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Abstract
We introduce a dispersionless integrable system which interpolates between the
dispersionless Kadomtsev–Petviashvili equation and the hyper-CR equation.
The interpolating system arises as a symmetry reduction of the anti-self-dual
Einstein equations in (2, 2) signature by a conformal Killing vector whose self-
dual derivative is null. It also arises as a special case of the Manakov–Santini
integrable system. We discuss the corresponding Einstein–Weyl structures.

PACS number: 02.30.Ik

1. Introduction

It has been known for more than 20 years that many integrable systems admitting soliton
solutions arise as symmetry reductions of anti-self-dual Yang–Mills (ASDYM) equations in
four dimensions [25]. The Riemann–Hilbert factorization problem underlies this approach
to integrability: it appears in classical solution generating techniques such as dressing
transformations [18], as well as in the twistor treatment of ASDYM [24].

The dispersionless integrable systems in 2+1 dimensions do not fit into this framework:
they do not admit soliton solutions and there is no associated Riemann–Hilbert problem where
the corresponding Lie group is finite dimensional. These systems can nevertheless be described
in terms of anti-self-duality (ASD) conditions on a four dimensional conformal structure. In
this case the ‘unknown’ in the equations is not a gauge field, but rather a metric (up to scale)
on some four-manifold [21]. This makes the dispersionless systems more geometric than
their solitonic cousins. This point of view may be of deep significance in the description
of shock formations: a recent beautiful analysis by Manakov and Santini [16] deduced the
gradient catastrophe of the localized solutions to the dKP equation using the inverse scattering
transform. It may be however, that this catastrophe is only an artefact of a chosen coordinate
system, and the underlying conformal structure is regular, but needs to be covered by more
than one coordinate patch. It remains to be seen whether this is indeed the case.

To classify existing 2+1 dispersionless integrable systems, and perhaps discover some
new ones one needs to classify the symmetry reductions of the conformal ASD equations. If

1751-8113/08/315202+09$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/31/315202
mailto:m.dunajski@damtp.cam.ac.uk
http://stacks.iop.org/JPhysA/41/315202


J. Phys. A: Math. Theor. 41 (2008) 315202 M Dunajski

the Ricci-flat condition is imposed on top of the anti-self-duality, the work of Plebański [22]
implies the existence of a local coordinate system (X, Y,W,Z) and a function � on an open
set M ⊂ R

4 such that any ASD Ricci-flat metric is locally of the form

g = 2(dZ dY + dW dX − �XX dZ2 − �YY dW 2 + 2�XY dW dZ), (1.1)

where �XY = ∂X∂Y � etc, and � satisfies the second heavenly equation

�ZY + �WX + �XX�YY − �2
XY = 0. (1.2)

This metric has the signature (+ + −−) but this is precisely what it needs: given a non-null
symmetry, the conformal structure on a space of orbits will have the signature (2, 1) and will
be described by a hyperbolic integrable equation. We are thus led to study (1.1), (1.2) subject
to the existence of a conformal Killing vector K

LKg = cg, g(K,K) �= 0,

where c is some function. The classification of reductions is based on studying the action of K
on the bundle of self-dual 2-forms over M. Assume that M is oriented and recall that given
a metric of (+ + −−) signature on M, the Hodge ∗ operator is an involution on 2-forms and
induces a decomposition

�2 = �2
+ ⊕ �2

−

of 2-forms into self-dual and anti-self-dual components. Moreover, there exist real two-
dimensional vector bundles S and S

′ (called spin bundles) over M such that TM ∼= S ⊗ S
′

and �2
+

∼= S � S. Therefore the self-dual derivative of (the 1-form metric dual to) K

dK+ := 1
2 (dK + ∗dK)

corresponds to a symmetric 2 by 2 matrix φ explicitly given by

dK+ = φAB�AB, A,B = 0, 1,

where the self-dual 2-forms1 (�00, �01, �11) span �2
+. The rank of the matrix φ does not

depend on the choice of the basis �AB and the classification is based on this rank. In the
Riemannian signature this can only be 0 or 2 (the former case is called the tri-holomorphic
symmetry), but in the (+ + −−) signature we can also have rank(φ) = 1, in which case
(dK)+ ∧ (dK)+ = 0 so the self-dual derivative of K is null.

