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Abstract
We find necessary and sufficient conditions for existence of a locally isometric 
embedding of a vacuum space-time into a conformally-flat five-space. We 
explicitly construct such embeddings for any spherically symmetric Lorentzian 
metric in 3  +  1 dimensions as a hypersurface in R4,1. For the Schwarzschild 
metric the embedding is global, and extends through the horizon all the way to 
the r  =  0 singularity. We discuss the asymptotic properties of the embedding 
in the context of Penrose’s theorem on Schwarzschild causality. We finally 
show that the Hawking temperature of the Schwarzschild metric agrees with 
the Unruh temperature measured by an observer moving along hyperbolae in 
R4,1.

Keywords: conformal geometry, Hawking temperature, isometric 
embeddings

(Some figures may appear in colour only in the online journal)

1. Introduction

The modern point of view on space-times in general relativity is intrinsic: a space-time is 
an abstract manifold with a Lorentzian metric, and neither the topological structure nor the 
curvature properties invoke a notion of an ambient space. On the other hand an intuitive, 
visual representation of curvature is that of a surface inside a flat RN . This extrinsic approach 
can be put on firm mathematical footings. The Whitney embedding theorem [26] states that 
any n-dimensional smooth manifold can be embedded in RN  as a surface, where N is at most 
2n  +  1. If RN  is equipped with a flat pseudo-Riemannian metric, and the embedding is iso-
metric and global, then the upper bound on dimension is much higher. The Clarke embed-
ding theorem [5] states that a smooth n-manifold with a Lorentzian metric can be embedded 
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isometrically in Rq,p where p  is at most 2 and q is at most n(2n2 + 37)/6 + 5n2/2 + 1. If the 
isometric embedding is only required to be local then the upper bound, in the real analytic 
category, N is at most n(n + 1)/2 (see [3]).

Thus, for 3  +  1 dimensional Lorentzian space-times the upper bound of a global isometric 
embedding is 89, which puts the whole programme outside the scope of practical considera-
tions. Fortunately many known exact solutions to the Einstein equations can be embedded in 
lower dimensions. While it is impossible to embed the Schwarzschild solution in five (flat) 
dimensions, there exist several local isometric embeddings in 4  +  2 dimensions, as well as a 
global embedding in 5  +  1 dimensions due to Fronsdal [8]. One says that the Schwarzschild 
metric has embedding class 2 because it locally isometrically embeds with codimension 2 in 
flat space.

In this paper we study conformally isometric embeddings, i.e. immersions of space times 
(M, g) in a flat Rq,p, such that the pull back of the flat Lorentzian metric from the ambient 
space is in the conformal class of g. For local conformal embeddings the upper bound on the 
dimension of the ambient space is one less than for isometric embeddings [13], and we shall 
show (proposition 3.1 in section 3) that the Schwarzschild metric can be conformally embed-
ded in R4,1 and the embedding goes through the black-hole horizon all the way to the r  =  0 
singularity. We may say that the Schwarzschild metric has conformal embedding class 1. The 
question of conformal embeddings of the Schwarzschild metric was discussed in Penrose’s 
research group in Oxford in the late 1970s, and examples were found. However there does 
not seem to be any published literature from the discussions at that time (though there is the 
general result in [13]) but there are suggestions of it in [20].

We begin in section 2 by discussing the theory of conformal embedding class 1. We find 
necessary and sufficient conditions (proposition 2.2) for a vacuum metric to have conformal 
embedding class 1. In section 2.1 we find some algebraic obstructions on the Weyl tensor 
for the existence of conformal embedding class 1. In particular we can rule out the existence 
of class 1 conformal embeddings for the Kerr metric. Then applying proposition 2.2 to the 
Schwarzschild metric we show that any conformal embedding which is globally defined on 
a sphere of symmetry must actually be spherically-symmetric (theorem 2.7). This clears the 
way for restricting consideration to spherically-symmetric conformal embeddings and these 
are discussed in sections 3 and 4.

In applications to physics conformal embeddings may be useful if the causal structure of 
space-time needs to be examined. This is the case for a lot of classical, and some quantum 
physics. In section 5 we shall show that the extension of the Schwarzschild conformal embed-
ding to the compactified space-time maps past and future null infinities in 3  +  1 dimensions 
to single points on past and future null infinities in flat 4  +  1 dimensions, and in section 6 we 
discuss this in the context of Penrose’s theorem [19] on Schwarzschild causality. In section 7 
we shall argue that the Hawking temperature is a conformally invariant notion, and agrees 
with the Unruh temperature measured by an observer moving along hyperbolae in R4,1. An 
analogous observation for the isometric embeddings in R5,1 was made in [6] and further devel-
oped in [17]. In section 8 we shall construct some time-dependent conformal embeddings of 
the extreme Reissner–Nordström black hole (they fail to be global). In appendix A we shall 
prove proposition 2.5, and show that the reality of the scalar invariants I, J for the Weyl spinor 
are the necessary and sufficient conditions for the existence of class 1 conformal embedding 
resulting from the Gauss equation (there are other differential constraints resulting from the 
Codazzi equation). In appendix B we review the GHP formalism used in the proof of theorem 
2.7. In appendix C we shall show that the parabolic isometric embedding of Fujitani et al [9] 
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can be obtained as an infinite boost of the Kasner embedding. In appendix D we shall relate 
our conformal embedding in R4,1 to the Fronsdal embedding in R5,1.

Throughout the paper we shall follow the curvature conventions of [21]. As we make use of 
the two-component spinor calculus, the signature of metrics in four-dimensions will be (1, 3). 
The indices a, b, . . . run from 0 to 3, and indices α,β, . . . on R5 run from 0 to 4.

2. The theory of conformal embedding class 1

Let Rr,s be an (r + s)-dimensional vector space equipped with a metric

η = ηαβdXαdXβ , α,β = 1, . . . , N = r + s

of signature (r, s).

Definition 2.1. A conformally isometric embedding of a pseudo-Riemannian n-dimension-
al manifold (M, g) as a surface in Rr,s is a map ι : M → Rr,s such that ι∗(η) = Ω2g for some 
Ω : M → R+ and ι(M) ⊂ Rr,s is diffeomorphic to M.

A theorem of Jacobowitz and Moore [13] implies that real analytic (pseudo) 
Riemannian manifold of dimension n can be locally conformally embedded in Rr,s, where 
r + s = n(n + 1)/2 − 1. To understand this number, consider the image of M in Rr,s in terms 
of embedding functions Xα = Xα(xa), where xa, a = 1, . . . , n are local coordinates on M such 
that g = gabdxadxb. The conformal embedding condition becomes a system of n(n + 1)/2 
PDEs

ηαβ
∂Xα

∂xa

∂Xβ

∂xb = Ω2gab (2.1)

for (N + 1) unknown functions (X1, . . . , XN ,Ω) of (x1, . . . , xn). For the system to admit 
solutions the number of equation  should equal the number of unknowns, which gives 
N = n(n + 1)/2 − 1. In the work of [13] this numerology is made precise in the real analytic 
setup. If N < n(n + 1)/2 − 1 then the system (2.1) is overdetermined, and in general there will 
be no solutions. If N � n(n + 1)/2 − 1 is the smallest integer such that a  pseudo-Riemannian 
manifold (M, g) admits a conformal embedding in RN , then its conformal embedding class3 
is N  −  n.

For a four-dimensional space-time the local conformal embedding is always possi-
ble in dimension r  +  s  =  9 or less. In this paper we shall study local and global conformal 
 embeddings of class 1. Thus we will be interested in embeddings of vacuum Lorentzian  
four-manifolds (M, g) with a rescaling ĝ = Ω2g which has isometric embedding class 1.

In what follows we shall need the formulae for conformal rescaling in four dimensions. If 
ĝab = Ω2gab, and Υa = Ω−1∇aΩ these are:

Ĉ d
abc = C d

abc , (2.2a)

R̂ab = Rab + 2∇aΥb − 2ΥaΥb + gab(∇cΥ
c + 2ΥcΥ

c), (2.2b)

3 It is clear from this defintion that a conformal embedding class of any metric g is not greater than its isometric 
embedding class. The two classes can of course be equal. For assume that the conformal embedding class of g is k. 
Therefore there exists an Ω : M → R+ such that the isometric embedding class of ĝ = Ω2g is k. But the conformal 
embedding class of ĝ is also k.
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R̂ = Ω−2(R + 6
�Ω

Ω
), (2.2c)

where � is the wave operator of g, the tensors R, Rab, C d
abc  are respectively the Ricci scalar, 

the Ricci tensor and the Weyl tensors of g, and the hatted objects correspond to ĝ.
Now suppose that the unit normal to M in R5 is Nα and

ηαβNαNβ = ε = ±1,

so that the extra dimension will be time-like or space-like according as ε = 1 or  −1. There is 
a projection operator

Π β
α = δ β

α − εNαNβ

which, with index lowered, as Παβ , pulls back to the metric ĝab on M.
The 5D covariant derivative of the normal defines the second fundamental form as a tensor 

on M:

K̂αβ := Πλ
αΠ

µ
β ∂λNµ → K̂ab,

where ∂α is the flat 5D Levi-Civita covariant derivative and the hat is a reminder that it is ĝ 
that has isometric embedding class 1, and we shall want expressions relating rather to g.

As a consequence of the embedding into flat space, one obtains the Gauss equation

R̂abcd = ε(K̂adK̂bc − K̂acK̂bd), (2.3)

and the Codazzi equation

∇̂[aK̂b]c = 0, (2.4)

by commuting 5D derivatives and projecting into M. The theory for this can be found in 
chapter 37 of [22], but one way to derive these equations is as follows: in R5 there are pseudo-
Cartesian coordinates Xα satisfying

∂αXβ = δβα, or equivalently ∂αXβ = ηαβ .

