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Example: Functions defined by integrals

We will investigate the range of values of z for which a function defined by an integral exists
and for which it is analytic. No serious analysis is necessary: the most important thing is to
understand when the integral converges and when it doesn’t.

Let

F (z) =
∫ ∞

0

uz−1

u + 1
du

(i) Existence
We first investigate for which range of values of z for which F (z) exists. Clearly, the only

problems that might arise are associated with u = 0 and u =∞. The integrand is well-behaved
elsewhere: u = −1 is not in the range of integration and there are no values of z which cause
problems (as can be seen by writing the numerator as e(z−1) log u).

To investigate possible problems at u = 0, we approximate u + 1 by 1 and consider the
integral ∫

0

uz−1

1
du =

uz

z

∣∣∣∣
0

(ignoring the upper limit; we deal with that next). Now

|uz| =
∣∣∣ez log u

∣∣∣ = ex log u

which can be evaluated at u = 0 provided x > 0, i.e. provided <z > 0.
Now for the infinite end. This time, we approximate u + 1 by u and consider the integral∫ ∞ uz−1

u
du =

uz−1

z + 1

∣∣∣∣∞
(ignoring the lower limit, which we have dealt with). Now∣∣uz−1

∣∣ =
∣∣∣e(z−1) log u

∣∣∣ = e(x−1) log u

which can be evaluated at u =∞ provided x < 1, i.e. provided <z < 1.
Clearly, if <z < 0 or <z > 1 the integral does not converge at one of the endpoints. But

what about the cases <z = 0 or <z = 1? If z or z − 1 is imaginary, the integrand oscillates
rapidly as the endpoints are approached and these rapid oscillations might provide cancellation
which allow the integral to be evaluated. This is what happened for the Gaussian integral, and
we integrated by parts to establish the result. We shall not investigate this possibility further,
except to say that the oscillations are not sufficiently fast in this case, and integrating by parts
does not help at all.

We therefore conclude that F (z) is defined if and only if 0 < <z < 1.
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(ii) Analyticity
Now we have to decide the range of z for which F (z) is analytic. We would be astonished if

this were not 0 < <z < 1 (i.e. on any open subset of the range for which the integral exists).
If we really want to check it, we need to check three conditions:
(i) Is the integrand continuous (jointly in u and z)?
(ii) Does the integrand converge uniformly in each compact subset of 0 < <z < 1?
(iii) Is the integrand analytic for each u?
We are not going to prove rigorously that these conditions hold: it is not in the spirit of the

course and there is a real danger of missing the wood for the trees.
Instead, note that there is no difficulty about (i) and (iii), since the integrand (writing the

numerator as an exponential) is clearly as nice as you would wish for.
What about uniform convergence? Recall that the integral

∫∞
0 f(z, t)dt is uniformly conver-

gent for z ∈ U if given ε, there exists B0 such that if, B0 < B1 < B2 then∣∣∣∣∫ B2

B1

f(z, t)dt

∣∣∣∣ < ε,

i.e. the tail of the integral doesn’t matter.
There are tests we could apply quite easily (e.g. the Weierstrass test). However, it is clear

that in the range 0 < a ≤ <z ≤ b < 1, the rate of convergence is at least as fast as at z = a or
z = b, and so is under control: the tail does not matter whatever the value of z.

Therefore, the F (z) is analytic for 0 < <z < 1.

Evaluation of the integral
We can evaluate F (z) explicitly by doing the integral. The result of this integration is

required for proving the result Γ(z)Γ(1− z) = πcosec πz required later on, so it is worth doing.

Let J =
∫

γ

tz−1

t + 1
dt = J1 + J2 + J3 + J4, where Ji is the integral along γi, and

γ1 : t = u ε ≤ u ≤ R

γ2 : t = ue2πi R ≥ u ≥ ε

γ3 : t = εeiθ 2π ≥ θ ≥ 0

γ4 : t = Reiθ 0 ≤ θ ≤ 2π

The integrals round the small and large circles tend to zero as ε → 0 and R → ∞; the
condition for this is precisely 0 < <z < 1. There is a simple pole at t = eiπ, with residue
(eiπ)z−1. Thus

2πi(eiπ)z−1 = I − I(e2πi)z−1 =⇒ I = πcosec πz

which is certainly analytic on 0 < <z < 1.
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