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Abstract

The curved twistor theory is studied from the point of view of integrable

systems.

A twistor construction of the hierarchy associated with the anti-self-dual
Einstein vacuum equations (ASDVE) is given. The recursion operator
R is constructed and used to build an infinite-dimensional symmetry
algebra of ASDVE. It is proven that R acts on twistor functions by mul-
tiplication. The recursion operator is used to construct Killing spinors.

The method is illustrated on the example of the Sparling-Tod solution.

An infinite number of commuting flows on extended space-time is con-
structed. It is proven that a moduli space of rational curves, with normal
bundle O(n) ® O(n) in twistor space, is canonically equipped with a Lax
distribution for ASDVE hierarchies. It is demonstrated that the isomon-
odromy problem can, in the Fuchsian case, be understood in terms of
curved twistor spaces. The solutions to the SL(2,C) Schlesinger equa-

tion are related to the flows of the heavenly hierarchy.

The Lagrangian, Hamiltonian and bi-Hamiltonian formulations of heav-
enly equations are given. The symplectic form on the moduli space of
solutions to heavenly equations is derived, and is proven to be compatible

with the recursion operator.

It is proven that a family of rational curves in the twistor space may
be found by integrating the Hamiltonian system which has the second
heavenly potential as its Hamiltonian. An alternative view of heavenly

potentials as generating functions on the spin bundle is given.

The potentials for linear fields on ASD vacuum backgrounds are con-

structed. It is shown that generalised zero—rest—mass field equations can



be solved by means of functions on O(n) & O(n) twistor spaces. The
moduli space of deformed O(n) @ O(n) curves is shown to be foliated by

four dimensional hyper-Kahler slices.

The twistor theory of four-dimensional hyper-Hermitian manifolds is for-
mulated as a combination of the Nonlinear Graviton Construction with
the Ward transform for anti-self-dual Maxwell fields. The Lax formula-
tion is found and used to derive a pair of potentials for a hyper-Hermitian
metric. A class of examples of hyper-Hermitian metrics which depend

on two arbitrary functions of two complex variables is given.

The ASDV metrics with a conformal, non-triholomorphic Killing vector
are considered. The symmetric solutions to the first heavenly equation
are shown to give rise to a new integrable system in three dimensions, and
to a new class of Einstein—-Weyl geometries. The Lax representation, Lie
point symmetries, hidden symmetries and the recursion operator associ-
ated with the reduced 3D system are found, and some group invariant

solutions are considered.

It is proven that if an Einstein—Weyl space admits a solution of a gener-
alised monopole equation, which yields four dimensional ASD vacuum,
or Einstein metrics, then the four-dimensional correspondence space
is equipped with a closed and simple two-form. A class of Einstein—
Weyl structures is given in terms of solutions to the dispersion-less

Kadomtsev—Petviashvili equation.

It is explained how to construct ASDVE metrics from solutions of various
2D integrable systems by exploiting the fact that the Lax formulations
of both systems can be embedded in that of the anti-self-dual Yang—
Mills equations. The explicit ASDVE metrics are constructed on R? x
Y, where ¥ is a homogeneous space for a real subgroup of SL(2,C)
associated with the two-dimensional system. The twistor interpretation

of the construction is given.
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Chapter 1

Introduction

One of the most remarkable achievements of the twistor program is the link it
provides between integrable differential equations and unconstrained holomorphic
geometry. What lies at the heart of the twistor approach to integrability is the
existence of the Lax pair which enables one to express a given nonlinear equation as
the compatibility condition (usually in the form of a zero curvature representation)
for a system of linear first order partial differential equations (PDEs). The two most
prominent systems of nonlinear equations which fit into the program are the anti-
self-dual vacuum Einstein equations (ASDVE) [56] and the anti-self-dual Yang-Mills
equations (ASDYM) [78]. The basic features of the twistor approach are already
visible in the following linear example.

Let (w, z,z,y) be the coordinates on C* which are null with respect to the metric
2dwdz + 2dzdy. Long before twistor theory was introduced, it was known [4] that

solutions to the complex wave equation
are given by contour integral formulae
1
O(w, z,x,y) = — j{ flw+ Ay, z — Az, A)dA. (1.2)
21 r

Here A\ € CP' and the contour I' separates poles of the integrand. Let us make a

few remarks about the last formula.

e The function f is an arbitrary holomorphic function of three variables. It is

not constrained by any equations.



e As stated, the correspondence between the solutions to (1.1) and integrands
(1.2) is certainly not one to one; we may change f by adding a function which
is singular on one side of the contour I' but is holomorphic on the other. We
may also move the contour I' without touching the poles of f. Both changes
will not affect a corresponding solution to the wave equation. The precise
relation between © and the pairs (f,T") is described in twistor theory by using
sheaf cohomology [89].

e The geometric reasons for the appearance of A € CP' are not clear from the
formula (1.2). In the twistor approach to integrable systems A plays the role
of a spectral parameter and parametrises certain null planes passing through

each point of C*.

From the applied mathematics point of view, the formula (1.2) only gives an alter-
native to other methods of solving the wave equation. The usefulness of the twistor
approach is better illustrated by examples of nonlinear equations.

Modify (1.1) by adding a nonlinear term of the Monge-Ampere type

A major part of this thesis will be concerned with the twistor analysis of this equa-
tion, its hierarchies, reductions and generalisations. The motivation for studying the
second heavenly equation' (1.3) comes from the work of Plebanski [62]. He showed

that if © is a solution of (1.3) then
ds® = 2dwdx + 2dzdy + 20,,dz* + 2®yydw2 — 40,,dwdz (1.4)

is a complexified hyper-Kahler metric on an open ball in C*. Each hyper-Kahler
metric on a complex four-manifold can locally be put in the form (1.4). In four (real

or complex) dimensions, hyper-K&hler metrics are solutions to anti-self-dual Einstein

!This terminology originates in the work of Newman [50], who studied asymptotic properties
of space-times. In Minkowski space the set of asymptotically shear—free light cones can be used
to reconstruct the space-time points by solving the ‘good-cut equation’. This procedure does not
generalise to real curved space-times, which in general do not have asymptotically shear-free null
surfaces. However, if the space-time is allowed to be complex, then complex asymptotically shear-
free null surfaces do exist. The set of all such surfaces is a complex Riemannian four-manifold
called H-space. The H stands for ‘heaven - where good Cohens (cones) go’.



vacuum equations. This makes (1.3) worth studying both from the geometry and
the general relativity perspectives.

A natural question which arises is whether one can generalise the formula (1.2) to
solve the equation (1.3). In general such an explicit description will not be possible,
but nevertheless the twistor approach assures the integrability of (1.3). This follows
from Penrose’s Nonlinear Graviton construction [56], in which ASDV metrics locally
correspond to certain three dimensional complex manifolds - twistor spaces. The
manifold structure of a twistor space is given by a set of patching functions. The
process of recovering an ASDV metric on C* from the patching functions involves
building the holomorphic family of embedded rational curves. This usually comes
down to solving a non-linear Riemann-Hilbert factorisation problem. In the case of
the wave equation the analogous Riemann—Hilbert problem is linear and a solution

can be given explicitly.

1.1 Outline of the Thesis

In Chapter 2 I shall summarise the twistor correspondences for flat and curved
spaces. I shall establish the spinor notation, and recall basic facts about the ASD
conformal condition, the geometry of the spin bundle, the ASD Yang—Mills equa-
tions, Einstein—Weyl spaces, and the isomonodromic deformations.

In Chapter 3 (following a suggestion of Dr Lionel Mason) the recursion operator
R for ASDVE will be constructed by looking at ways of generating sequences of solu-
tions to the linearised heavenly equations [17]. I shall then consider a corresponding
twistor picture by using R to build a family of foliations by twistor surfaces. It will
be proven that R acts on twistor functions by multiplication [19]. The general ASD
linear fields on ASD vacuum backgrounds will be considered. Then I shall analyse
the hidden symmetry algebra of ASDVE, and use the recursion operator to construct
Killing spinors. I shall illustrate the method on the example of the Sparling—Tod
solution and show how R can be used to construct O(1) @ O(1) rational curves.

In Chapter 7?7 I shall give a twistor-geometric construction of ASDVE hierar-
chies. An infinite number of commuting flows on extended space-time, together with
twistor description will be constructed. I shall prove that a moduli space of rational

curves with normal bundle O(n) & O(n) in twistor space, is canonically equipped



with the Lax distribution for ASDVE hierarchies, and conversely that truncated hi-
erarchies imply such a twistor theory. The Lax distribution will be interpreted as a
connecting map in a long exact sequence of sheafs [18] (I acknowledge the assistance
of Dr Lionel Mason in the proof of Proposition ?7). In Section 6 I shall demonstrate
that the isomonodromy problem in Fuchsian case can also be understood in terms
of curved twistor spaces. The solutions to the SL(2,C) Schlesinger equation will be
related to the flows of the heavenly hierarchy. In Section ?7 I shall investigate the
Lagrangian and Hamiltonian formulations of heavenly equations. The symplectic
form on the moduli space of solutions to heavenly equations will be derived, and
proven to be compatible with a recursion operator.

In Chapter 4 I shall use the second heavenly equation to build the twistor space.
I shall make the second heavenly equation (3.6) A\-dependent and show that a family
of rational curves may be found by integrating the Hamiltonian system which has
O as its Hamiltonian. I shall also give an alternative view on heavenly potentials as
generating functions on the spin bundle.

In Chapter 5 I shall show that generalised ZRM field equations can be solved
by means of functions on O(n) & O(n) twistor spaces. The fields associated with
twistor functions of positive homogeneity will be shown to have both primed and
unprimed symmetric indices. I shall consider a foliation of the moduli space of
deformed O(n) @& O(n) curves by four dimensional hyper-Kéhler slices.

In Chapter 7 the twistor theory of four-dimensional hyper-Hermitian manifolds
will be formulated as a combination of the Nonlinear Graviton Construction with the
Ward transform for anti-self-dual Maxwell fields. The Lax formulation of the hyper-
Hermiticity condition in four dimensions will be used to derive a pair of potentials
for hyper-Hermitian metrics. A class of examples of hyper-Hermitian metrics which
depend on two arbitrary functions of two complex variables will be given.

In Chapter 8 I shall consider ASD vacuum spaces with conformal symmetries.
In Section 8.1 (which I wrote following a crucial suggestion of Dr Paul Tod and
which extends [76]) I shall give the canonical form of a general conformal Killing
vector. Then I shall look at conformally invariant solutions to the first heavenly
equation. This will give rise to a new integrable system in three dimensions and

to the corresponding Einstein-Weyl (EW) geometries. In Section 8.2 I shall give



the Lax representation of the reduced equations. I shall also look at the spinor
formulation of the EW condition. In Section 8.6 I shall find and classify the Lie
point symmetries, and the Killing vectors of the field equations in three dimensions,
and consider some group invariant solutions. In Section 8.7 I shall find hidden
symmetries and the recursion operator associated to the 3D system. The conformally
invariant wave equations in Weyl geometries will be analysed.

In Chapter 9 I shall reformulate EW equations in terms of a certain two-form on
the spin bundle. I shall prove that if an EW space admits a solution of a generalised
monopole equation, which yields ASD vacuum or Einstein metrics, then the four-
dimensional correspondence space is equipped with a closed and simple two-form. In
Section 9.3 I shall construct a class of EW metrics from solutions to dKP equation.

In Chapter 10 I shall explain how to construct solutions to the ASDVE from
solutions of various two-dimensional integrable systems by exploiting the fact that
the Lax formulations of both systems can be embedded in that of the ASD Yang—
Mills equations. I shall illustrate this by constructing explicit ASDV metrics on
R? x ¥, where X is a homogeneous space for a real subgroup of SL(2,C) associated
with the two-dimensional system. I shall also outline the twistor interpretation of
the construction. This chapter extends my Polish MSc thesis [14]. Much of the
material, derived independently by me [15], has appeared in a joint paper [20].

In Chapter 11 I shall list some open problems related to what has been done in
this thesis. In particular I shall indicate the possible links between twistor theory,
finite-gap solutions, and Whitham equations.

The Appendices A, B, and C' are intended to record for easy reference the im-

portant theorems and formulae which underlie twistor theory.



Chapter 2

Preliminaries

2.1 The twistor correspondence for flat space—
times

In this section we shall give a brief outline of the flat twistor correspondence. For
more detailed expositions see [89] or [49]. We shall use the double null coordinates

on C* in which the metric and the volume element are
ds? = 2dwdz + 2dzdy, v =dw Adz Adz Ady.

A two-plane in C* is null if ds?(X,Y) = 0 for every pair (X,Y) of vectors tangent
to it. The null planes can be self-dual (SD) or anti self-dual (ASD), depending on
whether the tangent bivector X A'Y is SD or ASD. The SD null planes are called
a-planes. The a-planes passing through a point in C* are parametrised by A € CP*.

Tangents to a-planes are spanned by two vectors
LO - 8y - )@w, Ll = &E + )@Z (21)

or (0,,0,) if A = 0o. The set of all a-planes is called a projective twistor space
and denoted P7T. It is a three-dimensional complex manifold biholomorphic to
CP? — CP".
We will make use of a double fibration picture
ct&FLPT.
The five complex dimensional correspondence space F := C* x CP! fibres over C*
by
<w7 Z? x? y7 >\) - (w7 Z? x? y)‘

6



The functions on F which are constant on a-planes, or equivalently satisfy Laf =
0; A =0,1, push down to PT. They are called twistor functions. An example of
a twistor function was used in the formula (1.2). The twistor space PT is a factor
space of F by the two-dimensional distribution spanned by L4. It can be covered
by two coordinate patches U and U , where U is a complement of A = oo and U
is a compliment of A = 0. If (u°, u',\) are coordinates on U and (ji%, ji', \) are

coordinates on U then on the overlap
A= N it =pt/A A=1/A
The local coordinates (u°, u', ) on PT pulled back to F are
W =w+y, pt=z-Xx, A\ (2.2)

Before the curved twistor theory is considered, we shall review the two-spinor nota-

tion for complex Riemannian four-manifolds.

2.2 Spinor notation

We shall work in the holomorphic category with complexified space-times: thus
space-time M is a complex four-manifold equipped with a holomorphic metric g
and volume form v.

In four complex dimensions orthogonal transformations decompose into products

of ASD and SD rotations
SO(4,C) = (SL(2,C) x SL(2,C))/Z,. (2.3)

The spinor calculus in four dimensions is based on the isomorphism (2.3). We
shall use the conventions of Penrose and Rindler [58] (see also [89]). Indices will
be assumed concrete if we work in any of the heavenly frames and otherwise ab-
stract: a,b,... are four-dimensional space-time indices and A, B,...,A’, B’ ... are
two-dimensional spinor indices. The tangent space at each point of M is isomorphic

to a tensor product of two spin spaces

T°M =S4 @ 5%, (2.4)



The complex Lorentz transformation V¢ — A%, V? is equivalent to the composition

of the SD and the ASD rotation
VAA’ N )\ABVBBI)\A,BH

where A5 and A are clements of SL(2,C) and SL(2,C).

Spin dyads (0%, :4) and (0%, 4") span S4 and S4’ respectively. The spin spaces
S4 and S4 are equipped with symplectic forms e 45 and € 45 such that eg; = ey =
1. These anti-symmetric objects are used to raise and lower the spinor indices. We

shall use the normalised spin frames, which implies that

/ / ! ! el
0BG — BoC = gBC (B C _ B C _ BC

Let 24 be the null tetrad of one forms on M and let V44 be the frame of dual

vector fields. The orientation is fixed by setting
v=e Nl At A,

Apart from orientability, M must satisfy some other topological restrictions for the
global spinor fields to exist [89]. We shall not take them into account as we work
locally in M.

The local basis 248 and 245" of spaces of ASD and SD two-forms are defined
by

/ / =% =%
€AA A 6BB — &‘ABEAB +€AB EAB.

The Weyl tensor decomposes into ASD and SD part
Caved = €apec'p'Capep + €apecpCapicrpr
The first Cartan structure equations are
deA — oBA NTAL 4 AP ATA

where I'yp and I'yp are the SL(2,C) and SA'E(Q,(C) spin connection one-forms

symmetric in their indices, and

/ !

Tap =Tocape®, Twp =Tooape’, Toowp =oaVeeip —iaVeocop.



The curvature of the spin connection
R'p =dlp +T"c AT
decomposes as
Rp = CpopX? 4 (1/12)RYA 5 + 0 poip 297,

and similarly for R% .. Here R is the Ricci scalar and ® 4545 is the trace-free part
of the Ricci tensor Rg,.

Now we can rephrase the flat twistor correspondence discussed in Section 2.1 in
the spinor language: A point in C* is represented by its position vector (w, z, z,y).

The isomorphism (2.4) is realised by

/ w ’ /
A4 = < ya: p ), so that ds? = epea pda? daBP.

The homogeneous coordinates on the twistor space are
(W0, Wt mor, ) = (W, Tar).
They are related to (u°, u', \) by
W/my = u0, wmy =t me /T = A

For A # oo the twistor distribution may be rewritten as

v 0
axAA/ ’

The relations between various structures on C* and P7T can be read off from the

LA = (7T1/)_17T

equation

wA = .TAA/ﬂ'A/. (25)

Assume that 74, # 0 and consider (w”, /) to be fixed. Then (2.5) has as its solution
a complex two plane spanned by vectors of the form 74'v4 for some v#. The other
way of interpreting (2.5) is fixing 44" and solving for (w”,74/). The solution, when
factored out by the relation (w”,m4) ~ (kw?, km4/), becomes a rational curve CP*
with a normal bundle O(1) @ O(1). This condition guarantees that the family of
rational curves in P7T is four complex dimensional, and that the conformal structure
ds? on C* is quadratic. Here O(n) denotes the line bundle over CP' with transition
functions A= ( see Appendix A). The points p and ¢ are null separated in C* iff the

corresponding rational curves [, and [, intersect at one point in P7T.

9



2.3 Curved twistor spaces and the geometry of
the primed spin bundle.

Assume that ¢ is a curved metric on some complex four-dimensional manifold M.
The notion of an a-plane must be replaced by an a-surface - a null two dimensional
surface such that its tangent space at each point is an a plane. Let X and Y be two

vectors tangent to an a-surface. The Frobenius integrability condition yields
(X, Y] =aX +0b0Y

for some a and b. The last formula implies that C' 4 p/crpr vanishes. Thus given
Cuapcpr =0 we can define a twistor space P7T to be a three complex dimensional
manifold of a-surfaces in M. If g is also Ricci flat then PT has more structures
which are listed in the Nonlinear Graviton Theorem C.4.

The correspondence space F is a set of pairs (x,\) where x € M and A € CP!
parametrises a-surfaces through z in M. We represent F as the quotient of the
primed-spin bundle S#" with fibre coordinates 74 by the Euler vector field T =
74" /0r4" so that the fibre coordinates are related by A\ = my /7. A homogeneous

form a on non-projective spin bundle descends to F if
Tia=0.

In that case Lya = na where n determines a line bundle O(n) in which « takes
its values. The space F possesses a natural two dimensional distribution (called
the twistor distribution, or the Lax pair, to emphasise the analogy with integrable
systems). The Lax pair on JF arises as the image under the projection 'S4 — T'F
of the distribution spanned by

0
87?0/

! !
™V an + Tanpon’n
and is given by!

Ly= (W;l)(ﬂA,VAA/ + f40)), where fa= (W;Q)FAA/B/CITFAIWB/WC/. (2.7)

Warious powers of 7y, in formulae like (2.7) guarantee the correct homogeneity. We usually
shall omit them when working on the projective spin bundle. In a projection SA 5 F we shall
use the replacement formula

8 A
onA’ - T2

N (2.6)

10



The integrability of the twistor distribution is equivalent to Cypcrpr = 0, the
vanishing of the self-dual Weyl spinor. The projective twistor space PT arises as
a factor space of F by the twistor distribution. It can be covered by two sets, U
and U with [A\| < 1+ eon U and |A\| > 1 — € on U with (w?, 74 # ta) being the
homogeneous coordinates on U and (&?, w4 # 04) on U. The twistor space PT
is then determined by the transition function ©f = &P (w?,74) on UNU. Let

I, be the line in PT that corresponds to x € M and let Z € PT lie on l,. The

B

correspondence space is
F =PT x M|ze, = M x CP".
This leads to a double fibration
ML F L PT. (2.8)

The existence of L, can also be deduced directly from P7. The basic twistor
correspondence [56] states that points in M correspond in PT to rational curves
with normal bundle O4(1) := O(1) @ O(1). The normal bundle to I, consists of
vectors tangent to x (horizontally lifted to T{, )F) modulo the twistor distribution.

Therefore we have a sequence of sheaves over CP*
0— D — C'"— 0%41) — 0.

The map C* — O4(1) is given by V44 — VA%r . Its kernel consists of

vectors of the form 74 \* with A\* varying. The twistor distribution is therefore

D=0(-1)®@S%and so Ly € I'(D ® O(1) ® S4), has the form (2.7).

2.4 Some formulations of the ASD vacuum con-
dition

The ASD vacuum condition

Capcop =0, Papap =0 (2.9)
This is because (on functions of \)
0 (wo/) o —mgA
Oma \m /) 2 o2
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implies the existence of a normalised, covariantly constant frame on S*’
ot =(1,0), A =(0,1),

such that I' 44 prcr = 0. In this frame the Lax pair (2.7) consists of volume-preserving
vector fields on M. This fact was first observed in [1] in the context of (3 + 1)

decomposition. In the next chapters we shall use the covariant generalisation:

Proposition 2.1 (Mason & Newman [46].) Let Voaw = (%00/, @011§10/§11/) be
four independent holomorphic vector fields on a four-dimensional complex manifold

M and let v be a nonzero holomorphic four-form. Put
Lo =V — \Vou, L=V —AViy. (2.10)
Suppose that for every A € CP!
[Lo, L1] =0, Lr,v=0. (2.11)
Here Ly denotes a Lie derivative. Then
Vaw = [ Vau, where f? = V(ﬁoou 601/610/611')7

is a normalised null-tetrad for an ASD vacuum metric. Fvery such metric locally

arises in this way.

Lemma 7.3 generalises the last proposition to the hyper-Hermitian case. The trans-
formation to f? = 1 is always possible if the metric is non-degenerate. In this
thesis (except Chapter 10) we shall use the heavenly frames in which f? = 1 and

Vaa = v 4. For easy reference we rewrite the field equations (2.11) in full

[Vao, Vio] =0, (2.12)
[Vao, V] + [Varr, Vey] =0, (2.13)
[VAI/, VBl’] = 0. (2.14)

Let ¥4P’ be the usual basis of SD two forms. Define (on a correspondence space)
E()\) = EAIB,WA/WB/. (215)
The formulation of the ASDVE condition dual to (2.11) is:
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Proposition 2.2 (Plebarski [62], Gindikin [24]) If a two form
S(\) = S nymp
on a correspondence space satisfies

dy =0, S\ AZ(A) =0 (2.16)

(- 0)?

AA

then one forms e give an ASD vacuum tetrad.

Note that the simplicity condition in (2.16) guarantees that 47" comes from a
tetrad. Here dj, is a horizontal lift of d to F and so A is regarded as a parameter
and is not differentiated. To construct Gindikin’s two form starting from the twistor
space, one must fix a fibre of PT — CP' and pull the symplectic structure back
to the projective spin bundle. The resulting two form is O(2) valued. To obtain
Gindikin’s two form one should divide it by a constant section of O(2).

Put 390 = —a, 29 = w, ¥ = o. The second equation in (2.16) becomes
wWwAw=2aNa=-2v, aANw=aNANw=aANAa=aNa=0.

Equivalence of (2.11) and (2.16) follows if one notices that L4 can be defined as a

two-dimensional distribution which annihilates ¥(\), or alternatively

EABZ(A) = V(LA7 LB, ceey )

Two one-forms e := 74 by definition annihilate the twistor distribution. Define

(1,1) tensors 9% := 4P ® V 44 so that
GA & LA = 7TB/7TA/8B// = 80 + /\(8 - é) - )\262

where (8Y,0%, 0%, 05) = (9,0, 0,0). If the field equations are satisfied then the
Euclidean slice of M is equipped with three integrable complex structures given
by Ju = {i(0y — dp), (0 — ), (02 + Do)} and three symplectic structures {(i(a —
&), iw, (o + &)} compatible with J,. It is therefore a hyper-Kahler manifold.
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2.5 ASD Yang—Mills equations

Consider a Yang-Mills vector bundle over a four-dimensional manifold M (taken here
to be C* in general, or R* when reality conditions are imposed) with connection one-
form A = A,(2%)dz® € T*M ® g, where g is the Lie algebra of some gauge group G.

The corresponding curvature F' = F,dz® A da® is given by
Fop = [Dyg, Dy| = OyAq — 0, Ay + [Aa, As), (2.17)
where D, = 0, — A, is the covariant derivative. The curvature decomposes as
Foy= ®apean + Papeas.