We obtain a co-vector field X̂a on M by projecting Xα into M and a scalar on M as Ŷ = NαXα; 
then by projecting the defining equation for Xα we obtain the system entirely in M:

∇̂aX̂b = ĝab − εŶK̂ab (2.5a)

∇̂aŶ = K̂abX̂b (2.5b)

and this system must have a 5D vector space of solutions. Commute derivatives on (2.5a) and 
use (2.5a) and (2.5b) to obtain

R̂ d
abc X̂d = εŶ∇̂[aK̂b]c + εK̂d[aK̂b]cX̂d,

which has to hold for the 5D vector space of (X̂a, Ŷ) and this is only possible if (2.3) and 
(2.4) hold. Commuting derivatives on (2.5b) gives nothing new. Conversely, if (2.3) and 
(2.4) hold then one can solve (2.5a) and (2.5b) to find coordinates for the flat embed-
ding. In the next proposition we shall use the spinor decomposition of the Weyl tensor 
Cabcd = ψABCDεA′B′εC′D′ + ψA′B′C′D′εABεCD

Proposition 2.2. Let σab = σABA′B′ be a symmetric trace-free tensor on a Ricci-flat Lorent-
zian manifold (M, g) which satisfies

M Dunajski and P Tod Class. Quantum Grav. 36 (2019) 125005
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∇A′(Aσ
A′

BC)B′ = 0, (2.6)

and

σ C′D′

(AB σCD)C′D′ = −2εψABCD where ε = ±1. (2.7)

 •  The conditions (2.6) and (2.7) are necessary and sufficient for (M, g) to admit a lo-
cal conformal embedding ι : M → Rr,s where (r, s) equals (1, 4) or (2, 3), such that 
ĝ = Ω2g = ι∗(η), and the trace-free part of the 2nd fundamental form of the isometric 
embedding of (M, ĝ) into Rr,s with r  +  s  =  5 is given by Ωσab.

 •  Given a solution σab to (2.6) and (2.7), there exists a six-dimensional space of pairs 
(Ω, K̂) giving the conformal embeddings of (M, g) with the conformal factor Ω, and the 
mean curvature K̂ = trace(K̂ab).

 •  If σABA′B′ is fixed by an isometry of (M, g) then one may choose (Ω, K̂) also to be fixed by 
the isometry.

Proof. We want to investigate the system (2.3) and (2.4). We first decompose K̂ab into its 
trace-free and trace parts as

K̂ab = σ̂ABA′B′ +
1
4

K̂ĝab,

and then the trace-free part of (2.4) is

∇̂A′(Aσ̂
A′

BC)B′ = 0. (2.8)

This equation is conformally invariant: if σABA′B′ has conformal weight 1 so that

σ̂ABA′B′ = ΩσABA′B′ or equivalently σ̂ B′

ABA′ = σ B′

ABA′

then (2.8) is preserved. We will write it without hats for future reference as (2.6) so that a 
necessary condition for (M, g) to have conformally embedding class 1 is that there exists a 
real solution of (2.6).

We note a couple of consequences of (2.6). We may decompose the derivative of σABA′B′ 
into irreducible parts as

∇ A′

A σ B′C′

BC = φ A′B′C′

ABC + εA′(B′
φ

C′)
ABC + εA(Bφ

A′B′C′

C) + εA(Bε
A′(B′

φ
C′)

C) ,

where φABCA′B′C′ and φABCC′ are symmetric in all indices, and φ A′B′C′

ABC  and φ C′

C  are real. 
Then the field equation (2.6) entails φABCC′ = 0, so that

∇ A′

A σ B′C′

BC = φ A′B′C′

ABC + εA(Bε
A′(B′

φ
C′)

C) , (2.9)

and by taking the trace on AB and A′B′ we find

φa = φAA′ =
4
9
∇bσab. (2.10)

If we take the trace of (2.9) just on A′B′ we find

M Dunajski and P Tod Class. Quantum Grav. 36 (2019) 125005



6

∇AA′σ A′C′

BC =
3
2
εA(BφC)C′ ,

which can be expressed in terms of tensors, with the aid of (2.10) as

∇[aσb]c =
1
3

gc[a∇dσb]d, (2.11)

which is useful below.
The trace-free part of the Gauss equation, (2.3), now gives (2.7) where both sides have 

conformal weight zero. Note also that identically

σ C′D′

A(B σCD)C′D′ = σ C′D′

(AB σCD)C′D′ . (2.12)

When (M, g) is vacuum we can exploit the vacuum Bianchi identity:

∇ A
A′ ψABCD = 0,

to obtain another restriction on σABA′B′ namely (using (2.12))

∇ A
A′ (σ C′D′

A(B σCD)C′D′) = 0,

which with the aid of (2.9) gives

σ C′D′

A(B φA
CD)A′C′D′ =

5
2
φ D′

(B σCD)A′D′ , (2.13)

an identity that we shall need below.
To summarise: (2.6) and (2.7) are conformally-invariant necessary conditions for the met-

ric g to have conformal embedding class 1. Given solutions of these, we still have to find Ω 
and K̂  and we have equations from the traces of (2.3) and (2.4) available to impose on these.

We shall now prove the second part of proposition 2.2, by finding and solving equations for 
(Ω, K̂). We shall prolong these equations to a connection on a rank 7 vector bundle over M, 
and show that the parallel sections of this connection, subject to one algebraic constraint, cor-
respond to solutions of our system.

From the trace of (2.4) we obtain

∇aK̂ =
4
3
Ω−1(∇bσ

b
a + 3Υbσ

b
a ), (2.14)

and from the trace of (2.3) we obtain

R̂ab = ε(σacσ
c

b − 1
2
ΩK̂σab −

3
16

Ω2K̂2gab), (2.15)

where the right-hand-side is computed entirely using gab and ∇a, and from (2.2c)

R̂ab = Rab + 2∇aΥb + gab∇cΥ
c − 2ΥaΥb + 2gabΥcΥ

c,

or, introducing Θ = Ω−1,

R̂ab = Rab − 2Ω∇a∇bΘ+ gab(−Ω�Θ+ 3Ω2|∇Θ|2). (2.16)

M Dunajski and P Tod Class. Quantum Grav. 36 (2019) 125005
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To check the integrability conditions for K̂a we first calculate

∇[a∇cσb]c = (∇[a∇c −∇c∇[a)σb]c +∇c(∇[aσb]c).

The curvature terms vanish if (M, g) has vanishing trace-free Ricci tensor, and the third term 
is expressible with the aid of (2.6) as

∇c(
1
3
∇dσd[agb]c]) = −1

3
∇[b∇cσa]c,

so this is zero and the 1-form ∇bσab is closed. Now we turn to (2.14) written as

3
4
∇aK̂ = Θ(∇bσ

b
a + 3Υbσ

b
a ) = Θ∇cσac − 3Θcσac,

and take a curl:

3
4
∇[a∇b]K̂ = Θ[a∇cσb]c − 3(∇[aΘ

c)σb]c − 3Θc∇[aσb]c.

The second derivatives of Θ can be eliminated with the aid of (2.16), provided (M, g) has 
vanishing trace-free Ricci tensor, and the first derivatives cancel with the aid of (2.11). Thus 
integrability for K̂  follows, at least when (M, g) is Einstein.

To check integrability for Θ we rewrite (2.16) and (2.15) together as

∇a∇bΘ = −εΘ

2
(σacσ

c
b − 1

2
ΩK̂σab) + gab

(
1
2
Ω|∇Θ|2 + εΘ

12
σcdσ

cd +
ε

32
ΩK̂2

)
, (2.17)

and there will be integrability conditions for this. To see what they are we prolong to obtain a 
linear system for (K̂,Θ,Θa, H) where H is to be defined. We have at once

∇aK̂ =
4
3
Θ∇cσac − 4Θcσac, (2.18)

∇aΘ = Θa, (2.19)

∇aΘb = −1
2
εΘσacσ

c
b +

1
4
εK̂σab + gab(

1
12

εΘσcdσ
cd + H), (2.20)

with

H =
1
2
Θ−1|∇Θ|2 + 1

32
εΘ−1K̂2,

making use of (2.14) and (2.17). Note that H is fixed by the vanishing of the quadratic

Q := HΘ− 1
2

gabΘaΘb −
ε

32
K̂2. (2.21)

We need an equation for ∇aH, and using other equations in the system we find this to be

∇aH = −1
2
εσacσ

c
b Θb +

1
12

εΘaσcdσ
cd +

1
12

εK̂∇bσab. (2.22)
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We need to calculate the curvature of the connection defined by (2.18)–(2.22). The commuta-
tor of derivatives on (2.18) has been seen to be zero; on (2.19) it vanishes by virtue of (2.20); 
on (2.20) and (2.22) we make use of the identities (2.9)–(2.13) and after a straightforward but 
lengthy calculation find that they too vanish. Thus, given (K̂,Θ,Θa) at an initial point p , we 
obtain H from the vanishing of Q in (2.21) and obtain (K̂,Θ) in a neighbourhood of p  by line 
integrals.

For the last part, given an isometry ϕ of (M, g), if it preserves σABA′B′ then it preserves the 
coefficients of the connection defined by (2.18)–(2.22). Thus, if we choose data preserved by 
the isometry (in the sense that LϕK̂,LϕΘ and LϕΘa vanish initially) then necessarily they 
vanish everywhere. □ 

2.1. Algebraic obstructions for conformal class 1

There are some algebraic conditions the Weyl tensor needs to satisfy in order that solutions to 
(2.7) exist. In this section we shall find all these conditions—they will be neccessary and suf-
ficient for the existence of σab such that (2.7) holds, but only necessary for the existence of a 
class 1 conformal embedding, as there may be other obstructions coming from the differ ential 
condition (2.6). To make the obstructions applicable to Lorentzian as well as Riemannian 
signatures of g we shall (only in this section) consider (M, g) to be a holomorphic Riemannian 
manifold, where the anti-self-dual Weyl spinor ψABCD and the self-dual Weyl spinor ψA′B′C′D′ 
are independent. In this case the trace-free part of the Gauss equation (2.3) gives the system

σ C′D′

(AB σCD)C′D′ = −2εψABCD, σ CD
(A′B′σC′D′)CD = −2εψA′B′C′D′ . (2.23)

There are four algebraic invariants (see [21]) of the Weyl spinors:

I = ψABCDψ
ABCD, J = ψAB

CDψCD
EFψEF

AB,

I′ = ψA′B′C′D′ψA′B′C′D′
, J′ = ψA′B′

C′D′
ψC′D′

E′F′
ψE′F′

A′B′
,

 (2.24)

which are in general independent. We verify by explicit calculation that if ψABCD and ψA′B′C′D′ 
arise from σABA′B′ by (2.23), then I = I′, and J = J′. In fact these conditions are (at the alge-
braic level) also sufficient for the existence of σABA′B′. To see this, note that the system (2.23) 
does not determine σABA′B′σABA′B′

, and so it consists of ten equations for eight unknowns. By 
computing the wedge product of differentials of equation (2.23) we show that any nine out 
of ten equations are algebraically dependent, but any eight of ten equations are independent. 
Thus we can pick eight equations, and solve them for eight components of σABA′B′ in terms 
of the components ψABCD and ψA′B′C′D′. Substituting the resulting expressions in the remain-
ing two equations yields at most two algebraic conditions on the Weyl spinors. But we have 
already found two such conditions, so we have established

Proposition 2.3. Let I, J, I′, J′ be the invariants (2.24) of the Weyl spinors of (M, g). The 
conditions

I = I′, J = J′ (2.25)

are necessary and sufficient for the existence of σABA′B′ such that (2.23) holds. These condi-
tions are necessary for the existence of the class one conformal embedding of (M, g) in five 
dimensions.

