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Most known four-dimensional cohomogeneity-one Einstein metrics are diagonal in a 
basis defined by the left-invariant one-forms, though some essentially non-diagonal 
ones are known. We consider the problem of explicitly seeking non-diagonal Einstein 
metrics, and we find solutions which in some cases exhaust the possibilities. In 
particular we construct new examples of neutral signature non-diagonal Bianchi 
type VIII Einstein metrics with self-dual Weyl tensor.
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1. Introduction

A (pseudo) Riemannian four-manifold (M, g) is said to have cohomogeneity-one if it admits an isometry 
group G acting transitively on codimension-one surfaces in M. Cohomogeneity-one Einstein metrics have 
been much studied both in the literature of general relativity, where they provide a simple generalisation 
of the Friedman–Roberson–Walker cosmological models (see e.g. [4]), and in Riemannian geometry where 
they provide large classes of explicit solutions (see e.g. [11]). In the Riemannian case, the metric on the 
surfaces of homogeneity is inevitably positive-definite, while in general relativity the surfaces of homogeneity 
are generally taken to be space-like when the metric is again definite (positive or negative according to 
convention).

When the surfaces of homogeneity are 3-dimensional, which is the case most-studied in relativity, the 
most general case has a 3-dimensional transitive group of isometries and these are classified by the Bianchi 
classification of 3-dimensional Lie algebras, which has been an important part of mathematical cosmology 
for many years (see the historical account in [6]). We won’t review the classification here, for that see e.g. 
[4] or [11], but we will use the language of the classification. In [3] the authors exhibited an explicit Bianchi 
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type VIII Einstein metric with self-dual Weyl tensor (a so-called ‘SD’ solution) which is nondiagonal in the 
sense that the metric on the surfaces of homogeneity (which for brevity we shall call the spatial metric) is 
not diagonal in any basis of left-invariant one-forms associated with the symmetry. The metric has signature 
(2, 2) (or neutral signature) so that the spatial metric is indefinite. It is known that an Einstein type VIII 
or IX metric with definite spatial metric may always be assumed to be diagonal in the sense used here: 
locally M = R ×G, and the group coordinates do not appear in the Einstein tensor. The problem of finding 
cohomogeneity-one Einstein metrics therefore reduces to solving a system of second-order ODEs on the 
spatial metric with independent variable that can conveniently be called time regardless of the signature; 
if the spatial metric is diagonalised at one time, then one of the Einstein constraints forces it to stay 
diagonal at all times. This depends crucially on the field equations and does not necessarily hold for the 
Einstein equations with matter sources. This is made explicit in [11] for Riemannian signature and in [4]
for many cases in relativistic cosmology. By an examination of the proofs in those references one can see 
that real type IX metrics of any signature can be assumed to be diagonal without loss of generality, but if 
one wants nondiagonal type VIII metrics, one may find them in neutral signature. The interplay between 
diagonalisability and various signatures of g is related to the applicability of Sylvester’s Law of Inertia, and 
can be seen as follows: A general cohomogeneity-one metric takes the form

g = dt2 + hij(t)σiσj ,

where the σi are the left-invariant one forms on G such that

dσi + 1
2C

i
jkσ

j ∧ σk = 0.

The matrix nij = Ci
kmεkmj is symmetric for type VIII. If hij is positive (or negative) definite, then one can 

diagonalise h and n simultaneously by changing the basis σi. This is not always true if g is neutral, so that 
h has indefinite signature.

