Connection

We assume the Levi-Civita derivative ∇a extends to spinors so the derivative of the spinor dyad can be 
written

∇aoB = φaoB + ψaιB , ∇aιB = χaoB + λaιB,

for vectors φa, ψa, χa, λa to be found, and that this preserves εAB:

0 = ∇aεAB = ∇a(oAιB − oBιA).

Therefore φa + λa = 0 so we may eliminate λa. Note that

φa = ιB∇aoB = oB∇aιB , ψa = −oB∇aoB , χa = ιB∇aιB .

We also want this extended derivative to be torsion-free. Recall

ya = ιAιBιCιD, pa = 4q1/2o(AιBιCιD),

so that

∇ayb = q−1/2χapb − 4φayb.

Torsion-free-ness necessarily requires ∇[ayb] = 0 and this will also be sufficient as priming it up to four times 
shows. Thus

χ[apb] − 4q1/2φ[ayb] = 0

from which it follows that

φa = αya − q−1/2γpa

χa = 4γya + δpa

for some α, γ, δ to be found.
We may calculate primes of χa, φa, ψa by using ι′A = PoA, o′A = QιA to obtain:

χ′
a = (ιB∇aιB)′ = 2Pφa + ∇aP

ψ′
a = −2Qφa + ∇aQ

φ′
a = −Pψa + Qχa,

where, recall, P = q1/2, Q = 1
48

r2

q5/2 .
Substitute into χ′

a:

4γ′ya + 4γpa + δ′pa + δqa = 2q1/2(αya − q−1/2γpa) + 1
2q−1/2qa,

so that

δ = 1q−1/2,
2
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6γ + δ′ = 0 whence γ = 1
24q−3/2r,

and

α = 2q−1/2γ′ = s
12q2 − r2

8q3 .

Thus φa and χa are now known. For ψa consider φ′
a:

Pψa = −φ′
a + Qχa = −(αya − q−1/2γpa)′ + Q(4γya + δpa)

= (−α′ + 4Qγ)ya + (−α + (q−1/2γ)′ + Qδ)pa + q−1/2γqa

whence

ψa = − 1
864

r3

q9/2 ya +
(

5
96

r2

q7/2 − s
24q5/2

)
pa + r

24q5/2 qa.

The equation for ψ′
a should now be an identity and indeed it is.

Note now that

ιAιBιC∇ABEF ιC = 0.

This is the condition for integrability of the distribution spanned by ιA∇ABCD and the integral manifolds 
of the distribution are the surfaces of constant y. Such a surface is defined by all conics through a fixed 
point of CP2, which will recur in the final section. In fact we have here a stronger result:

ιA∇ABCDιE = ιA(χABCDoE − φABCDιE) = ιBιCιD(1
2oE − γιE), (3)

a formula which is needed in [5].

4. The SO(3)-structure

We first recall some SO(3)-theory following [1] and [6]. The metric gab is defined from the spinor epsilon 
as in (2) but here we introduce a new notation for this:

gae = gABCDEFGH = S(ABCD) (εAEεBF εCGεDH) ,

where the symbol S(ABCD) is introduced to define symmetrisation of the following expression over the 
indices ABCD with the usual factor (4!)−1. We may define an analogous symmetric tensor Gaep from six 
epsilons by

Gaep = GABCDEFGHPQRS = S(ABCD)S(EFGH) (εAEεBF εGP εHQεCRεDS) .

It is straightforward to check that

Gabc = G(abc), gabGabc = 0, ∇aGbcd = 0,

and the normalisation

6Ge
a(bGcd)e = ga(bgcd) (4)

holds.
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More identities follow: trace (4) to obtain

GefaG
ef

b = 7
12gab and GabcG

abc = 35
12 .

Commute derivatives on Gabc to obtain a condition on the curvature tensor:

R
(d

abc Gef)c = 0. (5)

Define

χabcd = 6Ge
abGcde, Fbcad = χa[bc]d,

and claim

χabcd = χ(abcd) + 2
3Fbcad + 2

3Fbdac, (6)

with

χ(abcd) = 6Ge
(abGcd)e = ga(bgcd).