By imposing Riemannian and Lorentzian reality conditions on proposition 2.3 we deduce 
the following

M Dunajski and P Tod Class. Quantum Grav. 36 (2019) 125005
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Corollary 2.4. A Riemannian four-manifold with anti-self-dual Weyl tensor admits a class 
one conformal embedding if and only if it is conformally flat.

Proof. The anti-self-duality of the Weyl tensor is equivalent to the spinor condition 
ψA′B′C′D′ = 0. Therefore I′ = 0. However in the Riemannian signature I  =  0 if and only 
if ψABCD vanishes. Thus conformal flatness is necessary and sufficient for the existence of 
σABA′B′ in this case. □ 

Proposition 2.5. Let (M, g) be a Lorentzian four-manifold. The necessary and sufficient 
conditions for the existence of σABA′B′ such that (2.7) holds are that I and J are real. Thus the 
reality of I and J is necessary for the existence of class one conformal embeddings.

Proof. The ‘necessary’ part follows directly from proposition 2.3, as in Lorentzian signa-
ture I = I′ and J = J′. To establish sufficiency we need to show that given real (I, J) there 
exists a solution to (2.7) which is also real in a sutiable sense. The analysis is quite tedious, 
and the details depend on the algebraic type of the Weyl spinor. We give it in appendix A. □ 

These results can be used to rule out the existence of class one conformal embeddings for 
several known solutions to Einstein equations.

Corollary 2.6. The Lorentzian Kerr metric, the Riemannian anti-self-dual Taub-NUT met-
ric, and the Riemannian Fubini-study metric on CP2 do not admit local class one conformal 
embeddings4.

Proof. In the case of Kerr we find that I is not real. Both Fubini-study and ASD Taub-NUT 
are ASD and not conformally flat. □ 

2.2. The necessary conditions applied to the Schwarzschild metric

What follows will work in any static, spherically symmetric metric but we restrict to the 
Schwarzschild solution for simplicity. We will work with the Kruskal form of the metric in 
order to embed the largest possible piece of the Schwarzschild metric, so suppose this form is

g = 2F2(r)dudv − 4r2 dζdζ
P2 , (2.26)

where P = 1 + ζζ , ζ = eiφ tan θ/2 and the null coordinates u, v are connected to the usual 
Schwarzschild t, r  by

u = −e(r−t)/4m(
r

2m
− 1)1/2, v = e(r+t)/4m(

r
2m

− 1)1/2,

and finally

F2 = 16
m3

r
e−r/2m.

We first obtain the following:

Theorem 2.7. If the conformal embedding of proposition 2.2 is global on at least one 
sphere of symmetry of the metric (2.26) then σABA′B′ is necessarily spherically symmetric, and 
the embedding can be chosen to be spherically symmetric.

4 Both Taub-NUT and CP2 can be conformally embedded in R7, [7].
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We shall prove this in two steps. First we shall show that the assumptions imply the spheri-
cal symmetry of σab, and then we shall deduce from proposition 2.2 that the conformal factor 
and the mean curvature also need to be spherically symmetric.

We shall calculate in the GHP formalism [10], which we summarise in appendix B. We 
want to expand (2.8) and (2.7) in this formalism. We begin by expanding σABA′B′:

σABA′B′ = XoAoBoA′oB′ + UoAoBo(A′ιB′) + ToAoBιA′ιB′

+Uo(BιB)oA′oB′ + 2Yo(AιB)o(A′ιB′) + U
′
o(AιB)ιA′ιB′

+TιAιBoA′oB′ + U′ιAιBo(A′ιB′) + X′ιAιBιA′ιB′ .

Here X, X′ and Y are real, with GHP weights (−2,−2), (2, 2), (0, 0) respectively, and so have 
zero spin weight while U, U′, T  have nonzero spin weight, and our first task is to show that 
the last three vanish if the embedding is global on at least one of the spheres of symmetry. We 
write out (2.8) at length, obtaining a system of four equations (see appendix B for notation):

ð′X +
1
2
þ′U − ρ′U = 0 (2.27a)

1
2

ð′U + þ′T − ρ′T = 0 (2.27b)

−þX − 1
2

ðU + ð′U + þ′Y − ρX − ρ′Y = 0 (2.27c)

−1
2
þU + ð′Y + þ′U

′ − ðT = 0 (2.27d)

together with their primes (here T ′ = T ):

ðX′ +
1
2
þU′ − ρU′ = 0 (2.28a)

1
2

ðU′ + þT ′ − ρT ′ = 0 (2.28b)

−þ′X′ − 1
2

ð′U′ + ðU
′
+ þY − ρ′X′ − ρY = 0 (2.28c)

−1
2
þ′U′ + ðY + þU − ð′T ′ = 0. (2.28d)

To set about solving these equations, we use the fact that ð is onto from spin-weight 0 to spin-
weight 1 and in fact from s to s  +  1 with s � 0, with the corresponding statement for ð′. Thus 
we can introduce potentials W, W ′ and Q with

U = ð′W, U′ = ðW ′, T = ð′2Q,

where conventionally Q′ = Q. Equation (2.27a) becomes

ð′X = −1
2
þ′ð′W + ρ′W = −1

2
ð′þ′W +

1
2
ρ′W = ð′(−1

2
þ′W +

1
2
ρ′W),

making use of the commutators and spherical symmetry of ρ′, so that
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ð′(X +
1
2
þ′W − 1

2
ρ′W) = 0. (2.29)

On a sphere of symmetry one has complete information about the angular dependence of 
smooth functions in the kernel of powers of ð or ð′, and indeed of eigenfunctions and eigenval-
ues of the Laplacians ðð′ or ð′ð. For spin-weight zero functions, the eigenfunction equation of 
the Laplacian is

ðð′f = ð′ðf = �(�+ 1)(ρρ′ + ψ2) f ,

for non-negative integer �, and the kernel of ðk  is spanned by these eigenfunctions with 
0 � � < k .

In particular we can deduce from (2.29) that

X = −1
2
þ′W +

1
2
ρ′W + X0 (2.30)

where X0 is constant in the angles. Similarly from (2.28a)

X′ = −1
2
þW ′ +

1
2
ρW ′ + X′

0, (2.31)

with X′
0 independent of angles.

From (2.27b) we obtain by similar manipulations

ð′2(
1
2

W + þ′Q + ρ′Q) = 0,

so that

W = −2(þ′Q + ρ′Q) + W0

where W0 is a combination of � = 0 and 1 spherical harmonics. Since W is undefined up to 
additive constant (in the angles) we can suppose that W0 is purely � = 1. Then from (2.28b)

W ′ = −2(þQ + ρQ) + W ′
0

with W ′
0 purely � = 1. From its definition, Q may be assumed to contain only terms of � � 2 

and so W and W ′ contain only terms of � � 1.
From the imaginary part of (2.27c)

0 = ðU − ð′U = ð′ð(W − W),

but ð′ð here is (half) the Laplacian which has trivial kernel on S2 and we deduce that W is real, 
as from (2.28c) is W ′.

From (2.27d) by now familiar methods we deduce

Y =
1
2
(þ + ρ)W − (þ′ + ρ′)W ′ + (ðð′ − 2(ρρ′ + ψ2))Q + Y0 (2.32)

with Y0 independent of angles, and from (2.28d)

Y =
1
2
(þ′ + ρ′)W ′ − (þ + ρ)W + (ð′ð − 2(ρρ′ + ψ2))Q + Ỹ0, (2.33)

where again Ỹ0 is independent of angles, and in both of these we have used reality of W and 
W ′. Recall that Y is real, but the imaginary part of Y from (2.32) is
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(Y0 − Y0) + (ðð′ − 2(ρρ′ + ψ2))(Q − Q),

which must therefore vanish. However the first bracket contains only � = 0 terms while the 
rest has only � � 2, so these must vanish separately. The operator acting on (Q − Q) has 
trivial kernel on functions with � � 2 so we conclude that Q and Y0 are real.

By comparing (2.32) and (2.33) with Q, Y0, Ỹ0 all real, we also conclude that Y0 = Ỹ0 and

(þ′ + ρ′)W ′ = (þ + ρ)W. (2.34)

Using this in (2.27c) and looking only at � = 1 terms we calculate

6ψ2W0 = 0

and since m �= 0 we conclude W0  =  0, when similarly from (2.28c) W ′
0 = 0.

Summarising we have

X = (þ′ − ρ′)(þ′ + ρ′)Q + X0, X′ = (þ − ρ)(þ + ρ)Q + X′
0,

Y = (þ + ρ)(þ′ + ρ′)Q + (ðð′ − 2(ρρ′ + ψ2))Q + Y0

U = −2ð′(þ′ + ρ′)Q, U′ = −2ð(þ + ρ)Q, T = ð′2Q.

We substitute into (2.27c) and (2.28c) and keep only terms in Q (i.e. with � � 2) to obtain

−6ψ2(þ
′ + ρ′)Q = 0 = −6ψ2(þ + ρ)Q.

Since m �= 0 these force

(þ′ + ρ′)Q = 0 = (þ + ρ)Q

when many things follow:

 •  U = U′ = 0 and the Q contributions to X and X′ vanish; 
 •  one can integrate to find Q = rq(θ,φ) for some q with � � 2; 

 •  now T = 1
r ð

′2
0 q where ð0 is ð on the unit sphere (which is independent of r) and

Y = Y0 +
1
r
(ð0ð′0 + 2)q,

 •  what is left of (2.27c) and (2.28c) becomes

(þ + ρ)X − (þ′ − ρ′)Y = 0 = (þ′ + ρ′)X′ − (þ − ρ)Y .

Note that, if X = 0 = X′ we still have

(þ′ − ρ′)Y = 0 = (þ − ρ)Y ,

which solve as

Y =
y(θ,φ)

r
,

for some y)θ,φ). The q-dependent part of Y automatically has this form but we learn that Y0 
does too.

At this point we turn to the algebraic conditions (2.7):

σ C′D′

(AB σCD)C′D′ = −2εψABCD.
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With the chosen σABA′B′ and the type D Weyl spinor of Schwarzschild, and taking account of 
U = 0 = U′ all we have left is

XT = 0 = X′T , XX′ − Y2 + |T|2 = −6εψ2.