Nondiagonal Einstein metrics of other Bianchi types are known (see e.g. [7] for a Lorentzian vacuum 
solution and [1] and [10] for a variety of solutions). It is worth noticing that all types apart from VIII and 
IX have an isometry group with a 2-dimensional Abelian subgroup, and when this group acts orthogonally-
transitively the Einstein vacuum equations in any signature are integrable and can be solved by the twistor 
methods of Mason and Woodhouse and collaborators, [8], following [13] and [12].1

In this paper we set out to find real non-diagonal cohomogeneity-one Einstein metrics. We shall occa-
sionally consider complex metrics hij(t) and/or complex time t, but this will usually be in order to connect 
real metrics of different signatures or different types. We begin in Section 2 with the simplest case, type I, 
which has a three-dimensional Abelian isometry group. This case is fairly well-known but the calculation 
highlights the interaction between the signature and the variety of canonical forms. Some new examples are 
given by formulae (11) and (15). In Section 3 we show how to obtain nondiagonal real type VIII from com-
plex type IX, both diagonal and nondiagonal. In particular the class of metrics (29) contains the self-dual 
Einstein example [3] with Λ �= 0 as special case, and the three-parameter family of vacuum (equivalently, 
Ricci–flat) metrics (30) generalises the Eguchi–Hanson solution. In Section 4 we briefly consider other types. 
For vacuum, where these have orthogonally transitive subgroups of the isometry group they can be solved 
by twistor methods so we consider direct integration of some examples which do not have orthogonally 
transitive subgroups of the isometry group. An example of a non-diagonal, self-dual vacuum Bianchi II 
metric is given by (40).

1 In particular all the examples in [1] and [10] do have orthogonally transitive G2 actions, and this is in a sense the reason why 
the integrations there lead to Painlevé equations.
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2. Type I

The integrations are particularly simple in this case, but this enables one to see how the different metrics 
arise from the classification of minimum polynomials of a relevant matrix, and introduces the methods 
needed later for the more complicated types.

2.1. The vacuum and Einstein equations

For type I, the invariant one-forms are all exact so that one may choose three spatial coordinates 
(x1, x2, x3) and the metric can be taken to be

g = dt2 + hij(t)dxidxj . (1)

We may calculate the curvature in an unsophisticated manner. First the Christoffel symbols are given by

Γ0
00 = Γ0

0i = Γi
00 = Γi

jk = 0

while

Γ0
ij = −1

2 ḣij

Γi
0j = 1

2h
ikḣjk,

with overdot for d/dt. Then with the definition of the Riemann tensor as

Ra
bcd = −2Γa

b[c,d] − 2Γe
b[cΓa

d]e,

we find

R0
i0j = −1

2 ḧij + 1
4h

kmḣimḣkj ,

R0
ijk = 0, (2)

Ri
jkl = 1

4h
imḣjkḣml −

1
4h

imḣjlḣmk.

(It follows rapidly from here that self-duality or anti-self-duality of the Riemann tensor at once implies that 
the curvature entirely vanishes.)

For the Ricci tensor we obtain

R00 = −1
2h

ij ḧij + 1
4h

kmḣkjh
ij ḣim,

R0i = 0, (3)

Rij = −1
2 ḧij + 1

2h
kmḣimḣkj −

1
4(hmnḣmn)ḣij .

For the vacuum equations, double the last of (3), multiply by −hki and adopt a matrix notation:

h−1ḧ− h−1ḣh−1ḣ + 1tr(h−1ḣ)h−1ḣ = 0. (4)
2
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To simplify this introduce V by

2V̇ /V = tr(h−1ḣ) = d

dt
log(deth),

so that |deth| = V 2, then (4) becomes

d(V h−1ḣ)/dt = 0

which integrates at once to

V h−1ḣ = M = constant, (5)

or equivalently

ḣ = V −1hM. (6)

Take the trace of (5) to find

tr(M) = 2V̇

so that V̈ = 0 and V is linear in t.
Go back to the first of (3) to get another vacuum equation which becomes

tr(M2) − (trM)2 = 0, (7)

and which constrains M . Since h and ḣ are both symmetric, M is also constrained by (6). Clearly the 
4-metric is flat if M = 0.

At this point it is worth noting the Einstein equations with Λ �= 0. Suppose these are

Rij = Λhij , R00 = Λ

then

d(V h−1ḣ)/dt = −2ΛV I (8)

with 2V̇ /V = tr(h−1ḣ) as before. Now however, using the (00) equation

V̈ = −3ΛV.

