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The Hankel representation of Γ(z).

Unlike many handouts, this one is not a worked example; it is the proof of a very important
result.

The Hankel representation (defined below) for Γ(z) is valid for all z except z = 0, −1, −2,
. . ., and so provides the analytic continuation of I(z), the Euler integral representation of Γ(z).
The derivation of the Hankel representation is a prototype for integral representations of many
other functions.

The Hankel representation of Γ(z) is

Γ(z) =
1

2i sinπz

∫ (0+)

−∞
et tz−1 dt (z 6= 0,−1,−2, . . .) (∗)

where | arg t| ≤ π and the path of integration is the Hankel contour as shown below. The
notation (0+) means that the path goes round the origin in the positive sense.

The integral in equation (∗) defines an analytic function: its integrand is analytic in z; the
convergence at the ends of the path is exponential for all z; and the Hankel contour can be kept
well clear of the singularity at the origin of the t-plane.

To demonstrate that the Hankel representation provides the required analytic continuation,
we need to show that it is equal to I(z) for Re z > 0. This we can do by collapsing the contour
onto the branch cut, the integral converging at t = 0 (or, equivalently, the contribution from
the small circle round the origin vanishing) because of the condition on Re z.

Let

J(z) =
∫ (0+)

−∞
et tz−1 dt.

When Re z > 0 we can write

J(z) =
∫

γ1

et tz−1 dt +
∫

γ2

et tz−1 dt +
∫

γ3

et tz−1 dt

≡ J1(z) + J2(z) + J3(z)

where the paths γ1, γ2 and γ3 are given by

γ1: t = xeiπ; ε ≤ x < ∞ (above the cut)

γ2: t = xe−iπ; ∞ > x ≥ ε (below the cut)

γ3: t = εeiθ; −π < θ < π (round the small circle)



As ε → 0, we have

J1(z) → (eiπ)z

∫ ∞

0
e−xxz−1 dx

J2(z) → (e−iπ)z

∫ 0

∞
e−xxz−1 dx.

J3(z) =
∫ π

−π
eεeiθ

(εeiθ)z−1 d(εeiθ) → 0.

The last integral, being proportional to εz, tends to zero since Re z > 0. Adding the integrals
establishes the required result:

J(z) = 2i sinπzI(z) (Re z > 0).

From the Hankel representation it seems at first sight that Γ(z) has simple poles whenever
z is an integer, due to the factor sinπz in the denominator. There are certainly no other
singularities since the integral J(z) is entire. But Γ(z) is already known, from the integral I(z),
to be analytic for Re z > 0, so the simple zeros of sin πz must be cancelled by zeros of the
integral when z is a positive integer.

This can be seen as follows. When z is a positive integer, the integrand of J(z) has no
singularity at the origin. There are no singularities within the Hankel contour: no branch point
and therefore no branch cut. Thus J(z) vanishes. The zero of J(z) cancels the zero of sinπz
giving a finite result.1

We can calculate the residues at the poles easily, because when z is an integer, the branch
cut in the t-plane introduced on account of tz−1 is no longer needed, and the Hankel contour
can be reduced to a circle round the origin. Setting z = −m ≤ 0, we have

J(−m) =
∫
|t|=1

ett−m−1 dt =
2πi

m!
.

The residue was calculated by expanding the exponential. The residue of Γ(z) at z = −m is
therefore

lim
z→−m

(
z + m

2i sinπz
J(z)

)
=

2πi

m!
lim

z→−m

(
z + m

2i sinπz

)
=

(−1)m

m!
,

where l’Hôpital’s rule was used to find the limit.

1In general, this argument would be rather suspect. What interpretation are we to place on zero divided by
zero? In the case of analytic functions, we can expand top and bottom in their series representations and since
we know that sin πz has a simple zero at z = m, it is clear that in the limit as z → m the ratio either tends to a
constant or zero.
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