One possibility is evidently T  =  0 in which case Q  =  0 and σABA′B′ is spherically-symmetric 
with

(þ + ρ)X0 − (þ′ − ρ′)Y0 = 0 = (þ′ + ρ′)X′
0 − (þ − ρ)Y0.

Are there other possibilities? If T �= 0 then X = X′ = 0 and

(Y0 +
A
r
)2 − |B|2

r2 = 6εψ2 = −6εm
r3 ,

writing A, B for (ð0ð′0 + 2)q, ð′20 q  respectively. However, in this case we know the  
r-depend ence of Y0 and the left-hand-side of this expression is proportional to r−2 while the 
right-hand-side is proportional to r−3—a contradiction. Thus T  =  0 and σABA′B′ is spherically 
symmetric, of the form:

σABA′B′ = XoAoBoA′oB′ + 2Yo(AιB)o(A′ιB′) + X′ιAιBιA′ιB′ , (2.35)

with X, X′, Y  functions only of u, v and subject to

(þ + ρ)X − (þ′ − ρ′)Y = 0 = (þ′ + ρ′)X′ − (þ − ρ)Y , (2.36)

and

XX′ − Y2 = −6εψ2 =
6εm
r3 . (2.37)

In coordinates (2.36) becomes

r2

F2

(
F2X

r

)

u
− (rY)v = 0 =

r2

F2

(
F2X′

r

)

v
− (rY)u. (2.38)

With σab spherically symmetric we know from proposition 2.2 that Ω and K̂  can be chosen 
also to be spherically symmetric. □ 

It is a simple application of the Cauchy–Kowalewski theorem to see that analytic solutions 
of the system (2.37) and (2.38) depend on two free analytic functions of one variable. To see 
this, note that r is analytic in uv, so that (2.38) can be written

Xu = F1(u, v, X, Y , Yv), Yu = F2(u, v, Y , X′, X′
v),

while the u-derivative of (2.37) can be solved for X′
u:

X′
u = F3(u, v, X, Y , X′, Yv, X′

v),

and the functions Fi are analytic in all arguments away from r  =  0 and X  =  0. We may choose 
analytic data X(0, v), Y(0, v) with X(0, v) �= 0 on an interval, say I, in v on the line u  =  0. 
Then (2.37) can be solved for X′(0, v) on I and the Cauchy–Kowalewski theorem provides 
an analytic solution on a neighbourhood of I. The equation (2.37) is preserved by the system. 
With an appropriate choice of I, this will give a solution covering the bifurcation surface at 
u = v = 0.

For later use, we calculate the divergence:

∇bσ
b

a = �a(þX +
1
2
þ′Y − 2ρX − 2ρ′Y) + na(þ

′X′ +
1
2
þY − 2ρ′X′ − 2ρY).
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2.2.1. Imposing staticity on the embedding. The embedding is not forced to be static but we 
can impose it. The time-like Killing vector of the Schwarzschild metric (2.26) is

T := 4m∂t = u∂u − v∂v.

This does not preserve the null basis: calculate

[T , �] = −�, [T , n] = n, [T , m] = 0.

Now with

σab = X�a�b + Y(�anb + na�b −
1
2

gab) + X′nanb

obtain

LTσab = (T(X)− 2X)�a�b + T(Y)(�anb + na�b −
1
2

gab) + (T(X′) + 2X′)nanb.

Set this to zero and solve to see that a static embedding is equivalent to the choices

X = u2f (r), Y = y(r), X′ = v2g(r). (2.39)

Impose (2.38) then

− (r − 2m)

r3 (ry)′ =
(
(r − 2m)2

r2 er/2mg
)′

=

(
(r − 2m)2

r2 er/2mf
)′

.

This implies

f − g =
c1r2

(r − 2m)2 e−r/2m,

with a constant of integration c1, so for solutions bounded at r  =  2m we need f   =  g. How does 
this relate to the algebraic condition? 

This is

(ry)2 = (ruvf )2 − 6εm/r,

so eliminate ry and differentiate to get a 1st-order ODE for f . For bounded f  extending to the 
horizon (where uv = 0) this forces ε = −1.

From proposition 2.2 we know we may choose Ω and K̂  to be static and therefore functions 
only of r. Now substituting σABA′B′ and K̂  into the system (2.5a) and (2.5b), suitably rescaled 
with Ω we find the following five linearly independent flat coordinates:

uΩF, vΩF, rΩsin θ cosφ, rΩsin θ sinφ, rΩcos θ,

which we recognise as the embedding in section 4.1.

2.3. Rigidity of class 1 conformal embeddings

The isometric embedding is called rigid if it is unique up to an isometry of the ambient space. 
It has been shown by Thomas [23] that class 1 isometric embeddings are rigid in a neighbour-
hood of a point p ∈ M if they are generic, i.e. the rank of the 2nd fundamental form at p  is 
maximal5. We shall use this result to discuss the rigidity of the class 1 conformal embeddings.

5 Isometric embeddings of higher co-dimensions need not be rigid even if they are generic—see [1] for details.
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Recall that proposition 2.2 splits the construction of such embeddings into two steps

 (A)  Find an isometric embedding of a conformally rescalled metric ĝ = Ω2g with a given 
trace-free part of the second fundamental form.

 (B)  Reconstruct the mean curvature of the embedding, and the conformal factor.

We have shown that once (A) can be achieved, then the space of (Ω, K̂) in (B) is six dimen-
sional. The result of Thomas above implies that if the isometric embedding (A) is generic, then 
it is rigid and therefore depends on 15 constants—the parameters of the isometry group of Rr,s 
with r  +  s  =  5. Thus if the second fundamental form K̂ab has maximal rank, then the confor-
mal embedding depends on at most 21 parameters, which is the dimension of the conformal 
group SO(r + 1, s + 1). Indeed it depends on exactly 21 parameters as conformal transforma-
tions of Rr,s preserve the conformal class of η, and so map one conformal embedding into 
another one, possibly with a different conformal factor. Therefore our argument shows that 
there are no more free parameters than one would expect from the conformal motions. This 
proves

Proposition 2.8. Let ι : M → Rr,s with r  +  s  =  5 be a local conformal embedding of prop-
osition 2.2 such that the rank of the second-fundamental form K̂ab is maximal at some point 
p ∈ M. Then ι is rigid in a neighbourhood of p  up to conformal transformations of Rr,s.

To this end we note that local conformal embeddings which preserve spherical symmetry 
are not rigid, as the genericity assumption is not satisfied. The argument below is valid in any 
dimension. Let M be an n-dimensional manifold with a Lorentzian SO(n − 1)-invariant metric

g = V(r)dt2 − W(r)dr2 − r2γSn−2 ,

where γSn−2 is the round metric on (n − 2)-dimensional sphere, and V , W  are arbitrary func-
tions of r. Consider a local conformal embedding ι : M → Rn,1 given by

Ω2g = dT2 − dX2 − dR2 − R2γSn−2 , where Ω2 = R2/r2.

The problem of finding ι readily reduces to an isometric embedding of a surface with a met-
ric r−2(V(r)dt2 − W(r)dr2) into a patch in AdS3 with the metric R−2(dT2 − dX2 − dR2). 
Isometric embeddings of surfaces into 3 dimensions (curved or flat) depend, in real analytic 
category, on arbitrary functions of one variable. Therefore the conformal embedding ι is not 
rigid. An example of a conformal embedding from this class will be disussed in the next 
section.

3. Conformal embeddings of spherically symmetric metrics

In this section we shall construct explicit local conformal embeddings of spherically symmet-
ric space-times as hypersurfaces in R4,1.

Proposition 3.1. A spherically symmetric Lorentizan manifold (M, g), with

g = Vdt2 − V−1dr2 − r2(dθ2 + sin θ2dφ2), where V = V(r) (3.40)

can be locally conformally embedded in R4,1. If V  has a finite number of simple zeroes at 
r0 > r1 > r2 . . . then the embedding extends through r0. If additionally g is asymptotically flat 
with V → 1 as r → ∞, then the embedding is also asymptotically flat and Ω → 1 as r → ∞.
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Proof. We shall prove this proposition by reducing the problem to a quadrature, and con-
structing the embedding explicitly. Consider the conformally flat 5-metric

G = Ω−2(dT2 − dX2 − dR2 − R2(dθ2 + sin θ2dφ2)). (3.41)

We aim to isometrically embed a spherically symmetric Lorentzian manifold (M, g), with g 
given by (3.40) in (R4,1, G). Set Ω−2R2 = r2. The problem then reduces to finding an isomet-
ric embedding of a two-metric

g2 =
1
r2 (V

−1dr2 − Vdt2)

in a patch of AdS3 with the metric

G3 =
dR2 + dX2 − dT2

R2 .

Setting

T = sinh (ta)f (r), X = cosh (ta)f (r), R = h(r), (3.42)

where a is a constant, and comparing the coefficients of dt2 gives

f (r) =
h(r)
ar

√
V(r).

The coefficient of dr2 gives

h = exp
(∫

V(2V − rV ′)± ar
√

V(4V + 4a2r2 − (2V − rV ′)2)

2rV(a2r2 + V)
dr
)

. (3.43)

We have still not made a choice of a. Let us assume that V(r) has a finite number of isolated 
simple zeroes r0 > r1 > r2, . . . . Then the zero at r = r̄ of V  in the denominator of (3.43) with 
cancel with a zero of a numerator if

a = ±1
2

V ′|r=r̄, (3.44)

which is the surface gravity of (3.40) at the Killing horizon r = r̄.

We also claim that the embedding is regular at points where V + a2r2 = 0. This can be 
seen by substituting V = −a2r2 into (3.43) and leaving V ′ unspecified. By taking a negative 
square root the singularity in the denominator in the integrand then cancels.

If we further assume that the (M, g) is asymptotically flat with V → 1, V ′ → 0 as r → ∞, 
then h → const · r. We choose the constant of integration to be 1 so that the conformal factor 
Ω → 1, and the embedding is asymptotically flat. □ 

4. Global conformal embedding of Schwarzschild

Rewrite the result of section 3 as

Ω2
(

Vdt2 − V−1dr2 − r2(dθ2 + sin2 θdφ2)
)
= ι∗(ηµνdXµdXν),
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where η = diag(1,−1,−1,−1,−1), and now Ω is the pull-back of the conformal factor by ι. 
Consider the Schwarzschild solution which corresponds to

V = 1 − 2m
r

.

In this case the conformal embedding of section 3 is global, that is the Lorentzian metric 
ĝ = Ω2gschw conformal to the Schwarzschild metric is isometrically and globally embedded 
in R4,1. Set

(X0, X1, X2, X3, X4) = (T , X, R sinΘ sinΦ, R sinΘ cosΦ, R cosΘ).