Solve this with V (0) = 1, V̇ (0) = 0 to find

V = cos(3Ht) or cosh(3Ht)

when H2 = Λ/3 or −Λ/3 respectively. Integrate (8) once to find

V h−1ḣ = M + 2
3 V̇ I,

with constant M . Introduce k = V −2/3h then k satisfies

V k−1k̇ = M

which is (6) back again. Thus the solutions with Λ �= 0 are readily obtained from the solutions with Λ = 0.
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2.2. Classification of vacuum solutions

The solutions depend on the canonical forms of h and M .

(1) If h is definite (positive or negative) then, at any fixed instant say t0 of t, it can be diagonalised with 
an orthogonal matrix and reduced to the identity by a diagonal matrix. At this instant, (6) forces M to 
be symmetric so it too can be diagonalised by an orthogonal matrix preserving h. But M is constant 
so now h is diagonal for all time. These are the Kasner solutions.

(2) If h is indefinite, it can still be reduced at any fixed instant to a diagonal matrix whose entries are ±1. 
For simplicity suppose this is

h(t0) = η := diag(1, 1,−1),

since the other possibility not so far covered follows by xj → ixj . We are at liberty to perform the 
transformation

h → ĥ = LThL, M → M̂ = L−1ML,

where L is a three-dimensional Lorentz matrix. By (6), at time t0 the matrix S := ηM is symmetric.
To classify canonical forms of M we consider the eigenvalue equation

M β
α Xα = λXβ ,

where Greek indices are 3-dimensional Lorentz indices (and sometimes omitted) and h = ηαβ is the 
Lorentz metric. There are three possibilities:
(a) If there are three distinct real λ then M can be diagonalised and we obtain Kasner again.
(b) If there are repeated real roots we need to consider the minimum polynomial m(x) of M . Taking 

account of (7) there are three nontrivial cases namely

(x− λ)(x− μ)2, x2, x3

(we don’t need to consider (x − λ)k for nonzero λ as this would violate (7), and we don’t need to 
consider m(x) = x as this gives flat space).
(i) m(x) = (x − λ)(x − μ)2 with λ, μ distinct. Necessarily λ and μ are real and (7) requires

μ(λ + 2μ) = 0,

so in particular λ = 0 implies μ = 0 and we have the next case so w.l.o.g. λ �= 0; also λ = μ

implies λ = 0 and is therefore ruled out.
There is a basis of vectors X, Y, Z (omitting the indices) with

MX = λX, MY = μY, MZ = μZ + Y.

In terms of the matrix S = Sαβ we deduce

λXαY
α = SαβX

αY β = μXαY
α

so XαY
α = 0 and similarly XαZ

α = 0. Next

μYαZ
α = SαβY

αZβ = μYαZ
α + YαY

α

so that Y is a null vector.
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Since we are free to add multiples of Y to Z and perform Lorentz transformations, we can 
assume

X = (1, 0, 0)T , Y = (0, 1, 1)T , Z = (0, A,−A)T ,

for some nonzero, real A and we find

M =

⎛
⎜⎝ λ 0 0

0 μ + ν −ν

0 ν μ− ν

⎞
⎟⎠ ,

where ν = 1/(2A), and still μ(λ + 2μ) = 0. To find the metrics, take

h =

⎛
⎜⎝ α β γ

β δ ε

γ ε ζ

⎞
⎟⎠ ,

with h(0) = η and substitute into (6). Symmetry of ḣ requires

(μ + ν − λ)β + γν = 0 = −βν + γ(μ− ν − λ), ν(2ε + δ + ζ) = 0.