The ASDYM equations on a connection A are the anti-self-duality conditions on the

curvature under the Hodge star operation:
F=—xF or ®up=0. (2.18)
They are conformally invariant and are also preserved by the gauge transformations
A—gltAg—gtdg, g€ MapM,QG). (2.19)

The condition (2.18) is equivalent to the vanishing of the Yang—Mills curvature on
every « plane. This observation underlies the Ward construction [78].
The ASDYM equations are the compatibility conditions [Lg, Li] = 0 for the

linear system of equations LoF = 0, L1 F' = 0 where the ‘Lax pair’ is given by
LA = WAIDAA/, (220)

and F := F(2*4 74,74 is an n-component column vector.
In Chapter 10 we shall need a coordinate description of YM anti-self-duality
condition. Let us introduce double-null coordinates z44’

metric on M is ds? = 2dwdw — 2dzdz. In these coordinates D, = 0,, — A, ... and

= (w, W, z, Z), in which the

the ASDYM equations may be rewritten as

F,, = 0 (2.21)
Fs: = 0 (2.22)
Fos—F: = 0. (2.23)
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2.6 Three-dimensional Einstein—Weyl spaces

Let W be a n-dimensional complex manifold, with a torsion-free connection D and
a conformal metric [h]. We shall call W a Weyl space if the null geodesics of [h] are

also geodesics for D. This condition implies

for some one form v. Here hj;, is a representative metric in the conformal class. The
indices? 7,7, k, ... go from 1 to n. If we change this representative by h — ¢?h,
then v — v+ 2dIn ¢. The one form v ‘measures’ the difference between D and the

Levi-Civita connection of h:
(D; = Vai)V7 = V¥,
where (as a consequence of (2.24))
i i 1 im
Vi = =04V + §hjkh V-

The Ricci tensor W;; of D is related to the Ricci tensor R;; of V by

4

n—1 1 n—2 n
Tvil/j — év]l/l + Tl/il/j + hU( —

1
Wi = Ri; + vk + §Vk1/k>.

The relation between the curvature scalars is

(n=2)(n=1)
! |

W .= hijWij =R+ (’I’L — 1)Vk1/k —

The conformally invariant Einstein-Weyl (EW) condition on (W, h,w) is
1
Wi =~ Whi.

From now on we shall assume that dim»V = 3. The Einstein-Weyl equations

are

1 1 1 1 1
R + §V(iuj) + =3 <R + §kak: + ZVka> hij. (2.25)

All three-dimensional EW spaces can be obtained as spaces of trajectories of con-

formal Killing vectors in four-dimensional ASD manifolds:

2In Chapters 8 and 9, when we consider the three-dimensional case, we shall use the spinor
notation, and the abstract index convention V¢ = VA'B) = (478" based on an isomorphism
T'W = S © §BY). The reason for using primed spinors will be explained in Chapter 8.
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Proposition 2.3 (Jones & Tod [37]) Let (M, g) be an ASD four manifold with
a conformal Killing vector K. The EW structure on the space W of trajectories of
K (which is assumed to be non-pathological) is defined by

h:=|K|?9— |K|"KoK, v:=2|K|"?x%, (KAdK), (2.26)

where |K|? := g K °K®, K is a one form dual to K and *, is taken with respect to
g. All EW structures arise in this way. Conversely, let (h,v) be a three-dimensional
EW structure on W, and let (V, «) be a function and a one-form on W which satisfy

the generalised monopole equation
xp(dV 4+ (1/2)vV) = day, (2.27)
where x, is taken with respect to h. Then
g="V>?h+ (dt + o) (2.28)
1s an ASD metric with an isometry K = 0.

The twistor construction of 3D EW spaces is given by the following proposition

Proposition 2.4 (Hitchin [30]) Any solution to the EW equations (2.25) is equiv-
alent to a complex surface Z (called a mini-twistor space) with a family of rational

curves with a normal bundle O(2).

Points of W correspond to curves in Z with self-intersection number 2. The Kodaira
theorem (A.4) guarantees the existence of a three-dimensional complex family of
such curves. Points of Z correspond to totally geodesic hyper-surfaces in WW. Non-
null geodesics in W consists of all the curves in Z which intersect at two fixed points
in Z. Null geodesics correspond to curves passing through one point with a given
tangent direction.

It follows from [36, 37] that the mini-twistor space Z corresponding to W is a
factor space PT /K where PT is the twistor space of (M, g) and K is a holomorphic
vector field on PT corresponding to conformal Killing vector K.

In three dimensions the general solution of (2.24)-(2.25) depends on four arbi-
trary functions of two variables [10]. This result is a direct consequence of twistor

theory: The patching data of a general twistor space PT depends on three complex
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functions of three variables. The factorisation process reduces the number of vari-
ables by one, but keeps the number of functions fixed. One function determines a
solution to a linear Bogomonly equation, and remaining two determine the charac-
teristic data for a solution to EW equations. The Cauchy data is (in terms of free
functions) twice as large as the characteristic data, which yields the desired result.

In Chapters 8 and 9 we shall consider a class of solutions to EW equations which

depend on two arbitrary functions of two variables.

2.7 The Schlesinger equation and isomonodromy

Consider the system of ODEs

(% _ A)\IJ(A) —0, A= S~ _A (2.29)

where t = ty, ..., t,.3 € C are constants and A; are constant N x N matrices in some
complex Lie algebra g (which we take to be si(N,C)) and A € CP".

Here U is a fundamental matrix solution to (6.1). Assume that there is no extra
pole at oo, i.e. EZ:)’ A, = 0, and that eigenvalues of A, have no integer difference
for each a. Here a, b, c,= 1...n are vector indices on C", and 7,5 = 1...dimg = k are
indices on g. Let

2t = (C]P)l/{tla "'7tn+3}

be a punctured sphere with n 4+ 3 points removed. And let 7 : it — Y be the
universal covering. Let v be a path in M starting at A and ending at A, such that

m(A) = A,. The function

is a solution to (6.1). Here g, is a nonsingular constant matrix depending on the
homotopy class [y] of 7. The mapping [y] — g, defines the monodromy represen-

tation of the fundamental group of >
m (X)) — SL(N,C)
The monodromy group I' is in general the infinite discrete subgroup (with n + 3

generators) of SL(N,C).
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The fundamental matrix solution W(\) is a multi valued function with branch
points at t,. If A moves around a singular point ¢, then the fundamental solution

undergoes a transformation by an element of the monodromy group
U(N) — Uty + (X —t)e*™) = U(\)ga,

where g, € I'. The transformation g, is conjugated to exp (—27A,).
When the poles ¢, move the monodromy representation of (6.1) remains fixed if

matrices A,(t) satisfy the Schlesinger equation

dA, =) [Ay, AJJdIn(t, — ). (2.30)
aFb

The common geometric interpretations are:

e Take a connection

n+3
Agzd
V:d_;)\—ta

on the vector bundle with fibres CV over X;. Since A is holomorphic it is a flat

connection (there are no holomorphic two forms in one dimension). Equations

(6.2) imply that the holonomy of V is fixed

e Treat V as a connection over C"*3 x ¥y with logarithmic singularity. Equations

(6.2) imply the flatness of V.
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Chapter 3

The recursion operator

In this chapter the recursion operator R for the anti-self-dual Einstein vacuum equa-
tions is constructed [17]. It is proven that R acts on twistor functions by multiplica-
tion. The recursion operator is then used to construct the hidden symmetry algebra
of heavenly equations, and Killing spinors. The general ASD linear fields on ASD

vacuum backgrounds are discussed [19].

3.1 The ASD condition and heavenly equations

Part of the residual gauge freedom in (2.11) is fixed by selecting one of Plebanski’s

null coordinate systems.
1. Equations (2.13) and (2.14) imply the existence of a coordinate system
(w, 2,1, 2) =: (W™, 0?)

and a complex-valued function €2 such that

Qw’tﬂai - ngaw 811} o 829 0 o
Vaa = < 0,505 — ngaﬁ) az ) B (awAawB Bl awA) (31)

Equation (2.12) yields the first heavenly equation

1 0%2Q 0%Q)
QwEQzﬁ) - Qwu?Qzé =1 = = — =1. 32
o 3 Ow 40w OwAowB (3.2)

The dual tetrad is

li ! 82Q

Al A A0 ~
=d = ———d .

e we, e a0 wWpg (3.3)
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with the flat solution Q = w 4. The only nontrivial part of $45" is £ =
D0 so that Q is a Kéhler scalar. The Lax pair for the first heavenly equation
is

Lo: = Qui0: — Quz05 — Ay,

L1 .= sz&g - ng&;, - )\82 (34)

Equations LoV = L; ¥ = 0 have solutions provided that () satisfies the first

heavenly equation (3.2). Here VU is a function on F.

. Alternatively we can adopt (w,z,7,y) =: (w?, z4) as a coordinate system.
Equations (2.12) and (2.13) imply the existence of a complex-valued function
© such that
Vo = Oy Ow+ Oyl — Ogy0y | _ 0 0 n 0?0 0 '
_az az - @xyaac + @xzay ord w4 OxA0xB 8.’1?3
(3.5)

As a consequence of (2.14) © satisfies second heavenly equation

0’0 1 0%°0 0’0
— 2 — — —
Opwy+0,.+6,,0,,—0,,°=0 or EY + 5 92503 r i 0. (3.6)

The dual frame is given by

A = dz? + 82—deB e = dw? (3.7)
39538:6A ’ '

with © = 0 defining the flat metric. The Lax pair corresponding to (3.6) is
LO — 8y - )\(aw - ®zyay + @yyam)v
Ly = 0,+ XN0; + 0,0, — O,,0,). (3.8)

Both heavenly equations were originally derived by Plebanski [62] from the formu-

lation (2.16). The closure condition is used, via Darboux’s theorem, to introduce

, canonical coordinates on the spin bundle, holomorphic around A = 0 such that

the two form (2.15) is ¥(\) = dpw” A dywa. The various forms of the heavenly

equations can be obtained by adapting different coordinates and gauges to these

forms. Significant progress towards understanding the symmetry structure of the

heavenly equations was achieved by Boyer and Plebanski [7, 8] who obtained an

infinite number of conservation laws for the ASDVE equations and established some

connections with nonlinear graviton construction.

20



3.2 The recursion operator

The recursion operator R is a map from the space of linearised perturbations of the
ASDVE equations to itself. This can be used to construct the ASDVE hierarchy
by generating new flows acting on one of the coordinate flows with the recursion
operator R.

We will identify the space of linearised perturbations to the ASDVE equations

with solutions to the background coupled wave equations as follows.

Lemma 3.1 Let (g and Og denote wave operators on the ASD background deter-
mined by Q0 and © respectively. Linearised solutions to (3.2) and (3.6) satisfy

Oa6Q =0, OedO = 0. (3.9)

Proof. In both cases [, = V41, V4 since

1
O, = ﬁaa(gab\/gab) = g"0,05 + (809™) 0y

but 9,9 = 0 for both heavenly equations. For the first equation (99(Q+69))2 = v
implies

0= (809 A 9D = d(DIQ A (0 — D)6Q) = d * Q.
Here * is the Hodge star operator corresponding to g. For the second equation we

make use of the tetrad (3.5) and perform coordinate calculations.

O

From now on we identify tangent spaces to the spaces of solutions to (3.2) and (3.6)
with the space of solutions to the curved background wave equation, W,. We will
define the recursion operator on the space W,.

The above lemma shows that we can consider a linearised perturbation as an
element of W, in two ways. These two will be related by the square of the recursion

operator. The linearised vacuum metrics corresponding to §§2 and 6O are
W oawsp = twop)\VarVeoedQ, h'awps = 0405V a0V dO.

where 04" = (1,0) and ¢4 = (0, 1) span the constant spin frame. Given ¢ € W, we

use the first of these equations to find h’. If we put the perturbation obtained in
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this way on the LHS of the second equation and add an appropriate gauge term we
obtain ¢’ - the new element of W, that provides the §© which gives rise to
hey = hiy + ViaVs).- (3.10)
To extract the recursion relations we must find V such that h! qa' 55 — Viaa'Vepy =
oaopxap. Take Vg = o'V 1:0€2, which gives
V(AA’VBB/) = —L(A/OB/)V(AO/VB)1/5Q + o405'V 41:V g1/6§2.

This reduces (3.10) to

VarVpre = VarVpod' (3.11)
Definition 3.2 Define a recursion operator R : W, — W, by

AV an = 0"V auRo, (3.12)
so formally R = (V a0) "t 0 Var (no summation over the index A).

From (3.12) and from (2.11) it follows that if ¢ belongs to W, then so does R¢. We
also have R25Q) = §©. Note that the operator ¢ — V y ¢ is over-determined, and
its consistency follows from the wave equation on ¢. Furthermore, this definition
is formal in that in order to invert the operator ¢ +— Van¢ we need to specify

boundary conditions. To summarise:

Proposition 3.3 Let W, be the space of solutions of the wave equation on the

curved ASD background given by g.

(1) Elements of W, can be identified with linearised perturbations of the heavenly

equations.

(i) There exists a (formal) map R : W, — W, given by (3.12) which generates

new elements of W, from old.

3.3 Connections with the Nonlinear Graviton

This section links the construction of the recursion operator with twistor theory.
First we use R to build a family of foliations by twistor surfaces starting from a
given one. In Subsection 3.3.2 we give the method for constructing the hierarchy of
curved twistor spaces. In Section 3.5 the algebra of hidden symmetries of the second

heavenly equation is constructed.
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3.3.1 The recursion operator and twistor functions

A function f on the correspondence space F' descends to twistor space if Laf = 0.
Given ¢ € W,, define, for i € Z, a hierarchy of linear fields, ¢; = R'¢y. Put
U = Ziooo ;A" and observe that the recursion equations are equivalent to L, ¥ = 0.
Thus W is a function on the twistor space PT. Conversely every solution of L, ¥ = 0
defined on a neighbourhood of |A] = 1 can be expanded in a Laurent series in A
with the coefficients forming a series of elements of W, related by the recursion
operator. The function ¥ can be thought of as a Cech representative of the element
of HY(PT,O(-2)) that corresponds to the solution of the wave equation ¢.

It is clear that a series corresponding to R¢ is the function A™'W. Note that
R is not completely well defined when acting on W, because of the ambiguity in
the inversion of V4. This means that if one treats W(\) as a twistor function
on PT, pure gauge elements of the first sheaf cohomology group H'(PT,O(—2))
of the twistor space corresponding to M are mapped to nontrivial terms. Note,
however, that the action of R is well defined on twistor functions. By iterating R
on functions and then taking the corresponding cohomology classes we generate an
infinite sequence of elements of H'(PT, O(—2)) belonging to different classes.

A = (w, 2); the surfaces of constant wy' are twistor surfaces. We have

Put wi! = w
that VAyw = 0 so that in particular V4, VAywP = 0 and if we define w! = Riw;'

then we can choose w;! = 0 for negative i. We define
w? = wit + wa/\i. (3.13)
i=1

We can similarly define ©* by &g = w* and choose @* = 0 for i > 0. Note that w”
and @* are solutions of L4 holomorphic around A = 0 and A = oo respectively and
they can be chosen so that they extend to a neighbourhood of the unit disc and a

neighbourhood of the complement of the unit disc.

3.3.2 Twistor construction of the recursion operator

The recursion operator acts on linearised perturbations of the ASDVE equations.
Under the twistor correspondence, these correspond to linearised holomorphic de-

formations of (part of) PT.
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Cover PT by two sets, U and U with [A\| < 1+ eon U and |\| > 1 —€eon U
with (w?,\) coordinates on U and (&*, A~') on U. The twistor space PT is then
determined by the transition function &% = & (w?,74) on UNU.

It is well known that infinitesimal deformations are given by elements of
H'(PT.©),

where © denotes a sheaf of germs of holomorphic vector fields. Let

Y = fA(CUB,ﬂ'B/) a

5 € H'(PT.©)

be defined on the overlap U N U. Infinitesimal deformation is given by
ot = (1 4+tY) (w?) + O(t?). (3.14)

From the globality of ¥()\) = dw” A dw, it follows that Y is a Hamiltonian vector
field with a Hamiltonian f € H'(PT,O(2)) with respect to the symplectic structure
Y.. The finite version of (3.14) is given by integrating

ds® 5, 9f

At oA
from ¢ = 0 to 1 with @4(0) = w” to obtain @* = ©*(1). We are interested in the
linearised version of the last formula

_ 0of

oA = . 1
ow 2o (3.15)

This should be understood as follows: &4 is the patching function obtained by
exponentiating the Hamiltonian vector field of f and corresponds to the ASD met-
ric determined by © and 64 = ¢P495f/0w? (or more simply &f) is a linearised
deformation corresponding to 6© € W,.

The recursion operator acts on linearised deformations as follows

Proposition 3.4 Let R be the recursion operator defined by (3.12). Its twistor

counterpart is the multiplication operator

T

R6f =

§f = A 1of. (3.16)

Ny
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Note that R acts on § f without ambiguity (alternatively, the ambiguity in bound-
ary condition for the definition of R on space-time is absorbed into the choice of
explicit representative for the cohomology class determined by d f).

Proof. We work on the primed spin bundle. Restrict 6 f to the section of y and

represent it as a coboundary

5f(7TA/,ZL'a) = h(ﬂ'A/,I‘a) - iL(?TA/,ZL'a) (317)
where h and h are holomorphic on U and U respectively (here we abuse notation
and denote by U and U the open sets on the spin bundle that are the preimage of
U and U on twistor space). Splitting (3.17) is given by

1 (WAIOA/)?) D’
h = — 5f(pe)pod 3.18
271 . o) (P on fpe)pprdp™, (3.18)
~ 1 (WA/LA/)S D’
h = — 5f(pe)podp” .
5 j{ ) (0 i) f(pE)pprdp

Here 14 is a constant spinor satisfying o4t = 1 and p4 are homogeneous coordi-
nates of CP' pulled back to the spin bundle. The contours I' and I are homologous
to the equator of CP* in U NU and are such that I'—T surrounds the point par = mar.

The functions i and i do not descend to PT. They are global and homogeneous

of degree 2 in 74 therefore
WAIVAA/h = WA/VAAJL = WA/WB/WC/EAA/B/CI (319)

where ¥ 44/ is the third potential for a linearised ASD Weyl spinor. ¥ 44/p/¢r is
defined modulo terms of the form V 4 4vp/¢cry but a part of this gauge freedom is fixed
by choosing the Plebanski coordinate system (there is also a freedom in §© which
we shall describe in the next subsection) in which ¥ 44/5:¢r = 04:05:00/'V 40dO. The
condition V 4 RO prcry = 0 follows from equation (3.19) which, with the Plebaniski
gauge choice, implies 60 € W,. Define 6f4 by Vaadf = padfa. Equation (3.19)
becomes

]g g;,(T’;’f’))ng,dpD/ = 21V 40 00. (3.20)

The twistor function 0 f is not constrained by the RHS of (3.20) being a gradient.
To see this define d fap by Vaa(0fppp) = 0 fappapp and note that in the ASD
vacuum 6 f 4 is symmetric which implies V4 4,8 f4 = 0. Therefore the RHS of (3.20)
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is also a solution of a neutrino equation so (in the ASD vacuum) it must be given
by a?'V a4 ¢ where a? is a constant spinor and ¢ € W,. Equation (3.20) gives the

formula for a linearisation of the second heavenly equation

1 of )
60 =— ¢ ———ppdp”. 3.21

27TZ T (pB/OB/)ZLpD IO ( )
Now recall formula (3.12) defining R. Let RJf be the twistor function corresponding
to RIO by (3.21). The recursion relations yield

RO fa D % 0fa D
WA dpP = : , d
7§< Bop )3 P T T (0P o )20 i)

so ROf = \715f.
O

Let 69 be the linearisation of the first heavenly potential. From R2?6Q) = /O it

follows that
1 of ,
60 = — dp© .
2mi ?g (paro® 2 (ppiP )2

3.4 Z.R.M Fields on heavenly backgrounds

Now consider a general situation of linear fields on ASD vacuum backgrounds [18].
Let 6 f be a function on a curved twistor space homogeneous of degree n. Then
contour integrals that give a splitting on the spin bundle can be chosen to be

1 (WA/OA/)nJrl
"= o 0 Np - d
2mi fi: (p% mer)(pP op )t flpe)p-dp

and similarly for h. The equality 7'V uh = 14V 4 h defines a global, homogene-

ity n 4+ 1 function

/ / ! /
7TA Vaarh = 7TA17TA2...7TA"+1EAA/1A/2”.A;L+1.

With the chosen splitting formulae, >4 ALALALL V 4000© which can

be thought of as a potential for the spin (n+2)/2 field (the field itself is well defined

= 0,4/101412...014;+1

only in flat space)
Va1 A9 Anis = V4,0 VA0V 4,000
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where
1 of
00 = — T 2P dp.
2mi Jr (0 op)

Differentiating under the integral one shows that 14, 4,4, , satisfies

n—+2

VA2 A 204 4y A = Opoaya, VENMVORVA VA, EAnH)A’lA’T..A’nA/"H-

(3.22)
The last formula generalises the one given in [57] for a left-handed Rarita—Schwinger
field. The Weyl spinor Cypcp is present because one needs to use expressions like
Veoedfap (compare the proof of the Proposition 3.16). Note that the Buchdahl
constraints do not appear. This can be seen by operating on (3.22) with VA1, .
The usual algebraic expression will cancel out with the RHS. (Note, however, that
the definition of the field is not independent of the gauge choices as it would be in
flat space.)

The notion of the recursion operator generalises to solutions of equations of type
(3.22). We restrict ourselves to the case of ASD neutrino and Maxwell fields on
an ASD background. For these two cases the RHS of equation (3.22) vanishes and
fields are gauge invariant.

Define the recursion relations
RlDA = VAOIR(5®. (323)

for a neutrino field, and

Ripap = Va9 Vpy RO

for a Maxwell field. It is easy to see that R maps solutions into solutions, although
again the definition is formal in that boundary conditions are required to eliminate
the ambiguities. A conjugate recursion operator R will in Section ?? play a role in

the Hamiltonian formulation.

3.5 Hidden symmetry algebra

The ASDVE equations in the Plebanski forms have a residual coordinate symme-
try. This consists of area preserving diffeomorphisms in the w* coordinates together
with some extra transformations that depend on whether one is reducing to the first

or second form. By regarding the infinitesimal forms of these transformations as
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linearised perturbations and acting on them using the recursion operator, the co-
ordinate (passive) symmetries can be extended to give hidden (active) symmetries
of the heavenly equations. Formulae (3.21) and (3.16) can be used to recover the
known relations (see for example [71]) of the hidden symmetry algebra of the heav-
enly equations. We deal with the second equation as the case of the first equation
was investigated by other methods [54].

Let M be a volume preserving vector field on M. Define 6%,V 44/ := [M,V a4/].
This is a pure gauge transformation corresponding to addition of £,;¢g to the space-

time metric. Define also

Once a Plebanski coordinate system and reduced equations have been selected,
the field equation will not be invariant under all the SDiff(M) transformations.
We restrict ourselves to transformations which preserve the SD two-forms X'V =
dwa A dw? and 29 = dzy A dw?. The conditions £,;2° = £,29" = 0 imply
that M is given by

M

_0h 0 (89 B 0?h ) 5,
 Qwy OwA Ow 4 Ow 40wB /) OzA
4)

where h = h(w?) and g = g(w?). The space-time is now viewed as a cotangent

bundle M = T*N? with w” being coordinates on a two-dimensional complex man-
ifold N2. The full SDiff(M) symmetry breaks down to the semi-direct product of
SDiff(A?), which acts on M by a Lie lift, with T'(N2, O) which acts on M by trans-
lations of the zero section by the exterior derivatives of functions on N2. Let §9,0
correspond to 09,V a4 by

0*0%,© 0

0
MV = 53008 Bap

The ‘pure gauge’ elements of W, are

0%g 9h

5?\4@ = F+2,G*+ 1418 + T ATBTC

awAawB 8w,48w36wc
dg 00 oh 00 B 0’h 00
Owy OxA  Owy OwA Ow 4 0wB dxA

(3.24)
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where F, G4, g, h are functions of w? only'. The above symmetry can be seen to
arise from symmetries on twistor space as follows. We have the symplectic form > =
dw? Adwy on the fibres of p: PT — CP'. Consider a canonical transformation of
each fibre of y leaving ¥ invariant on a neighbourhood of A = 0. Let H = H(z% \) =
Yoico h;\* be the Hamiltonian for this transformation pulled back to the projective
spin bundle. Functions h; depend on space time coordinates only. In particular A
and h; are identified with h and g from the previous construction (3.24). This can
be seen by calculating how © transforms if w? = w + o + X200 /0x 4+ ... — &4,
Now O is treated as an object on the first jet bundle of a fixed fibre of P7 and it
determines the structure of the second jet.

Let 6,0 := R'§,,0 € W, and let 0%, f be the corresponding twistor function (by
(3.21)) treated as an element of I'(U N U, O(2)) rather than H*(PT,O(2)). Define

o L[ 100 f) /
7 g L MJ>YN , A
(00, ON]© = i —(7?0/)4 T dr

where the Poisson bracket is calculated with respect to a canonical Poisson structure

on PT. From Proposition (3.16) it follows that

5 0000 = - f y-ei 10l 0n )

= [dr? = R 60, O
ori (mo)t T [MN]

LA similar result could be obtained for the first equation by demanding
L (dw? Adwy) = L (do? Addy) = 0.

However, we can present a different derivation based on gauge freedom for corresponding ASDYM
equations. Consider ASDYM with gauge group G =SDiff(3?) where %2 is a symplectic manifold
with the symplectic form %90

0 Ohaar O

Agn = .
AN =530 T 508 dag

0
DAA/ = W
Here yAA/ are space time coordinates and @wP are coordinates on 2. The infinitesimal gauge
transformation of the Hamiltonian is given by

Shaa ={f(y,0),haa} +0aaf+ gaa(y).