Then the conformal factor is Ω2 = R2/r2, and the embedding is given by

R = h(r), Θ = θ, Φ = φ,

T =
4m
r

h(r)
√

1 − 2m/r sinh (t/4m), X =
4m
r

h(r)
√

1 − 2m/r cosh (t/4m) for r � 2m

T =
4m
r

h(r)
√

2m/r − 1 cosh (t/4m), X =
4m
r

h(r)
√

2m/r − 1 sinh (t/4m) for 0 < r < 2m

 (4.45)
with

h(r) = exp
(∫ p(r)

q(r)
dr
)

 (4.46)

where

p = 48m3 − 16m2r − r3/2
√

r3 + 2mr2 + 4m2r + 72m3, q = (32m3 − 16m2r − r3)r. (4.47)

The cubic q has two imaginary roots, and one real root. The function p  has two real roots: 
one negative and one positive. The positive root of p  coincides with the real root of q, and is 
given by

r̄ =
2
3

3
√

54 + 6
√

129 − 8
3
√

54 + 6
√

129
∼ 1.694m. (4.48)

Expanding p  and q in r around this root, and taking the limit we find that the integrand in h is 
regular at ̄r , and given by
(
237

√
129 − 1677

) 3
√

54 + 6
√

129 + 6192 +
(
−19

√
129 + 645

) (
54 + 6

√
129

)2/3

24 768m
∼ 0.88m−1.

Therefore the conformal embedding of Schwarzschild in R4,1 extends thorough the horizon all 
the way to the singularity r  =  0. The light cone of the origin in R4,1 intersects the image of M 
at a three-dimensional surface r = r̄, where ̄r  is given by (4.48). Indeed

0 = T2 − X2 − R2 = Ω2 32m3 − 16m2r − r3

r
.

Moreover

R ∼ r, and Ω2 ∼ 1 as r → ∞. (4.49)

The plot of the conformal factor Ω = h(r)/r  as a function of r with m  =  1 is given in figure 1.
In the case of the Reissner–Nordström metric with

V = 1 − 2m
r

+
Q2

r2
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a choice of a can be made to extend the embedding (3.43) through the outer horizon 
r+ = m +

√
m2 − Q2 , but it then becomes singular at the inner horizon. The embedding 

breaks down at the horizon of the extreme RN with m  =  Q—we shall return extreme RN in 
section 8, where we consider some time dependent embeddings.

4.1. Embedding in Kruskal coordinates

Set s  =  r/m, then

32s−3e−s/2dudv = R−2(d(T − X)d(T + X)− dR2),

where uv = K(s) = (1 − s/2)es/2.

Set T − X = uek(s), T + X = vek(s), R = h(s). Then

e2k/h2 = 32s−3e−s/2, e2k/h2(K′k′ + K(k′)2)− (h′/h)2 = 0.

We solve the first equation for k, and substitute to the 2nd equation which is now an ODE for 
h′/h. The solution is

T + X = 4
√

2
(m

r

)3/2
e−r/4mh(r)v

T − X = 4
√

2
(m

r

)3/2
e−r/4mh(r)u

where outside the horizon

u = −
√

r/2m − 1e(−t+r)/4m, v =
√

r/2m − 1e(t+r)/4m.

This, not surprisingly, agrees with (4.46).

Figure 1. Conformal factor.
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4.2. The r  =  0 singularity

Note that

X2 − T2 = 16m2 h(r)2

r2

(
1 − 2m

r

)
for r > 0

so that, in particular X2 − T2 → 16m2 as r → ∞. Consider the limit r → 0 instead. Near 
r  =  0 (4.46) gives

p
q
=

3
2r

+
1

4m
+ O(

√
r), so h(r) → r3/2

and

(T , X, R) →
(

4
√

2m3/2 cosh (t/4m), 4
√

2m3/2 sinh (t/4m), 0
)

as r → 0.

Thus the Schwarzschild singularity is mapped to the hyperbola

T2 − X2 = 32m3, X2 = X3 = X4 = 0

in the five-dimensional Minkowski space. The conformal factor Ω−2 = r2/h(r)2 in (3.41) 
blows up like 1/r.

5. Causality and Scri

In this section we shall study the conformal embedding of proposition 3.1 in the context of 
Penrose’s conformal infinity, and find that the images of the future and past conformal infini-
ties of the compactified Schwarzschild space-time are points on the future and past conformal 
infinities of the ambient five-dimensional Minkowski space.

Let p, q be points in M such that q is in the causal future of p , which we denote by p ≺ q. 
It follows that ι( p) ≺ ι(q) with respect to the causal structure of the 5D Minkowski space. To 
see it consider a time-like curve γ ⊂ M containing p, q with a tangent vector field V ⊂ Γ(TM). 
Thus g(V , V) > 0. However

g(V , V) = Ω−2ηµνVaVb ∂Xµ

∂xa

∂Xν

∂xb = ι∗(Ω−2η(ι∗V , ι∗V))

so the image of γ  is also time-like.

Proposition 5.1. Let (I±)Schw and (I±)5 be asymptotic null infinities of the compactified 
Schwarzschild manifold M, and the compatified (4 + 1) dimensional Minkowski space R4,1

 
respectively. The conformal embedding of proposition 3.1 extends to a map ι : M → R4,1

 such 
that ι((I±)Schw) = p± where p− ∈ (I−)5 and p+ ∈ (I+)5 are points with coordinates (0, N), 
where N ⊂ S3 is the north pole.

Proof. Set

ρ =
√

X2 + R2, R = ρ sinψ, X = ρ cosψ

so that
−dT2 + dX2 + dR2 + R2γS2 = −dT2 + dρ2 + ρ2(dψ2 + sin2 ψγS2),

where γS2 = dθ2 + sin (θ)
2dφ2. Note that for X  >  0
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ρ = X
√

1 + (R/X)2.

If v is finite, and u → −∞, r → ∞, t → −∞ (which is the past null infinity (I−)Schw of 
Schwarzschild) then

R
X

=
r

4m
1√

1 − 2m/r

1
cosh (t/4m)

∼ 1
2m

ret/4m

but (as v is finite) et/4m ∼
√

2mre−r/4m so that

R
X

∼ r
√

r√
2m

e−r/4m → 0 as r → ∞.

Therefore

V ≡ T + ρ ∼ T + X → 0

and ι(I−)Schw ⊂ (I−)5. Similarly ι(I+)Schw ⊂ (I+)5 is given by U ≡ T − ρ = 0. In this limit 
we also get ψ → 0. Here I± ∼= R× S3 are future and past null infinities of the Minkowski 
space R4,1.

Setting

τ = arctanV + arctanU, χ = arctanV − arctanU

the Minkowski metric on R4,1 is conformal to the Einstein cylinder

η̂ = dτ 2 − dχ2 − sin2 (χ)γS3

and the image of (I−)Schw is τ = −π/2,χ = π/2 which is an equatorial S3 in S4. However 
ψ = 0 is a north pole on S3, so we get a point p 1 with coordinates (V = 0,ψ = 0) on (I−)5. 
Similarly (I+)Schw maps to p + with coordinates (U = 0,ψ = 0) on (I+)5 (see figure 2). □ 

Figure 2. Conformal lift of Scri.
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6. Penrose’s Schwarzchild causality

If it were possible to construct a quantum theory of gravity as a Poincaré-invariant expan-
sion around the flat Minkowski metric η, then the causal relations of the perturbed metric 
g = η + εη1 + ε2η2 + . . . should agree with causal relations of η in that the time-like curves 
with respect to g should also be time-like with respect to η. Lets write this condition as g < η . 
If this condition does not hold, then there would exist fields propagating inside the g light-
cones which are tachyonic with respect to the η light-cones. According to the standard rules 
of QFT these fields would correspond to non-commuting operators on (M, g). But this would 
imply that these operators are also non-commuting for some space-like separated points on 
(R3,1, η) which is impossible. Penrose’s argument [19] shows that for the Schwarzschild met-
ric the condition g < η  fails asymptotically. We shall review the argument below, and argue 
that our findings about the conformal embedding agree with results of [19].

In [19] Penrose considers two (equivalent) properties of some asymptotically flat space-
times, and shows that they hold for the compactified Schwarzschild space-time, but not for the 
compactified Minkowski space-time.

 P1  Let (a−, b+) ∈ I− × I+ be any pair of points. Then a− � b+, i.e. ∃ a future directed 
time-like curve from a− to b+ .

 P2  If α and β are endless time-like curves in (M, g) then ∃(a ∈ α, b ∈ β) such that a � b.

First let us see that P1 fails for the Minkowski metric η = dX0
2 − dX1

2 − · · · − dXD
2. Consider 

two branches h1 and h2 of the hyperbola X1
2 − X0

2 = 1, X2 = X3 = . . .XD = 0. Both h1 and 
h2 are time-like in RD,1 and yet any pair of points a ∈ h1, b ∈ h2 are space separated. Let 
a− be the end-point of h1 on I− and b+ be the end-point of h2 on I+. Then b+ does not 
belong to the chronological future of a−, and computing the angles on asymptotic spheres 
X0 +

√
X1

2 + · · ·+ XD
2 = const  in I− and X0 −

√
X1

2 + · · ·+ XD
2 = const  in I+ we find 

that a− and b+ are antipodal points on these spheres.
Penrose then argues that P1 holds for the Schwarzschild space-time in 3  +  1 dimensions6. 

Consider a geodesic Lagrangian for the Schwarzschild metric

L =
1
2

(
Vṫ2 − V−1ṙ2 − r2(θ̇2 + sin2 θφ̇2)

)
, V = 1 − 2m

r

where · = d/dτ  and τ  is an affine parameter. Let γ  be a null geodesic such that

r = r0, θ = φ = π/2, ṙ = θ̇ = 0 at t = 0. (6.50)

We can normalise τ  so that τ = 0 at t  =  0, and

∂L
∂ ṫ

= Vṫ = 1.

The null condition gives

V−1(ṙ2 − 1) +
A2

r2 = 0, where A =
∂L
∂φ̇

= r2φ̇ = const. (6.51)

Evaluating this at t  =  0 for φ̇ > 0 yields

6 This property also holds in 2  +  1-dimensions, where the metric is locally flat but admits a conical singularity, but 
it does not appear to hold in higher dimensions [4].

M Dunajski and P Tod Class. Quantum Grav. 36 (2019) 125005



22

7 The proof goes as follows:

∫ ∞

r0

χ(ρ)dρ <

∫ A

r0

χ(ρ)dρ+
∫ ∞

A
ψ(ρ)dρ, (6.55)

where

ψ(ρ) = V(r0)
−1

(√
1 − r0

2

ρ2V(r0)

−1

− 1
)
> χ(ρ) for ρ > A ≡ r0√

V(r0)
.