Expand (5):

R d
abc Gefc + R e

abc Gfdc + R f
abc Gdec = 0

and contract with Gefp to deduce

RabcdF
cd
pq = 7

4Rabpq, (7)

after relabelling of indices.
We need these identities in the next section.

5. A system of equations

In [5] and following Moraru [9] we consider the system of equations:

G bc
a ∇b∇cF = λ∇aF, (8)

ΔF := gab∇a∇bF = μF, (9)

on a scalar F , where λ, μ are real constants. These can be written down in any SO(3)-structure but we are 
interested principally in the case of Section 1, which is also Einstein.

Compress notation by writing Fa = ∇aF then from (8)

6λ2F a = 6GabcG de
b ∇c∇dFe = χacde∇c∇dFe

= (ga(cgde) + 2
3F

cdae + 2
3F

cead)∇c∇dFe

using identites from the previous section. Here the first term is
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1
3(gacgde + gadgec + gaegcd)∇c∇dFe

= 1
3(∇aΔF + 2∇c∇aF c)

= 1
3(∇aΔF + 2RabFb + 2∇aΔF )

= ∇a(ΔF + 2
15RF ),

using the Einstein condition.
The other two terms become

4
3F

cdae∇c∇dFe = −2
3F

cdaeRcdfeF
f

= −2
3 .

7
4R

ae
feF

f = −7
6R

a
fF

f = − 7
30RF a,

using the Einstein condition again.
Putting these together

6λ2Fa = ∇a(ΔF − 1
10RF ),

whence

μ = 6λ2 + R

10 . (10)

Conversely, a solution F of (8) with some λ will necessarily satisfy (9) with the value of μ given by (10), 
possibly after adding a constant to F .

In spinor notation the system (8) can be written

�ABCDF := ∇ EF
(AB ∇CD)EFF = λ∇ABCDF,

accompanied by

ΔF = μF.

To write out the system in coordinates we need to calculate two sets of quantities:

G bc
a ∇b∇cX

a and G bc
a ∇bX

b∇cX
c,

but we have all the necessary information for these, so we may assume them known.
For a function F , the one-form G bc

a ∇b∇cF decomposes in the coordinate basis as:

dy : 4qFyq + 6rFyr + 8sFys − 2qFpp − 2rFpq − 2sFpr − 2s′Fps − Fy

dp : 6qFyr + 16rFys − 2qFpq − 4rFpr − 6sFps − Fp

dq : 4qFys + 2qFpr − 2rFqr − 2qFqq + (−16s + 80r2

3q )Fqs + (7s − 40r3

3q )Frr

+(70rs
3q − 400r3

9q2 )Frs + (−70
3

s2

q + 320
3

r2s
q2 − 3200

27
r4

q3 )Fss − Fq

dr : 4qFps − 16rFqs − 2qFqr + 6rFrr + (−2s + 80r2
)Frs + (−80 rs + 640 r3

2 )Fss − Fr
3q 3 q 9 q
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ds : 4qFqs − 3qFrr − 12rFrs + (8s − 80r2

3q )Fss − Fs,

and this must be equated to λdF .
This system is considered further in [5] and it is shown there that solutions are given as follows: pick 

f(x, y) and perform the integral

F (Xa) =
∫

f(x, Z(x,Xa))q1/3dx

over a suitable contour. This is a translation of a formula in [9] and generates solutions of the system (8)–(9).

6. Further examples

The methods of this paper can be extended to a wider selection of examples but it follows from [4]
and [7] that, while there are other fifth-order ODEs giving rise to SO(3)-structures in the sense used 
here, the connection preserving the tensor Gabc in general has torsion – the unique non-trivial torsion-free 
case is the one presented above. We’ll give below an example of another fifth-order ODE leading to an 
SO(3)-structure, and also an example of a fourth-order ODE where the moduli space admits one of Bryant’s 
exotic G3-holonomy connections ([2]; for this example, the theory in the form we need it can be found in [4]).