Since λ − μ �= 0, the first pair imply β = γ = 0 and the vacuum equations reduce to

α̇ = 1
V
λα

δ̇ = 1
V

(δ(μ + ν) + εν)

ε̇ = 1
V

(−δν + ε(μ− ν)) (9)

ζ̇ = 1
V

(−εν + ζ(μ− ν))

V̇ = 1
2(λ + 2ν)

There are two cases:
(A) μ = 0 when

h = (1 + t/t0)2dx2 + dy2 − dz2 + 2ν
λ

log(1 + t/t0)(dy − dz)2 (10)

The resulting 4-metric (1) is a pp-wave (see e.g. [9]).
(B) λ + 2μ = 0 when

h = e−2μtdx2 + eμt((dy2 − dz2) + νt(dy − dz)2). (11)

(ii) m(x) = x2: this follows from the previous case by setting λ = μ = 0 in M , and in fact in (11), 
but the metrics turn out to be flat.

(iii) m(x) = x3: there will be a basis X, Y, Z with

MX = 0, MY = X, MZ = Y,
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and we are free to perform the changes

Z → Z + αX + βY, Y → Y + βX.

By similar considerations to those used above, we deduce

XαX
α = 0 = XαY

α = XαZ
α − YαY

α

so, using Lorentz transformations and the available freedom, w.l.o.g.

X = (0, 1, 1)T , Y = (A, 0, 0)T , Z = (C,D,−D)T ,

with AD �= 0. We can deduce S and from it calculate M :

M =

⎛
⎜⎝ 0 λ −λ

λ 0 0
λ 0 0

⎞
⎟⎠ ,

with λ �= 0. Note trM = 0 so w.l.o.g. V = 1, and taking

h =

⎛
⎜⎝ α β γ

β δ ε

γ ε ζ

⎞
⎟⎠ ,

with h(0) = η, substitute into (6). Symmetry of ḣ forces

α = δ + ε = −ζ − ε, β + γ = 0,

reducing the vacuum equations to the system

α̇ = 0

β̇ = λα

δ̇ = λβ (12)

ε̇ = −λβ

ζ̇ = −λγ

which are solved by

α = 1, β = −γ = λt, δ = 1 + 1
2λ

2t2, ε = −1
2λ

2t2, ζ = −1 + 1
2λ

2t2.

The metric is

g = dt2 + dx2 + dy2 − dz2 + 2λtdx(dy − dz) + 1
2λ

2t2(dy − dz)2. (13)

For this metric, the components of the Riemann tensor as in (2) are constant (and not all zero) 
but the resulting space-time is not homogeneous as the Riemann tensor is not parallel.2

2 This is the metric found in [10] equation (4.10).
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(c) If there is one real root, say λ and a complex conjugate pair, say μ ± iν with real μ, ν (and ν �= 0
or we are in an earlier case) then there are real Lorentz vectors X, U, V with

MX = λX, M(U + iV ) = (μ + iν)(U + iV ).

With the aid of the symmetric matrix S we can write these equations as

SαβX
β = λXα, Sαβ(Uβ + iV β) = (μ + iν)(Uα + iVα),

and deduce

XαU
α = 0 = XαV

α = UαU
α + VαV

α.

By rotating U and V in the 2-plane they span:

(Uα + iV α) → eiφ(Uα + iV α)

we can arrange that UαV
α = 0. Now they cannot both be null so one, say U is space-like and then 

the other, V , is time-like. Since X is orthogonal to both, it must be space-like and we have an 
orthogonal triad which we can suppose to be normalised. Choose

X = (1, 0, 0)T , U = (0, 1, 0)T , V = (0, 0, 1)T

then

M =

⎛
⎜⎝ λ 0 0

0 μ −ν

0 ν μ

⎞
⎟⎠ .

We need to impose (7), which implies

2λμ + μ2 + ν2 = 0.

We know that ν �= 0 so this also forces μ �= 0 and we can solve for λ:

λ = − (μ2 + ν2)
2μ .