This classification programme has almost been completed and one aim of this paper is to
remove the question mark from the following table summarizing the reductions of the second
heavenly equation (1.2)

c = 0 c �= 0

rank(φ) = 0 2+1 Linear wave equation [9, 11] Hyper-CR equation [3, 4]
rank(φ) = 1 Dispersionless KP equation [5] ?
rank(φ) = 2 SU(∞) Toda equation [9] Integrable equation studied in [6]

1 The ASD Ricci-flat equations are equivalent to

d�AB = 0, �(AB ∧ �CD) = 0, A, B, C, D = 0, 1

and the second heavenly equation (1.2) arises by using the Darboux theorem to introduce coordinates such that

�00 = dW ∧ dZ, �01 = dW ∧ dX + dZ ∧ dY,

and deducing the existence of the function � from the remaining conditions on �AB .
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The case where rank(φ) = 1 and c �= 0 has not yet been investigated, and the resulting
integrable system is the subject of the present paper. This system is given by

uy + wx = 0, ut + wy − c(uwx − wux) + buux = 0, (1.3)

where b and c are constants and u,w are smooth functions of (x, y, t). We propose to call
(1.3) an interpolating system as it contains two well-known dispersionless equations as the
limiting cases: setting b = 0, c = −1 gives the hyper-CR equation [3, 4, 8, 14, 17, 19, 20] and
setting c = 0, b = 1 gives the dKP equation. In fact one constant can always be eliminated
from (1.3) by redefining the coordinates and it is only the ratio of b/c which remains2. We
prefer to keep both constants as it makes various limits more transparent.

In the following section we shall give the dispersionless Lax pair for (1.3). The
Lie group underlying the Lax formulation is Diff(�2)—an infinite-dimensional group
of diffeomorphisms of some two-dimensional manifold �2. The interpolating system
corresponds to Lorentzian Einstein–Weyl structures in three dimensions. This gives an intrinsic
geometric interpretation without the need of going to four dimensions. This will be described
in section 3. In section 4 we shall show that (1.3) is a special case of the Manakov–Santini
integrable system [15, 14] and find the Manakov–Santini Einstein–Weyl structure.

The explicit reduction of the second heavenly equation (1.2) to the interpolating system
(1.3) will be presented in the appendix. In particular, we shall show that the most general
(+ + −−) ASD Ricci-flat metric with a conformal Killing vector whose self-dual derivative is
null is of the form

g = ecφ(V h − V −1(dφ + A)2), (1.4)

where φ parametrizes the orbits of the conformal Killing vector K = ∂/∂φ and

h = (dy + cu dt)2 − 4(dx + cu dy − (cw + bu) dt) dt,

A = −1

2
ux dy +

(
c

2
uux − uy

)
dt, V = 1

2
ux.

This reduction explains the origin of the two parameters (b, c) in (1.3) as in this case the
conformal symmetry is

K = c × (dilatation) + b × (rotation with a null SD derivative).

2. Lax pair and Diff(Σ2) hierarchies

The system (1.3) admits a dispersionless Lax pair

L0 = ∂

∂t
+ (cw + bu − λcu − λ2)

∂

∂x
+ b(wx − λux)

∂

∂λ
,

L1 = ∂

∂y
− (cu + λ)

∂

∂x
− bux

∂

∂λ

(2.1)

with a spectral parameter λ ∈ CP
1. The overdetermined system of linear equations L0� =

L1� = 0, where � = �(x, y, t, λ) admits solutions because equations (1.3) are equivalent to
[L0, L1] = 0.

In general, consider the vector fields of the form

Li = ∂

∂ti
+ Ai

∂

∂x
+ Bi

∂

∂λ
, (2.2)

2 Ferapontov has pointed out that if b �= 0 the hydrodynamic reductions of (1.3) coincide with the hydrodynamic
reductions of the dKP equation, despite the fact that dKP and (1.3) are not point or contact equivalent unless c = 0.
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where Ai, Bi are polynomials in λ with coefficients depending on (t0 = x, t i). The flows of
the Diff(�2) hierarchy are defined by

[Li, Lj ] = 0, i, j = 1, . . . , n. (2.3)

To achieve a dual formulation, generalizing Krichever’s approach to dispersionless integrable
systems [13], complexify the hierarchy (so that (t0, t i) ∈ C

n+1) and define a 2-form � on
C

n+1 × CP
1 by

�(X, Y ) = dt1 ∧ · · · ∧ dtn ∧ dx ∧ dλ(L1, . . . , Ln,X, Y )

so that

� = dx ∧ dλ +
∑

i

(Ai dλ − Bi dx) ∧ dti +
∑
i,j

(AiBj − BjAi) dti ∧ dtj .