The Poisson bracket is evaluated with respect to ¥ Perform the reduction by 9/ 8yA1, and use
the gauge freedom to set / ,
hao =hao (y®),  hav = 0Q/0y™!

where Q is a function of (@4, y4!) = (@4, w?) = 244", With this choice ASDYM are equivalent
to the first heavenly equation. The ASD tetrad is Va4 = Daas. The residual gauge freedom
yields

500/ 0w = {f,00/0w™} + Fa(w?).
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so finally we have

Proposition 3.5 Generators of the hidden symmetry algebra of the second heavenly

equation satisfy the relation

(021", 687] = Spar g ™. (3.25)

3.6 Recursion procedure for Killing spinors

Let (M, g) be an ASD vacuum space. We say that L A;..A, is a Killing spinor of
type (0,n) if
VA(A’LBQ...BZ) - O (326)

Killing spinors of type (0,n) give rise to Killing spinors of type (1,n — 1) by
VA% Lg g =cam K s 5.
In the ASD vacuum KP52-Bu is also a Killing spinor [22]
V(A(A'KB)B;...B;L) = 0.

Put (for i =0,...,n)
L; = Bh PP

!
L...t7o i""l...OB"LBimB%,
. ’ / ’ ’ .
and contract (3.26) with (P1....5i0Pi+1...0Pn+1 to obtain

iVarLisy=—(n—i+1)VayLs, 1=0,..,n—1.

We make use of the recursion relations (3.12):

—1

—R(L;_1) = L,.
n—i—l—iR( 1>

This leads to a general formula for Killing spinors (with V 40 Lo = 0)

—1 n
(n .
L= (_1)1( ) R'(Lo), Lppy. B, = Z O(B;..-OB;_LBZ/_H...LB;L)Li. (3.27)
i=0
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3.7 Example

Now we shall illustrate the Propositions 3.3 and 3.4 with the example of the Sparling—
Tod solution [70]. The calculations involved in this subsection where performed on
MAPLE. I would like to thank David Liebowitz for introducing me to the use of
computers in mathematics. In this section we shall not use the spinor notation. The

coordinate formulae for the pull back of twistor functions are:

W= wHy—NO, + Mo, + ...,

pto= 2= =20, — N0, + ... (3.28)
Consider
0=—7, (3.29)
wr + 2y

where o = const. It satisfies both (1.1) and (3.6).

3.7.1 The flat case
First we shall treat (3.29), with 0 = 1, as a solution ¢, to the wave equation on the
flat background (1.1). Recursion relations are

-9y - T
(R¢O)x - (wx+2y)27 (R¢O)y (wx+zy)2.

They have a solution ¢; := Rpg = (—y/w)po. More generally we find that

1

_ (3.30)
wr + 2y

oni= R'gy = (=2}

w

The last formula can be also found using the twistor methods. The twistor function
corresponding to ¢g is 1/(u°u'), where g = w+ Ay and pu; = z— Az. By Proposition
3.16 the twistor function corresponding to ¢, is A™"/(u°u'). This can be seen by
applying the formula (3.21) and computing the residue at the pole A = —w/y. It
is interesting to ask whether any ¢, (apart from ¢g) is a solution to the heavenly
equation. Inserting © = ¢, to (3.6) yields n = 0 or n = 2. We parenthetically
mention that ¢, yields (by formula (1.4)) a metric of type D which is conformal to

the Eguchi-Hanson solution.
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3.7.2 The curved case

Now let © given by (3.29) determine the curved metric
ds* = 2dwdz + 2dzdy + 4o (wr + 2y) 7 (wdz — zdw)?. (3.31)
The recursion relations
Oy(R9) = (0w — Ouy0y + Oyy0:)d,  —0u(Re) = (9; + O400, — Oyy0y)
are

—0.(RyY) = (0. + 20w(wz + zy) > (wd, — 20,)),
Oy(RY) = (0 +20z(wx + zy) "} (w0, — 20y) ),

where 1) satisfies

Dot = 2(0,0, + 0,0. + 20(wz + zy) (%0, + w?*0,* — 2w20,0,)) = 0. (3.32)

1

One solution to the last equation is ¥y = (wx + zy)~'. We apply the recursion

relations to find the sequence of linearised solutions

_ _3) 1 _ 2 <_£>2 1
V2 ( w w:zc—l—zy’l/)3 3(wx+zy)3+ w/ wr+zy

v = A (= L)
k=0

To find A'("n) note that the recursion relations imply

R << — %)k(wx + zy)j> =
(2o ) (D)

This yields a recursive formula

k+1
k _ pAk—1 k+1 0o _ 1 _ -1
Aliny = Ay — 200740 Ap=1 Ay =04

(n) = 0, k=0...n,

(3.33)
which determines the algebraic (as opposed to the differential) recursion relations

between v, and 1. It can be checked that functions 1, indeed satisfy (3.32).
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Notice that if o = 0 (flat background) then we recover (3.30). We can also find the

inhomogeneous twistor coordinates pulled back to F

oo n k
0 n—+2 k Yy k—n—1
— wdy+ Y o2y Bhw( -2 ,
i w+ Ay + 2 o 2 mw( = (wx + zy)

o0 n k
T n+2 k(T k—n—1
po= z— A+ E oA 5 B(n)z(z> (wx + zy) :
n=0 k=0
where

B,y =Bl —20

k+1 0 __ 1 _ -1 _ —
w "2 gabe s Bo=L By =0 By =0 k=0.n.

(n)

The polynomials p# solve L(u?) = 0, where now

Ly = —A0y —2X0z2*(wz + 2y) 20, + (1 + 2 owz(wz + 2y)°)9,,
Ly = X, + (1 =2 owz(wz + 2y)*)0, + 2Xow*(wz + zy)*)0,.
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Chapter 4

The Hamiltonian description of
twistor lines and generating
functions on the spin bundle

In this chapter we shall give an alternative view on heavenly potentials as generating
functions on the spin bundle. The second potential © will be used to construct the
twistor space, and then all heavenly potentials will be reinterpreted as the generating

functions on the spin bundle.

4.1 The Hamiltonian interpretation
of the second heavenly potential

Newman et. al. [51] make the first heavenly equation (3.2) A-dependent and show
that w” may be found by integrating the Hamiltonian system which has Q as its
Hamiltonian. In their treatment A plays the role of time. We give an analogous
interpretation of the second equation.

Choose a spinor say o4 = (0, 1) in the base space of the fibration p : PT — CP*

and parametrise a section of u by the coordinates

AA’,_awA Al A (w, 2) A0 A (y,—x)
.—aTA/WA/:OAI,fL’ —wo— w,z), T =Tr =\\y,—T).

Here 24!

" gives the initial point on the curve, while 2 is a tangent vector to
the curve. To proceed further, ie to find higher terms in (3.13) we do one of the
following:

(a) Insert the second heavenly tetrad into the recursion relations (3.12) and solve
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for w4l
s pa_ 00
Oz BY Oz BV

Note that (3.12) is used to find the fourth term in the series, since the third one is

wh = A 4 A4V 4 \2BA (4.1)

the definition of ©. This is because X' A 200" = 0 implies 94pwj' = 0 which gives
integrability conditions for the existence of ©.

(b) Make the second equation 74 ( i.e. A\)-dependent. Define X44" = gw?/dm 4.

Continue the curve to another order in A (Figure 1), so that to order \?

OxBY”

/ ! ! / /
XA = Al —|—)\on, XA = 240 4 \e

We then put the space-time metric into a standard, second heavenly form with
respect to the coordinates X 44’
0%e/

AV BY
XAV X B0 dp X dp X

ds? = 2e4pdp, XM A, XY + 2
which forces us to introduce ©’, differing from © by terms of order A
@/(XAA/, 7TA/) = @(ZL’AA/) + /\T(.TAA/).

We find ©’ and can then iterate the process' to obtain the subsequent orders in
XA4  The parameter A plays the role of time and ©’ plays the role of a time
dependent Hamiltonian. In homogeneous coordinates, © is homogeneous of degree

—4 in TA.

Proposition 4.1 The construction of a compact holomorphic curve in PT s equiv-
alent to the integration of the Hamiltonian system

pa 00 or 09
0Xay  O0Xar

(4.2)

with a ‘time’ dependent Hamiltonian ©' € T(U N U, O(—4)).

The dot means differentiation with respect to A. The last equation (which gives the

recursion relations) is valid up to the addition of f(X4).

!The difference between approaches (a) and (b) is clear. If we understand the problem of
constructing a holomorphic curve in P7T as the formal exponentiation of the operator AR then
(4.1) corresponds to the Picard method, while the process described in (b) resembles the method
of Euler lines.
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Figure 4.1: Construction of a holomorphic curve.

Define 0 - a differential operator on the sphere - by

AL Ak k o
Lk =(-1)'——F—
m n f ( ) 87TA1/---67TAk/
The first two equations can be written as
2wt =1¥'VvA,0, o XM = (X4 Oy, (4.3)

where IT = 7478V 0 A VA5 is a (homogeneous) Poisson structure defined on
the spin bundle tangent to the a-planes (note that it projects down to zero by the

twistor fibration). The third one implies that ©' satisfies the anti-twistor equation.

2 % o= (4.4)

4.2 Heavenly potentials as generating functions

This section provides another geometric interpretation of the various heavenly poten-

tials, viz. as generating functions for canonical transformations of the spin bundle.
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This approach was (implicitly) suggested in [56] and used in connection with the
first equation in [11]. Here we apply it also to the second equation and to other
forms of the first equation. First introduce another parametrisation of a curve in U
given by

A

~A
AN oW .

~ ! ~ ~ !
, {EAO :J}A, CL’AI

aTrA/ T Al =L 7t
Lift ¥ = dw? Adwy and Y = daA AdD 4 to the spin bundle and expand them around

A =0 and A = oo respectively. Since the relations
SOV = dag A dw? = d(zadw?) = db, 0 = diy AdEA = —d(F4didy) = df

define the same symplectic form we conclude that (w?,z4) and (@0*,7,4) are related
by a canonical transformation. Let S defined by dS = 6 —6 be a generating function
corresponding to this transformation. We define finite heavenly equations as
those which are satisfied by S as a consequence of algebraic identity 0V A 20 =

—2v. We list three possibilities

o Let S = Q(w?,10,4) so that 4 = 9Q/0w? and 74 = 9Q/0w,. The relation
SOV A S0 = —9y written in (w?,@,) coordinates yields the first heavenly
equation for €2. The flat solution then corresponds to the identity transforma-

tion Q = wW 4.
e By a Legendre transformation we can define another generating function
M(.T}A,’LTJA) =0 - wAa:A

which satisfies

OMAOMA  OMgOMA o OM
= T = —.
008 0dp | 0xF Oxg o e MAT 5A

(4.5)
This can be considered as a new form of (3.2). Note however, that now
(e OV 10 (1) £ 1

since the corresponding tetrad

Wwp

! !/ /
eM = da? + eBep?, A0 = (MCDMCD) dwp

becomes degenerate for an identity transformation.
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e One can also perform ‘half’ of the Legendre transformation which led from
Q2 to M. This choice will produce the evolution form of first the heavenly
equation [26], which originally was derived from the Ashtekar-Jacobson-Smolin
formulation of the anti-self-duality condition. Indeed, defining h(x, z,%%) by

dh = d(Q2 — wz) we obtain by the usual method
hx:p = hxwhzé - hmihzﬁ/- (46)

The tetrad is (now 24" = (z, —2))

1 0*h

Ry D01/ D0

A0 1 9*h ~ 11 1 or 01’
e = ———dwg, e =dz, e =dr +
hcca: 81‘,41/821)3

dwp.

The function h, similarly to M, is degenerate for identity transformations.
However the evolution form of (4.6) enabled Grant to write down a formal
solution. The symmetry structure of (4.6) was investigated by Strachan in

[69]. His results can be recovered by inserting Grant’s tetrad into the recursion

relations (3.12) and finding higher infinitesimal symmetries.

The method of generating functions can be also applied to the second heavenly
equation, which according to our terminology is a representative of infinitesimal
heavenly equations. It can be obtained as an infinitesimal form of the first equa-

tion. Consider an infinitesimal generating function

S = whiy + eO(w?, wp). (4.7)

A

In the flat case W4 = z4. Replace w? = const by w + ex4. This, when inserted to

the first heavenly equation, gives the second heavenly equation for ©.
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Chapter 5

Zero—Rest—Mass fields from
O(n) ® O(n) twistor spaces

5.1 Preliminaries

So far we have been looking at O(n) & O(n) twistor curves from the point of view
of integrable systems. Now we shall elaborate on an associated paraconformal ge-
ometry. We shall see that the zero-rest-mass field equations on the moduli space of
O(n) @ O(n) curves can be solved by means of twistor functions.

We start by describing the flat case. The moduli space of twistor lines is C?*2

(A.1). Its tangent space has an inner product

a A (A Al
ny==¢€ BE( 1(31...8 )B%)’

A(AL AL

where, according to the abstract index notation, v* = v The incidence

relation between a point and a twistor is
/ /
wA = xAAl'”Anﬂ'All...WAQL. (51)

Each pair of spinors Z = (w?, ma) determines the 2n dimensional null surface
spanned by vectors of the form A\AA1-An-174%)  with A\A41-4%-1 varying. We shall
call these kind of surfaces a planes. Points of the « plane given by Z are solutions

! ! .
Adi-Aw and solving for

to (5.1). The other way of interpreting (5.1) is fixing =
(w?, 7). The solution, when factored out by the relation (w?, ma/) ~ (k"w?, k7 ar),
is a rational curve with normal bundle O(n) & O(n). Normal vectors to the curve
are

P 0
V= VAAl"'A”ﬂ'A/ LTTA
! " Qw4
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The 2n+ 3 dimensional projective primed spin bundle F = C***? x CP' is equipped
with 2n—dimensional distribution Lay.. a; = 7410, Ay..A, - Lifts of objects constant
on a-planes are Lie derived along L, ;. The other type of null surfaces in C2n+2
are two-dimensional § planes spanned by A\p41-4n with A\ fixed. The space of
all f-planes is the dual twistor space PT*. It is an open subset in CP""2. The

incidence relation between a point and a § plane (dual twistor) is
pAll...Afn — _:CAAll"'A;’L)\A_ (52)

The dual twistor space arises as a factor space of a projective unprimed spin bundle

by the n + 1 dimensional dual twistor distribution
Ma; 4, = AA@AA’l...A’n-
This leads to a dual double fibration picture!
C2n+2 -« P5A2n+3 N PT*nJrQ.

Let Z = (w?,ma/) be a twistor and W = (A4, p14n) be a dual twistor. Define the
scalar product

(Z, W) :=ws + 7TA/1...7TA4LpA’1“'AI".

We say that Z is incident to W iff (Z, W) = 0. The incidence relation holds at
points of C?"*2 which are incident to both W and Z.

Introduce the reality conditions on o : N' — N by o(\) = o(\° A1) =
(AL, =X0), o(7) = o(x”, 7)) = (=7V,7") (which are the usual definitions of the
Euclidean structure on S4 and S4). The Atiyah-Hitchin-Singer picture (C.6) could
be reproduced for 3 planes. The projective unprimed spin bundle is now viewed as

a 2n + 4 dimensional real manifold. The n + 2 dimensional distribution

MA’l...A’nv &)\

LOur definition of 3 planes resembles the approach to « planes given in [81, 49], which we shall
briefly describe: Let A = 0...n, A’ = 0,1. The « planes are defined as

’
x4 A = const

so that a plane is n+1 dimensional. The twistor space is a subset in CP" 2. Coordinates transform
as

’
AA AA A

’
T — Ax

where A € GL(n + 1,C) and A € GL(2,C). The twistor distribution is n + 1 dimensional.
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is an integrable almost complex structure (C.5), which takes (PS4)?"** to an n + 2
dimensional complex manifold. It can be identified with the dual twistor space, on
which
(A, p M) = (=X, —P )
For odd n ¢ does not have fixed points on P7T ", so one can define lines joining

W to o(W). This gives rise to a non-holomorphic fibration of PT* over C***2,

5.2 ZRM fields

In this section we shall study the ZRM fields on C***2? and the associated integral
formulae. Fields with primed indices appear in the usual way (this is a concrete
realisation of the Serre duality (A.2) and 7 -dr is the section of a bundle which does
not depend on n). The construction for the negative helicity fields is more elaborate.
In particular the ‘fields’ associated with twistor functions of positive homogeneity
have both primed and unprimed symmetric indices. Their potentials have two sets
of separately symmetric indices.

From now on the upper numerical index denotes the homogeneity in m4/. Let
Z,(k,I') denote the subspace space of sections of SA1-4x)(41--4) homogeneous of

degree r in w4 which satisfy
vAlBimB;l\I]Al..AAkA’ll..A; =0, VBAllBé“'B;l\IJAl...AkA’l..‘Ag = 0.
Proposition 5.1 There is a one to one isomorphism
HYPT,0(kn —2 —1)) ~ Zy(k, ).

Proof. Let f” be a twistor function homogeneous in 74/ of some non-negative degree

r = pn + ¢ where p > 0 and 0 < ¢ < n. Define an element of H'(PT,O(-1)) by

8p+1 T
= 7TA/ f

fAl...ApHA/l...A;l_ 1-'-'7TA;1_Q_IW'

q—1

This can be split uniquely using the Sparling formula (B.1)

favagoaga, o =Faapaar.an o~ Faiaaa.an, -

Define the field on C?"*2 by

Lppy..g, Fa.apny.a,_ = Ya,.a,0BB,. BLALA,_ - (5.3)
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It has p + 2 unprimed and 2n — 2 — ¢ primed indices. Using (B.1) and making the

replacement
—8$AA/1---A/TL — PA, LA (54)
under the integral sign yields the integral formula
1 P2 f

\IlAl-..Ap+1BB§...B;LA’ AL 27rz PA’ ~PA;,_, PBy--PB;, awAl_._awApHawBP'dp-
(5.5)

It satisfies

VAlC{"'CTI’\IfAl...Ap+1BB§...B;Ag...A;qul =0, VORECAy s msy B o1 =0
(5.6)

Solutions to equation (5.6) are therefore given by H'(PT,O(pn + q)). To obtain
the statement of the proposition set 2 < k=p+2, n—1<[l=2n—-2—¢q. We
treat the case of f™! (orp = —1,g =n—1, or k = 1,] = n — 1) separately. The

standard arguments give

~ 1 oft
-1 -1 —1 -1 _
=F —F , VYaa.a =Lia a4 F = ' : d
f AA. AL, AA. AL =5 PA PA, P dp
Conversely given a solution to (5.6) we can find two solutions F,,, 4 "t and

F Apprd;,_,_, tO (5.3) which are holomorphic on Ur and U 7 respectively. Their dif-
ference descends to PT. As a consequence of (5.6) it vanishes when contracted (on

the left) with 74" or 9/0w?. This gives rise to an element of H*(PT,O(r)).

O

The fields obtained in the above proposition are symmetric in all the primed and
unprimed indices. Now we shall see that (if n > 1) the potentials are not symmetric

in the primed indices.

5.3 Contracted potentials
We shall start from constructing the kth potential for the field (5.5). Let f €
HY(PT,0O(r)) and let r > kn — 2 for some integer k. We split the derivative

ak—lfr

Do DAt =Farap, — Far Ao
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where, from (B.4),

Fade, =

1 (ﬂ' . O)T—(k—l)n+1 ak—lfr
_}{ p - dp.
211 Jp (p-m)(p - o)r—(k=Dntl 9ydr | GuwAk-1

This gives rise to a global polynomial of degree r — (k — 1)n 4+ 1 in w4 on F

— By Bl (e—1yn+1
Laay..a,Fay a,, = ‘I)Al...AkAg...A;IB;...BL(FMH o qr T (k=

which produces the kth potential

CDAI...AkA’Q...A;LBi...B;i(kil)mﬂ _

1 7{ PAL---PA, ok fr
r(

(k=D)n+1 Q7rg p - 0)r—k=Dn+1 gyt JuAr

p-dp. (5.7)

op’...op!
1 r—

The homogeneity of the integrand is
r—kn+2+n—-1—-r4+kn—n—-1=0.

Contracting n — 1 primed in indices in the last formula yields

~ 1 1 oFfr q
v BB, = 0B85 L (p- o) —Fnt2 guAr gpA TP

This is a symmetric object in primed and unprimed indices. It is given by
H'(O(r), PT)

and it can be compared with the field (5.5) obtained in the previous section. Assume
that » = kn — 2. This yields an object with purely unprimed indices
1 akfkn—Q

omi r@wAl...é)wAkp.dp (58)

Du,a, =

which satisfy

AlA AL
A\Vainis! n(PAl---Ak =0.

Thus, solutions to (5.8) are given by elements of H'(PT,O(kn —2)). If n = 1 then
(5.8) is the usual contour integral formula for right-handed fields.

One can also introduce the Hertz Potential, which (for a homogeneity r twistor
function) has r 4+ 2 primed indices. Let ® 4 AL AL BBl be the first potential given

by the k = 1 case of the formula (5.7). It can be written as

/ 1 "
0NV A a5 I p-dp, (5.9)

any.a, BB, = 008, e P

+
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where

1 fr
O=—¢ ——p-d 1
© 2m’7€(,0-0)”2p ’ (5.10)
satisfies
VABL-BaNg yoay 00 = 0. (5.11)

The chain of potentials is formed by the relation (for r > n),

By,
(I)ABA;le/ran - VB ¢AA{I7,718;‘+1‘

Here A" and B’ are multi-indices (see Appendix B). The (p + 1)th potential is the
field (5.5), and the Oth potential is the Hertz potential

(I)All"'A/T+2 = OA/l"'OA/r+25@'

The first potential (5.9) can be used to find the inverse twistor function correspond-

ing to the field (5.5)
! ! ! / / !/ !
f?”(ﬂ.O/’ xccl"'C”WC{-'-ﬂ'C;l) — \% ¢AA/2"-A;LBi...B;+17TB1"'ﬂBdeAA2...AﬂBT+1
c
1 Al /
= j{(ﬂ - 0)"V A ay.. a—0Oda T A2
c

where C'is a contour in C*"*2, coming from the Ward triangle.

5.3.1 O(2n) twistor functions

A special role is played by f?* € H'(PT,0(2n)) as it can be used for active defor-
mations of the twistor space. Let @4 = w* be the standard patching relation for

PT and let f4 € S4®@ HYPT,O(n)) give the infinitesimal deformation
ot =W+t + O().

The globality of a symplectic structure doaAdo? = dwaAdw? implies f4 = 4B 2L

OwB "

We form an indexed element of H'(PT,O(—1)) (which can be split uniquely)
83 fzn

TAL-TA S8 o o — fABCA’...A’ = Fapca,.a — Fapca,. .-
2 n awAawBawC 2 n 2 n 2 n
From Sparlings formula (B.1)

1 fapcay..a,
‘FABCA’Q...AQL—_Q - ————p-dp.
™ Jr pPAT
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This gives rise to a global (symmetric) object

Capcpay...a,p,..p, = Lppy. pyFapoa,.. A,

which is given by the integral (which is the special case p = 2,¢ = 0 of (5.5))

1 84 2n

CABCDA/ A’ D...D! — T . pA/ pA/ lepD/ p . dIO
2 An o n 27TZ r 2 n 2 nawAawBawCawD

Another way of seeing this is by potentials. Use the non-unique splitting f?" =
F2 — F2 and define a global object of degree 2n + 1 by
Laay. 4, F2" = San,. a8, .B,0..CLD, mB B Pir o,
It is easy to see that
VARENS s u anmmorcnpy = 0,
and Y aa,..a1 B1..Brc;..cr,p; 18 one of the potentials (5.7), related to the field by
D

C!..Cl, B! ..B
— 1 1 1
Cacpay...a,py..0, = Vpp o Ve "V Ay A,y BLC; 04D, -

The chain of potentials is

(5@14/131“_3;(){_”0411)/1 = OA’IOBi~-'0B,’1001~-'OC’;10D’15®
YAAy..ALB,.BLC,...CLD, = OB}.--0B,0c,.-00,0p V aq Ay, 47,00
Hapay anB,. B,D, = 0B---0B,0p;VpoVavay,. a,00
Capcay..anpy = 0p Voo VeoeVaga,..a,00

Caopay...anpy..p, = VooVpeVaoa,..a,Vpop,..p,00.

This can be compared with the corresponding chain for n =1 [39].

We exemplify the ‘abstract multi-index notation” (Appendix B) by the chain of
potentials associated with a twistor function homogeneous of degree 2n.

In a ‘weighted calculation” we first sum homogeneity indices, and then convert

what is left to primed multi-index. The symbol ~» means ‘gives rise to a field’.