To find the metric explicitly, first parametrise h:

h =

⎛
⎜⎝ α β γ

β δ ε

γ ε ζ

⎞
⎟⎠ ,

with h(0) = η and substitute into (6). Symmetry forces β = γ = ζ + δ = 0 and leaves the system

α̇ = 1
V
λα

δ̇ = 1
V

(μδ + νε) (14)

ε̇ = 1
V

(−νδ + με)

V̇ = 1(λ + 2μ)
2



M. Dunajski, P. Tod / Differential Geometry and its Applications 54 (2017) 11–30 19
(i) If λ + 2μ �= 0 then

V = 1 + t

t0
, α = (1 + t

t0
)2p, δ + iε = (1 + t

t0
)2(q+ir)

with

p = λ

λ + 2μ, q + ir = (μ− iν)
λ + 2μ , t0 = 2

λ + 2μ.

Note that

p + (q + ir) + (q − ir) = 1 = p2 + (q + ir)2 + (q − ir)2,

so that this metric is essentially a real slice of a complex Kasner metric. This family of metrics 
appears in [10] as Harrison metrics.

(ii) If λ + 2μ = 0 then also ν = ±μ
√

3 and there is just one free parameter. We can assume V = 1
without loss of generality and then

α = e−2μt, δ = eμt cos(νt), ε = −eμt sin(νt). (15)

We have found all type I vacuum metrics of all signatures, of which (11) and (15) seem to be new. All type I 
Einstein metrics with nonzero Λ can then be found by the method at the end of section 2.1.

3. Types VIII and IX

As noted in the Introduction, real type IX Einstein metrics of any signature can be assumed to be 
diagonal without loss of generality. Similarly type VIII Einstein with positive or negative definite spatial 
metric can be assumed diagonal without loss of generality. Thus for nondiagonal real Einstein metrics one 
should consider neutral signature type VIII.

3.1. Nondiagonal type VIII from diagonal type IX

It is possible to obtain all real analytic nondiagonal definite or indefinite type VIII examples by taking 
real slices of complex type IX solutions. This can be seen as follows: suppose the left-invariant one-forms 
are Σi for type IX and σi for type VIII, so that

dΣ1 = Σ2 ∧ Σ3, dΣ2 = Σ3 ∧ Σ1, dΣ3 = Σ1 ∧ Σ2

and

dσ1 = σ2 ∧ σ3, dσ2 = −σ3 ∧ σ1, dσ3 = σ1 ∧ σ2, (16)

then given a real analytic type VIII metric g set

σ1 = iΣ1, σ2 = Σ2, σ3 = −iΣ3 (17)

which, following [5], we shall call ‘Kamada’s choice’, to obtain a complex type IX metric; either this can 
be diagonalised at any choice of time and will then remain diagonal, so that the original type VIII metric 
is defined on a real slice of this complex (and diagonal) type IX metric, or it cannot be so diagonalised in 
which case there are different solutions (that we find below).
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However an explicit general solution of the vacuum equations for type IX metrics is not known (and, 
being chaotic, is never likely to be known) so to find explicit solutions we impose an extra condition, namely 
self-dual or anti-self-dual (SD or ASD) Weyl tensor. Now we may follow the method of [11], at least for 
diagonal type IX.

With the conventions of [11], write the type IX metric as

g = w1w2w3dT
2 + w2w3

w1
Σ2

1 + w3w1

w2
Σ2

2 + w1w2

w3
Σ2

3. (18)

In [11] the SD Einstein equations are solved for this metric. In brief, the Levi–Civita connection is coded 
into three connection variables (A1, A2, A3) obtained as first-derivatives of the wi, and the first-order system 
for the Ai is reduced to a Painlevé VI equation for the variable x = A1−A2

A3−A2
.

We shall find nondiagonal real type VIII solutions by imposing a particular set of reality conditions, 
different from Kamada’s choice, and we shall show in an Appendix that these two choices are the only two 
choices, up to an appropriate equivalence.

We set

Σ1 = −Σ1 = −iσ1, Σ2 = Σ3 = 1√
2
(σ2 + iσ3) (19)

for real σi, then relations (16) hold, as required.
To obtain a real metric, we have

h = AΣ2
1 + BΣ2

2 + CΣ2
3 = −Aσ2

1 + 1
2(B + C)(σ2

2 − σ2
3) + i(B − C)σ2σ3, (20)

which will be real if A is real and B = C. Returning to (18) we see that these conditions require w1 real 
and w2 = ±w3 (w.l.o.g. we take w2 = w3 as the other choice simply changes the overall sign of the metric).