6.1. The fifth-order ODE

From [7] and with the notation of (1) we consider the equation

y(5) = Λ(x, y, p, q, r, s) = 5
3
s2

r
. (11)

This is readily solved to give

y = c5 + c4x + c3x
2 + (c1 + c2x)3/2,

but the interest in the equation for us is that the relevant Wünschmann invariants vanish [7]. As before we 
write the solution as y = Z(x; Xa) with conventions for the coordinates (y, p, q, r, s) on the moduli space 
as before, and we introduce spinors with

ya = ιAιBιCιD or dy = (ι)4.

We assume

ι′A = PoA, o′A = QιA,

where oA forms a normalised spinor dyad with ιA, and P, Q are to be found.
Then

dp = (dy)′ = 4Poι3,

dq = (dp)′ = 4PQι4 + 4P ′oι3 + 12P 2o2ι2

dr = (dq)′ = Aι4 + Boι3 + Co2ι2 + 24P 3o3ι

with
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A = 8P ′Q + 4PQ′, B = 4P ′′ + 40P 2Q,C = 36PP ′,

and so

ds = Eι4 + Foι3 + Go2ι2 + Ho3ι + 24P 4o4

where one calculates

E = A′ + BQ,F = B′ + 4PA + 2QC,G = C ′ + 3PB + 72P 3Q,H = 144P 2P ′.

Finally, using (11),

(ds)′ = Λrdr + Λsds = −5s2

3r2 dr + 10s
3r ds.

From the coefficient of ds:

240P 3P ′ = 10s
3r .24P 4 whence P ′

P
= s

3r and P = r1/3.

Next from the coefficient of dr we find that Q = 0, and then the three equations from dy, dp, dq are all 
identities. Summarising:

A = 0, B = 4s2

3r5/3 , C = 12s
r1/3 , E = 0, F = 20s3

9r8/3 , G = 20s2

r4/3 , H = 48s.

The orthonormal basis is

e1 = ι4 = dy,

e2 = oι3 = 1
4P dp,

e3 = o2ι2 = 1
12P 2 (dq − s

3rdp),

e4 = o3ι = 1
24P 3 (dr − s

r
dq).

e5 = o4 = 1
24P 4 (ds − 2s

r dr + s2

3r2 dq),

with duals

E1 = ∂y

E2 = 4P (∂p + s
3r∂q)

E3 = 12P 2(∂q + s
r∂r + 5s2

3r2 ∂s)

E4 = 24P 3(∂r + 2s
r
∂s)

E5 = 24P 4∂s.

Now the metric from (2) is
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g = 2(e1 � e5 − 4e2 � e4 + 3e3 � e3)

= 1
24r4/3 (2dy(ds − 2s

r dr + s2

3r2 dq) − 2dp(dr − s
rdq) + (dq − s

3rdp)2),

or as a matrix

(gab) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 s2
72r10/3 − s

12r7/3
1

24r4/3

0 s2
216r10/3

s
36r7/3 − 1

24r4/3 0
s2

72r10/3
s

36r7/3
1

24r4/3 0 0
− s

12r7/3 − 1
24r4/3 0 0 0

1
24r4/3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

The method of Section 2 to obtain the metric starts from

g(dy, dy) = 0

whence by differentiating

0 = g(dy, dp) = g(dy, dq) = g(dy, dr), g(dy, ds) = 24r4/3,

g(dp, dp) = 0 = d(dp, dq), g(dp, dr) = −24r4/3, g(dp, ds) = −48r1/3s,

and so on, culminating in

(gab) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 24r4/3

0 0 0 −24r4/3 −48r1/3s
0 0 24r4/3 16r1/3s 24r−2/3s2

0 −24r4/3 16r1/3s 8r−2/3s2 −32
3 r−5/3s3

24r4/3 −48r1/3s 24r−2/3s2 −32
3 r−5/3s3 40

3 r−8/3s4

⎞
⎟⎟⎟⎟⎟⎠

.