~

2n 2n T2n 1 on
7= FU=FT Ly FTU e Xaw s, Yaa,,

ann . R
_ n 1

owB Fp—Fp; LAA;L_l‘Fg ~ Hapa, g, — Hapap

82f2n . .
_ 0 1
OwBOLC ‘FJOBC - ‘FBCa LAA;_I}-J%C ~ 1—‘ABCA;IAB' — FABCA;L,2
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and

L i S S S -

Ay AL OwBOWCHLD BCDA!, _, BCDA! _,»
1 -1
LAA;L,1 BcpA,_, ™7 Capcpay,

The hatted objects denote contracted potentials. The relation between I'ypc4;, and

Capcpa, , is

2n—2
ALAY.LAL BY..Bl, _ ~Ab. ALBS. B,
Vpe 2 = Cabop :

5.3.2 The Sparling distribution
Consider a 2n + 5 dimensional space with coordinates x%, w4/, 4 constrained by

man™ =1, n ~n+ kr. The 2n + 2 dimensional distribution spanned by

/ a !/
{m? prv TV auga,, T

is integrable. In calculations we use

A

Al _
Nt Voaa A = DA

The pullback of the twistor co-cycle
f(?TA/, xAAllmA;L) = f('xav A, TIA’) - ﬁ(g;a’ A, TIA'>

gives rise to potentials:

Al a Al 8 -~

m WF:’]T W.FZQb(ZEa,WA/,HA/),

and
Lany..anF = Lany..a, F = dany..a, (T mar,nar).
The relation between them is

A/

Lo, ap=m W@MA'Q.A.A;-
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5.4 Relations to space time geometry

In this section we shall study the geometry of the moduli space of sections from
Proposition (??). For n odd TN is equipped with a metric with holonomy SL(2, C).
For n even, TN is endowed with a skew form. They are both given by

G(U, W) = EAgéAaBi...gA%B%UAA/ WBB/ B/ (5.12)

The bundle S;f‘/ = I'(O, L,) is canonically trivial. The bundle S on space-time
is the Ward transform of O(—n) ® Ty PT where the subscript V' denotes the sub-
bundle of the tangent bundle consisting of vectors up the fibres of the projection to
CP', so that S7' = T'(O(—n) @ Ty'PT, L,). The reducible torsion-free connection is
given by

deAAL-AL FAA’ A, BB{...B;L’

BB].. 37 Ne

together with the decomposition

AALLAL A (AL A . Y (e 4
FBB;...B' FBa ) SB, + 2585(3'“'53’. gl Ep] FB{-)'
The twistor space from Proposition ?? is fibered over CP*. This (and other assump-
tions of this Proposition) implies the existence of a covariantly constant primed
spinors V 441 .a; g = 0. We shall adopt a gauge in which FB, = 0. The SL(2,C)
connection on SA is FAB = I‘ABCC&.“C%@CC{'"CQ'

We shall use the © formalism. From proposition (?77?)
JABA,..ALB,..Bl, = EABEAB,--EAL B, + 0B ...01 04V Ay .41 VBo©. (5.13)

To obtain the paraconformal structure g,, we symmetrise over Als and Bis. The

duals to V, are

2

1 Al ! I Al / 7 Al ’ ! Al / 8 (-) 117 !

6Al A5 A7 dCL’Al A2...An7 €A0 A5 AL dZL‘AO A, LAY = T d B1'1'..1 )
al’A Aé%(‘?x

The symmetric part is

2
/ / AL A’ 8 @ / /
AALLAL) 1 AAL-AL + O(Alsé?. 50') BO’d Bl'..1 :
n aZL’A ch..cl ox
or
’ i AA’ Al / l
AL AL ndeBl...Bn

e
BB;
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where

20
AN AL <€AB€(A’1 cAn) o AL (A 514;)03, op 0 )
7 = 7 e ’ + 7 e /
BBj...B, By "B, G O TR 9y ¢y ey OB

In the Newman-Penrose notation

Z‘ 82@ ! / n / / / ’ .
da?", eA(Al“'A"):E [T Aot ofn) At

1=0

. . n —
e = da? + — 5
n O0xa" 10z

The Cartan equations yield

. 920
ABCC1...Cl, = 001 5 5 B5,,C0Cy..Ch

and it follows that

c 0'e
ABCDC)...C! D}...D!, — 7 7 .
2 2 OxrADxrBHCYCS...Cl Hp DY Dy... Dy,

We rewrite the heavenly hierarchy (?77?) as
Oaray. a,O8By. B, — Oprpy. B, Oaay. a, +{Oaay, a, OB, Bty =0,

where © 4 Ay, = Vaoar. A ©. To find some nontrivial examples we shall look for
a solution satisfying both the linear and the nonlinear parts of the hierarchy. It

satisfies the linear part, so

1 f2n
=i h oo

To find an example generalising the one of Sparling and Tod we should find a solution
00 any. .y = 0N unr a1 0O

to (5.11) with r = 2n

1 of 2

00,4, = 5 (p-0)pay---pa, S
r

p-dp

where 72 = f?*(7-0)7?""2. Take f~2 = (7-0)®" 2 /(w'w') and write the integral

as

1 )\271—2
0O(z%) = — :
(=) 270 ﬁ (20 + Ag0n=1 4 4 Ang00) (zln 4 Agln=l 4 .+ Angl0)
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The poles are separated by demanding that for 24 = const where i > 1, the function
5O is the solution for the ordinary wave equation. We shall take the poles of w® to
lie inside the contour. For n = 2 this yields
211,02 _ 12,01
(200211 — g10501) (711502 — 12,,01) 4 (710502 — 5120012

00 =

which satisfies (5.11). It was a disappointment to see that this solution ( and
analogous solutions for higher ns) fails to satisfy the nonlinear part of the hierarchy.
It seems that one needs to look at the deformation theory. This will be done in the

next subsection.

5.5 Deformation theory

4an

Take 2" = (”%’—1 The deformation equations
wrw

apof*

~ A A 2
= te O(t
@ w® + NG + O(t)
are .y )
~0 0 (70)"" ~1 1 (7m0)™"
W =w +t——, =W —t——t
w0 (w!)?2 (w0)2w!

0

They imply that Q = w'w! = @°%! is a global twistor function (up to the linear

terms in ¢). Put QQ = ati ...ﬁB;er/l ...mp: . The deformation equations integrate to
0% = exp(t(me)*"Q )’ @' = exp (—t(my) Q)W'. (5.14)

Restrict the exponents in (5.14) to the twistor line and perform the splitting (the
method is given in Appendix B)

Q*o-m)*™"=g-g.

This give rise to global objects homogeneous of degree n on F

i

0 gt _ 1,9t _ Aq Aq
e =wed =B T T

~ —0 — ! !/ ~
eI = Wem9t = aA/I,HA%WAl...WA”, ot

We compare the following expressions to (?7)
W= aA/l...A%WAll...WA’"egt
00 00

= ()" (@ AT A N AT o
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00

N
* oxln o)
wh = Baa i mine ot
_ . ., 00 ., 00
= (Wl’)n(xln“‘)\ﬁln 1+.-.+)\ ZE10+)\ —HW‘F—F)\ +2m+
00
N )
* Oz +o)

Expanding the pull back w? to F of the above formulae in A and identifying various

terms we recover the potential and so the paraconformal structure (5.13).

5.6 The foliation picture

If one considers N = M x X as being foliated by four dimensional slices t4* = const
then structures (1)-(3) on PT induce anti-self-dual vacuum metrics on the leaves
of the foliation. Consider ©(z44',t) where t = {t* i = 2..n}. For each fixed
t the function © satisfies the second heavenly equation. The ASD metric on a
corresponding four-dimensional slice Ny, is given by
0?0
Oz AV 5 BY

One would like to determine this metric from the structure of the O(n) & O(n)

ds? = 2€A3dxA1,d:vBol + 2 da?V daBY

twistor space.
If we fix 2n — 2 parameters in the expansion (??) then the normal vector W =

WA40/0w™ is given by

WA _ 5(,UA _ )\n—IWAl' + /\nWAO’ + >\n+1 000
_8x?4’
where 6@ = WA400 /0x44". The metric is
060,501 D’ D!
g(U, W) = S(U @), W (xP). (5.15)

(70 )220 7 4 BB 1115
Here a4 and (4. are zeros of U and W. The last formula follows also from (5.12) if

one puts
WAALAn — AL Ay | pAR)

for W tangent to t4* = const. Note that it is sufficient to consider the slice t = 0.
This is because an appropriate (canonical) coordinate transformation of PT, w4 —

&4(wP, \) induces the transformation of parameters {t = to} — {t = 0}.
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Chapter 6

The Schlesinger equation and
curved twistor spaces

In this chapter we analyse the general curved twistor spaces with a ‘maximal sym-

metry condition’. Consider the system of ODEs

d n+3 Aa
(5 —4)vm =o. A:;)\_ta (6.1)

where t = ty,...,t,.3 € C are constants and A; are constant N x N matrices in some
complex Lie algebra g (which we take to be si(N,C)) and A € CP".

Here V¥ is a fundamental matrix solution to (6.1). Assume that there is no extra

n+3

uy Aq = 0, and that eigenvalues of A, have no integer difference

pole at oo, i.e. >
for each a.
We need some notation; a,b,c,= 1...n are vector indices on C", and 7,7 =

1...dimg = k are indices on g. Let
2t = (C]P)l/{tla "'7tn+3}

be a punctured sphere with n + 3 points removed. And let 7 : it — Y be the
universal covering. Let v be a path in N starting at A and ending at A, such that

m(A) = A,. The function

is a solution to (6.1). Here g, is a nonsingular constant matrix depending on the
homotopy class [y] of 7. The mapping [y] — g, defines the monodromy represen-

tation of the fundamental group of >
m (%) — SL(N,C)
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The monodromy group I is general the infinite discreet subgroup (with n + 3 gen-
erators) of SL(N,C).

The fundamental matrix solution W(\) is a multi valued function with branch
points at t,. If A moves around a singular point ¢, then the fundamental solution

undergoes a transformation by an element of the monodromy group.
T(A) — U(ta + (A = ta)e*™) = T(N)gq

where g, € I'. The transformation g, is conjugated to exp (—27A,).
When the poles ¢, move the monodromy representation of (6.1) remains fixed if
matrices A,(t) satisfy the Schlesinger equation
dA, =Y [Ay, AgJdIn(t, — ). (6.2)
a#b

The usual geometric interpretation is one of the following

e Take a connection

on the vector bundle with fibres CV over ;. Since A is holomorphic it is a flat
connection (there are no holomorphic two forms in one dimension). Equations

(6.2) imply the holonomy of V is fixed

e Treat V as a connection over C"3 x ¥ with logarithmic singularity. Equations

(6.2) imply that V is flat.

6.1 Twistor Construction

In [48, 49] Mason and Woodhouse established a connection between the Schlesinger
equation and twistor theory. In their construction solutions to (6.2) were parametrised
by GL(n+3,C) invariant holomorphic vector bundles over rational curves in CP"*2.
We shall demonstrate that the isomonodromy problem can in the Fuchsian case also
be understood in terms of curved twistor spaces.

By a projective transformation fix the position of 3 poles to 0, 1 and co. Equation
(6.2) arises as the commutativity condition for n + 1 operators

0 0 A,
:ﬁ_A’ Maza—ta—k)\_ta. (6.3)

Mo
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Let F be the principal G bundle associated to C¥ @ C* @ CP' by the represen-
tation of A, by left invariant vector fields on G. The geometry involved in (6.2) is
that of flat G connection on the principal bundle F over C* x CP'. The vectors
M = (My, M,) € TF span the (n + 1)-dimensional integrable horizontal distribu-
tion. Factorise F by distribution M and call the resulting quotient three dimensional

manifold Z - the twistor space of the Schlesinger equation
p: F=GxC"xCP' — Z,:=F/{M}

2, is a (possibly non-Hausdorf) manifold of dimension equal to the dimension of G.

Let vg be the volume form on G. We define
vr = v AdtE A A dEY A dA

where d\ € O(2) ® Q' is a canonical section of CP'. The volume form on Z; is given
by
Vz, '= V]:(Mo, Ml, ceey Mn)

Let X1, ..., Xx be the basis of the right (so they commute with A) invariant vector
fields on F, and let X! := p.X; be the set of holomorphic vector fields on Z;. They
are independent outside a divisor () defined by

Q :={(z1, ..., ) € Zi|lvz,(X'1, .., X'k) =0} € T(O(n + 3)).

Let
a:0Rg—TZ (6.4)

be a vector bundles homomorphism. In general A*(a) vanishes at n + 3 points on a
line. Let
A=at:TZ —0®g (6.5)

be a meromorphic connection on Z;. The g valued one form A is holomorphic on
the complement of (). The connection A is flat on the complement of () and has
logarithmic singularities on (). The connection on the twistor lines is

"L Ald)

A= .
A—t,

a=1
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The holonomy representation of A restricted to each twistor line (which does not lie
on the divisor) is the same. This can be seen as follows: Let m(2;/Q) — G be a

fixed holonomy representation. Restrict it to a line [
T (CP' /{21, o 2}) — m(2/Q) — G

The holonomy is unchanged since the second homomorphism is fixed.
Let [ be a twistor line ( a copy of the CP' under the projection p). Its normal
bundle N is a rank (k — 1) vector bundle, so, by the Grothendieck theorem,

Nl == (’)(ml) D O(mg) D...D O(mk_1>,
but dim H°(CP', N;) = n + k (dimension of the moduli space), so
ml—l—...mk,l:n—i—l, m; > —1.

Let A be a moduli space of rational curves in Z. We consider vectors in T'(N)
which correspond to sections of N vanishing outside Y at (how many?) points. If
the m;s are all equal, this defines a paraconformal structure on A'. The point is
that a paraconformal structure is a decomposition of the tangent space into a tensor
product of two vector bundles. This requires N = OF(m) for m = (n +1)/(k — 1)
(which should be integer), and B = 1, ..., k—1 so that the tangent space is S? tensor
SB1--Bi One also requires a torsion free condition.

The manifold N admits an action of G (with k dimensional orbits) preserving the
paraconformal structure. The paraconformal structure is given by a left invariant

metric on each orbit. Take a set of unit vectors d,, normal to the orbits. Then

n k
g=Y_ Bu(t)dt"dt’ + Y Cy(t)oi0;. (6.6)

a,b=1 i,j=1

Here o; is an orthonormal basis of g*

6.2 Examples

Let us give three examples in which the number of movable poles n and the dimension
of G' are not independent. The first example retains analogy with the Nonlinear

Graviton construction, since the twistor space is three dimensional. Solutions to
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(6.2) are parametrised by flows of the ASD hierarchy. In the second example we
look at ‘special solutions’ to the Schlesinger equation. It follows from the work
of Dubrovin that they correspond to semi-simple Frobenius manifolds. The third
example we take the paraconformal structure on A to be a metric on the cotangent
bundle to the group G.

Example 1(G = SL(2,C). We restrict ourselves to the Garnier system which
corresponds to the N = 2 case of (6.2).

G =SL(2,C), N;=0(m)®O(m), N =C*"xSL(2,C).

A linear transformation {M} — {L4;} where ¢ = 1...m gives ASD hierarchies.

Inverse construction: Let

-~ A/ A/ B/ a
Laay..a, =7 " Danyay. a, + 7T Yaar A pror .
C/

be the twistor distribution. Write it as

- 0
Lap=L,y yg.o=Lat fawgy

where fa, = (71) 3 yanp ot w87 and p = 1..m. Let N' = C?™~! x SL(2,C)
has a Bianchi IX type symmetry. Let X; = (X7, Xs, X3) be generators of the left
action of SL(2,C), and let T, = 9/0t* be the 2m—1 vectors orthogonal to the orbits.
We now use the local (¢%,&;) coordinate system on A, where &; are coordinates on
SL(2,C). The vector M, is tangent to the orbits, and (T,)4414m are orthogonal
to the orbits.

We have
A, A B, _B A 7 ay _
L tma 2 o (T,) A’l...A;nLABé--.Bén(t ) =0.

Therefore

ZEZ;I(B(I)WAQ mAmgBr pBm (Ta)AA’1~~-A41

My, = Vs B
2m—1 c! D! ’ / / Bi...B},
o (Bp) Py P B F (Tb)cci,_C;L'YAD’l...D;lE’F’

L0
o\
0 kX,

o
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where 3, and k' are some functions to be specified, and
Q = 1. gCmgDr g PmgB pF (Tb)ccimqn’YAD’I...D;RE/F/ e 'O@2m + 2))

is a polynomial in A of degree 2m + 2. We shall assume that its zeros are distinct. A
Mobiiis transformation moves three of them to 0,1 and oco. Rescale the coordinates

such that the remaining 2m — 1 = n roots are in t,. Now define
M, = Z P.(f1jLoi — foil1j)Qa(f1jL1i — f1iLa1j) Pa(fojLoi — foiLoj)
i+ji=a
where P,, ()., R, are some functions. The conditions

2m—1 2m—1

kX,
(M, My = [M, M) =0, M, = o + )
a=1 a=1

0
ote

should specify functions 3,, P,, Qq, R, ki, and we are left with the Lax system for
equations (6.2).

Example 2 (dimg = n? 4+ 2n). Frobenius manifolds. Dubrovin considers [13]

(% ~U - §V)\I/ =0. (6.7)

Where U and V are (respectively, diagonal and skew-symmetric) (N 4 1) x (N +1)
matrices. The equation (6.7) has one single pole at A = 0 and one double pole at
A = oo. If we pass to the dual system [28], then we obtain an ODE of the form (6.1)
with A, being (N +1) x (N + 1) matrices (in sl/(N +1,C)) and N + 2 simple poles
(plus a simple pole at co already fixed). Fix two more poles at 0 and 1. This yields
n = N (no Mobitis freedom left). Now :

dimZ;, =n*+2n, dimN =n*+3n, Q€ O(n+3), rkNy=n>+2n—1,

so that the moduli space of sections is even-dimensional.
Example 3 (dimg = n) Now we take n = dimG = k, therefore N' = G x C* = T*G.
The paraconformal structure may be the metric on the cotangent (or tangent) bundle

to the group.
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Chapter 7

The Twisted Photon Associated to
Hyper—Hermitian Four—Manifolds

In this chapter the twistor theory of four-dimensional hyper-Hermitian manifolds is
formulated as a combination of the Nonlinear Graviton Construction with the Ward
transform for anti-self-dual Maxwell fields.
The Lax formulation of the hyper-Hermiticity condition in four dimensions is
used to generalise the second heavenly equation to hyper-Hermitian four-manifolds.
A class of examples of hyper-Hermitian metrics which depend on two arbitrary

functions of two complex variables is given [16].

7.1 Complexified hyper-Hermitian manifolds

A smooth manifold M equipped with three almost complex structures (I, J, K)
satisfying the algebra of quaternions is called hypercomplex iff the almost complex

structure

Ih=al +bJ +cK

is integrable for any (a,b,c) € S%. We shall use a stereographic coordinate \ =
(a+ib)/(c—1) on S? which we will view as a complex projective line CP'. Let g be a
Riemannian metric on M. If (M, J,) is hypercomplex and g(J7,X, J,Y) = g(X,Y)
for all vectors X,Y on M then the triple (M, J,,g) is called a hyper-Hermitian
structure. From now on we shall restrict ourselves to oriented four manifolds. In
four dimensions a hyper-complex structure defines a conformal structure, which in
explicit terms is represented by a conformal frame of vector fields (X, I X, JX, KX),
for any X € TM.
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It is well known that this conformal structure is ASD with the orientation de-
termined by the complex structures. Let g be a representative of the conformal
structure defined by Jy, and let £4B" = (3% 3201 $111") he a basis of the space of
SD two forms A%, (M). The following holds

Proposition 7.1 ([5]) The Riemannian four manifold (M, g) is hyper-Hermitian
if there exists a one form A (called the Lee form) depending only on g such that

AXAE = —AATAE (7.1)
Moreover if A is exact, then g is conformally hyper-Kahler.

In Section 7.2 we establish the twistor correspondence for the hyper-Hermitian four-
manifolds. In Section 7.3 we shall express the hyper-Hermiticity condition on the
metric in four dimensions in terms of Lax pairs of vector fields on M. The Lax
formulation will be used to encode the hyper-Hermitian geometry in a generalisation
of Plebariski’s formalisms [62]. Some examples of hyper-Hermitian metrics are given
in Section 7.4. In the last two Sections we make further remarks about the hyper-

Hermitian equation, its symmetries and hierarchies.

7.2 The twistor construction

If M is real then the associated twistor space is identified with a sphere bundle
of almost-complex structures and the resulting twistor theory is well-known [5, 60].
We shall work with the complexified correspondence and assume that M is a com-
plex four-manifold. The integrability conditions under which (7.1) can hold are
dA € A*_ (M) so dA can formally be identified with an ASD Maxwell field on an
ASD background. This will enable us to formulate the twistor theory of hyper-
Hermitian manifolds as a non-linear graviton construction ‘coupled’ to a Twisted
Photon Construction [79].

In this section we shall establish the following result:

Proposition 7.2 Let PT be a three-dimensional complex manifold with the follow-

g structures
(A) a projection p : PT — CP',
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(B) a four complex dimensional family of sections with a normal bundle O(1) &

o(1).

Then the moduli space M of sections of u is equipped with hyper-Hermitian struc-
ture. Conversely given a hyper-Hermatian four-manifold there will always exist a

corresponding twistor space satisfying conditions (A) and (B).
Remarks

(i) Let K = A3(PT) be the canonical line bundle. Proposition 4 is different
from the original Nonlinear Graviton construction because the line bundle
L := K* ® O(—4), where O(—4) = p*(T*CP")#? is in general nontrivial over
PT. It is the twisted photon line bundle associated with dA.

(ii) If M is compact then it follows from Hodge theory that dA = 0 and the
hyper-Hermitian structure is locally conformally hyper-Kahler. We focus on

the non-compact case.

(iii) If M is real then PT is equipped with an antiholomorphic involution preserv-
ing (A) and we recover a result closely related to one of Petersen and Swann
[60] who constructed a twistor space corresponding to a real four-dimensional

ASD Einstein—Weyl metric with vanishing scalar curvature.

(iv) The correspondence is preserved under holomorphic deformations of P77 which

preserve (A).

Proof. Consider the line bundle
L=K ®0O(-4)

over PT given by the transition function f = det(9&4/0w?). When pulled back to
F it satisfies
Laf =0.

Since H'(F,0) = 0, we can perform the splitting f = hohy!. By the standard

Liouville arguments (see [79]) we deduce that

hi'La(ho) = hilLa(he) = —(1/2) A4 (7.2)
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where Ay = A p P is global on F. The integrability conditions imply that Fap =
Var( AA‘gl) is an ASD Maxwell field on the ASD background. The one-form A =
Agae? is a Maxwell potential. The canonical line bundle of PT is K = O(—4) ®
L*. To obtain a global, line bundle valued three-form on P7T one must tensor the
last equation with O(4) ® L. We pick a global section £ € I'(K ® O(4) ® L) and
restrict £ to [

£y = Sy A mpdr? (7.3)

where 74d74 € Q' ® O(2). A two-form
Yy €A (' (V) @ O2) @ L) (7.4)

is defined on vectors vertical with respect to p by S\(U, V)madnd = £(U,V,...).
Let p*X, be the pullback of ¥, to F. Note that if

A — A —d¢ (gauge transformation on L) then  p*¥y — ep*E,.

Let p*X) be defined over U and p*ib\ over U. We have f(p*%,) = p*i,\. By

definition, p*X, descends to the twistor space, i.e.,
Lr,(p*2) =0. (7.5)

We make use of the splitting formula, and define (on F) ¥ = ho(p*2,). The line
bundle valued two-form >4 is a globally defined object on F, and therefore it is
equal to T4 IS4 P’ Note that ¥y does not descend to PT. Fix A\ € CP! (which
gives a copy My of M in F) and apply (7.5). This yields

‘CLAEO = halLAUlO)EQ.
After some work we obtain formula (7.1):
ANAE = —AADAE (7.6)

The integrability conditions for the last equation are guaranteed by the existence
of solutions to (7.2). Equation (7.6) and the forward part of Proposition 7.1 imply
that M is equipped with hyper-Hermitian structure. If the line bundle L over PT
is trivial, then M is conformally hyper-Kahler.
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Now we discuss the converse problem of recovering various structures on P7T
from the geometry of M. Let M by a hyper-Hermitian four-manifold. Therefore
Caperpr = 0 and there exists a twistor space satisfying Condition (A). Equation

(7.6) implies that F' = dA is an ASD Maxwell field, and we can solve
7TAI<VAA/ + (1/2)AAA')[) =0

on each a-surface (self-dual, two dimensional null surface in M). We define fibres
of L as one-dimensional spaces of solutions to the last equation. The solutions on
a-surfaces intersecting at p € M can be compared at one point, so L restricted to
a line I, in PT is trivial. In order to prove that P7 is fibred over CP' notice that
equation 74 (V g4+ (1/2) Apa )T = 0 implies 74V 40\ = 0, so A and 1/ descend

to give meromorphic functions on twistor space and defines the map P7 — CP'.

O

7.3 Hyper-Hermiticity condition as an integrable
system

The hyper-Hermiticity condition on a metric g can be reduced to a system of second

!, The Lax representation for such an equation

order PDEs for a pair of functions
will be a consequence of the integrability of the twistor distribution. We shall need

the following lemma:

Lemma 7.3 Let Vaa be four independent holomorphic vector fields on a four-

dimensional complex manifold M, and let
Lo =V — )\Voy, Li=Viy — )\VH/, where A\ € CPl

If
[Lo, L] =0 (7.7)

for every A, then ¥V aa 1s a null tetrad for a hyper-Hermitian metric on M. FEvery

hyper-Hermitian metric arises in this way.

K. P. Tod has given a generalisation the first heavenly equation to the case of real hyper-
Hermitian four-manifolds [75].
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Proof. Let V44 be a tetrad of holomorphic vector fields on M. It determines an
anti self-dual conformal structure if and only if the distribution on the primed spin
bundle S#* spanned by the vectors
A/ Al Bl a
La=7"Van +Tgapor®n” —
om C'

is integrable. This then implies that the spin bundle is foliated by the horizontal

. / / / / ’ . . ..
lifts of a-surfaces. Here 74" = %04 + 71"14" is the spinor determining an a-surface

and is related to A = (=7 /7). From the general formula
AsAP 4orl A wBIC — o,
we conclude that 'y aprcr = —Aacrepya for some Ayy and
Ly=m%Vau + (1/2)7% Agu T,
where T = 74" /074" is the Euler vector field. We have

[La,Lp] = 7Y7%(Vaa, Ves] +1/2(Ves, Aaa Y] = [Vaa, App Y]))
= WA/WB/([VAA/,VBB/] +(1/2)€ABVC(A/AB/)CT)
A7B(V anr, Vo) since dA is ASD. (7.8)

I
)

We shall introduce the rotation coefficient C, defined by
[Va7 Vb] = Cgbvm

They satisfy Cupe = ey — I'peo. From the last formula we can find a spinor decom-
position of Cgy.,
Cave = Capccrean + Carpocrean
where
Cupce =Towpne +ecmlayac’. (7.9)

Collecting (7.8), and (7.9) we obtain

[LA, LB] = SABWA,WB,((1/2)A%6A/C/ + €A/C/FB/DCD)VCC/.