Following the conventions of [11], we find that the functions Ai that encode the connection coefficients 
must satisfy A1 ∈ R, A2 = A3. Introduce

z = x

x− 1 = A1 −A3

A1 −A2
,

in terms of x(T ) (with T related to t in (1) by dt2 = w1w2w3dT
2) then the reality conditions force zz = 1

or equivalently x + x = 1. Substituting x = 1
2 + iy into (4.8) of [11] we obtain an equation for y:

d

dT

(
(y′)−3/2y′′

)
= 1

2(y′)3/2
3
4 − y2

(1
4 + y2)2

, where ′ = d/dT.

This will have real solutions for y, which will in turn give appropriate z. To find the metric, continue as in 
[11], and there will be new SD vacuum metrics in this class.

3.2. Nondiagonal type VIII from non-diagonalisable type IX

While every real symmetric 3 × 3 matrix can be diagonalised by conjugation with a real orthogonal 
matrix, this is not true for complex symmetric 3 × 3 matrix. Consequently a real analytic type VIII metric 
may complexify to a nondiagonalisable type IX metric and then it will not lie in the previous class.

There are two relevant canonical forms of nondiagonalisable complex symmetric 3 × 3 matrix, which are 
distinguished by the minimum polynomial. If the minimum polynomial has distinct roots then the matrix 
is diagonalisable so for nondiagonalisability there must be repeated roots and the cases are:
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(1) Minimum polynomial (x − λ)(x − μ)2 with λ �= μ, which leads to a spatial metric of the form

⎛
⎜⎝ λ 0 0

0 μ + ν iν

0 iν μ− ν

⎞
⎟⎠

(2) Minimum polynomial (x − λ)3 which leads to spatial metric

⎛
⎜⎝ λ− iμ μ ν

μ λ + iμ iν

ν iν λ

⎞
⎟⎠

From these by the Kamada choice we obtain two type VIII metrics. Choose the invariant one-forms to 
satisfy (16) and parametrise the metrics as

(1)

g = dt2 −A2σ2
1 + (σ2 − σ3)((B + C)σ2 + (B − C)σ3), (21)

with AB �= 0.
(2)

g = dt2 − (σ1 + σ2)((A2 + B)σ1 − (A2 −B)σ2 + 2Cσ3) −A2σ2
3 , (22)

with A �= 0.

These are evidently real for A, B, C real, and both have neutral signature. We will solve the Einstein 
equations in the two cases, sometimes completely and sometimes reducing to a second-order linear ODE 
which can be regarded as integrable.

3.2.1. Solving the Einstein equations for the metric (21)
The Einstein equations Rab = Λgab for (21) are

− Ä

A
− B̈

B
+ Ḃ2

2B = Λ

Ä

A
+ ȦḂ

AB
− A2

2B2 = −Λ (23)

Ṗ + Ȧ

A
P − C

(
2
A2 − 1

B

)
= 0

− B̈

2B − ȦḂ

2AB
− A2

2B2 + 1
B

= Λ

where

P = 1
2B (BĊ − CḂ).

Only the third of (23) contains C so we leave it until last. From the others, by elimination of second 
derivatives, we obtain
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H := Ḃ2

2B2 + 2 ȦḂ

AB
+ A2

2B2 − 2
B

+ 2Λ = 0, (24)

which is the Hamiltonian constraint (and is conserved by virtue of the others).
Define

q := Ḃ2

A2B
− 1

B
,

then q̇ = 0 by virtue of (23), so q = c1. Evidently the system (23) is now equivalent to this and (24), together 
with the equation for P , and we deduce

A2 = Ḃ2

1 + c1B
(25)

for constant c1. Use this to eliminate A from (24) to find

B̈ + (2 − c1B)
4B(1 + c1B) Ḃ

2 = 1 − ΛB.