It is straightforward to check that these matrices are inverses, and that the metric has six independent 
Killing vectors and a homothety, and is scalar-flat but not Ricci-flat.

If we next follow the method of Section 3 to seek a torsion-free spinor connection inducing the Levi-Civita 
connection on vectors and annihilating εAB we reach a contradiction, since we know from [4] and [7] that 
the connection preserving the SO(3, C)-structure has torsion. We shall leave this example here.

6.2. The fourth-order ODE

The association of an exotic G3-holonomy connection in four-dimensions to a fourth-order ODE satisfying 
certain conditions is due to Bryant [2]. The conditions are the vanishing of certain Wünschmann invariants 
of the ODE as was made explicit in Theorem 1.3 of [4]. An example is provided by the ODE determining 
the conics in CP2 which pass through a given fixed point. It is straightforward to check that the relevant 
Wünschmann invariants do vanish, so that the moduli space admits what was called a paraconformal 
structure in [4] and this is nontrivial, in the sense that the ODE is not contact-equivalent to the trivial 
equation y(4) = 0 by a criterion from [3] quoted in Theorem 3.5 of [4]. There will be a connection preserving 
the paraconformal structure but it will necessarily have torsion. We won’t compute it but we will describe 
it below.

We consider then the ODE satisfied by conics through a fixed point in CP2. These can be taken to have 
equation
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ax2 + 2bxy + y2 + 2cx + 2ey = 0

when the fixed point is (0, 0) in an affine patch, and the fourth-order equation annihilating y(x) is

y(4) = Λ(x, y, p, q, r) = 4r2

3q + 2xqr + 6q2

xp− y
− 3x2q3

(xp− y)2 . (12)

This looks a little simpler in terms of W := xp − y, when

Λ = 4r2

3q + 2xqr + 6q2

W
− 3x2q3

W 2 .

Note that for this example we expect a preserved symplectic form or equivalently a symmetric quartic as 
shown in [4], but not a metric. In coordinates (y, p, q, r) introduced in the now standard way we note that 
the two-form is

Ω := (ι)3 ∧ (o)3 − 3o(ι)2 ∧ (o)2ι (13)

and claim that, in coordinates,

Ω = 1
6q4/3(xp − y)

(
dy ∧ dr − dp ∧ dq + ( 4r

3q + 2xq
xp − y )dy ∧ dq

− 1
(xp − y)2 ((xp − y)(xr − 3q) − 3x2q2)dy ∧ dp

)
. (14)

To see this, we first introduce spinors as before so with solution y = Z(x; Xa) to (12), set

dy = (ι)3 = ιAιBιC .

It is important not to confuse y here with y in Sections 1–5, which solves (1) rather that (11), nor to confuse 
ιA here with ιA there.

Suppose

ι′A = PoA, o′A = QιA

with P, Q to be found, then

dp = (dy)′ = 3Poι2,

dq = (dp)′ = 3PQι3 + 3P ′oι2 + 6P 2o2ι,

and

dr = (dq)′ = Aι3 + Boι2 + Co2ι + Do3,

with

A = 3PQ′ + 6P ′Q,

B = 3P ′′ + 21P 2Q,

C = 18PP ′
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D = 6P 3.

It is convenient to invert the relations between the normalised and coordinate tetrads:

(ι)3 = dy,

o(ι)2 = 1
3P dp

o2ι = 1
6P 2

(
dq − P ′

P
dp − 3PQdy

)

o3 = 1
D

(
dr − C

6P 2 dq + (CP ′

6P 3 − B

3P )dp + (CQ

2P −A)dy
)
.