We choose a spin frame (0, 1) constructed from two independent solutions to the

charged neutrino equation
(VAA’ + (1/2)AAA/)OA == (VAA’ + (1/2)AAA/)LA = 0.
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In this frame Ty %4 = —(1/2)A%,. To obtain the equation (7.7) we project L, to
the projective prime spin bundle F = PSy . In terms of the tetrad

[Vao, Vio] =0, (7.10)
[Vao, Vel + [Var, Vpe] =0, (7.11)
[Vav, Vg =0. (7.12)

The formulation of the hyper-complex condition in formulae (7.10-7.12) was in the
Riemannian case given in [38] and used in [33]. The Lax equation (7.7) can be
interpreted as the anti-self-dual Yang-Mills equations on C* with the gauge group
G =Diff(M), reduced by four translations in C*.

O

Define (1,1) tensors J4 = e44 @ Vap. As a consequence of (7.10-7.12) the
B

Nijenhuis tensors
N (X.Y) = (T P[X, Y] =T4 [T X, Y] =T§ [X, Te Y +[Tp X, Tg Y] (7.13)

vanish for arbitrary vectors X and Y. Tensors J ff/ can be treated as ‘complexified
complex structures’ on M. The complex structure Jy on S can be conveniently
expressed as

/

~ 4 / ~
Iy = mait? jé‘,, where w474 = 1.

Now we shall fix some remaining gauge and coordinate freedom. Equations (7.10-
7.12) will be reduced to a coupled system of nonlinear differential equations for a

pair of functions.

Proposition 7.4 Let 244 = (2%, w?) be local null coordinates on M and let ©4

be a pair of complex valued functions on M which satisfy

0%0¢ 095 0*0¢
Or s 0wA  OxA dradxp

0. (7.14)

Then

ds? = 2dw 4 @ dw? + 223%de ® dw? (7.15)

is a hyper-Hermitian metric on M. Conversely every hyper- Hermitian metric locally

arises by this construction.
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Equation (7.1) and its connection with a scalar form of (7.14) was investigated by
different methods in [21] in the context of weak heavenly spaces. Other integrable
equations associated to Hyper-Hermitian manifolds have been studied in [27].

Proof. Choose a conformal factor such that As4 = o4 A4 for some o4 and A4.
This can be done since the two form X' is simple and therefore equation (7.1)
together with the Frobenius theorem imply the existence of the conformal factor
such that dX"" = 0. Hence, using the Darboux’s theorem, one can introduce

canonical coordinates w? such that

2 = (1/2)e apdw® A dw?,

. . / .
and choose un unprimed spin frame so that oge?* = dw?. Coordinates w?

parametrise the space of null surfaces tangent to o', i.e. oAV pw? = 0. Con-
sider

/ !
Ty =o' dw? @ Vp

The tensor Jj is a degenerate complex structure. Therefore (73 )2 = 0 where Jj
is now thought of as a differential operator acting on forms. Let A be a function on
M. Then

JE1A(TY (dh)) =0  implies that [V, Vsy] = 0,

and our choice of the spin frame is consistent with (7.10-7.12). By applying the

Frobenius theorem we can find coordinates z# such that

0 0 0
DA’ Var = 5~ — 04" =

Vao = owA A 9zB

Using equation (7.11), we deduce the existence of a potential © 4 such that © 4% =
V.a0©OF. Now (7.12) gives the field equations (7.14)

9*O¢ 005 9%6¢

=0.
O0xA0w?d  OxA Ox A 0xp
The dual frame is
, 004 /
AV = da? + ——dw?, e = dw,
0B

which justifies formula (7.15).
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In the adopted gauge, the Maxwell potential is
0?68

_ A
© OrAdxB duw

A

and V*A, = 0 i.e. this is a ‘Gauduchon gauge’. Electromagnetic gauge transfor-
mations on A correspond to conformal rescalings of the tetrad (which preserve the
hypercomplex structure). The second heavenly equation (and therefore the hyper-
Kihler condition) follows from (7.14) if in addition V4¢©4 = 0. This condition
guarantees the existence of a scalar function ©, such that ©4 = V4,0, which sat-
isfies the second Plebariski equation (3.6). In this case A is exact so can be gauged
away by a conformal rescaling.

For convenience we express various spinor objects on M in terms of © 4.

004

Tetrad e = da? + a—Bde, e = dw™,
b
0 0 008 9
dual tetrad Vay = A’ Var = 90A ~ O2A 9B’

metric determinant  det(g) =1

Weyl spinors  Carprprer =0, Capop = VaorVeoVeoo©Opy,

spin connections  T'japc = —%OA/(V(BQIVC()/@A) + VeoVeo©Oa),
0?05
Paarpor = T 9aBoRACBECHA;
ale i A
Lee form A= de ,
wave operator Oy = A%0, + V{‘/VAU/
0? 0?05 0 004 9 0

- Ox 2 0w?  Ox,0xp 0xA  Oxp OxA OxB’
Ricci scalar R =1/12(V*A, + A,A%) = 0.

The last formula follows because A is null and satisfies the Gauduchon gauge.

7.4 Examples

We look for solutions to (7.14) for which the linear and nonlinear terms vanish

separately, ie.

’0c 00 9?0
Or 0wt OxA dxadrp

0. (7.16)
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A = (y,—x). A simple class of solutions to (7.16) is provided by

Put w? = (w, 2),x
Oy = az!, O =by*, kleZ, abeC.
The corresponding metric and the Lee form are

ds? = 2dw ® dz + 2dz ® dy + 2(alz'™ + bky*)dw ® dz, (7.17)

A=bk—1)ky*2dw —a(l — 1) 12" 'dz.

From calculating the invariant
CapepCABP = (3/2)abk(k — 1)(k — 2)I(1 — 1)(1 — 2)a!3y*3

we conclude that the metric (7.17) is in general of type I or D (or type I1] or N if

a or b vanish, or k < 3 or [ < 3).

7.4.1 Hyper-Hermitian elementary states

A more interesting class of solutions (which generalise the metric of Sparling and
Tod (3.31) to the hyper-Hermitian case) is given by
1

T qwA

O =

Fo(WH), (7.18)

where W4 = w?/(xgw?) and F¢ are two arbitrary complex functions of two com-

plex variables. The corresponding metric is

2 wB 8Fc
- Y Vaw® dw?).
(zawA)? (FC+ (zaw?) 8W3> W @ (wadw?)

ds? = 2dz 4 @ dw? +
This metric is singular at the light-cone of the origin. The singularity may be moved
to infinity if we introduce new coordinates X4 = z4/(zpw?), W4 = w?/(xzw?)

and rescale the metric by (X W#)2. This yields

. F
ds? — 24X 4 @ AWA +2 (FB +We SWBC) (XAWAdWB - WBd(XAWA)> © WadWA
(7.19)
and
OF 0°F,
_ A A B A B C D
A= = (SWAFL + SWAWP Sl WAWPW Ol Y Wipd i 2.

The metric of Sparling and Tod corresponds to setting Fiy = Wa.
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Let us consider the particular case Fiy = (aW*Z!, bW™Z™). The metric is

ds* = 2dw®dz +2dz @ dy (7.20)
a(k + 1+ 1wz b(m+n+ 1wmz"
2 dz) @ (wdz — 2dw).
(wz + 2y)++2 (wz + zy)min+2 7) ® (wdz — zdw)
If
a=-bl=n+1k=m-—1 then O = V400
where © = —aw*2'"}(wx + zy)~**). For these values of parameters the metric is

hyper-Kahler and of type N.

Some solutions to (7.16) have real Euclidean slices. For example

y 2wz + zy) B y?

==

B = — 27 T N2
w? (wx + zy) w (wz + zy)
with w = ,2z = y yield a solution of type D, which is equivalent to the Eguchi-

Hanson metric.

7.4.2 Twistor description

In this Subsection we shall give the twistor correspondence for the family of hyper-
Hermitian metrics (7.20). First we shall look at the passive twistor constructions
of ©¢ by the contour integral formulae. It will turn out that ©4 are examples of
Penrose’s elementary states. Then we explain how the cohomology classes corre-
sponding to ©¢ can be used to deform a patching description of P77 . The deformed
twistor space will, by Proposition 7.2, give rise to the metric (7.20). Both passive
and active constructions in this subsection use methods developed by Sparling in
his twistorial treatment of the Sparling-Tod metric.

Parametrise a section of y : PT — CP' by the coordinates

_( Yy w
T A1 =04/ —r =z ’

= ‘TA = (y7 _‘7;)'

Let us consider the particular case Fiy = (aW*Z! bW™Z™) discussed in Subsec-

AA’ awA

X

o aﬂ'A/

/ /
so that 24" = w? = (w, 2), 249

tion 3.1. We work on the non-deformed twistor space PT with homogeneous coor-
dinates (w?, ma/). On the primed spin bundle w® = 7/ (w + \y),w! = 7/(z — Az).
Consider two twistor functions (sections of H'(CP', O(—2))

(00 )+
(WO) L ()R L

(ﬂ_ol>m+n

(wo)n+1 (wl)m+l ’

ho = (—1)*a hy = (—=1)™b
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where a,b € C and k,l,m,n € Z are constant parameters. Then

1

@A(wa Z,.Z',y) = 2_71'?,

% hA(wB, 7TB/)7TA/d7TA,.
r

Here T is a contour in [, the CP' that corresponds to (w, z,z,y) € M. It separates
the two poles of the integrand. To find ©4 we compute the residue at one of these
poles, which gives

wk 2! wmZ™
Oy = O;,=0b 7.21
0 a(wx Yooy (wa + zy)mtntl’ (7.21)

and hence the metric (7.20).
Now we shall use hy to deform the complex structure of P7. We change the

standard patching relations by setting
ot = fAwh 1)

where ¢ is a deformation parameter and f* is determined by the deformation equa-
tions

dfo b,/rglm-&-n-l-?: dfl a7r§,+l+3
ar (@0)n+1(@1)m+1<_1) Cdt (@) ()R

(—1)*, (7.22)

This equation has a first integral. If a = —b,l =n+ 1,k = m — 1 then (7.22) imply
that wlw! = @%@ is a global twistor function. When pulled back to the spin bundle
B/

this can be expressed as Py nP', and the corresponding metric admits a null

Killing vector K44 given by

Vac Pap = Kyaepor-

Assume that n+ 1 # [, and k 4+ 1 # m. Then the first integral of (7.22)

a(WO’)k+l+3(_1>k+1

n+1-—1

b(ﬂ-O')m-i-n-i-S(_l)m-‘rl

kE+1—m

(w0)n+1*l + (wl)k+17m

Q=

is given by a function homogeneous of degree k + n + 4. Its pull backs to F (which
we also denote Q) satisfies L4(Q)) = 0. This implies the existence of a Killing spinor
of valence (0,k +n+4) on M.
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7.5 Symmetries

The equation (7.14) has the obvious first integral given by functions A¢ which satisfy
098¢  00p0Oc  OAc

owA  OxA 9xB  dxA’

It is implicit from the twistor construction that equation (7.14) has infinitely many
first integrals given by hidden symmetries. They should give rise to a hierarchy of
equations. Here we give a description of those symmetries that correspond to the
pure gauge transformations.
Let M be a vector field on M. Define 6%,V 44/ := [M, V 44]. This is a pure gauge
transformation corresponding to the addition of £,;g to the space-time metric.
Once a coordinate system leading to equation (7.14) has been selected, the field
equations will not be invariant under all the diff(M) transformations. We restrict
ourselves to transformations that preserve the canonical structures on M, namely
ey A v A 9
Y =(1/2)dwa Adw?, and  Jy =dw” ® e
x
The condition £ X = £, J% = 0 implies that M is given by
oh 0

B 6w,4 810‘4

2
+ (gA —z” &Uiﬁth) 83‘4
where h = h(w?) and g = g (w?). Space-time is now viewed as a tangent bundle
M = TN? with w? being coordinates on the two-dimensional complex manifold
N?Z. The full diff( M) symmetry breaks down to sdiff(N?) which acts on M by Lie
lift. Let 09,0 corresponds to §5,V.aa by

0 OB
BV = P D
The ‘pure gauge’ elements are

dgP 9*h
89,08 = £ (08) + FP — xA—awA + waC_@wAawcawB

where F'2, g and h are functions of w? only.
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7.6 gl(2,C) connection

A natural connection which arises in hyper-Hermitian geometry is the Obata connec-
tion [53]. In this section we discuss other possible choices of connections associated
with hyper-Hermitian geometry. We shall motivate our choices by considering the

conformal rescalings of the null tetrad. The first Cartan structure equations are
deA = PAY NTAL 4 AP AT
Rescaling e44” — é44" = e?e4 yields
deAY = eBANTAR + AP AT 5 + do A e

The last equation can be interpreted in (at least) three different ways;

(a) Introduce the torsion three-form by T = *(d¢) = Type® A €% A é€. Then

de* + T ne’ =T
where T = (1/2)T{éb A é°.

(b) Use the torsion-free s/(2,C) @ si(2, C) spin connection

FAB — FAB+<1/4) * (d¢AEAB), FA’B’ — FA’B/ +(1/4)*<d¢/\2A’B’>,

(¢) Work with the torsion-free gl(2,C) @ gl(2,C) connection
Gap =Tap +acapdg, Gup =Tap +(1—a)eapdo

with'4p = F(AB) € Sl(2, C)@Al(T*M), Fap = F(A’B’) € ;Z(Q, C)@Al(T*M)
and a € C. This leads to
de*+T%Anéeb =0

where Gy, = I'yp + carpeapde. The structure group reduces to

sl(2,C) @ sl(2,C) du(l) C gl(2,C) & gl(2,C).

For (complexified) hyper-Hermitian four-manifolds d¢ is replaced by the Lee form
— A in the above formulae. The possibility (a) would then correspond to the heterotic

geometries studied by physicists in connection with (4, 0) supersymmetric o-models
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(see [12] and references therein). Choice (b) is what we have used in this chapter.
Let us make a few remarks about the possibility (c).

Equation (7.1) implies that a = 1/2 and
Gap =Tap — (1/2)eapA, Gup = —(1/2)eap A

with I'ap = I'ap) € sl(2,C). In the adopted coordinate system

1 oer 1 oer
F ’ = — /(V /v /@ — —)7 F IR — —— ’ 1T ———=.
AA'BC o Va0V Bo C)+25BC@anxD AA'B'C HOAEBC o a5

The curvatures of G4 and G4 5 are
RAp = dGA5 + GAc AGCp = R — (1/2)epF, RYp = —(1/2)e* 5 F

where F' = dA is an ASD two form. It would be interesting to investigate this
possibility with connection to ¢l(2,C) formulation of Einstein-Maxwell equations

[61], and its Lagrangian description [66].
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Chapter 8

Einstein—Weyl metrics from
conformal Killing vectors

In this Chapter we shall consider ASD vacuum spaces with a conformal symmetry?.
By the general construction [36, 37| such spaces will give rise to Einstein—Weyl
structures on the space of trajectories of a given conformal symmetry K. The
cases where K is a pure or a conformal tri-holomorphic Killing vector have been
extensively studied [6, 86, 12, 43]. Therefore we shall consider the most general case
of K being a conformal, non-triholomorphic Killing vector. In the next section we
shall give the canonical form of an allowed conformal Killing vector. Then we shall
look at solutions to the first heavenly equation (3.2) which admit the symmetry
K. This will give rise to a new integrable system in three dimensions and to the
corresponding EW geometries. In Section 8.2 we shall give the Lax representation
of the reduced equations. When Euclidean reality conditions are imposed we shall
recover some known results [6, 86] as limiting cases of our construction. In Section 8.6
we shall find and classify the Lie point symmetries (and so the Killing vectors) of the
field equations in three dimensions, and consider some group invariant solutions. In
Section 8.7 we shall study hidden symmetries and the recursion operator associated
to the 3D system. In Section 8.8 we shall consider a tri-holomorphic conformal

reduction of the second heavenly equation.

!The results of this chapter have now appeared in [93]
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8.1 Heavenly spaces with conformal Killing vec-
tors

Let g be a compexified hyper-Kahler metric on a complex four-manifold M and

A4 = (w, z,w, Z) be a null coordinate system on M. Locally g is given by

ds? = 2(Quadwdi + Quzdwd? + Q,pdzdd + Qu:dzd?) (8.1)

where 2 = Q(w, z,%, Z) is a solution to the first heavenly equation (3.2). Assume

that g admits a conformal Killing vector K;

Lrg=mng, orequivalently V Ky, = ¢apeap +Yapeap + (1/2)eapeann

where symmetric spinors ¢ 45 and ¥ 4p are respectively SD and ASD parts of the

covariant derivative of K. In vacuum the following integrability conditions hold
Vandper = 2CapopKa® —2epmVeonan, VaanVeen =0, CipepV=ian =0

(similar for ¥ 4p). In particular in an ASD vacuum ¢4/ 5 = const and n = const (or
the space time is of type ).

In this chapter we shall analyse a situation where K is not hyper—surface or-
thogonal and det(¢ap) # 0,7 # 0. Reductions by pure (n = 0) Killing vectors
were considered in [6, 23]. See [64, 73] (and Subsection 9.1.2) for the case of the

non-vanishing cosmological constant.

Lemma 8.1 In an ASD vacuum the most general conformal Killing vector with

det(pap) # 0 can be transformed to the form
K =n(20, — 20;) + p(20, + 20;). (8.2)

Proof. The proof is along the lines of the derivation of the canonical form of a pure

Killing vector given in [6]. In the adopted coordinate system
S0 =dw Adz, S = dw Ade,

Y = Quadw A did 4+ Quzdw A dZ + Q. zdz A dd + Q,zdz A d3.
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Let K = K49/0w* + K49/0w?, where w? = (w, z) and @* = (w, Z). The action

of K on self-dual two forms is determined by

Lgx"" = mE” 4 gt
LS = ax? 4wt
ﬁKzo’l’ _ nEO’l’

for some constants m,m,n,n. This is because for non-degenerated ¢ 5 the Kahler
structure can be identified with dK, = ¢upX4 P It follows that n = 7 = 0,
and K4 = mw?, KA = mw?. From 2570 A UV = 207 A £ we find that
n := (m + m)/2. Define p := (m — m)/2. We have the freedom to transform
wh = WA(wB) and &4 — WA(@P) in a way which preserves £ and . Put

Z =222 W =w/z,Z = 52/2,W = w/Z. This yields (coming back to (w?,w%))

(8.2). Now
0 p+17)
VanK4p = :
AN KT B (p—n 0
O

The real form of the Killing vector (8.2) also appears in the list of Lie point sym-

metries of (3.2) given in [9].

8.1.1 Symmetry reduction

In this section we shall look at the heavenly equation (3.2) with the additional
constraint Lxg = ng. This will lead to a new integrable equation describing a class

of three-dimensional Einstein-Weyl geometries.

Proposition 8.2 FEvery ASD vacuum metric with conformal symmetry is locally

given by
ds* = "V 'h+V(dt+w)®) where (8.3)
1
h:_&%mm7#Wme@w—mwpwm2 (8.4)
n(dF — F,du) + (dwdg — dwd,,) F, 1,,
= = —(n*F — F, :

and F = F(w,w,u) is a holomorphic function on an open set W C C? which satisfies
(NFs + Fua)(nFy — Fuw) — (1P F — Fu) Fyg = 4€*" (8.6)

for constants n,p € C.
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Corollary 8.3 The metric h is defined on the space W of trajectories of K in M.
From Proposition 2.3 it follows that h is the most general Finstein—Weyl (EW)
metric which arises as a reduction of ASD vacuum solutions. Equations (8.6) are

therefore equivalent to the Finstein—Weyl equations (2.25).

Proof. The general ASDV metric can locally be given by (8.1). From Lemma 8.1
it follows that we can take K as in (8.2). Perform the coordinate transformation

(2,2) = (t,u) given by
ot := In(2/mzV™) 2y = In(zY/mz71m),

In these coordinates K = 9; and so Q(t, u, w,w) = €™ F(u,w,w). The first heavenly
equation is equivalent to (8.6). Rewriting the metric (8.1) in the new coordinate
system yields (8.3) and det(h) = —(1/4)V2e*".

The dual to K is K = ™V (dt + w). From Proposition 2.3 we find the EW

one-form to be

KA dK

g W = 26’7tV *g ((dt + (.U) N d(JJ)

v = 2%

1
= o — 55(772qu +(Fydw — Fpdd) — dF,)

N — p)(NFy — Fuo)dw + (n + p)(nFg + Fup)dw — p(n° F — Fu,)du
n?E — Fu,

_ !

where *, and *;, are the Hodge operators determined by g and h respectively.

8.2 Lax representation

In this section we shall represent equation (8.6) as the integrability condition for a
linear system of equations. We shall interpret the Lax pair as a (mini twistor) dis-
tribution on a reduced projective spin bundle. The local coordinates on a projective
primed spin bundle F are (w,w, z, Z, A). Define the Lie lift of a Killing vector K to
F by

!

K :=K+Qd,, where Q:=mampo™? /(m)% (8.7)
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The flow of K in F determines the behaviour of a-planes under the action of K

in M. The linear system L, for equation (3.2) is given by (3.4). The vector fields

(Lo, L1, K) span an integrable distribution. This can be seen as follows:

(K, La] = —7%(opa® ea® +aPes® + (1/2)neaBens® ) Vip

== —Wclqu/AlvAA/ + (¢AB + nEAB)LB.

The Lie lift of K to S4 is

6 1 A/ a

o 3 e (88)

],'? = K+7TA’¢AIB/

Now [K, L4] = 0 modulo L.

The projection of K to F is given by (8.7), where the factor 7% is used to
dehomogenise a section of O(2). If K is given by (8.2) then K = K+pAdy. Introduce
an invariant spectral parameter A (which is constant along K) by (A, ) — (X :=

Ae~?t t:=t). In the new coordinates
Oy = 0; — pAd5, Oh=e P05,  sothat K =0,

The linear system for the reduced equation is obtained from (3.4) by rewriting it in

(w, W, u,t,\) coordinates and ignoring d;. This yields (after rescaling)

Ly = mé™ (Fwa, (% + pX%) + (nF, — Fuw)a%> + 25\% (8.9)
Ly = me™((nFa + Fug) (% + pX(%) + (PF — Fuu)é%) + ﬁ(a% - X%).

The mini-twistor space Z corresponding to solutions of (8.6) is the quotient of
F by the integrable distribution (L, L1/, K ). This gives rise to a double fibration
picture

W Fy L 2. (8.10)

where Fyy = F/ K is coordinatised by (w,w,u, 5\) The volume form on Fyy is
Vi, = dAAdEA dw A did,

In Chapter 9 we shall study an interesting two form vg,, (Lo, Ly, ..., ...) on a reduced

COI'I'GSpODdeHCQ space.
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8.3 Spinor formulation

The reason for using primed spinor indices for a minitwistor distribution comes from
Hitchin’s construction [30]; the basic mini-twistor correspondence states that points
in W correspond in Z to rational curves with normal bundle O(2). Let [, be the line
in Z that corresponds to x € W. The normal bundle to [, consists of tangent vectors
at x (horizontally lifted to T(, »)Fw) modulo the twistor distribution. Therefore we

have a sequence of sheaves over CP!
0 — Dy — C* — O(2) — 0.

The map C* — O(2) is given by VAP — VAP 71p. Its kernel consists of
vectors of the form 7 v5) with vP" varying. The twistor distribution is therefore
Dy = O(—1) ® S and so L is the global section of I'( Dy ® O(1) ® Su/). Let Z
be a totally geodesic two-plane corresponding to a point Z of a mini-twistor space.
This two plane is spanned by vectors of the form V* = 7405 with 74" fixed. Let
We = 7(4w5) be another vector tangent to Z. The Frobenius theorem implies that

the Lie bracket [V, W] must be tangent to some geodesic in Z, i.e.
[V, W] =aV + bW

for some a,b. The last equation determines the mini-twistor distribution. Consider

! ! ! 1 ! 1 ! ! 1 !
7TB DA/B/’]TC/ = —FA/B/C/D/WB 7TD _I_ZWA’VB’C’WB _§€C’A’VB’D’7TB 7TD —|—§VA/D/7TD TC,

where I' 4/ g/ pr is a spinor Levi-Civita connection. Define L 4 to be a horizontal lift

of 78" Dy to the weighted spin bundle by demanding L7 = 0. This yields

’ ’ / 3
LA/ = 7TBDA/B/—|—FA/B/C/D/7TB7I'D
87@/
1 Bl D/ a 1 a D/ 8)
—VUpip —_— — =Ty —Eu . 8.11
+2VBD7T (W on# 9TA Ompy sa or ( )

The integrability conditions imply
[LA/,LB/] =0 (mod LA/).

In fact if one picks two independent solutions of a ‘neutrino’ equation on the EW
background, say p?" and A\, then ZO/ = p* L, and Elz = M Ly commute
exactly:

(Lo, L] = 0.