This integrates to give, if c1 �= 0

Ḃ2 = F (B)

with

F (B) := 2
c31B

(
−2Λ

3 (1 + c1B)3 + 2(c1 + 2Λ)(1 + c1B)2 + 2(c1 + Λ)(1 + c1B) + c2(1 + c1B)3/2
)
, (26)

with a second constant of integration c2, while if c1 = 0

Ḃ2 = F (B) := c2
B

+ B − 2Λ
3 B2. (27)

Now go back to (23) to find C. First note

AP = Ḃ2

2(1 + c1B)1/2

(
dC

dB
− C

B

)
= BF (B)

2(1 + c1B)1/2
d

dB

(
C

B

)
,

so that the third of (23) is

d

dB

(
BF

2(1 + c1B)1/2
d

dB

(
C

B

))
= C

B

1
(1 + c1B)1/2

(
2B(1 + c1B)

F
− 1

)
. (28)

This is a second-order linear ODE for C which we can suppose has been solved, the solution incorporating 
two more constants c3, c4. The metric is

g = dt2 −A2σ2
1 + (σ2 − σ3)((B + C)σ2 + (B − C)σ3),

so use B as time-coordinate to obtain a solution depending on c1, ..., c4 and Λ:

g = dB2

F (B) − F (B)
1 + c1B

σ2
1 + B(σ2

2 − σ2
3) + C(B)(σ2 − σ3)2, (29)

where we are assuming F (B) and C(B) are known.
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In the special case c1 = c2 = 0 we have F = B − 2Λ
3 B2 and (28) has the general solution

C = c3
B2(1 − ΛB/6)
(1 − 2ΛB/3)2 + c4

8Λ2B2 − 8ΛB + 3
(1 − 2ΛB/3)2B ,

which, with c4 = 0, is recognisable as the solution in equation (7.5) of [3]. Thus that particular nondiago-
nalisable type VIII Einstein metric complexifies to a nondiagonalisable type IX metric.

There is another simple special case: c1 = 0 = Λ. Then F (B) = B + c2B
−1, and (28) has the general 

solution

C = c3B + 3c4c2B2 + c4B
4

c2 + B2 ,

with constants of integration c3, c4. With B = r2/4 the metric can be written

g = dr2

1 + c5/r4 − r2

4 (1 + c5/r
4)σ2

1 + r2

4 (σ2
2 − σ2

3) +
(

4c3
r2 + 3c4c5 + c4r

4
)

(1 + c5/r
4)−1(σ2 − σ3)2. (30)

The Riemann tensor for this metric is SD iff c4 = 0. This metric bears some resemblance to the Eguchi–
Hansen metric but it seems to be new.

3.2.2. Solving the Einstein equations for the (22)
The metric is

g = dt2 − (σ1 + σ2)((A2 + B)σ1 − (A2 −B)σ2 + 2Cσ3) −A2σ2
3 ,

with A �= 0. Choose the basis of forms to be

θ0 = dt, θ1 = Aσ3, θ2 = σ1 + σ2, θ3 = 1
2(A2 + B)σ1 −

1
2(A2 −B)σ2 + Cσ3,

so that

g00 = −g11 = −g23 = 1.

Now calculate the Einstein equations as

3 Ä
A

= −Λ (31)

Ä

A
+ 2 Ȧ

2

A2 − 1
2A2 = −Λ (32)

C̈ − ȦĊ

A
− 2C

(
Ä

A
+ 1

A2

)
= 0 (33)

B̈ − ȦḂ

A
− 2B

(
Ä

A
+ 1

A2

)
= 6C

2

A4 +
(
Ċ

A
− 2 ȦC

A2

)2

(34)

Eliminate Ä from the first pair to obtain

Ȧ2
− 1 = −Λ/3,
A2 4A2
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which is the Hamiltonian constraint. Solutions are

For Λ = −3H2, A = 1
2H sinhHt; for Λ = 3H2, A = 1

2H sinHt. (35)

We can deal simultaneously with both signs of Λ by introducing

z = −2Ȧ
(

3
Λ

)1/2

, so that ż = 2A
(

Λ
3

)1/2

=
(

1 − Λ
3 z2

)1/2

.