The second integral in (7) can be evaluated explicitly to give r0V(r0)
−3/2 which tends to r0 for large r0. The first 

integral can be bounded from above by a constant which does not depend on r0.

A =
r0√
V(r0)

.

Solving the condition (6.51) for t yields

t =
∫ r

r0

V−1(ρ)√
1 − A2

ρ2 V(ρ)
dρ. (6.52)

Using the identity
∫ r

r0

(
1 − 2m

ρ

)−1
dρ = r + 2m ln (r − 2m)− r0 − 2m ln (r0 − 2m)

now shows that the retarded time û = t − r − 2m ln (r − 2m) can be written as

û = −r0 − 2mr0 ln (r0 − 2m) +

∫ r

r0

χ(ρ)dρ (6.53)

where

χ(ρ) = V(ρ)−1
(√

1 − r0
2

ρ2

V(ρ)

V(r0)

−1

− 1
)

. (6.54)

The null geodesic γ  will reach a point on I+ therefore the integral in (6.53) converges as 
r → ∞ (which can also be verified directly). In [19] Penrose applies some estimates to the 
integral (which are valid if r0  >  5m) and shows that7

∫ ∞

r0

χ(ρ)dρ < r0 + const

for large r0. Therefore, from (6.53)

lim
r0→∞

û = −∞ (6.56)

which holds as long as m  >  0.
Chose an arbitrary pair of values (ûc, v̂c). The argument leading to (6.56) shows that ∃r0(ûc) 

s.t. a null geodesic satisfying the initial condition (6.50) reaches I+ at some û+ < ûc. This 
null geodesic will, before reaching I+, meet an outgoing radial null geodesic β given by

û = û0, θ = π/2, φ = φ0 = const

where φ0 is any angle in the range [π/2,π]. As û is increasing along γ  we must have û0 < û+.

M Dunajski and P Tod Class. Quantum Grav. 36 (2019) 125005



23

Applying the same argument to I− shows that for any choice of v̂c there exists r0(v̂c) such 
that γ  reaches I− at some v̂+ > v̂c. Pick r0 = max(r0(ûc), r0(v̂c)). Again, γ  will meet an 
incoming radial null geodesic α

v̂ = v̂1, θ = π/2, φ = φ1 = const,

where now φ1 is any value in [0,π/2] and v̂ = t + r + 2m ln (r − 2m). Let α̂γβ be a null geo-
desic which consist of three segments: from (v̂1,π/2,φ1) on I− along α, then from the meet-
ing point of α and γ  along γ  and finally from the meeting point of γ  and β along β and up to 
(û0,φ0, θ = π/2) on I+. This null geodesic can be smoothen to give a time-like curve, and by 
a rotation of the (θ,φ) coordinates on S2 any point on I− can be connected to any point on I+.

In particular antipodal points can also (and unlike in the Minkowski space) be connected 
(see figure 3).

Our findings (proposition 5.1) about the image of I± of the Schwarzschild space-time under 
the conformal embedding (4.45) agree8 with Penrose’s result. By [19] any (a−, b+) ∈ I− × I+ 
are chronologically related i.e. a− � b+, therefore it should be the case that ι(a−) � ι(b+) 
in R4,1. We have found that ι(a−) = (V = 0, N) and ι(b+) = (U = 0, N), where N ∈ S3 is 
the north pole corresponding to ψ = 0. These two points in R̄4,1 are end points of a time-like 
curve which is one branch of the hyperbola X1

2 − X0
2 = 16m2, X2 = X3 = X4 = 0, so are 

indeed causally related.

7. Hawking to Unruh

We have so far focused on the geometric aspects of conformal embeddings. The emphasis 
has been on Lorentzian (rather than Riemannian) examples which has prepared the ground 
for exploring applications in physics. The physical effects (classical or quantum) induced by 
conformal curvature of a Lorentzian manifold should have their counterparts in the flat ambi-
ent Lorentzian space. We expect this correspondence to extend only to conformally invariant 
effects, and in this section we shall argue that the Hawking effect gives one example.

The Hawking radiation [12] is a kinematical effect. It does not depend on the Einstein 
equations, but only on an existence of a Lorenzian metric with a horizon. The Hawking 
temper ature measured by asymptotic observers is given by TH = κ/2π , where κ is the surface 
gravity of a Killing horizon of some Killing vector K defined by

Figure 3. Schwarzschild causality.

8 We are unable to deduce Penrose’s result using our embedding, as although a � b implies ι(a) � ι(b) it can still 
be the case that b /∈ I+(a) but ι(a) � ι(b) if the time-like curve joining ι(a) and ι(b) is not an image of a curve in 
M.

M Dunajski and P Tod Class. Quantum Grav. 36 (2019) 125005



24

9 By a theorem of [24] a trajectory of a (non-null) hyper-surface orthogonal Killing vector is a conformal geodesic. 
The magnitude aM of the acceleration is constant if (M, g) is Einstein. Consider this Killing vector to be V = ∂/∂t. 
Its integral curve γ ⊂ M lifts to a constant acceleration hyperbola in the Minkowski space (R4,1, η) (the embedding 
is non-isometric), or to a curve in (R̂4,1,Ω−2η) with acceleration a5.In general, if the particle trajectory be tangent to 
an affinely parametrised timelike vector V ∈ TM . The acceleration in the embedding space is

dU
dλ

= ∇UU + K(U, U) (7.57)

where K is the second fundamental form of the embedding Squaring (9) gives

(a5)
2 = (aM)

2 + |K(U, U)|2.

For the isommetric embedding in conformally flat R4,1 the intrinsic acceleration aM is constant, but a5 is not 
constant, and the contribution comes from K. If we instead isometrically embed Ω2g in the flat R4,1, then 
aM is not constant. For the flat Minkowski space ηαβUαUβ = −1 and Aα = dUα/dλ. Consider a curve 
T(λ), X = X1(λ), X2 = const, X3 = const, X4 = const. Then

dT/dτ = U0, dX/dτ = U1, η(U, A) = 0, η(A, A) = a2 = const

and we find X = a−1 cosh(aτ), T = a−1 sinh(aτ). In general, the coordinate transformation 
X = a−1x cosh(aτ), T = a−1x sinh(aτ) gives dT2 − dX2 = −a2dx2 + x2dt2 and the curves x  =  1 have constant 
acceleration a.
10 Note that this result does not apply to observers in the Schwarzschild space time who do not follow a trajectory of 
a time-like Killing vector. There are other possibilities, e.g. free falling observers, where the temperature measured 
by an observer differs from the Hawking temperature [2].

∇a(|K|2) = −2κKa.

This surface gravity is invariant under conformal rescallings g → ĝ = Ω2g as long as the con-
formal factor and its gradient are regular on the horizon (see [14] where other, equivalent defi-
nitions of surface gravity are discussed in the context of conformal rescallings), and Ω → 1 as 
r → ∞ as then the normalisation g(∂t, ∂t) = ĝ(∂t, ∂t) → 1 is preserved.

−2κ̂ĝabKb = ∇̂a(ĝbcKbKc) = Ω2∇a(gbcKbKc) + 2|K|g2
Ω∇aΩ

= −2Ω2κKa

as gabKaKb = 0 on the horizon. Therefore κ = κ̂. It has been argued (see e.g. [14] and [16]) 
that the original derivation of Hawking based on the Bogoliubov coefficients should also lead 
to a conformally invariant temperature.

We shall show that under the isometric embedding (4.45) of the conformally rescalled 
Schwarzschild metric in flat R4,1, the Hawking temperature maps to the Unruh temperature 
measured by the accelerating observer. Our procedure is analogous to that of Deser and Levin 
[6] (see also [18]), who mapped the Hawking temperature of the Schwarzschild metric to the 
Unruh temperature of its Fronsdal embedding in the flat six-dimensional Lorenzian space [8]. 
Consider a curve in the flat Minkowski space R4,1 parametrised by t, and given by (4.45) with 
θ,φ, r  fixed. This gives X3, X4, X5 constants, and

X2 − T2 =
16m2 h(r)2

r2

(
1 − 2m

r

)
≡ α−2, where r is fixed.

This is a worldline of an accelerating observer moving along a hyperbola in the flat 5D 
Minkowski space with constant acceleration α.

This observer is experiencing the Unruh temperature

T = α/2π.

The observer follows a trajectory of a boost9 in R4,1 which in our case (at least in the image 
of a region in M̂ outside the horizon r  >  2m) is a push forward K of ∂/∂t by the embedding 
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map. An observer at any other value of r (say r  =  r0) will experience a temperature T0 which 
is related to T by Tolman’s law

|K|η(r)T = |K|η(r0)T0, where |K|η2
= η(K, K).

In our case the flat Minkowski metric η = ηµνdXµdXν  restricted to the curve (4.45) is

η =
h(r)2

r2

(
1 − 2m

r

)
dt2.

Therefore |K|η(r) = (h/r)
√

1 − 2m/r. Taking r0 → ∞ we get |K|η(r0) → 1 so that

T0 =
1

8πm

and the Unruh temperature measured by observers at infinity in R4,1 agrees with the Hawking 
temperature10 T̂H = κ̂/2π  of (M, ĝ). However, as the conformal factor Ω2 and its gradient 
are both regular at the Killing horizon of ∂/∂t, this is also the Hawking temperature of the 
Schwarzschild black hole.

The conformal invariance of the Hawking temperature is also in agreement with Euclidean 
quantum gravity, where the Hawking temperature is the quarter of the period of the imagi-
nary time direction [11], where the periodicity makes the Schwarzschild metric regular at 
r  =  2m, and the domain of r is restricted to r  >  2m. This period is unchanged if the metric 
is rescaled by the conformal factor Ω2, as long as Ω is regular at r  =  2m. The formula (4.46) 
with Ω = h(r)/r  gives

lnΩ =

∫ ∞

r

(1
ρ
− p(ρ)

q(ρ)

)
dρ

=

∫

r/2m
2

√
1 + x−1 + x−2 + 9x−3 − 1 − 2x−3

x(4x−3 − 4x−2 − 1)
dx.

Computing the last integral numerically from 1 to ∞ gives

Ω(2m) ∼ 0.576

which does not depend on the mass m.

8. Time dependent embeddings

The conformal embedding of proposition 3.1 is time independent in the sense that the confor-
mal factor Ω is constant along the time-like static Killing vector of (M, g). In this section we 
shall construct some time-dependent embeddings. In the proof of proposition 3.1 we demon-
strated that a spherically symmetric (but possibly time dependent) conformal embedding of 
(3.42) into R4,1 arises from an isometric embedding of

g2 =
1
r2 (V

−1dr2 − Vdt2)

into a patch of AdS3 with the metric

G3 =
dR2 + dX2 − dT2

R2 .