7



Let us now formulate Einstein—Weyl equations in terms of spinors. Let ¢* be the
totally antisymmetric object on YW. We shall use the abstract index notation, and
put i = (A'B'),j = (C'D’'),k = (E'F’) etc. The metric h and the volume form volj,
are

hij = earcreppr, €ijk = EANC'ED)(E'EF) B! -

In three dimensions the Ricci tensor of the Levi-Civita connection determines the
Riemann tensor. However it is also true that the the Riemann tensor W;j, of the
Weyl connection is determined by its Ricci tensor:

2
3

2

1
Wit = 62}6%(5hmnW + Wn — 3

Winm)) + 5 hii Wi

Therefore it is enough to study the spinor decomposition of the Ricci tensor W;; =
W argrorpr into irreducible symmetric spinors
1
Wz] e XA’B’C’D’ —|— 1/}A’(C’€D’)B’ —|— gWEA/(C/ED/)B/,

where

1
3

1 . g
xascp =Wapcopy =Wy — sWhij, Yap =1 = §€i]ijka W = bW

The spinor Levi-Civita connection

/

Vapne = —Lapopr”
decomposes according to
FA/B/C/D/ = ¢A/B/C/D/ + pA’(C’ED’)B’

where
m _jkn
Gaprcrp = F(A’B’C’D’)a pA'B = Pi = ijEJ Emni -

The Einstein-Weyl equations are
xapcp =0,

or

1 1
(bA’B'C/D/ —|— §V(A’B’VC’D’) + ZV(A/B/I/C/D/) = O,

where ® 4 p/crpr is the symmetric part of Ricci spinor of the Levi-Civita connection.
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8.4 Reality conditions

To obtain real Einstein-Weyl metrics we have to impose reality conditions on coor-

dinates (w,w, z, Z)

e The reduction from the Euclidean slice (Z = Z,w = —w) yields positive definite
EW metrics with u := iv for v € R. We can impose the condition mm = 1, so

n = cosa and p = isina. The Euclidean version of (8.6) is
(Fcos® a+ F)Fyg — (Fgcosa —iF,g)(Fycosa +iF,,) = 4e72"5m* (8.12)

To obtain another form introduce G by G = e?$"*F. The transformed equa-

Zusine) and the EW one-form are:

tion, the metric (rescaled by e

(G + Gy — 2G, 8in )Gy — (G — iGo) (€ Gy +1Gow) = 4,  (8.13)

1 . .
h = dwdw + E<de +dG, — 2G, sin adv + i€ G dw — ie”*Gypdw)?

e Gy + 1Gyy)dw + (e Gy — 1G g )dw

(
_ 9
v G+ Gy — 2G, sina

(8.14)

e On an ultra-hyperbolic slice we have Z = Z,w = w which again implies u = 1v.
The metric (8.3) has signature (+ + —). Another possibility is to take all
coordinates as real. This gives a different real metric of signature (+ + —).

The function F is real and n = sinh o, p = cosh a.

The analogous reality conditions are imposed on the linear system (8.9). From now
on we shall be mostly concerned with the positive definite case. The correspondence
space is now viewed as a real six-dimensional manifold. The real lift of a Killing

vector is

K = 8, +isina(Ad, — \y).

8.5 Special cases

Solutions to (8.12) describe the most general EW metrics which arise as reductions
of hyper-Kahler structures. In this section we look at limiting cases and recover

special EW spaces [12], and LeBrun-Ward EW spaces which come from the SU(c0)
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Toda equation. The real form of the Killing vector (8.2) is a linear combination of

a rotation and a dilation;
K = Kpcosa+ Kgsina, a € [—7m/2,0], Kp := 20, + 20, Kg :=i(20, —Z0%).

8.5.1 LeBrun—Ward spaces

Take a = —m/2. This is a pure Killing vector which does not preserve the complex
structures on M. This case was studied in [6, 87, 43]. Put F, = j, Fyz = p and

rewrite equation (8.12) as

dpAdjAdT = 4e**dw Adw A dv
djANdwAdv = dpAdwAdw. (8.15)

Use (j, w,w) as coordinates and eliminate p to obtain
Vo — 2(€*");5 =0 (8.16)
which is the Boyer—Finley equation [6]. The metric (8.3) reduces to

1
h = e**dwdw + Edf, v = 2v;dj.

Let us come back to complex coordinates and put w = et @ = e and M =

2u + 2s. In the (s,u, ) coordinates equation (8.16) and the metric become

1
Mgy — Mgg — 8(e™);; =0,  h=—e"(ds* — d#?) — 1—6dj2.

Imposing a symmetry in = In(y/w/w) direction we arrive at
Mss — 8(6M)jj = O,

which was solved by Ward [87] who transformed it to a linear equation. The conclu-
sion is that LeBrun—Ward EW metrics with wd,, — w0 symmetry are solved by the
same anzatz as those with 9, — O3 symmetry. In Subsection 8.6.1 it will be shown

that imposing 0,, — 0y symmetry leads to a linear equation even if « is arbitrary.
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8.5.2 Gauduchon—Tod spaces

Put @ = 0. This is a triholomorphic conformal symmetry. The corresponding EW

metrics were in [25] called ‘special’. The equation (8.12) reduces to

Fow(F + Fyp) — (Fy +iFyw)(Foy — i Fyw) = 4, (8.17)
which is the form given in [76]. The corresponding Lax pair is
, 0 0 0
Ly = ¢ (iFuprn = (F+iFu) =) +2X5
0 = gy = B it 5 ) 25,

0 ) 9
L = e ((FU@+ZFE)% (F+Fw)%> Zids-.

8.6 Lie point symmetries

In order to find the Lie algebra of infinitesimal symmetries of (8.13) we shall convert
it to system of differential forms [29]. Introduce @ and J by J := Gz, Q =
(G — iG,)

wi = dQAdJ Adw + e (QdJ — JdQ) A dw A dv

+dQ A dQ A dv — 4dw A dw A du,

wy = dQAdwAdv+e*Jdw Adw A dv —idJ Adw A dw. (8.18)
This system forms a closed differential ideal. Its integral manifold is a subspace of
R® on which w,, = 0. This integral manifold represents a solution to (8.13).

Let X be a vector field on RS, The action of X does not change the integral
manifold if
Lxw, =N w,

where A} is a matrix of differential forms. The general solution is

0 —, 0 2 0
v sin « a v sin « a
+ Dae cos(v cos a)aG + Dye Sm(v oS a)aG

where A, B € C, and C, D, D, € R are constants?. Real generators are

X, = Oy+0n Xo=i(0y—0n), X3=i(wdy — W) (8.19)

ZNote that a corresponding algebra of Lie point symmetries for the heavenly equation (3.2) is
infinite dimensional [9]. In order to obtain a finite dimensional algebra one needs to factorize it
by the infinite dimensional gauge algebra corresponding to the freedom in the definition of . In
our case the gauge freedom in {2 was already used to find the canonical form of the Killing vector.
There is no residual gauge freedom in F.
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Xy = ava X5:waw+w%+Gan

v sin «

Xe¢ = e sin (vcosa)dg, X7 = e"""%cos (vcosa)dg.

The commutation relations between these vector fields are given by the following
table, the entry in row ¢ and column j representing [X;, X;].

X; Xo X3 Xy X5 Xg X7

X1 0 0 X5 0 X: 0 0

X 0 0 -X1 0 X 0 0

X3 -X, Xi 0 0 0 0 0

X4 0 0 0 0 0 sin aXg + cosaXy; sinaXy; — cosaXg
X5 -X; -X3 0 0 0 —Xg - X7

Xs 0 0 0 —sinaXg —cosaX; Xg 0 0

X7 0 0 0 —sinaX7+cosaXg X7 O 0

This list of symmetries may seem disappointingly small (as equation (8.13) is an

integrable PDE). Further symmetry properties reflecting the existence of infinitely

many conservation laws will require the recursive procedure of constructing ‘hidden

symmetries’. This will be developed in Section 8.7.

8.6.1 Group invariant solutions

We can simplify equation (8.13) by looking at group invariant solutions. The finite

transformation generated by X, does not change the metric. The one by X5 rescales

it by a constant factor. All transformations are conformal Killing vectors for h.

e X3 = i(wd, — Wdy) and the corresponding solutions depend on (v, R :=

In(ww)). This will lead to a new 2D integrable system (8.21). Multiplying

(8.13) by e yields

(G + Gy — QOéGv)GRR - (6mGR — inR) (e_mGR + iGUR) = 4eft,

The ideal (8.18) reduces to

0 = idQAdJ+e ™ JdQ Adv — QdJ Adv) — 4d(eft) A dv,
0 = dQAdv—e“JdRAdv —idJ AdR,

where J = Gg, Q = (¢"*G —iG,). Eliminate @ and use (J,v) as coordinates

to obtain an equation for R(.J,v)

4(6R>JJ + Ry + Q(JRJ)U sin o + J(JRJ)J =0.
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With the definition & :=1InJ, M := M(v,{) = R — 2§ we have
M,, + 2Mv§ sin o + Mgg + 4€M(M£§ + M52 + 3Mg + 2) =0. (821)

A simple solution is

G — 6vsinozU)u} +46—vsina b

A .22
b 1+ 3sin’« (8.22)

With the definition w = y/re'® the Einstein-Weyl metric is

. 1 : 1 1 :
h — (62'usmozCO32a + 1)7’2d¢2 + (Ze2vsmar2 COS4Oé + 57,,2 COS2Oé + Ze—szma)dU2

1 .
—|—4—d7‘2 + (rcosa + €252 cos® a)dvde.
r

It has

4b
14+ 3sin’a’

=\ (isinacosa)/2qp70
Q(w,z,@,z) = (Z§>(cos2a)/2 (z) % + (Z2)1+(coso¢)/2

Calculation of curvature components shows it describes a flat metric on R*.
e X, =0,. Equation (8.13) reduces to
GGz — G Gm = 4. (8.23)
With no loss of generality® we can take

G=4b+ % (8.24)

which (with the definition w = re’®) gives

1
h = 4(dr? + r*de?) + 1—6((4 + 73 dv — 2r? cosadgp — 2rsinadr)?.  (8.25)

Calculating the curvature components shows that the corresponding hyper-

Kéhler metric is flat. K.P. Tod [75] shows that (8.25) is conformal to the metric

3With the definition InG' = g, (8.23) becomes the the Liouville equation
Guw = 4e%9,

Let P := P(w) be an arbitrary holomorphic function of w. The general solution

ed =

4+/ P, Pw

can be generated from (8.24) by a Backlund transformation.
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on the Berger sphere. The transformation of solution (8.24) corresponding to

Lie point symmetries
G(w,w) — G(w,,0) = Be™"*"*(G(w, ) + g(v)),

where

2vsin

e . _
— _4b O 7V COS & C —V COS &
g(v) + Beoa + Ce + Ce

gives a new solution. In particular (8.22) can be obtained in this way. There-
fore the metric corresponding to (8.22) also describes a Berger sphere. If & =0
then (8.24) and (8.22) coincide and give the standard metric on S3. Put b = 2.
We have v = dIn (1 + ww/2). Rescale h = V=2 to have 7 = 0 and put

w = tan gei‘b, dv=dy —do¢

to obtain

h = d6? + sin® 0d¢? + (di) — cos 0de)?
which is S3.

Xy = i(0y — 0p) (or Xy). This reduction leads to a linear equation. Put

w~+w = f to obtain
(G + Gy — 2an)fo — (eiaGR — Z'Gvf)(eiiaGf + inf) =4.
With the definition J := Gy, @ := (¢"*G —iG,) this yields

0 = idQAdJ +e™(JdQ Adv — QdJ Adv) — 4df A do,
0 = dQ Adv —eJdf Adv —idJ Adf.

Now eliminate @ and use (v, = InJ) as coordinates to obtain a linear equa-

tion for f(&,v)

4™ (fee — fe) + fou + 28inafe, + fee = 0. (8.26)
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8.7 Hidden symmetries

In this section we shall find a recursion procedure for generating ‘hidden symmetries’
of (8.12). We start with discussing the general conformally invariant wave equation
in Einstein-Weyl background.

A tensor object T" which transforms as
T — ¢™T  when  hy — ¢°hy

is said to be conformally invariant of weight m. Let 8 be a p-form of weight m. The

covariant derivative

DB :=dj — %1/ A B
is a well defined p + 1 form of weight m. Its Hodge dual, %, Dp, is a (2 — p)-form of
weight m + 1 — p. Therefore we can write the weighted Weyl wave operator which
takes p-forms of weight m to (3 — p)-forms of weight m + 1 —p

]__
Dx, D= (d—%u/\)*h (d—%l//\).

Consider the case p = 0. Let ¢ be a function of weight m. The most general wave
equation is
D s, Do = kW ¢ voly,

where k is some constant. The RHS has weight m + 1 so the whole expression is

conformally invariant. Adopting the index notation we obtain

VVp— <m + %) V'Vb + i(m(m + 1)y — ZmViyi>¢ = k(R +2Viy, — %1/,1/) 0.

(8.27)
At this stage one can make some choices concerning the values of m and k. One
can also fix the gauge freedom. In [12] it was assumed that £k = 0,m = —1 and
Vit = 0 (the Gauduchon gauge) which led to the derivative of the generalised

monopole equation (2.27):
) 1 .
V'Vip + §I/1V1¢ = 0.

Another possibility is to set m = —(1/2), k = 1/8. With this choice equation (8.27)
simplifies to
4 1
V'Vig = R,
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which is the well known conformally invariant wave equation in the 3D Riemannian
geometry. Note that the gauge freedom was not fixed to derive the last equation.

All we did was to get rid of the ‘non-Riemannian’ data.

8.7.1 The recursion procedure

Let 6 F be a linearised solution to (8.6) (i.e. F'+ 0F satisfies (8.6) up to the linear
terms in 0F'). Then

82 82 9 82 82
(0P = Fun) 53— 0o+ Fun) gy = 0P F = Fus) i + P
0 0

This equation can be viewed more geometrically: let [y denote the wave operator
on an ASDV curved background given by €2, let 42 be the linearised solution to
the first heavenly equation and let Wq be the kernel of (. From Lemma (3.1) we
know that 02 € W,. Impose the additional constrain L£xd0§2 = nd€2. This implies
00 = e™§F. This yields

0 = dx,d(e"F)
= e"((n*(dt A x,dt) +nd x, dt)SF + ndt A %,d0F + nddF A x,dt + d , dOF).

But d *, dt = Ugt = 0 and

1 . 2
dt A x,dt = \dt|2vg = ZQw@z_l/mé_l/myg = Ve”tHPUFwﬁ,dt A voly,.

Therefore (8.28) is equivalent to
OodF + n°|dt|*§F = 0.

It seems likely (although we have not proven it) that there exist a choice of m and
k which, in the appropriate gauge, reduces equation (8.27) down to (8.28).

Let Wr be the space of solutions to (8.28) around a given solution F'. We shall
construct a map R : Wr — Wp. Recall that Wq denotes the kernel of the curved

wave operator determined by the solution €2 to the first heavenly equation.
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Let ¢ € Wq. In Section 3.2 we constructed a recursion operator R : Wq — Wy

given by (3.12), where in coordinates (w,w,t,u),

Voo = TGPHﬁW (Fww< J 2) — (nFy — Fuw)i>7

2 ot ou o
Vie = ;Le—nt—%u ((an + Fuzﬂ)(% - gu) — (*F — Fuu)%)a

To construct a reduced recursion operator we should be able to Lie derive (3.12)

along K. In order to do so we introduce an invariant spin frame

N _ ’ AA! /
o = e WDt A AT (120t A

in which X\ = (746%)/(74i"). Note that now Iy # 0. Recursion relations are
e_ptVon(e"tR5F) = VAlfent(SF.
This yields the following result

Proposition 8.4 The map R : Wr — Wr defined by

me™ (Fypg(n — 0y) — (NFy — Fuw)Og)ROF = 20,0F (8.29)
me™ (nFg + Fua)(n — 04) — (N*F — Fu)03)RSF = 2(n+ 0,)dF.

generates new elements of Wg from the old ones.

By cross differentiating we verify that two equations in (8.29) are consistent as a
consequence of (8.6).

We start the recursion from two solutions (e~", nf—i?em“) to (8.28). Equations
(8.29) yield

—_—_ —

e M -
m-+n

et — F, — ...
2m

Suppose that F' = F(u,w,w,T) depends on three local coordinates on a complex

EW space and a sequence of parameters T = (T3, T3, ...). Put

oF 2m
=R" (—emu>,
a1, m+n

87



so that 71 = w. The recursion relations R(0r, ') = Or, ., F' form an over-determined
system of equations which involve arbitrarily many independent variables, but initial
data can be specified freely only on a two dimensional surface. To look for solutions
to (8.6) invariant under some combination of hidden symmetries (‘finite gap’ type

solutions) assume that

Jj=1

—~ OF ~ OF
;Cia—ﬂzo, ija—irj:o

for constants ¢y, ..., ¢,, by, ..., by,. This would reduce (8.6) down to an ODE solvable

by the theta—function (see Section 11.1 for a relevant discussion).

8.8 Conformal reduction of the second heavenly
equation

In this section we shall look at a conformal reduction of the second heavenly equa-
tion. Let (w,z,z,y) be the coordinates on C* Let © = O(x,y,w, 2) satisfy the
second heavenly equation (3.6) and let K = 20, + 20, be a homothetic Killing vec-
tor Lxg = g. This implies (after some work) that Lx© = ©. Put © = zA(w, y,t :=
x/z) which yields

ApAyy + A7+ Apy + Ay — tA, = 0. (8.30)

The metric (with e* = 2) is
ds® = 2e8(dédw + dtdw + dédy + Aude? + Ay dw? — 2A,,dwde).
Write the reduced equation as
dA; NdAy ANdw +dA AdEAdy +d(A—tA) Adw AdE = 0.
Now eliminate ¢; Set B = B(u,w,y) = A —tu, uv= A;, t= —DB, which yields*

Byy + Buw + BuBuy — ByBuyu = 0. (8.31)

4This equation is now known as the hyper-CR integrable system [95].
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8.9 Alternative formulations

Here we shall give an alternative formulation (due to K.P. Tod) of equation (8.6).

Define functions (V, S, S) by
AV :=n’F — F,,, 28 :=nF, — Fyp, 25 :=nFg+ Fug,

so equation (8.6) takes the form

_ ,2pu o ~ >
v — (—e +§S)77’ Sy 4+nS =2V, —S,+nS =2V (8.32)
Si + Sw

The hyper-Kéhler metric is

ds? = e"(V(de® — du?) + V(S8 — e*)dwdi + S(dt — du)dw + S(dt + du)dd
= "V 'Th+ V(dt +w)?)

where

Sdw — de>2 . Sdw + Sdw

- __p2pu D —
h: eP*dwdw <Vdu + 5 5

The EW one form is

20¢®  m(Sdw + Vdu) + m(Sdw — Vdu)
v =2nw — v v .

Euclidean reality conditions force S = —S and V real. On the + + —— slice we
have S = S , or alternatively (on a different real slice) functions VS, S real and

independent. The orthonormal frame on the Euclidean slice is

. 1 Se—imv _ Seiﬁfu

e = 5(6 dw +e dw), Vi=e Op + ™05 +1 Y Oy
2 _ 3 —imv J75 _ ,imu _ i ,—tmu _ imw _ Se—imv + geiﬁv
e =3 (e7"™dw — e"dw), Va=1i(e "0y — e 0p) Ve Oy
Sdw — Sdw 1
3 — Vdu—i——_ =27 = —0,.
e v—1 5 , Vs V@

The EW one form is

_ cosa(Sdw + Sdw) + isin a(Sdw — Sdw — 2iVdv)
Vv
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The three and four dimensional volume elements are:

1 : 2 .
vol, = QVe’QU rdw Adw Adv, vy = Ve% simackatcosay, ol A dt.

Equations (8.32) can be rewritten in a compact form

CcoS &
de? = wA e cosa + 761 N
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Chapter 9

Einstein—Weyl equations as a
differential system on the spin

bundle

In this chapter we shall reformulate Einstein—-Weyl equations in terms of a certain
two-form on the reduced correspondence space. Roughly speaking, if an Einstein—
Weyl space admits a solution of a generalised monopole equation, which yields four
dimensional ASD vacuum or Einstein metrics, then the four-dimensional correspon-

dence space Fyy = W x CP! is equipped with a two-form II which satisfies
dIT =0, [MIAII=0, (9.1)

where d is a full exterior derivative on Fy,. We shall establish this fact in the next
two sections. In Section 9.3 we shall find Einstein—Weyl structures corresponding to

solutions to the dispersion-less Kadomtsev—Petviashvili equation®.

9.1 Construction of the two form

Let K be a Killing vector on a general ASD conformal manifold (M, [g]), and let
= = Dy A D’ A v be a volume form on the non-projective primed spin bundle
SA Here Dr?" .= dn?’ + T'4F'np is a pair of forms which annihilates horizontal

vectors. Define the two form on S4'

S :=2(Lo, L1, K, Y, ...,...). (9.2)

IThe results of this chapter have now appeared in [94]
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Here T = 74" /074 is the Euler vector field on S4', L4 is the twistor distribution,

and K is a Lie lift of K to S4'. From
LY =45, Y12 =0

it follows that & descends to F where it takes values in O(4). Note however that
dY does not descend as

T1dS = Ly3 #£0.

Therefore to differentiate 3 on F we either need a connection on O(4) or a nonzero
section of O(4) which could be used to dehomogenise 5. The three-form d never-

theless makes sense on A3T*(S4) and we have the following result:

Proposition 9.1 The two form 3 defined by (9.2) satisfies

SAY =0, dS=BAY LzX=0 (9.3)

. /
for some one form [ homogeneous of degree 0 in w4

Proof. From the definition of ¥ it follows that the integrable twistor distribution L 4
belongs to the kernel of . Therefore equations (9.3) are implied by the Frobenius
theorem C.2.

O

The one-form f is defined up to the addition of d(In o) where o is a twistor function
homogeneous of degree 0.

The two-form (9.2) can be equivalently constructed from the twistor space. Let
T be a non-projective twistor space corresponding to (M, [g]), and let ¢ be a section
of the canonical bundle of 7. Let K be the holomorphic vector field on 7 which
corresponds to the Killing vector K on M. Define

5= oK, T, ..., ..), (9.4)

where T = 74 /074" + w4 /0w” is the homogeneity operator on 7. The two-form
S descends to PT where it takes its value in the dual canonical bundle K*. Let

q: S — T be the standard factorisation by the twistor distribution. From



it follows that q*i\] =3 By the Frobenius theorem (C.2) 5 defines an integrable dis-
tribution on F. This is to be identified with a Lax pair for Einstein—-Weyl equations.
The factor space of the reduced spin bundle by this distribution is the mini-twistor

space.

9.1.1 Hyper-Kahler case

Now assume that (M, g) is also vacuum. Consequently ¢4 5 = const and the
spin bundle is equipped with a canonical divisor? Q = w7 € O(2) which

descends to the reduced spin bundle? (9.1). It is easy to prove that now

X = 7TA/7TB/7TC/7TD/¢A,B/ZC/DI + 7TA/7TB/7TC/d7TC, VAN (KJ ZA/B/),
4¢A/B/7TA/d7TB/ 2
= =dl ) 9.5
/8 7TA/7TB/¢A/B/ n Q ( )

On the projective spin bundle F define
IT .= Q_Zi
We have the following result:

Proposition 9.2 The two-form 11 is well defined on the Einstein—Weyl correspon-

dence space Fy. It satisfies
dIl =0, IIAIl=0, (9.6)

where d = d2? @ 9; + A\ ® 05, 1is the exterior derivative on Fy. Any two linearly
independent vectors Lz such that L 1S = 0 form a Lax pair for the EW equations.

Proof. To prove the closure use (9.3) and (9.5). The simplicity follows from SAY =
0. The form S descends to Fyy because K JdIl = 0 and d([N(J IT) = 0.

O

2We assume that ¢4 # 0. If ¢4/ = 0 then K is triholomorphic and a section of O(2) which
descends to the reduced spin bundle is (¢ - m)? where ¢4/ is any constant spinor.

3By the reduced spin bundle (correspondence space) we mean the space of orbits of K in §4
(in F).
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Figure 9.1: Divisor on a mini-twistor space.

Again, the twistor construction of IT is much simpler. The twistor space fibres over
CP' and so 7-dr is well defined on PT. Let £ € O(4)®@A3(T*PT) be a holomorphic
volume form. Killing vectors on M correspond in the double fibration picture to

holomorphic volume preserving vector fields on PT

0 ;0
_ A 9 a9
M=l aa K g
Vector field K is obtained from K by K4 := K (w?) and K4 := op P + (n/2)n?

where gb‘g/, is a symmetric spinor. In fact we have the following

Proposition 9.3 Let ¥ be an O(2) wvalued symplectic form on the fibres of p :
PT — CP' and let K be a holomorphic volume preserving vector field on PT such
that LxX =nX. Then K = p.q*K is a conformal Killing vector on M.

Proof. We have
0=Lxl=nEAn-dr+ X A Li(m-dn)

so Lim - dr = —nm - dr which yields K4 = ¢4,77 4+ (n/2)74". The spinor ¢4,

A’ A

is symmetric and homogeneous of degree 0 in 7. It also doesn’t depend on w*,
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therefore it is constant. Lift I to cal F and fix A\. From the assumption

’ a / ! a / !
_ A _ _A_B _ & B
O0=m e Kp =7n"m aw(AKB)B’_v(AKB)'

Conversely Capcrpr = 0,94 = 0 imply that ¢4 = const and {IN(,LA} is an
integrable distribution so K projects to a holomorphic vector yield on P7T. The

condition VE‘;‘IK;) = 0 proves that L = nX.

The two form
=~ ICJé“
T KJ(w-dm)

descends to the mini-twistor space Z. On Z it is closed and simple (as it is a two

(9.7)

form on a two-dimensional manifold). The two-form II from Proposition 9.2 is a

pull back of 1 to Fw.

