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Example: Legendre’s equation

In this hand out, Legendre’s question will be written as a Papperitz equation, the solutions of
which can be written down in terms of hypergeometric functions with no further calculation.

Legendre’s equation comes from solving Laplace’s equation V?¢ = 0 in spherical polar coordi-
nates by separation of variables using spherical coordinates. It is the equation corresponding to
the 6 variable.

With z = cos 8, we have
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The parameter m arises as a separation constant connected with the ¢ equation (an integer,
so that the solution is single-valued in ¢) and the parameter n is related to the separation
constant connected to the 6 equation, which must of of the form n(n+1) to prevent singularities
along the axes § =0 and 0 = 7.

In the standard notation,
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There are regular singular points at z = 1, since (1 & 2)p(z) and (1 £ 2)2¢(z) are analytic
at z = 1. The only other singular point is z = oo, which is also regular, since zp(z) and 22q(z)
are analytic functions of z~! for large z. Thus the Legendre equation has exactly three singular
points, all regular, and is a Papperitz equation. We can therefore determine the solution as a
P-function and hence as a linear combination of hypergeometric functions.

We could easily rewrite the Legendre equation in the standard form for the Papperitz equa-
tion with singularities at £1 and oo (if we could remember it) in order to identify the parameters
in the P-function. However, it is just as quick to approximate the equation near the singular
points to find the exponents, which are exactly the required parameters.

Near z =1, ,
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so the indicial equation is
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and the exponents at z = 1 (and at z = —1, by symmetry) are £m/2.

Near z = o0,
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Setting, w = (1/z)? shows that the indicial equation is
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so the exponents at z = oo are 0 = —n and 0 = n + 1.



The Legendre equation therefore corresponds to the P-function
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In terms of the standard hypergeometric function parameters, the last P-function has
m=1—-¢, —-n=a, n+1=h.

Thus two linearly independent solutions of Legendre’s equation can be written, in the case
when m is not an integer (so that the exponents at the origin do not differ by an integer), as
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and!

(1—22)"2F(—=n+m,n+m+ 1;m; 1-2).

Of course, as remarked above, m is an integer in physical situations. In this case, if m < 0 (as
we may choose without loss of generality), the first solution above, corresponding to the larger
exponent, is still valid, but the second solution above may need to be replaced by a solution of
the log form.

If, in addition, n is also an integer (as is again the physical requirement), then the series for
the hypergeometric function F(—n,n+ 1,1 —m, 1§Z ) will terminate giving a a polynomial.?

The second solution above would not need to be replaced by a log term if the series terminated
before it blew up, i.e. if —n4+m > m or n+m + 1 < m, one of which will necessarily hold
(unless n = 0 or n = —1 both of which give a constant polynomial). In this case, the second

solution is therefore not logarithmic.

'Remember that the second solution, using the standard parameters, is 2’ °F(a+1—c,b+1—¢;2 — ¢; 2).
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