We can make use of time-dependent isometries of AdS3 co construct time dependent embed-
dings. For example a one-parameter family of isometries
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11 The term (4r − 9m) is reminiscent of the Misner–Sharp mass of the Schwarzschild metric conformally rescaled 
to the ultra-static form.

Rc =
R

Bc2 + 2Xc + 1
, Tc =

T
Bc2 + 2Xc + 1

, Xc =
X + Bc

Bc2 + 2Xc + 1
, (8.58)

of G3 (where B = R2 + X2 − T2) is generated by the Killing vector field

K = 2X(R∂R + T∂T)− (R2 − X2 − T2)∂X .

Taking as in (X, R, T) are given by (3.42) and (3.43) we find that

Gc = Ω−2(dT2
c − dX2

c − dR2
c − R2

c(dθ
2 + sin θ2dφ2))

with Ω2 = R2
c/r2 pulls back to (3.40), but now the conformal embedding is time-dependent.

8.1. Extreme Reissner–Nordström metric

To construct a different time dependent embedding go back to (3.41) and set

Ω2 = V−1, T = t, R = r
√

V
−1

, X =

∫ √
4 − V−1(2V − rV ′)2

2V
dr.

Then G pulls back to (3.40). For the Schwarzschild metric we find

X =

∫ √
rm(4r − 9m)

r − 2m
1

r − 2m
dr,

which does not go through the horizon11. For the extreme RN we end up with elementary 
functions:

V =
(

1 − Q
r

)2
, X =

4
√

Q(r − 2Q)√
r − Q

.

We can combine this embedding with a conformal inversion

(X̂, R̂, T̂) =
( X

X2 + R2 − T2 ,
R

X2 + R2 − T2 ,
T

X2 + R2 − T2

)
, (8.59)

which is the combination of (8.58) with two translations in the X-direction. The resulting 
metric R̂−2(dX̂2 + dR̂2 − dT̂2) is still isometric to r−2(−Vdt2 + V−1dr2), but now the coor-
dinates are regular (and in fact vanish) at the extreme horizon. There are however other singu-
larities which depend on t.

In the near-horizon limit the extreme RN metric reduces to the Bertotti–Robinson solution 
AdS2 × S2. To take this limit set

r = Q
(

1 +
ε

y

)

and apply the inversion (8.59) to the rescalled coordinates (εT , εR, εX). Up to the linear terms 
in ε this gives

T̂ =
t

Q(y2 − t2)
− ε

20ty
Q(t2 − y2)2 , R̂ =

y
Q(y2 − t2)

− ε
2t2 + 18y2

Q(t2 − y2)2 , X̂ =
√
ε

4
√

y
Q(y2 − t2)

and
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G = Ω−2(dT̂ − dX̂2 − dR̂2 − R̂2(dθ2 + sin θ2dφ2)), Ω2 = R̂2/r2

pulls back to

g = Q2
(dt2 − dy2

y2 − dθ2 − sin θ2dφ2
)
− ε

2Q2

y

(dt2 + dy2

y2 + dθ2 + sin θ2dφ2
)

.

In the limit ε = 0 this yields AdS2 × S2, where the horizon has been mapped to y = ∞ of 
AdS2. Curiously the term first order in ε is proportional to a Riemannian product metric on 
H2 × S2.
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Appendix A. Proof of proposition 2.5

We know from proposition 2.3 that in Lorentzian signature the reality of the invariants (I, J) 
given by (2.24) is a necessary conditions for the existence of solutions to (2.7). We shall now 
show that these conditions are also sufficient for the existence of solutions to (2.7) which give 
rise to real second fundamental forms.

Choose a normalised spinor dyad (oA, ιA) and expand

σABA′B′ = XoAoBoA′oB′ − 2UoAoBo(A′ιB′) + VoAoBιA′ιB′

− 2Uo(BιB)oA′oB′ + 4Yo(AιB)o(A′ιB′) − 2Wo(AιB)ιA′ιB′

+ VιAιBoA′oB′ − 2WιAιBo(A′ιB′) + ZιAιBιA′ιB′ .
 (A.1)

Note X, Y , Z  are real, U, V , W  are complex. Substitute into (2.7) and take components

−2εψ4 = 2XV − 2U
2 (A.2a)

8εψ3 = 8YU − 4XW − 4UV (A.2b)

−12εψ2 = 2XZ − 8Y2 + 2VV + 8UW − 4UW (A.2c)

8εψ1 = 8YW − 4ZU − 4VW (A.2d)

−2εψ0 = 2VZ − 2W2. (A.2e)

We will solve these equations by cases. It is worth noting the expression

I = 2ψ0ψ4 − 8ψ1ψ3 + 6ψ2
2, J = 6ψ0ψ2ψ4 + 12ψ1ψ2ψ3 − 6ψ2

3 − 6ψ1
2ψ4 − 6ψ0ψ3

2. (A.3)

A.1. Type N

We can choose the spinor dyad so that ψ1 = ψ2 = ψ3 = ψ4 = 0, ψ0 �= 0, and in par-
ticular I  =  J  =  0 so both are real. Solutions exist with U  =  X  =  W  =  0, Y , V , Z  nonzero and 
VV = 4Y2, VZ = −εψ0.
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A.2. Type III

We can choose the dyad so that ψ0 = ψ2 = ψ3 = ψ4 = 0, ψ1 �= 0, and again I  =  J  =  0. 
Solutions exist with U  =  X  =  0, others nonzero and

V = W2/Z, Y = −|W|2/(2Z), εψ1 = −W2W/Z.

A.3. Type D

We can choose the dyad so that ψ0 = ψ1 = ψ3 = ψ4 = 0, ψ2 �= 0. Now

I = 6ψ2
2, J = −6ψ3

2 so that ψ2 = −J/I, (A.4)

and reality of I, J forces reality of ψ2 (which eliminates the Kerr solution in agreement 
with corollary 2.6). There are solutions with U = V = W = 0, (X, Y , Z) all nonzero and 
−6εψ2 = XZ − 4Y2, provided ψ2 is real.

A.4. Type II

We can choose the dyad so that ψ0 = ψ1 = ψ4 = 0 and ψ2ψ3 �= 0. We again find (A.4) with 
real ψ2 There are solutions with X  =  U  =  0, rest nonzero and chosen as follows: choose real 
|W|2/Z, solve

4Y2 = 6εψ2 + |W|4/Z4

for real Y, which can be done for real ψ2 and suitable ε or large enough |W|2/Z; then solve 
2εψ1 = W(2Y − |W|2/Z  for W (when Z follows).

A.5. Type I

This is the general case but we can choose the dyad so that

ψ0 = 0 = ψ4,

and assume ψ1ψ2ψ3 �= 0 as other cases have been done already. These force

XV − U2 = 0 = ZV − W2.
We can eliminate the possibility V = 0 at once as this leads to U  =  0  =  W and then 
ψ1 = 0 = ψ3, a contradiction. With V �= 0, if X  =  0 then also U  =  0 and ψ3 = 0, also a con-
tradiction so w.l.o.g. we have XZUW �= 0. Now

X/Z = U2/W2 ∈ R,

and we have a dichotomy: U/W is real or imaginary. We consider the cases separately.

A.6. Type I, case (a)

If U/W  =  r is real we have U  =  rW and X  =  r2Z. From (A.2b)

2εψ3 = 2rYW − rWV − r2ZW,

from (A.2d)

2εψ1 = 2YW − WV − rZW,
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and from (A.2c)

−6εψ2 = r2Z2 + VV − 4Y2 + 2rWW. (A.5)

Note that ψ2 is real and ψ1 = rψ3 . These conditions imply but are stronger than reality of I and 
J. From the vanishing of ψ4 we have V = W2/Z  so that

2εψ1 = W(2Y − rZ − |W|2/Z). (A.6)

We can solve the system as follows: introduce a = εψ1/W  which is real by (A.6) and solve 
(A.6) for Y

Y = a +
1
2

rZ +
1
2
|W|2/Z; (A.7)

substitute into (A.5) to obtain a quadratic for Z:

2arZ2 + (2a2 − 3εψ2)Z + 2a|W|2 = 0; (A.8)

this is real, as it must be, and there will be real solutions if the discriminant is positive; this is 
the condition

4a4 − 12a2εψ2 + (9ψ2
2 − 16ψ1ψ3) > 0,

which certainly holds for large enough a.
Note that we do not need to worry about the value of r: the dyad (oA, ιA) has the scaling 

freedom (oA, ιA) → (ôA, ι̂A) = (λoA,λ−1ιA) for arbitrary nonzero complex λ and under this 
r → r̂ = (λλ)−2r, and we can always arrange r = ±1.

A.7. Type I, case(b)

Now U  =  irW and X  =  −r2Z for some real r. Also V = W2/Z . From (A.2b)

2εψ3 = −irW(2Y + |W|2/Z + irZ), (A.9)

from (A.2d)

2εψ1 = W(2Y − |W|2/Z − irZ), (A.10)

and from (A.2c)

−6εψ2 = −r2Z2 + |W|4/Z2 − 4Y2 + 6ir|W|2. (A.11)

From (A.9) and (A.10) we obtain two expressions for Y:

Y = iε
ψ3

rW
− |W|2

2Z
− ir

2
Z, (A.12)

and

Y = ε
ψ1

W
+

|W|2

2Z
+

ir
2

Z. (A.13)

Since Y must be real, (A.12) gives

irZ =
iεψ3

rW
+

iεψ3

rW
, (A.14)
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while (A.13) gives

irZ =
εψ1

W
− εψ1

W
. (A.15)

These agree only if

iεψ3

rW
+

iεψ3

rW
=

εψ1

W
− εψ1

W
,

whence

W
W

=
rψ1 + iψ3

rψ1 − iψ3
.