9.1.2 ASD Einstein case

Consider the situation when (M, g) is ASD Einstein (A # 0). It turns out that in
this case we can also find a divisor to dehomogenise 5. and the proposition (9.2)
holds. This can be best seen from the twistor construction.

Let PT g be a projective twistor space corresponding to solutions of ASD Einstein

equations. It is not fibred over CP! but nevertheless it is equipped with a contact

structure 7 € A2(T*PT i) ® O(2) such that [80]
T AdT = A&
Although 7 A dr is defined on PT g, d7 is not as
YTidr = Ly7 =27 #0.
Therefore we choose to work on the non-projective twistor space Tg.

Lemma 9.4 If K is a Killing vector on an ASD FEinstein manifold then the corre-
sponding holomorphic vector field on the non-projective twistor space is Hamiltonian

with respect to the symplectic structure dr.

Proof. Define a section of O(2) by @ := KJ7. We have dQ = Lx7 — Kadr =

—KJ1dr as K is a symmetry.
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O

The pull back of Q to S4 is ¢pu 7P . The difference with the vacuum case is

that
2
Vaadper = _§A5A’(B’KC’)A # 0.
The two form (9.4) is

S =K1 (AT Adr) = Q*Ad(7/Q),

so that S AT = Q¢. The two form on F given by

1= ()

satisfies equations (9.1). Therefore Einstein-Weyl metrics which come from ASD
Einstein and hyper-Kahler four manifolds give rise to the same structure on the
reduced spin bundle, which is in agreement with results of Przanowski [65] and Tod

[74].

9.2 Examples

We shall now illustrate the construction of II and Proposition 9.2 with some exam-
ples. In the case of reductions from ASD vacuum we can work with the covariantly
constant spin frame (given by I'4/p = 0), or with an invariant spin frame (charac-
terised by K = K ). We shall compare these approaches. First assume that (M, g)

is C* with a flat metric. The flat twistor distribution and the lifted symmetry are:
Lo=05— M., Li=0:— A0y, K =20, — 30+ \oy.
The volume form on F and the Gindikin two form are given by
E=d\AdzAdZAdwAdD, B(N) = —NdwAdZ+ A(dwAdd —dz AdZ) +dw Adz.
e In the covariantly constant frame we introduce
or :=In(23), 26 :=In(z/%), sothat K = Op + A0h.
In these coordinates
Y(A) = =A% ¢dw A (dr —de) + A(dw Adw+2e* dr Adg) +e ™ dw A (dr +dg)
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and
I = MN2Z2(K, Lo, Ly, ... . )N 2(AAA (KJX) — AY)
= "(dw A dh+ A 2dw A dX 4 Adad A dr — A dw A dr)
+ 227 dr AdX — dw A dw (9.8)

where A = \e™? is an invariant spectral parameter.
In the invariant frame we use the coordinate system

(5\, S, T, W, W) defined by A=Xe? s=¢+In\
In these coordinates

1262r+s2q N A ds A dr A dw A du,

= = A
K = 0,
Lo = 0p— (1/2)Xe7(0, — Nd5), A 'Ly = (1/2)A7 (9, + \d5) — Ou.

This gives rise to
IT = (\e®)"'2(0y, Lo, L1, ..., ...),

which agrees with the formula (9.8).

The two form II can be also obtained as a pull-back from PT.

Let (A, 4%, ') be inhomogeneous coordinates on P7. On the spin bundle they
are given by

A opt = 4z, p =M+ w.
The holomorphic vector field on PT is K = p%9,0 + Ady. From (9.7) we have
S =@ (K (AAAdp® A dpt) = (A — Adpt) Adpt = A2dpt A d(®/)N).
Thus
= A28 =du' Ad(u’/\) = dP A dQ

where P = @ + A\ le’ and 0 = X\e” + w are coordinates on mini-twistor
space pulled back to the reduced spin bundle. Foliate reduced F by planes
R = const, S = const where Ly = Og,, L1 = Or,. This defines 2D mini-twistor

space which is CP! x CP'. This can be seen from the transition relations for

(P, Q).
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Now analyse the curved case in the covariantly constant frame. Using the twistor

distribution (3.4) we find
e g, 1 T 1 ~ 1 N
II=e"(doAd\+ ﬁdw/\d)\—l—)\dw/\dr — idw/\dr) — 008) — 5er AdA, (9.9)

where

8::dw®8w+%dr®8r, 8::dw®%+%dr®&.
It is obvious that dII = 0. The simplicity condition yields field equations:
A =dr AdIn A A dw A di(4e” + Q0 Qs — i),
SO
Qi — Qe Qi = 4%

Put Q, = J, Qg = ¢ and make use of a hodograph transformation (8.15) to obtain
the SU(00) Toda equation

2r

If we choose to work in the invariant frame:
A=Xe"? s=1/2In(z/2) + In),
then II is obtained by the contraction of the rescaled volume form
ATIE = e dlnd Ads Adr A dw A did

with 0s together with the Lax pair for the SU(c0) Toda equation

Ly = ie%(gm(a, +205) — Q) — %er@ —25)

L = VA Qua(d +305) — Se Q0 — D).
2\ 2

To finalise, we shall look at the most general reduction of ASD vacuum metric. The

two-form corresponding to the solution of equation (8.6) is

Ki$(\) SV
I = d\A - 9.10
o o (9.10)
= ¢ "™ ((n— p)e" ™I AD A d(A — u) + (n+ p)e” AT w A d(A + u)

+ 2VdAdu + Sdw A d(A — u) — Sdd A d(A + u) — 57 (Sg + Sy )dw A di.
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Here A := p~'In ) is an invariant spectral parameter. In the derivation we used a
covariantly constant spin frame.
Formulae (9.1) resemble Gindikin’s formulation (2.16) of ASD vacuum condition.

This motivates a practical method of constructing II:

1. rewrite the two-form 747 Y4B in the coordinates in which K = O,

2. replace all dts by dAs for a suitably defined invariant spectral parameter A,

3. put
WA/WB/ZA/B/(dt — dA)

= 0

9.3 Einstein—Weyl spaces from the
dispersion-less Kadomtsev—Petviashvili equa-
tion

In this section we shall use Proposition 9.2 to construct Einstein-Weyl metrics out
of solutions to the dispersion-less Kadomtsev—Petviashvili (dKP) equation.

Following Krichever [42] define

2 )\3
QQZ:—+U, 93:—“—)\’&""[1)

2 3
for some u = u(z,y,t) and w = w(z,y,t). The two form
II =dz Ad)\+dy AdQs + dt A dQs (9.11)
is closed by its definition. It is also simple iff u and w satisfy
Wy = Uy, Up — Uy = Wy
Eliminating w yields the dKP equation

(U — ULy )y = Uy (9.12)

Therefore, by Proposition 9.2, it should correspond to some Einstein—Weyl geometry.

The simplicity gives rise to
[0y + Xa,, 0 + Xa,] =0
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where X, stands for a vector field Hamiltonian with respect to d\ A dz. Define a

triad of vectors
Voo =0, Vo = ay, Vi = 0y — ud,
and introduce a Lax pair (which is a kernel of (9.11))
Ly := Vo1 — AVoo + (Voou)os, Ly := Vi — AViy + (Vigu)oy,

or Ly =78 Vap + (oB/VB/A/u)E);\, which has the form (8.11). The dKP equation

is equivalent to
[Lll, Lo/] = —ungl, or [Lll — )\LO/, LO/] = 0.

The next proposition shows that we can find a one form v such that Vg is a

contravariant triad for an EW metric:

Proposition 9.5 Let u := u(z,y,t) be a solution of the dKP equation (9.12). Then

the metric and the one-form
h = dy? — 4dzdt — 4udt?, v =—4u,dt (9.13)
gwe an EW structure.

Proof. Let z! := z,2% := y, 23 := t. Define trace-free part of the Ricci tensor of
the Weyl connection
1

1 1
5 (R + §Vka + —ykyk> hi;

1 1
Xij = Rij + EV(ZV]) + - iVj — 1

4

Five (out of six) EW equations x;; = 0 are satisfied identically by anzatz (9.13).
The equation x33 = 0 is equivalent to (9.12). We also find W = u,,.
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Chapter 10

ASD vacuum metrics from soliton
equations

In this chapter we explain how to construct solutions to the anti-self-dual Einstein
vacuum equations from solutions of various two-dimensional integrable systems by
exploiting the fact that the Lax formulations of both systems can be embedded in
that of the anti-self-dual Yang-Mills equations. We illustrate this by constructing
explicit ASDV metrics on R%x X, where X is a homogeneous space for a real subgroup
of SL(2,C) associated with the two-dimensional system.

Ward [82] has observed that many integrable systems in two dimensions may
be obtained from the anti-self-dual Yang-Mills (ASDYM) equations reduced by
two translations. On the other hand Proposition 2.1 implies, that solutions of the
ASDYM equations with two translational symmetries and gauge group SDiff(3) for
some two-manifold ¥ determine solutions of the ASDVE equations (see also [86]).
But SL(2,C) eSDiff(¥), therefore the reduced SL(2,C) ASDYM will give rise to
ASDV metrics.

In the next section we review briefly the classification of two-dimensional inte-
grable systems arising from the SL(2,C) ASDYM equations. Section 10.2 is devoted
to the construction of normalised null tetrads and hence metrics on R? x ¥ from the
ASDYM Lax pairs for the two-dimensional integrable systems. In the last section

we outline the twistor interpretation of the construction.

101



10.1 Anti-self-dual Yang-Mills and 2D integrable
systems

For the notation and conventions see Section 2.5. We shall consider the reality
conditions for real ultra-hyperbolic spaces, recovered by imposing w = x — vy, z =
t4+v,w =x+y, Z=1t—wv. (Reality conditions for Euclidean space are recovered by
imposing @ = w and Z = —Z.) Solutions to (2.21-2.23) can be real for this choice
of signature.

We fix the gauge group to be SL(2,C) or one of its real subgroups. Conformal
reduction of the ASDYM equations involves the choice of the group H of conformal
isometries of M. We shall restrict ourselves to the simplest case and suppose that
a connection A is invariant under the flows of two independent translational Killing
vectors X and Y. These reductions are classified partially by the signature of the

metric restricted to two-plane spanned by the translations.

1) Nondegenerate cases (H;)

a) X:(?w—&j, Y:az—ag.

e

Ao = i < QCOQ?%/Q) 2C9?$i/2) >’

A, = %(2515(%/2) _QSi;iWQ) )

1= 3 (oo W) o

The ASDYM equations are satisfied in ultra-hyperbolic signature if ¢, +

¢ = sing; the elliptic sine-Gordon equation.

b) G=SU®2), X =0y, Y =0y

A; =0, Aw:cosgb(? 6)+sm¢( _01 (1)),

0 ¢ i 0
A@_<Z. 0), AZ_1/2(¢U—¢t)(0 —i>' (10.2)
The ASDYM equations in ultra-hyperbolic signature yield ¢y — ¢y =
4sing, the hyperbolic sine-Gordon equation.
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For details of these reductions, see [2]. Note also that if we reduce from
Euclidean signature we obtain Hitchin’s Higgs bundle equations (which can
also be represented as harmonic maps from R? to SL(2,C)/G where G is
SU(2) or SU(1,1)) [49].

2) Partially degenerate case (H)
We consider ultra-hyperbolic signature with X =0, — 0z and Y = 0;.

(qg 1 o o by —2¢y L 0 0
Aw_(b _q)7Aw_072AZ_<2w _bx >7AZ_(_1 0)7

(10.3)
where 4w = Quun — 4qq — 2¢.° + 4¢%q, and b = ¢, — ¢>. The ASDYM
equations (with the definition u = —¢,) are equivalent to the Korteweg
de Vries equation 4u, = gy, + 12uu,. The reduced Lax pair (2.20) yields

a zero curvature representation of KdV.

(0 o) .
fo= (5 0) a0

2
A = i(%\ _Tzﬁg),mg:ﬂ(é _01) (10.4)

Here the upper (lower) sign corresponds to G = SU(2) (or SU(1,1)). The
ASDYM become i, = — . F2| ¢ |2q§ which is the nonlinear Schrodinger

equation with an attractive (respectively repulsive) self interaction [47].

10.2 Anti-self-dual metrics on principal bundles

We connect the anti-self-duality equations on a Yang-Mills field and those on a four-
dimensional metric by considering gauge potentials that take values in a Lie algebra

of vector fields on some manifold. Proposition 2.1 reveals one such connection:

Z W
Vaiu=| 2
y ( Zmn )
and W, ﬁ//, Z and Z are generators of the group of volume-preserving (holomorphic)

diffeomorphisms of (M, v). We make the identification: W = D,,, W= Dy, Z =
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D., Z = D:. By comparing (2.11) with (2.20), we see that the half flat equation
is a reduction of the ASDYM with this gauge group by translations along the four
coordinate vectors 9, Oz, 0., Os.

In order to understand the relationship with two-dimensional integrable systems,
we look at this in a slightly different way. Let (X, Qx) be a two-dimensional sym-
plectic manifold and let SDiff(¥) be the group of canonical transformations of 3.
Consider the ASDYM equations with the gauge group G, where G is the subgroup
of SDiff(¥). We can represent the components of the connection form of D by
Hamiltonian vector fields and hence by Hamiltonians on ¥ depending also on the

coordinates on M:
W =08y Xy, W=0p—Xu,, Z=0,— Xy, Z=20:— Xy, (10.5)

where Xy, denotes the Hamiltonian vector field corresponding to A, with Hamil-
tonian H,.

Now we suppose that D is invariant under two translations. The reduced Lax
pair will then descend to R? x ¥ and give rise to a half flat metric. This requires
that the gauge group is a subgroup of the canonical transformations of . Although
it has been observed that SDiff(¥) ~ SL(00), it seems that SL(n,C) is a subgroup
of such defined SL(co) only for n = 2. In this case we can take the linear action
of SL(2,R) on R? or a Md&bius action of SU(2) and SU(1,1) on CP' or D (the
Poincaré disc) respectively. We shall restrict ourselves to real vector fields, which
will imply that our ASDV metrics will have ultra-hyperbolic signature (Euclidean
examples can also be obtained in a similar way).

To be more explicit we write down the Hamiltonian® corresponding to the matrix
c —a

A, = ( a b ) € LSL(2,C).

In the three cases we have

bn? cm?

Y =R? Qp=dmAdn, Hu:(T—l—amn—T), (10.6)
: ¢ b—Eb+2
Y = CP!, Qy = L/\fi, H, = P Ul (10.7)
(1+€€) L+&¢

1'We only require the representation of A, by volume-preserving vector fields on ¥; Hamiltonians
are defined up to the addition of a function of the (residual) space variables, but different choices
of such functions do not change the metric.
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Y =D, QZZLA_di, HM:—iw.
(1-¢€6) 1-¢&6

The covariant metric is conveniently expressed in terms of the dual frame (see Propo-

sition 2.1)

(10.8)

9 =2 (ew @ e — ez O ep), (10.9)

where

ew = f*ZU(...,W, Z, Z) , e = f2v(W,.., Z, Z)
ez =fWWW, . Z) | ez=fw(W,W,Z,..). (10.10)

Self-dual two-forms on M are
a=flewANez, w=f*ewNez—ezNez), a= fem ey (10.11)

The metric and two-forms obtained after the two-dimensional reductions of ASDYM

are as follows: (i) Hy (X =0,,Y =03), v=dzAdZAQy
PP=v(W,W,2,2) = Qs(W,W) = {Hy, Hy} = Fos. (10.12)

In the last formula F,,; is a function rather then a matrix. This follows from the
identification (via (10.6)-(10.8)) of 2 x 2 matrices in the Lie algebra of SL(2,C) and

Hamiltonians. Let dx, stand for the exterior derivative on X.

2Qu(W, Z)dz + Qu(W, Z)dz + Qu(..., W)

ew = f~
= f?({Hg, H,}dz + {Hg, H:}dZ — dsHy)

ey = [*({Hw H.}dz — {H,, H:}dZ + dsH,,)

ey = dz (10.13)

e; = dz
S = _{Hg H:}dzAdZ —dgHy Adz
>0V = ({H, H:} — {H,, Hz})dz AdZ + Qy + dsH. Adz + dgH; A dZ
20 — (H, H.}dzAdZ+dgH, AdZ.

The gauge freedom is used to set A; (and hence Hz) to 0.

2

ds? = — =
* T {H, Hy)

( — ({Hg, H}{Hy, H))d2? — {H,,, Hy)2d=d2
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—(0cH,O0c Hy )AE® — (agHwagHw)dE2 — ((0¢HgOgHy) + (0gH g0 H,,))dEAE

(11) Hz, (X = (9w - (‘%,Y = ag), v=drAdzA QE,
f2 = {Hw - HITMHE} = Fwiy (1014)
ew = f2({H: Hgy}dx + {H:, H,}dz — dsH:)

=~ = f2(—{Hs; Hy}dr — {H;, H.}dz + ds H;)
ez = dz (10.15)

ez = [ *({Hw Hy}dx + {H, — Hg, H,}dz — ds(H, — Hy))
21/1/ = {Hg, Huj}dl' ANdz + dEHg ANdz
»OY = ({Hy,, H.} —{Hgz, H:})dx Adz + ds H: Ade — dg(H, — Hg) Adz
20 — (H, HdzAdz+ Qy +dgH, Adz — dyH, Adz.

We can perform a further gauge transformation to set Hz; = 0 in which case

\2
ds? = _2< ({Hf’—HZ}Q + {HwaHz}) dz? — (8£H2>2 d§2 (%Hz) dEQ

{H,, H:} {H,,H:} > {H,, H:}
{H27HZ} {H§7Hz} -
H 22— - 0.H: H 22— = - O-H:
-+ (85 w T {Hw,Hg}a§ ;) dz df + ag w T {Hw,Hg}az 3 dzd§

20¢H:0¢H
- {H,, H:}
Reductions by X = 9,,, Y = 0, are not considered because the resulting metric turns

d¢dE + {H:, H.}dzdz — 9cHzdwdé — agHgdde).

out to be degenerate everywhere as a direct consequence of the ASDYM equations.
Equation (2.21) becomes now [ X, , Xp.] = 0 which, in the case of finite dimensional
sub-algebras of LSDiff(¥), implies linear dependence of Xy, and X .

The construction naturally applies to complex four-manifolds. We start from
the ASDYM equations on C* with gauge group SL(2,C). Then we perform one of
the possible reductions to C2. Let X2¢ be a two-dimensional complex manifold, for
example CP* x CP"™*. SL(2,C) acts on one Riemann sphere by a M&bius transfor-
mation, and the other by the inverse:

. AE+B DE-C
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Here ¢ and é are independent complex coordinates on CP' and CP'. The action
preserves the symplectic form Qg = (1+£€)72(d€ Ad€) defined on the complement
of 1+ &€ = 0. All results of this section may be extended to the complex case by
replacing € by the independent coordinate é :

10.2.1 Solitonic metrics

We can now establish the connection between the integrable systems reviewed in
Section 10.1 and anti-self-dual vacuum metrics. We do so by expressing the Hamilto-
nians above in terms of solutions to various soliton equations. From a given solution

of a two-dimensional nonlinear equation we can generate a null tetrad (10.10).

1) NIS

W = 89, + (86 + 0)0; + (¢€ + 9)0;

W = 0,
Z = —if0e +i€0;
Z = 0. 4i(—0,8 +2| & P+ 62)0 — i(— 0. +2| 6 €+ ,)0¢
f2 _ QRG(E@
1+]¢
2) KdV

W = 0,+ (¢gm+n)0, + (bm — qn)o,
W = 0,
Z = mo,
b, by
Z = 0,+ (Em — @en) O + (wm — En)ﬁn
2 = —m(g+mn)
where b = ¢, — ¢* and 4w = Qoue — 49en — 2¢.° + 44° ¢
3) SG; elliptic case.
W= 0, (Gm — 2608(6/2)m)0 + 1 (~6un — 2cos(6/2)m)i,
—~ 1 1
W = 0,+ 1(¢tm +2cos(¢/2)n)0y, + Z<_¢tn + 2 cos(¢/2)m)0,
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7 = 0t (~gem — 25in (6/2)m)h + (6en — 2sin (9/2)m)0,
Z = 0+ {(~0em + 25in (6/2)n)du + {(6un + 2sin (9/2)m)2,
2 = (sing)mn

4) SG; hyperbolic case

i€2e71 1 i) + (i€ €' — e )0

(_
W= (i€ + )0 + (i€ — )0
a~

Z = 0,—i(0:0)&0¢ +1i(0:0)€0z
dsing(| € P — 1)

2 _
= era
Put d & = dé + i€0:¢ dz. Then we have
ds? = %52 ([(1 — &2 cot ¢+ i(1 — E)]daé @ dul + 2sing dz @ d3

Heot ¢(1-E)(1 =€) +il(1+E)(1 - &) (10.16)
~(1 =) (1 + ) da © TuE +[(1 - &) cot & — i(1 — €TiE @ TiE).

If one takes a solution describing the interaction of a half kink and a half anti-kink

(two topological solitons travelling in z — Z direction and increasing from 0 to 7 as

z 4 Z goes from —oo to co) then the singularity in sin ¢ = 0 may be absorbed by a
conformal transformation of z + Z [15].

From the Yang-Mills point of view, the solutions that we have obtained are

metrics on the total space of £, the ¥-bundle associated to the Yang-Mills bundle.

Therefore it is of interest to consider the effect of gauge transformations. First notice

that diffeomorphisms of R? x ¥ given by
¢ — 2% + eXp(x?) (10.17)

yield H, — H, + ¢({H,, F} + 0,F) which is an infinitesimal form of the full
gauge transformation (2.19). Here p is an index on M, whereas a is an index
on M = R? x X. The vector field Xy is Hamiltonian with respect to s, with
Hamiltonian F' = F'(x%).

If (10.17) preserves the Kahler structure of ¥ then H, transforms under (a real

form of) SL(2,C) and therefore our construction remains ‘invariant’.
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10.2.2 The twistor correspondence

To finish, we explain how our construction ties in with the twistor correspondences
for the anti-self-duality equations. We consider only the complex case of the ASDYM
equations with two commuting symmetries X,Y. The SL(2,C) ASDYM connec-
tion defines, by the Ward construction [78], a holomorphic vector bundle over the
(non-deformed) twistor space, Ey — P. It is convenient? to use the bundle &£ -
associated to Ey, by the representation of SL(2,C) as holomorphic canonical trans-
formations of the complex symplectic manifold ¥2¢.

On the other hand, the ASD vacuum metric corresponds to a deformed twistor
space P, [56]. In this chapter we have explained how the quotient of £ by lifts of
X, Y is, by theorem (2.1), equipped with a half-flat metric . To give a more complete
picture we can obtain the deformed twistor space directly from &, and show that
this is the twistor space of M. Consider the following chain of correspondences:

Ex F & Fm

4 N N N K
Pt P C* M Pt

Here F and Fuq are the standard projective spin bundles fibred over C* and M
respectively. The space F{, the pullback of the spin bundle F to the total space of
the bundle &, fibres over all the spaces in the above diagram. Taking the quotient by
lifts of X, Y we project FZ to Fag. Taking the quotient by the twistor distribution,
FI also projects to the Ward bundle &£,. By definition it projects to € and it could
equivalently have been defined as the pullback of £ to F. The compatibility of these

projections is a consequence of the commutativity of the diagram

CP xC'xx2=rl &8

l l (10.18)

&, N Py

which follows from the integrability the the distribution spanned by (lifts of)

X7 }/a LO; le

2The diagram (10.18) describes also the general case of G = SDif f(X%¢). For this we work
with &, rather than the principal Ward bundle, since the latter has infinite-dimensional fibres.
The notation is such that the upper index of a space stands for the complex dimension of that
space.
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and from the fact that (X,Y’) commute with (Lo, Ly).

10.2.3 Global issues

In order to obtain a compact space one might attempt the following:
e choose the gauge group to be SU(2) so that the fibre space is compact, and
e Compactify R? after the reduction.

We restrict the rate of decay of A, by the requirement that A, should be smoothly
extendible to S? in the split signature case. Other possibilities are to restrict to the
class of rapidly decreasing soliton solution of corresponding integrable equation. If
we have reduced from a Fuclidean signature solution to the ASDYM equations, then
it is more natural to compactify R? in such a way as to obtain a Riemann surface of
genus greater than one as it is only for such a compactifications that one can have
existence of nontrivial solutions, [32].

However, we still have singularities in the metrics corresponding to (10.13) and
(10.15), even if we can eliminate those from the Yang-Mills connection. We are
left with singularities associated with sets on which the tetrad becomes linearly
dependent. This reduces to the proportionality (or vanishing) of the Higgs fields
on X, which generically occurs on a real co-dimension one subset of each fibre (and
hence co-dimension one in the total space). In the above formulae this set is given
by the vanishing of f. The ASD Weyl curvature Cygcp blows up as f goes to zero.
Calculation of curvature invariants show that these lead to genuine singularities that
cannot be eliminated by a change of frame or coordinates. For example

3

CapepCAPP =N~ Cif”,

where C; = C;(z*) are generally non-vanishing regular functions on M, which ex-
plicitly depend on Yang-Mills curvature F),, and (derivatives of ) Hamiltonians (10.6-
10.8). Those singularities appear (for purely topological reasons) because each vector
in the tetrad (W, W, Z, 2) has at least one zero, when restricted to 3 = S2.