The 2-form � is simple and satisfies the Frobenius integrability conditions

� ∧ � = 0, d� = � ∧ β

for some 1-form β. We recover various dispersionless hierarchies as special cases of this
formulation

• SDiff (�2) hierarchy. The group Diff(�2) reduces to SDiff(�2) generated by Hamiltonian
vector fields. The corresponding Lie algebra is homomorphic with the Poisson bracket
algebra. The vector fields Li preserve the 2-form dx ∧ dλ and

Ai = ∂Hi

∂λ
, Bi = −∂Hi

∂x
.

The 2-form is given by � = dx ∧ dλ +
∑

i dHi ∧ dti (where we have used (2.3)), and the
SDiff(�2) hierarchy is given by

� ∧ � = 0, d� = 0,

which is the original Krichever’s formulation [13]. The Darboux theorem implies the
existence of functions P,Q such that � = dP ∧ dQ. These two functions are local
coordinates on the twistor space, which is a quotient of C

n+1 × CP
1 by the integrable

distribution {Li}. Both the dKP and SU(∞) Toda hierarchies fit into this category
[5, 13, 23].

• Diff (S1) hierarchy. The group Diff(�2) reduces to Diff(S1), where �2 = T S1. This
case corresponds to

Bi = 0.

The underlying Lie algebra is that of a Wronskian with a Lie bracket 〈f, g〉 = fxg −fgx .
In this case � = e ∧ dλ, where e = dx − ∑

i Ai dti . This 1-form is integrable in the
Frobenius sense

e ∧ de = 0,

where d keeps λ = const. The twistor space fibres holomorphically over CP
1. The

hyper-CR hierarchy [4] and the universal hierarchy [17] are of this type.
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3. Interpolating Einstein–Weyl structure

A three dimensional Lorentzian Weyl structure (M,D, [h]) consists of a 3-manifold M, a
torsion-free connection D and a conformal metric [h] of Lorentzian signature such that the
null geodesics of [h] are also geodesics for D. This condition is equivalent to

Dh = ω ⊗ h

for some 1-form ω. Here h is a representative metric in the conformal class. If we change
this representative by h −→ γ 2h, then ω −→ ω + 2d ln γ . A Weyl structure is called
Einstein–Weyl if the conformally invariant equations

R(ab) = �hab, a, b,= 1, . . . , 3 (3.1)

hold for function �. Here R(ab) is the symmetrized Ricci tensor of D and hab is a representative
metric in a conformal class [h]. In practice the Einstein–Weyl structure is given by specifying
the metric h ∈ [h], and the 1-form ω which measures the difference between the Weyl
connection D and the Levi-Civita connection of h.

The three dimensional Einstein–Weyl condition is a dispersionless integrable system [5]:
let Z,W, W̃ be independent vector fields on M such that a contravariant metric in [h] is

h = hab ∂

∂xa
⊗ ∂

∂xb
= Z ⊗ Z − 2(W ⊗ W̃ + W̃ ⊗ W).

Then there exists a connection D such that (M, [h],D) is Einstein–Weyl if the dispersionless
Lax pair

L0 = W − λZ + f0
∂

∂λ
, L1 = Z − λW̃ + f1

∂

∂λ
(3.2)

satisfies the integrability condition

[L0, L1] = 0 modulo L0, L1

for functions (f0, f1) which are cubic polynomials in λ ∈ CP
1. Conversely, every Einstein–

Weyl structure arises from some Lax pair (3.2). The corresponding 1-form ω can be read off
from the Levi-Civita connection of h and the coefficients of (f0, f1). This Lax formulation
has a geometric origin which goes back to Cartan [2]

• Einstein–Weyl condition is equivalent to the existence of a two-parameter family of totally
geodesic null surfaces in M.

Comparing this with the Lax pair (2.1) for the interpolating system, and taking linear
combinations to put (2.1) in the form (3.2) we find the corresponding Einstein–Weyl structure
to be

h = (dy + cu dt)2 − 4(dx + cu dy − (cw + bu) dt) dt,

ω = −cuxdy + (4bux + c2uux − 2cuy) dt.
(3.3)

Taking the limits we recover various known Einstein–Weyl structures from (3.3). These
structures can be characterized by the properties null shear-free and geodesic congruence dt

(this elegant framework is described, in the Riemannian case, in [1])

• Setting b = 0, c = −1 gives the hyper-CR Einstein–Weyl structure [4]. The congruence
is divergence-free. This is a Lorentzian analogue Einstein–Weyl structure studied in
[1, 6, 10].