From (A.11) we find

−ε(ψ2 − ψ2) = 2ir|W|2,

(in type I we are assuming XZUVW �= 0 so in this case we cannot have ψ2 real—that has to 
be case (a)) so that

r|W|2 =
iε
2
(ψ2 − ψ2), (A.16)

and W = |W|eiω with

e2iω =
rψ1 + iψ3

rψ1 − iψ3
. (A.17)

We obtain Z from either (A.14) or (A.15) (these are now equivalent) as

Z =
ε

r|W|
(ψ1ψ3 + ψ1ψ3)

|rψ1 − iψ3|
. (A.18)

For Y, (A.12) and (A.13) are now both real. We can add them to obtain

Y =
ε

2r|W|
(r2ψ1ψ1 − ψ3ψ3)

|rψ1 − iψ3|
, (A.19)

but the difference will give a constraint. This turns out to be

(ψ2 − ψ2)
2 = 4(ψ1ψ3 + ψ1ψ3) (A.20)

which rearranges as

I + I = 4(ψ2
2 + ψ

2
2 + ψ2ψ2). (A.21)

This is therefore a necessary condition on Case (b). There is a quicker route to it: multiply 
(A.9) and (A.10) and make use of (A.11) to obtain

4ψ1ψ3 = (ψ2 − ψ2)(2ψ2 + ψ2),

which rearranges as

I = 2(ψ2
2 + ψ

2
2 + ψ2ψ2), (A.22)

and implies (A.21). It may be worth noting that (A.22) also implies

J = −3ψ2ψ2(ψ2 + ψ2),
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which implies the reality of J. We claim that the condition (A.22) (and therefore (A.21)) is not 
new, but follows from the reality of (I, J). To see it consider a combination 2J + 3Iψ2, where 
(I, J) are given by (A.3) with ψ0 = ψ4 = 0. This gives

6(ψ2)
3 − 3Iψ2 − 2J = 0. (A.23)

Taking the imaginary part of (A.23), and using reality of (I, J) gives

2[(ψ2)
3 − (ψ̄2)

3] = I(ψ2 − ψ̄2).

In Case (b) we have ψ2 not real. We can therefore divide both sides of this equation by ψ2 − ψ̄2 
which gives (A.22).

We still have to impose the real part of (A.11). Using (A.22) this (eventually) is

(ψ2 − ψ2)
4 = 16(ψ1ψ3 + ψ1ψ3)

2,

which is already known from (A.20). The solution for σABA′B′ is essentially unique, up to 
choices of ε and r.

A.8. Summary

Assuming the reality of I and J we were able to show that real solutions to (2.7) always exists 
in algebraic types N, III, D and II. Type I was more complicated. We can always make a choice 
ψ0 = ψ4 = 0, which does not alter the reality of (I, J). The analysis then branches: if ψ2 is 
real, then reality of I forces ψ1ψ3 to be real, and solutions to (2.7) exist. If ψ2 is not real, then 
reality of (I, J) imply a condition (A.22) which is sufficient for solutions to (2.7) to exist. □ 

Appendix B. The GHP formalism

In this appendix we shall summarise the weighted form of the Newman–Penrose formalism 
developed by Geroch et al [10]. One begins with a choice of normalised spinor dyad:

(oA, ιA) with oAι
A = 1.

In the case of the Schwarzschild metric these can conveniently be taken to be the principal null 
directions of the curvature, and in any spherically symmetric metric they can be taken to be 
associated with the radially outgoing and radially ingoing null directions. There is the freedom 
to change the dyad according to

(oA, ιA) → (õA, ι̃A) = (λoA,λ−1ιA),

and one associates with this freedom the notion of GHP weight: a space-time scalar η has GHP 
weight ( p, q) if it transforms as

η → η̃ = λ pλ
q
η

under this rescaling. GHP weights are related to the earlier notions (see [10] or [21]) of spin 
weight and boost weight, respectively s and w, according to

s =
1
2
( p − q), w =

1
2
( p + q).

As in the standard Newman–Penrose formalism, one introduces a null tetrad according to

�a = oAoA′
, na = ιAιA′

, ma = oAιA′
, ma = ιAoA′

,
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and these vectors have GHP weights (1, 1), (−1,−1), (1,−1) and (−1, 1) respectively. The 
formalism admits a symmetry conveniently called ‘priming’ according to which

(oA, ιA) → (iιA, ioA)

and then for example

(�a)′ = na, (na)′ = �a, (ma)′ = ma, (ma)′ = ma.

It can be checked that the prime η′ of a quantity η with GHP weight ( p, q) has weight (−p,−q) 
and

(η′)′ = (−1) p+qη,

so that prime is nearly an involution.
One labels the tetrad components of the gradient as in the NP formalism:

D = �a∇a, ∆ = na∇a, δ = ma∇a, δ = ma∇a,

but these operators do not have good GHP weight. We shall modify them shortly.
The NP spin coefficients are the components of the spin connection in the chosen dyad 

according to the scheme

DoA = εoA − κιA, DιA = πoA − ειA,

∆oA = γoA − τιA, ∆ιA = νoA − γιA,

δoA = βoA − σιA, διA = µoA − βιA,

δoA = αoA − ριA, διA = λoA − αιA.

Eight of the spin coefficients have good GHP weight and they are related in pairs by prime 
so that it becomes convenient to eliminate four of them as primes of four others. These are

µ = −ρ′, λ = −σ′, π = −τ ′, ν = −κ′.

The other four spin coefficients are conveniently incorporated into weighted operators, thorn 
and edth, according to

þ = D − pε− qε, ð = δ − pβ − qα, (B.1)

when acting on weight ( p, q) quantities, together with their primes

þ′ = ∆− pγ − qγ, ð′ = δ − pα− qβ. (B.2)

With the metric (2.26) we choose the NP tetrad to be

D =
1
F
∂u, ∆ =

1
F
∂v, δ =

P

r
√

2
∂ζ ,

and there are simplifications: the only nonzero spin-coefficients are

ρ = − ru

Fr
, ρ′ = − rv

Fr
, α = −β = α′ =

ζ

2
√

2r
, ε =

Fu

2F2 , γ = −ε′ = − Fv

2F2 ,

where one may substitute for ru, rv, Fu, Fv if desired. The Ricci tensor is zero and the only 
nonzero component of the Weyl spinor is ψ2 = −m/r3. The weighted derivatives of the dyad 
simplify to
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þoA = þ′oA = þιA = þ′ιA = 0 = ðoA = ð′ιA

and

ð′oA = −ριA, ðιA = −ρ′oA.

The commutators of the GHP operators are given in [10] in the general case but here they 
simplify to

[þ, ð] = ρð, [þ′, ð] = ρ′ð, (B.3)

with their primes, and

[ð, ð′] = ( p − q)(ρρ′ + ψ2), [þ, þ′] = −( p + q)ψ2, (B.4)

where one calculates

ρρ′ + ψ2 = − 1
2r2

which is minus half the Gauss curvature of the constant r sphere.
Spherical symmetry of the metric and tetrad implies that ρ, ρ′ and ψ2 are spherically sym-

metric in that

ðρ = ðρ′ = ðψ2 = 0 = ð′ρ = ð′ρ′ = ð′ψ2,

which we use in the proof of theorem 2.7.

Appendix C. Infinite boost limit of the Kasner embedding

In [9] the authors have systematically analysed isometric embeddings of the metric (3.40) with 
V = 1 − 2m/r in R5,1 and R4,2 with a metric12

ds2 = −dZ0
2 + εdZ1

2 + dZ2
2 + dZ3

2 + dZ4
2 + dZ5

2 (C.1)

such that

Z2 = r sin θ sinφ, Z3 = r sin θ cosφ, Z4 = r cos θ.

The problem then reduces to finding all isometric embeddings of a metric 
γ = −Vdt2 + (V−1 + 1)dr2 into R2,1 or R1,2, and the general solution was obtained under 
an additional assumption that the second fundamental form of the embedding is diagonal. 
There are three embedding types which can be classified according to whether trajectories of 
∂/∂t lift to circles (elliptic, Kasner-type embedding) with ε = −1, hyperbolae (hyperbolic, 
Fronsdal type embedding with ε = 1) or parabolas with ε = −1.

We shall demonstrate that the parabolic embedding can be obtained by taking a Lorentz 
boost of the elliptic isometric embedding, relating the boost parameter c to the mass in 
the Schwarzschild solution by c  =  1/4m (or more generally to the surface gravity in case 
of the general V(r)), and taking a limit c → 0. We shall just give the embedding forms 
Z0(t, r), Z1(t, r), Z5(t, r) which have been obtained for any V(r) by trial and error.

12 In this appendix we shall use the (−+++) signature, so that our results agree with [9].
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Z5 =
(1 + c2)(c2L −

√
V) + (1 − c2)

√
V cos (ct)

2c2

Z0 =
(1 − c2)(c2L −

√
V) + (1 + c2)

√
V cos (ct)

2c2

Z1 =

√
V sin (ct)

c
, where V = V(r), L = L(r).

Then ds2 given by (C.1) with ε = −1 pulls back to

g = −Vdt2 +
L′(m2VL′ − V ′√V) + V

V
dr2 + r2(dθ2 + sin θ2dφ2),

and to recover the metric (3.40) the function L(r) must satisfy a 1st order ODE

(m2VL′ − V ′√V)L′ + V − 1 = 0.

In the limit c → 0 we get a parabolic embedding

Z5 = −
√

V +
1
2

L − t2

4

√
V , Z0 =

√
V +

1
2

L − t2

4

√
V , Z1 = t

√
V

and

g = −Vdt2 +
V − L′V ′√V

V
dr2 + r2(dθ2 + sin θ2dφ2),

where

L(r) =
∫ r V(ρ)− 1

V ′(ρ)
√

V(ρ)
dρ.

In the case of the Schwarzschild metric this reduces to the quadratic embedding of [9] (see 
also [17]).

Appendix D. The Fronsdal embedding from the conformal embedding

We shall now show how the the Fronsdal [8] isometric embedding φ : M → R5,1 with

g = φ∗(dZ0
2 − dZ1

2 − · · · − dZ5
2)

is related to our embedding (4.45). Set

Zµ = Ω−1Xµ for µ = 0, . . . , 4, and Z5 = Z(r)

and compute

g = ηµνdZµdZν − dZ2

= Ω−2(ηµνdXµdXν + K(Ω−1dΩ)2 − Ω−1dΩdK)− dZ2

where

K ≡ ηµνXµXν = Ω2 32m3 − 16m2r − r3

r
.

Therefore Z(r) is determined by
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Ω2(Z′)2 = K[(lnΩ)′]2 − K′(lnΩ)′. (D.1)

Using Ω = h(r)/r  and (4.46) we find

(lnΩ)′ =
p
q
− 1

r
, K = Ω2 q

r2 ,

where ( p, q) are given by (4.47). Substituting this into (D.1) gives

Z5 =

∫ √
2m
r

+
(2m

r

)2
+
(2m

r

)3
dr

in agreement with [8]. The diagrams below show the radial embeddings with θ = φ = const 
projected to a three-dimensional space with coordinates Z0 = Ω−1T , Z1 = Ω−1X, Z5  
(see figure D1).
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