To write the symplectic form (13) in coordinates we need P, Q, B and C. From the two expressions for ds:

ds = dΛ = Λydy + Λpdp + Λqdq + Λrdr

= Eι3 + Foι2 + Go2ι + Ho3

we obtain

E = A′ + BQ,

F = B′ + 3AP + 2CQ

G = C ′ + 2BP + 3DQ,

H = D′ + CP = 36P 2P ′.

Use the relation of the spinor tetrad to the holonomic tetrad to write:

Λydy + Λpdp + Λqdq + Λrdr = Λyι
3 + Λp3Poι2

+Λq(3PQι3 + 3P ′oι2 + 6P 2o2ι) + Λr(Aι3 + Boι2 + Co2ι + Do3),

and then read off corresponding terms. From o3

DΛr = H = 36P 2P ′

so that

P ′

P
= 1

6Λr = 1
6

(
8r
3q + 2xq

xp − y

)
,

and integrate to obtain

logP = 4
9 log q + 1

3 log(xp − y),

dropping the constant of integration. Exponentiating

P = q4/9(xp − y)1/3.

From o2ι
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G = C ′ + 2BP + 3DQ = CΛr + 6P 2Λq,

i.e.

18PP ′′ + 18(P ′)2 + 2P (3P ′′ + 21P 2Q) + 18P 3Q = 18PP ′Λr + 6P 2Λq,

which solves for Q:

Q = 1
60P

(
−24P

′′

P
− 18(P

′

P
)2 + 6Λq + 18P

′

P
Λr

)
,

= 1
9P

(
2r2

9q2 + xr
3W − x2q2

W 2

)
.

Next

D = 6P 3 = 6q4/3W,

C = 18PP ′ = 18P 2
(

4r
9q + xq

3W

)
= 2q1/3

P
(4rW + 3xq2),

B = 3P ′′ + 21P 2Q = P

(
14r2

q2 + 1
3W (16xr + 27q) − 7x2q2

W 2

)
.

Now that we have P, Q, B and C we can be explicit about Ω, substituing for the spinors in (13) and we 
obtain precisely (14). We readily check that Ω is x-independent, and closed and non-degenerate in the sense

Ω ∧ Ω = − 1
18P 6 dy ∧ dp ∧ dq ∧ dr �= 0.

We could go on to calculate A and check the two remaining equations

B′ + 3AP + 2CQ = 3PΛp + 3P ′Λq + BΛr,

A′ + BQ = Λy + 3PQΛq + AΛr,

but these must be identities, by general theory.
We shall leave this example here but note that it has an interpretation in terms of the five-dimensional 

example treated in Sections 1–5 above. There the moduli space, say M5, was the set of all conics in CP2; 
here it is the set, say N 4, of such conics through a fixed point. Evidently N 4 is a hypersurface in M5, and 
in fact a hypersurface of constant y, using y in the sense of Section 1. This is a null hypersurface so has 
only a degenerate metric. The normal to it, using ιA from Section 1 is

dy = (ι)4 = ιAιBιCιD,

with ιA in the sense of Section 1. A tangent vector to N 4 takes the form

V ABCD = ι(AV BCD)

and can be represented by V BCD in TN . A covariant derivative DABC can be defined on N 4 by

DABC := ιD∇ABCD,
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using the Levi-Civita derivative ∇ABCD from Section 3. Evidently this derivative annihilates functions on 
M5 which are constant on N 4, and it preserves εAB and therefore Ωab, but it will have torsion as we see 
by commuting on scalars:

(DABCDPQR −DPQRDABC)f = (ιD∇ABCDιS)∇PQRSf − (ιS∇PQRSι
D)∇ABCDf

= βS(ιAιBιC∇PQRS − ιP ιQιR∇ABCS)f

where

βA = 1
2oA − γιA,

after substituting from (3), and then

= βSι(AιBεC)(PDQR)Sf = T m
ap Dmf,

for a torsion tensor T m
ap which can be expressed in terms of εAB, δ B

A and the vector φABC = ι(AιBβC) as

T LMN
ABC.PQR = εE(Aδ

(L
B φ M

C)(P δ
N)
Q δER).
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