• Setting c = 0, b = 1 gives the dKP Einstein–Weyl spaces [5]. The congruence dt is now
twist-free, and the dual vector ∂/∂x is parallel with a weight −1/2 with respect to the
Weyl connection.

We remark that the Einstein–Weyl (3.3) structure can also be read off from the ASD Ricci-flat
metric (1.4) using the Jones–Tod correspondence [12].
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4. The Manakov–Santini system

The system (1.3) is a special case of the Manakov–Santini system [,14, 15]

Uxt − Uyy + (UUx)x + VxUxy − VyUxx = 0

Vxt − Vyy + UVxx + VxVxy − VyVxx = 0,
(4.1)

where U = U(x, y, t), V = V (x, y, t). To see it, note that the first equation in (1.3) implies
the existence of v(x, y) such that u = vx,w = −vy , and v satisfies

vxt − vyy + c(vxvxy − vyvxx) + buvxx = 0. (4.2)

Differentiating the second equation in (1.3), and eliminating w yields

uxt − uyy − c(vyuxx − vxuxy) + b(uux)x = 0. (4.3)

Now assume the generic case when the constants c, b are non zero, and set U = bu, V = cv.
Then the system (4.2) and (4.3) is equivalent to (4.1) with an additional constraint

cU − bVx = 0. (4.4)

The Manakov–Santini system is more general than (1.3): Regarding the second equation in
(4.1) as the definition of U, and substituting U to the first equation in (4.1) yields a fourth-
order scalar PDE for V . Thus the naive counting suggests that the general solution to (4.1)
depends on four functions of two variables (a caution is needed as the resulting PDE is not
in the Cauchy–Kowalewska form). In the special case when the constraint (4.4) holds, both
equations in (4.1) reduce to a single second-order PDE for V . The solution depends on two
functions of two variables, and a constant (the ratio b/c).

The Manakov–Santini system also corresponds to an Einstein–Weyl structure

h = (dy − Vx dt)2 − 4(dx − (U − Vy) dt) dt,

ω = −Vxx dy + (4Ux − 2Vxy + VxVxx) dt.
(4.5)

To verify it set xa = (y, x, t). The (11), (12), (22), (23) components of the Einstein–Weyl
equations hold identically. The (13) component vanishes if the second equation in (4.1) holds,
and finally the (33) component vanishes if both equations in (4.1) are satisfied.

Conversely, consider the general conformal structure in (2+1) dimensions given in local
coordinates xa by a representative metric

h =
⎛
⎝h11 h12 h13

h12 h22 h23

h13 h23 h33

⎞
⎠ .

Using the diffeomorphism freedom, and the conformal rescaling we can impose four
constraints on six functions hab(x

c) as long as the resulting quadratic form is non-degenerate.
We choose to set h11 = h12 = 0, h13 = −2, h23 = −A, h33 = A2 + 4B, where A and B are
some functions of (x, y, t), so that3

h = (dy − A dt)2 − 4(dx − B dt) dt.

Now given A,B we can always find two functions U,V such that A = Vx, B = U − Vy so
that the metric is in the form (4.5)

Now we find the corresponding dual basis, and construct the Lax pair (3.2). Before
imposing the integrability conditions it is convenient to take a linear combination of the
vectors in this distribution, so that the resulting pair of vectors commutes exactly. This yields

L0 = ∂y − (λ + A)∂x + f0∂λ, L1 = ∂t − (λ2 + λA − B)∂x + f1∂λ,

3 This is analogous to the existence of orthogonal coordinates in three dimensions. The proof is relatively
straightforward in the real-analytic category, and more subtle in the smooth category.
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where the polynomials f0 and f1 are respectively cubic and quartic in λ. There is some
additional freedom which will preserve the above form of the Lax pair. We can translate the
fibres by λ → λ + κ(x, y, t). We use this freedom to set the linear term in f0 to zero. It is
possible that some further coordinate freedom can be used to set the quadratic term in f0 to
zero which would imply that ω is given by (4.5). This would imply that every Einstein–Weyl
structure is equivalent to the Manakov–Santini EW structure (4.5). So far we have been unable
to find the right transformation, and we need to impose ∂2

λf0 = 0 as an additional condition.
Then the integrability condition [L0, L1] = 0 implies (4.1).
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Appendix. Reduction of the second heavenly equation

We shall prove that the system (1.3) arises as the most general symmetry reduction of the
second heavenly equation (1.2) by a conformal Killing vector with a null self-dual derivative.