One can also obtain Euclidean metrics as above by using reductions of the AS-
DYM equations from Euclidean space, but we will still be unable to avoid these

same co-dimension one singularities.
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10.2.4 Other reductions

We have focused on the familiar 1 + 1 soliton equations. However, it is clear from
the discussion of Section 10.2 that the construction will extend to any symmetry
reduction of the ASDYM equations to systems in two dimensions with gauge group
contained in SL(2,C), in particular when the symmetry imposed consists of two
translations as for the Euclidean signature examples mention previously. However,
one can also use the same device to embed examples using any other two-dimensional
symmetry subgroup of the conformal group. In particular, with cylindrical sym-
metry, one obtains the Ernst equations (the two symmetry reduction of the full,
four-dimensional Einstein vacuum equations) and this can similarly be embedded

into the anti-self-dual (but not vacuum) equations.
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Chapter 11
Outlook

In this chapter we shall briefly discuss some open research problems which are related

to what has been said in this thesis.

11.1 Towards finite gap solutions in twistor the-
ory

This section motivates the study of solutions to heavenly equations which are in-
variant under some hidden symmetries!. This should lead to a large class of ASD
vacuum metrics analogous to the celebrated ‘finite gap’ solutions in the soliton the-
ory [52].

Let us give a simple example of an analogous construction for the first heavenly
equation (3.2). Let ¢, = 0;, 2 be a linearisation of the first heavenly equation. The

recursion relations (3.12) are
(Qua0s — 0z05)04,,, 2 = 0,0, Q,  (2w0z — Q.205)0, ., 2 = 0.0, ).

We have R : z — Q,, = 0,§. Look for solutions to (3.2) with an additional

constraint 9,2 = 0. The recursion relations imply 2,,, = (., = 0, therefore

Qw, z,w, 2) = wq(w, 2) + P(z,0, 2).

The heavenly equation yields dg A dP A dz = dZ A dw A dz. With the definition
0. P = p the metric is
ds* = 2dwdg + 2dzdp + fdz?,

!This project has now been completed - see [92].
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where f = —2P,,. We adopt (w, z,q,p) as a new coordinate system. Heavenly
equations imply that f = f(¢,2) is an arbitrary function of two variables. The
metric is of non-expanding type N. This simple solution does not admit a conformal
symmetry of the form (8.2), so nontrivial reductions of Einstein—-Weyl metrics will
require combinations of hidden symmetries.

It would be enlightening to develop the framework for the finite gap solutions,
in twistor theory. We should study both ASDYM and heavenly hierarchies.

Imposing three independent hidden symmetries on the twistor space should lead
to solutions of ASDYM/ASDVE expressible by #-functions. Some solutions of this
type are implicitly given in Chapter 10 where we expressed ASD metrics in terms
of KdV potentials.

One approach could be based on the generalisation of [77]. One could look at
twistor spaces which have a globally defined twistor function homogeneous of degree
n+1. This would imply that the metric admits a Killing spinor ( see example (7.20)).
The canonical forms of patching functions should be derived to give explicit ASD

solutions.

11.2 Einstein—Weyl hierarchies
and dispersion-less integrable models

Equations (9.1) are closely related to Krichever’s formulation [41] of the Whitham
hierarchies. Here we shall discuss a possible relationship between Einstein—Weyl
geometry, twistor theory and Whitham equations.

Let Z be a complex surface and let | C Z be rational curve with a normal
bundle O(2n). By the Kodaira theorem (A.4) the moduli space V of [ is 2n + 1
dimensional. The 2n 4 2 correspondence space Fy := V x CP! is equipped with a
2n dimensional distribution Ly, 4, € T'(Dy ® O(1) x C?". The existence of this
distribution follows (using arguments from the proof of Proposition (??)) from the
double-fibration picture

V& Lz,

together with the sequence

0 — Dy — C*"" — O(2n) — 0.
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It is ‘reasonable’ to treat Z as a twistor space of the Einstein-Weyl hierarchy;
this terminology should be justified by a closer study of symmetries and recursion
relations associated to EW equations.

We shall restrict ourselves to surfaces Z which arise as factor spaces of the
twistor spaces corresponding to heavenly hierarchies. In the following lemma we

shall develop the analogy of the Jones and Tod’s factoring construction.

Lemma 11.1 Let KC be a holomorphic volume preserving vector field on a twistor

space PT from Proposition (7?) such that L3 = nX, for n = const. Then
e K =p.q*K is a ‘para-conformal Killing vector’ on N, i.e.

Vgﬁg...A;Kg)i..-Ba) —0 (11.1)

o The factor space Z := PT /K is a complex surface with a 2n + 1 dimensional

family of rational curves with self-intersection number 2n.

Proof. The proof of a) goes along the lines of the proof of Lemma (9.3). To
prove b) choose a rational curve [ in P7T on which K does not vanish. The vector
field IC defines a trivial sub-bundle of the normal bundle O(n) & O(n) to the line
[. The normal bundle of the image of [ in Z is O(2n). The Kodaira theorem A.4
implies the existence of (2n + 1)-dimensional family of such curves®. The projection

p:PT — CP! equips Z with a divisor
Q=Kirm-dre O(2). (11.2)
In the special case @ = 0, surface Z is fibred over CP*'.
O

Let ¢ be a holomorphic volume form on P7T. Define a line bundle valued two form

on the correspondence space F by
Y=g (Ksg) e AXF)@0(2n +2).

This two form descends to the reduced correspondence space Fy. Assume that

@ # 0. In this case we can ‘dehomogenise’ 3 to give a closed and simple two form:

2If n = 3 then the mini-twistor space will have O(6) rational curves, and the moduli space C”
could have a G5 structure.
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Proposition 11.2 Let IT := Q"% € A2Fy be a two form on a 2n+2 dimensional
space Fy. Then
dll=0, TAI=0. (11.3)

Proof. The two-form II descends to Z where equations (11.3) are satisfied trivially.

O

Formulae (11.2) are central to the Krichever description of the Whitham hierar-
chy [41, 42]. To make a closer analogy with his approach, we should identify the
coordinates on V with ‘slow’ time variables t4; coupled to meromorphic differen-
tials €24; of the finite-gap construction, and \ with a coordinate on a holomorphic
curve I'y. Krichever constructs (see [42] for notation) a potential S(\,?4;) such that

Q4 = 04;5. In the genus 0 case
F = /dS AdS
r

is the prepotential for the Frobenius manifolds [13]. It should be possible to give
interpretation of this formula in terms of the geometry of P77, which should allow a
twistor construction of Frobenius Manifolds. To understand the general Whitham

hierarchies one would have to extend the twistor theory to the case when F = N xT,.

11.3 Other ASD hierarchies

It is natural to ask whether twistor methods used in Chapter 3 to construct ASDVE
hierarchy could be applied to other hierarchies associated with ASD geometries.

Below we discuss two cases which we think can be treated by similar methods.

11.3.1 Hyper-complex hierarchies

Studying the linearised hyper-complex equation (7.14) should result in a recursion
procedure analogous to (3.12). The consistency conditions for the recursion relations

will demand solvability of a linear system L ;s = 0, where

0 ( s, 8@3(‘3).

Ly =—— — 4+ .
A O Ai Oz Al T §rAi HpB

(11.4)
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The condition [La,, Lp;j] = 0 gives rise to the hyper-complex hierarchy

0?0’ *e¢ 0P 9?0 0P 9?e¢

DxAT 0B OxBitorA | 9xA 0xPidxD | 0xPi DxhioxD

=0. (11.5)

If Oc = 00/0x°, then the flows (11.5) are derivatives of flows (??) of the heavenly
hierarchy constructed in Chapter 3. The combination of Propositions 7.2 and 77

should lead to a twistor description of hyper-complex hierarchies by the following:

Conjecture 11.3 Let PT be a three-dimensional complex manifold with the follow-

g structures:

1) a projection p : PT — CP?!,

2) a 2(n + 1)-dimensional family of sections with normal bundle O(n) & O(n),
and let N be the moduli space of sections from (2). Then

a) There exist two function OF : N — C which (with the appropriate choice of
the coordinates) satisfy the set of equations (11.5).

b) The correspondence space F = N x CP' is equipped with the 2n-dimensional

distribution D C T(N x CP') which, as a bundle on F, has an identification
with O(—1) @ C*" so that the linear system can be written as (11.4) Equations
em(11.5) are equivalent to [La,;, Lg;] = 0.

It is expected that the transition functions for the line bundle K* ® O(—2n —2) will

play an important role in the proof.

11.3.2 ASD Einstein hierarchies

The vanishing of the cosmological constant underlies the original nonlinear graviton
construction. The ASD Einstein metrics with A # 0 have a natural twistor con-
struction [80] where the extra information about a scalar curvature is encoded into
a contact structure on P7. On the other hand Przanowski [64] reduced A # 0 case

to the single second order PDE for one scalar function u(w,w, z, 2)

U Uzz — Uzl — (2Up + Upg)e * = 0. (11.6)
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This equation could be a starting point from construction of ASD Einstein hierarchy.

This is because the linearisations of (11.6) satisfy
(O, +4A)ou =0

and the recursion relations (3.12) are still valid. It should be possible to derive
Przanowski’s result from the structure of a curved twistor space. In the above cases
rational curves in P7 have normal bundle N = O(1) @ O(1). We expect that
replacing N by O(n) @ O(n) should lead to some generalisations of Proposition ?7?.

11.4 Real Einstein—Maxwell metrics

The operation of taking ‘real parts’ of complex vacuum metrics does not usually
lead to real solutions of the Einstein equations. There are few effective constructions
[67, 63] which use superpositions of half-flat metrics to produce Lorentzian Ricci flat
metrics. The geometric interpretation is, however, obscure. It should be possible
to clarify the geometric meaning of these procedures. In the next few lines we
shall propose a construction of Lorentzian solutions of the Einstein-Maxwell (EM)
equations by superposing holomorphic hyper-Hermitian metrics.

Let ©4 be a pair of complex valued functions on M which satisfy (7.14). The
ASD tetrad and the Lee form (which is now treated as the ASD Maxwell potential)

are

I I ! / ! i !
@AA = (5‘435‘4 B — OA OB/OC VBCIGA)dIBB = €ég/dlL‘BB s (117)

/ ’ /
A = OA/OB/OCIGAA (VAB VBC @B>

Robinson’s construction [67] motivates pulling back e44" to a real four manifold by

44 — ¢y Tt is hoped that the Hermitian matrix valued one form

’ 1At ’
W = 2% enSdyPP (11.8)

with the one form A := i(A — A) are conformal to a solution of the full EM system
on a Lorentzian four-manifold.

First this conjecture may be tested by taking a simple solution to equation (7.14)
(ie. a known hyper—Hermitian metric) and looking for a corresponding real solution

(11.8). Further work might involve substitution of (w4, A) defined above into the
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conformal EM equation. The constraints yielded for © 4 would follow naturally if the
conformal EM equation could be reformulated in terms of the Sparling three form.
We might gain a deeper understanding through a search for additional structures on
a twistor space corresponding to hyper-Hermitian four-manifolds. These structures
might shed some light on the procedure of taking the real section, and applying
the nonlinear superposition rule given above. It is possible that the structures are

related to those of Penrose [59].

11.5 Large n limits of ODEs and Einstein—Weyl
structures

It is known [88] that equations describing four-dimensional hyper-Kahler metrics
with rotational or translational symmetry arise as ‘large n limits’ of certain ODEs
associated to Lie algebras SU(n). It would be very interesting to find an ODE
which, in the limiting case, yields equations (8.6) or (8.13). We claim that various
Callogero models and a Darboux-Halphen equation are interesting systems of ODEs
to investigate. Let Y be a two dimensional complex manifold. Explicit Einstein—
Weyl structures on Y x R should be determined by solutions to ODEs with G =
SL(2,C) C SL(c0). This construction should have a twistor counter-part.

It would also be interesting to look at the case of a general Killing vector tak-
ing the equation (7.14) as a starting point. One might also consider reduction of
real slices with (4 + ——) signature to obtain an ‘evolution’ form of Einstein-Weyl

equations for metrics of signature (+ — —).

11.6 Computer methods in Twistor Theory

Many aspects of twistor theory which were used in this thesis were to some ex-
tent algorithmic. Computer programs should be written (in MATHEMATICA or
MAPLE) which simplify some calculations. In particular, checking the integrability
of twistor distributions, reducing Lax pairs and classifying Lie point symmetries on
the twistor space can and should be computerised. Some examples of programs used

in this work are listed in Appendix D.
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Appendix A

Complex Analysis

Let w4 = (my, m1/) be coordinates on C?. Remove 74 = 0 and use 74 as homoge-

neous coordinates on CP!. We shall also use the affine coordinate \ = my /.

Theorem A.1 (Hartog) Holomorphic functions on C* —0 extend to holomorphic

functions on C2.

Therefore functions on CP' are polynomials

f = fA/B/”_C/WA/WB/...WC/.

In particular, holomorphic functions homogeneous of degree 0 are constant (Liouville
theorem). This will be used to define fields by formulae (B.2, B.3).

For each X\ € CP' there exists a one dimensional subspace of Ly C C2, consisting
of points (7, my/) € C? for which 7y /mr = X. As X varies Ly form the tautological
line bundle over CP'. This bundle is called O(—1). Let O(n) be the dual nth tensor
power of O(—1). The O(n) transition function is A™". Its sections are given by

functions homogeneous of degree n in a sense that

f&ma) =" f(mar).

The space of these sections is

0 forn <0

C*t forn > 0. (A1)

H°(CP', 0(n)) = {

Let ¥ be a compact Riemann surface, and let K = T*Y be a canonical bundle

of ¥.. The genus of ¥ is equal to the dimension of H(%, K).
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Theorem A.2 (Serre) If L is a line bundle over ¥ then
H'(S,0(L)) = H'(S.O(K ® L*))".

Let ¥ = CP'. From the transition relations it follows that K = O(—2). There are
no non-zero sections of K. Let 7-dr be the section of K ® O(2) . The Serre duality
can be rephrased as follows: let L = O(n), and let

F =F%-gy my € H(S,0(n)).
Let G € H'(X,0(—2) ® O(—n)). Define the scalar product

1 o
(F,G) = -— 7{ FGr-dr = Gay_a FA-A0,
T

271

The integrand is homogeneous of degree 0 and the result of integration depends only

on the cohomology class of G. Here

1
GA’I...A;L = % 7TA/1...7TA4LG7T - dm.
r

Therefore integral formulae for the negative helicity fields are concrete realisations

of the Serre duality A.2.

0 forn < 2

1 1 —
H (CP',0(—n)) = { C*1! forn>2.

(A.2)

The classification of holomorphic vector bundles over CP* is given by the following:

Theorem A.3 (Grothendieck) Let E — CP' be a rank m holomorphic vector
bundle. Then
E=0(k)®..®0(kn),

where (ky,...ky) € Z™.

Therefore a section of F is of the form

Al

4 1),

— 1 k m
S—(‘I/AllmA;qﬂ' ™ Fl, ..., All"'A;cmﬂ-

The following result of Kodaira underlies the twistor approach to curved geome-
tries. Let Z be a complex manifold of dimension d + r. A pair (Y, M) is called a

complete analytic family of compact sub-manifolds of Z of dimension d if
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e Y is a complex analytic sub-manifold of Z x M of codimension r with the
property that for each t € M the intersection Y; :=Y N (Z x t) is a compact

sub-manifold of Z x t of dimension d.
e There exists an isomorphism
ToM ~ H(Y,, ;)
where N; — Y} is the normal bundle of Y; in Z.

Theorem A.4 (Kodaira[40]) Let Y be a complex compact sub-manifold of Z of
dimension d, and let N be the normal bundle of Y in Z. If H'(Y, N) = 0 then there
exists a complete analytic family (Y, M) such that Y =Y, for some ty € M.

We will apply the above theorem to the situation when Z is a projective twistor space
and Y = CP'. Roughly speaking, the moduli space M is the ‘arena’ of differential
geometry and integrable systems. One way to proceed is to consider infinitesimal
deformations (given by H'(Y, ®)) where @ is a sheaf of germs of holomorphic vector
fields), and to integrate them. The integration process involves the splitting formulae

which are summarised in the next appendix.
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Appendix B

Splitting Formulae

From (A.2) it follows that cocycles in H*(CP', O(r)) can be represented by cobound-
aries if 7 > —1. The freedom one has is measured by H°(CP', O(r)). The concrete
realisations, known as splitting formulae, were developed by G.A.J. Sparling. His
approach is based on the fact that H'(CP' O(—1)) = 0 and its cocycles can be
uniquely represented as coboundaries.

We shall use the ‘abstract multi-index notation’. This notation is set to avoid
an orgy of spinor indices on the primed spin bundle. We define it for the primed
indices. The definitions for primed indices are analogous.

Let SA = SM1-4%) he a symmetric tensor product of two dimensional spin
spaces. Different letters A’, B’,C’, ... denote sets of separately symmetric spinors.
The upper numerical index denotes homogeneity in 74 and A, B, ..., A, B, ... are
usual spinor indices. The twistor distribution is LY A Multi-indices undergo
contraction according to: Q“*rQ A, = Q=4 for p > q.

Let U and U be a covering of P7T such that my # 0 on U, and 7y # 0 on U
and let Uz and U = denote the open sets on the correspondence space F that are
the pre-image of U and U on PT. Given an indexed object on P7T we multiply it
by 74 and differentiate with respect to w* to make it homogeneous of degree —1.
Then we restrict it to a line and pull it back to F. On the projective primed spin
bundle we split it according to f A8, = Fa,p, — F 4,8, Here F 4,5 is holomorphic

on Ur and F 4,8, 1s holomorphic on U 7. They are given by

. 1 [ fa(par, 2 pa)
Fap (mar, %) = —% - p - dp,
r

2mi TP
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~ u 1 prBg(ﬂA/,IL‘AA/pA/)
Fapy(mar,z?) = %j{ p— p-dp (B.1)
I

where A,B; is the multi index, and pa are homogeneous coordinates on CP'. The
contours I' and I are homologous to the equator of CP' in U N U and are such that
I' — T surrounds the point pu = ma. We restrict ourself to the case where

orf

Tarsy = Tt T B A s

The field is given by

~ 1 [Ofam..
Las, \Faysy = Las, \ Fas, =Ya,u6,, =5 j{ —2 5 =pedp. (B2

There is always the ‘most economic way’ of constructing the —1 object (which in
the usual case of O(1) @ O(1) twistor theory does not involve multiplying by 7ass).
All the others can be obtained from it by acting on f4,s, with
0
7TA/1 7TA;I &‘}—A
The corresponding fields will be derivatives of W4 5

g+n—1"

Another method for constructing a field is
-2 _ -1 1
WA/f.AkBZ - ‘F AkBZA’ - FAI@B{A/
and

. 1
WAF 1~AkBZA/ = EAICB; = TmﬁfAkB; (B3)

In particular, if k =p+1 and [ = ¢ +n — 1 then formulae (B.2) and (B.3) give the
same field. More general splitting formulae are used to construct potentials.
If f7 € H'(CP', O(r)) then

f’f = ]:T - ﬁr7
where
r a 1 (7'(' ) O)T+1fr
‘F(WA’VI) - %£<pﬂ>(p0)r+lpd07
. L[ (e
"(ma, %) = — . . B4
f (7TA71‘ ) 27‘[‘2 f (p.ﬂ—)(p.L)T+1p dp ( )
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In the chosen spin frame we find (for n = 1) that

/
OA VAA/]'—T

m™-0 Tl

where

&,uA: A A

In O4(n) theory (with r > n) we have

! ! ! / -~
oM ..oV qu ar FT A AN g  FT <
1-4n — Frn 1-n
(m-o)" 4

Let us give one of the standard methods of splitting elements of H'(CP', O) of

the form L
H= WO—ﬂ =h—h.
(W) (w')!
On the correspondence space w® = mpa? = 7-a and w' = 1464 =7 3. We
make use of the formula
= Z)(Z-B):a%ﬂ(:é—f-;) (B5)

Put

0 ;0
——, 05 :=0"—.
Bat BT ppA
It follows that

m™-0

(- a)(m-p)
Therefore differentiating the RHS of (B.5) we can find the splitting of H.

(0a)' ™ (95)""" = (=)™ (i =D — 1A

Next we want to split

(7 - 0)tn

R P (N P O (AP ER A

First note that

/°° du B 1
o ((a+au)-7)?2 (a-7)(a-m)

which generalises to

()27 /OO /Oo dus...du,dws...dw,
0 o Jo (a1 +ugan + ... +upay) - m)2((Br + ugBa + ... + unfBy) - )2
2n—2
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. (ﬂ002n—1
~ (M) an 1) (B 7)o (B 7)) (B.6)

Differentiating (B.5) and using (B.6) we obtain

g—g=(m- 0)2”_28a1...8an8ﬂ1...33n/ / %dug...dundwg...dwn, (B.7)
0 0

2n—2

where

(a-0)*(r-0) 2(B-0)(a-0)* (B-0)*(m-0)  2(a-0)(8-0)’
Qz( + )

(m-a)? (a-B) (- ) (m- B)? (a- B)(m - B)
and @ = aq + Usg + ... + Upty, B = F1+ wafs + ... + wyf,.
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Appendix C

Differential Geometry

Let e be a one form on a connected and simply-connected domain of some manifold
M. Let

ekt = e A (de)™,  egy i=de

where Ak denotes the kth exterior power for £ € Z. We say that e is of class c if ¢ is

the maximal integer such that e # 0. We shall assume that ¢ = const for each e.

Theorem C.1 (Darboux) Let e be a one form of a constant class c. There exists
a set of independent functions p;,q',t where i = 1...c such that

k k
ezzpidqi if =2k, or e:dt—l—Zpidqi if ¢=2k+ 1.

i=1 i=1
Let D = (X3,..X%) be a C* k-dimensional distribution of vector fields on an n-
dimensional manifold F. We say that D is integrable if [X;, X;] € D whenever
X;, X; € D. Let Z(D) denote a set of differential forms (of any degree) such that if
w € Z(D) is a [-form then

M(Xh ...,Xl) = 0, if (Xl, ...7Xl) eD.

The ideal Z(D) is locally generated by n— k one forms (e, ..., e"~*). A sub-manifold
Y'* is called an integral sub-manifold of D if its tangent space at each point is spanned
by D, or equivalently Z(D) = 0, when restricted to Y*. Assume that the dimension

of the integral sub-manifold is a constant.
Theorem C.2 (Frobenius) The following conditions are equivalent
e D spans an integrable distribution; [D, D] C D,
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e Z(D) is a closed differential ideal; d(Z(D)) C Z(D),
o M is foliated by integral sub-manifolds of D,

e there emists local coordinates (y', ..., y*, f1, ..., f*=%) such that the vectors in D
are linear combinations of 0/0y" for i = 1..k, and are tangent to surfaces of

constant f7.

If, furthermore, [D, D] = 0 then X; = 9/0y’ in the above coordinate system. Let us

give a more explicit corollary:

Corollary C.3 Ifel,...,e" are r linearly independent one forms
Y=e'A.Ae"#0

on some connected and simply-connected domain of M, and there exists a one form
A which satisfies
dX=AANY, (C.1)

then

e there exists a set of functions f*, ..., f* such that e* = C2df® for some non-

singular Cy'.  The functions f* are constant on an integral submanifold of

e de? ANX =0 fora=1..r,
o de® =T¢ Aeb for some matriz of one forms I'¢ such that T¢ = A.

The Frobenius theorem applies when F is a projective spin bundle of some complex
four-manifold M with a conformal structure [g]. The two-dimensional distribution
D is spanned by horizontal lifts of 74V 44 to F. This distribution is integrable iff
[g] is ASD or SD. According to the Frobenius theorem F is foliated by leaves of this
distribution. The three-dimensional space of these leaves is called the projective
twistor space PT. It should be mentioned that F and D are considered to be
auxiliary tools. What matters is the correspondence between (M, [g]) and PT. In

the original formulation below it was assumed that [g] is Ricci flat.
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Theorem C.4 (Penrose[56]) There is one to one correspondence between ASD
vacuum metrics on complex four-manifolds and three dimensional complex manifolds

PT such that
e There exists a holomorphic projection y: PT — CP!

o PT s equipped with a four complexr parameter family of sections of  each

with a normal bundle O(1) & O(1),

e Each fibre of ju has a symplectic structure Xy € T(A?(u=*(N\)) ® O(2)), where
A € CP.

Let F be a 2n dimensional real manifold. The almost complex structure I : T F —
TF is an endomorphism of a tangent bundle T F such that I? = —1. Define the
torsion of I by

N(X,)Y)=[IX,IY] - [X,)Y] - [IX,)Y]| - [X,IY], for XY €TF.
Decompose the complexification of the tangent bundle
CRTF=T"FoT"F,

where T4 F and T%!F are eigenspaces of I corresponding to eigenvalues i and —i.
Theorem C.5 (Newlander-Nirenberg) The following conditions are equivalent:

o THOF spans an integrable distribution,

o TULF spans an integrable distribution,

e N/(X,Y)=0 forany X,Y € TF,

o F is a complexr manifold and its complex structure induces an almost complex

structure 1.

If any of the conditions in the last theorem is satisfied, I is called integrable.

The theorem C.5 applies in the twistor approach to the positive definite four-
metrics [3, 90]. The real even-dimensional manifold in question is the projective spin
bundle F, and the basis of antiholomorphic vector fields is given by 74’V 44/, O

Let (Mg, [g]) be a real oriented four manifold.
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Theorem C.6 (Atiyah-Hitchin-Singer[3]) The almost complex structure on F
is integrable iff [g] is ASD or SD.

The last theorem follows from (C.4) if one introduces a real structure o : M — M.
It induces an antiholomorphic involution (with no fixed points) on PT, therefore
there is a unique real line joining Z to o(Z), where Z € PT. Real lines do not
intersect and they define a nonholomorphic fibration of P7T over the Euclidean slice

of Mg. As a real manifold P7 can be identified with F = Mg x CP*.
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