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Example: Legendre’s equation

In this hand out, Legendre’s question will be written as a Papperitz equation, the solutions of
which can be written down in terms of hypergeometric functions with no further calculation.

Legendre’s equation comes from solving Laplace’s equation ∇2φ = 0 in spherical polar coordi-
nates by separation of variables using spherical coordinates. It is the equation corresponding to
the θ variable.

With z = cos θ, we have

(1− z2)w′′ − 2zw′ +
(

n(n + 1)− m2

1− z2

)
w = 0.

The parameter m arises as a separation constant connected with the φ equation (an integer,
so that the solution is single-valued in φ) and the parameter n is related to the separation
constant connected to the θ equation, which must of of the form n(n+1) to prevent singularities
along the axes θ = 0 and θ = π.

In the standard notation,

p(z) =
−2z

1− z2
, q(z) =

n(n + 1)
1− z2

− m2

(1− z2)2
.

There are regular singular points at z = ±1, since (1± z)p(z) and (1± z)2q(z) are analytic
at z = ±1. The only other singular point is z =∞, which is also regular, since zp(z) and z2q(z)
are analytic functions of z−1 for large z. Thus the Legendre equation has exactly three singular
points, all regular, and is a Papperitz equation. We can therefore determine the solution as a
P -function and hence as a linear combination of hypergeometric functions.

We could easily rewrite the Legendre equation in the standard form for the Papperitz equa-
tion with singularities at ±1 and∞ (if we could remember it) in order to identify the parameters
in the P -function. However, it is just as quick to approximate the equation near the singular
points to find the exponents, which are exactly the required parameters.

Near z = 1,

p(z) ≈ 1
(z − 1)

, q(z) ≈ −m2

4(z − 1)2
,

so the indicial equation is
σ(σ − 1) + σ − 1

4m2 = 0

and the exponents at z = 1 (and at z = −1, by symmetry) are ±m/2.
Near z =∞,

p(z) ≈ 2
z
, q(z) ≈ −n(n + 1)

z2
.

Setting, w = (1/z)σ shows that the indicial equation is

−σ(−σ − 1)− 2σ − n(n + 1) = 0

so the exponents at z =∞ are σ = −n and σ = n + 1.



The Legendre equation therefore corresponds to the P -function

P


1 ∞ −1

m/2 −n −m/2 z
−m/2 n + 1 m/2

 .

But

P


1 ∞ −1

−m/2 −n m/2 z
m/2 n + 1 −m/2

 = (1− z)−m/2(1 + z)m/2P


1 ∞ −1
0 −n 0 z
m n + 1 −m


=

(
1 + z

1− z

)m/2

P


0 ∞ 1
0 −n 0 (1− z)/2
m n + 1 −m


In terms of the standard hypergeometric function parameters, the last P -function has
m = 1− c, −n = a, n + 1 = b.

Thus two linearly independent solutions of Legendre’s equation can be written, in the case
when m is not an integer (so that the exponents at the origin do not differ by an integer), as(

1 + z

1− z

)m/2

F (−n, n + 1; 1−m; 1−z
2 )

and1

(1− z2)m/2F (−n + m,n + m + 1;m; 1−z
2 ).

Of course, as remarked above, m is an integer in physical situations. In this case, if m ≤ 0 (as
we may choose without loss of generality), the first solution above, corresponding to the larger
exponent, is still valid, but the second solution above may need to be replaced by a solution of
the log form.

If, in addition, n is also an integer (as is again the physical requirement), then the series for
the hypergeometric function F (−n, n + 1, 1−m, 1−z

2 ) will terminate giving a a polynomial.2

The second solution above would not need to be replaced by a log term if the series terminated
before it blew up, i.e. if −n + m > m or n + m + 1 < m, one of which will necessarily hold
(unless n = 0 or n = −1 both of which give a constant polynomial). In this case, the second
solution is therefore not logarithmic.

1Remember that the second solution, using the standard parameters, is z1−cF (a + 1 − c, b + 1 − c; 2 − c; z).
2Recall that

F (a, b; c; 1) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)

c(c + 1)

z2

2!
+ · · · .

2