Let � = �(W,Z,X, Y ) satisfy the second heavenly equation and let the corresponding
metric be given by (1.1). Let K be a conformal Killing vector for (1.1). Using Penrose’s two-
component spinor formalism we can show that the conformal Killing equations and the Ricci
identity imply that ∇AA′KA

B ′ is covariantly constant, or otherwise g is of Petrov–Penrose type
N and can be found explicitly. In the spin frame of the heavenly metric (1.1) the connection
on the spin bundle S vanishes, so ∇A′AKA′

B is in fact constant. We are interested in the case
where the self-dual derivative φAB = ∇A′(AKA′

B) is of rank 1. Therefore we need to integrate
the linear system

∇A′AKA′
B =

(
0 c

−c b

)
.

The constant c appears because K is a conformal Killing vector.
Following the method of Finley and Plebański [9] and using a freedom in the heavenly

potential � as well as in the choice of coordinates we find the general solution to be

K = (cZ + b)∂Z + (cX − 2bZ)∂X.

The conformal Killing equations LKg = cg now yield

LK(�XX) = −c�XX, LK(�XY ) = b, LK(�YY ) = c�XX.

Let U and T be functions such that K = ∂T and LK(U) = 0. For c �= 0 we can take

T = ln(cZ + b)

c
, U = 2b

c
T +

2b2 + Xc2

c2(cZ + b)
.

The compatibility conditions for the Killing equations imply the existence of G̃ = G̃(Y,W,U)

such that

�XX = e−cT G̃UU , �XY = G̃YU + bT , �YY = ecT G̃YY .

The heavenly equation (1.2) becomes

bU +
2b

c
G̃YU + c(G̃Y − UG̃YU) + G̃UW + G̃YY G̃UU − G̃2

YU = 0.
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To obtain a simplified form define

G(Y,W,U) = G̃(Y,W,U) +
b

c
UY +

b2

c2
UW

so that

bU + c(GY − UGYU) + GUW + GYY GUU − G2
YU = 0. (A.1)

Now rewrite (A.1) in terms of differential forms

bu dY ∧ dU ∧ dW + c(GY dY ∧ dU ∧ dW − U dGU ∧ dU ∧ dW)

+ dGU ∧ dY ∧ dU + dGY ∧ dGU ∧ dW = 0. (A.2)

Define

x = GU, y = Y, t = −W,

H(x, y, t) = xU(x, y, t) − G(Y,W,U(x, y, t)),

and preform a Legendre transform

dH = d(xU − G) = U dx − GY dY − GW dW

= Hx dx + Hy dy + Ht dt.

Therefore

U = Hx, GY = −Hy, GW = Ht.

Differentiating these relations we find

GUU = 1

Hxx

, GYU = −Hxy

Hxx

, GYY = −Hyy +
H 2

xy

Hxx

.

The differential equation for H(x, y, t) is obtained from (A.2),

Hxt + bHxHxx + c(HxyHx − HyHxx) = Hyy. (A.3)

Setting u = Hx,w = −Hy we recover (1.4), where (u,w) solve (1.3).

References

[1] Calderbank D M J and Pedersen H 2000 Selfdual spaces with complex structures, Einstein–Weyl geometry and
geodesics Ann. Inst. Fourier (Grenoble) 50 921–63

[2] Cartan E 1943 Sur une classe d’espaces de Weyl Ann. Sci. Ecole Norm. Suppl. 60 1–16
[3] Dunajski M 1998 The nonlinear graviton construction as an integrable system DPhil Thesis Oxford University
[4] Dunajski M 2004 A class of Einstein–Weyl spaces associated to an integrable system of hydrodynamic type

J. Geom. Phys. 51 126–37
[5] Dunajski M, Mason L J and Tod K P 2001 Einstein–Weyl geometry, the dKP equation and twistor theory

J. Geom. Phys. 37 63–92
[6] Dunajski M and Tod K P 2001 Einstein–Weyl structures from Hyper-Kähler metrics with conformal Killing

vectors Diff. Geom. Appl. 14 39–55
[7] Ferapontov E V and Khusnutdinova K R 2004 On the integrability of 2+1-dimensional quasilinear systems

Commun. Math. Phys. 248 187–206
[8] Ferapontov E V and Khusnutdinova K R 2004 The characterisation of two-component (2+1)-dimensional

quasilinear systems J. Phys. A: Math. Gen. 37 2949–63
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