Set C = F/A2 in (33) then

(
1 − Λ

3 z2
)

d2F

dz2 + 4Λz
3

dF

dz
− 4Λ

3 F = 0,

which is solved by

F = c1z + c2

(
z4 − 18

Λ z2 − 27
Λ2

)
.

Then with B = G/A2, (34) becomes

(
1 − Λ

3 z2
)

d2G

dz2 + 4Λz
3

dG

dz
− 4Λ

3 G = 6C2 +
(
AĊ − 2ȦC

)2
,

with solution

G = PI + c3z + c4

(
z4 − 18

Λ z2 − 27
Λ2

)
,

where PI is the particular integral. Again the metric is obtained subject to solving a second-order linear 
ODE.

For vacuum (Λ = 0) we can obtain the general solution in (4-parameter) closed form:

A = t

2 , C = c1
t2

+ c2t
4, B = 4c21

t6
− 16c1c2 + 7c22t6 + c3

t2
+ c4t

4.

This is flat iff B = C = 0 and it has Weyl tensor which is SD for c2 = 0 = c4, or ASD for c1 = 0 = c3.

4. Other types

If the isometry group admits a 2-dimensional Abelian subgroup and the metric is orthogonally transitive 
(OT) then the methods of twistor theory can be used to find all vacuum solutions of any signature (see [8], 
examples in [1,10] and self-dual Kähler examples in [2]). This will include all Bianchi types except for VIII 
and IX. Generically, there should be a reduction to a Painlevé equation (as happens in [1] for the Bianchi III 
examples treated there, which are OT for the group generated by < ∂x, ∂y >) but type I, as seen above, is 
actually solvable in elementary functions (and the metrics found are all OT for the subgroup generated by 
(∂y, ∂z)). It is possible to solve type II and obtain some examples which are not OT (and not in [10]).
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4.1. Type II

Consider the metric

g = dt2 + a2σ2
1 + b2σ2

2 + (fσ2 + cσ3)2,

with

dσ1 = σ2 ∧ σ3, dσ2 = 0 = dσ3,

which is therefore Bianchi type II. It is convenient to introduce coordinates (x, y, z) by

σ1 = dx + ydz, σ2 = dy, σ3 = dz,

with corresponding Killing vectors

X1 = ∂x, X2 = ∂y − z∂x, X3 = ∂z.

Abelian subgroups of the isometry group are generated by < X1, X2 > or < X1, X3 > but in both cases 
orthogonal transitivity implies diagonalisable, so that nondiagonalisable examples will not be OT.

For later use we note that the differential algebra of invariant 1-forms has the symmetry

(σ1, σ2, σ3) → (μ−1ν−1σ1, μ
−1σ2, ν

−1σ3)

for nonzero constants μ, ν and under which the metric components change according to

(a, b, c, f) → (μνa, μb, νc, μf). (36)

We exploit this symmetry below to fix some constants.
The Einstein equations are

ä

a
+ b̈

b
+ c̈

c
+ 2L2 = −Λ

ä

a
+ ȧḃ

ab
+ ȧċ

ac
− a2

2b2c2 = −Λ

b̈

b
+ ȧḃ

ab
+ ḃċ

bc
+ 2L2 + a2

2b2c2 = −Λ (37)

c̈

c
+ ȧċ

ac
+ ḃċ

bc
− 2L2 + a2

2b2c2 = −Λ

L̇ +
(
ȧ

a
+ 2 ċ

c

)
L = 0,

where

L = 1
2

(
ḟ

b
− f ċ

cb

)
. (38)

The Hamiltonian constraint is

ȧḃ + ḃċ + ċȧ − L2 + a2
+ Λ = 0. (39)
ab bc ca 4b2c2
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From the last of (37) deduce

L = c1
ac2

.

In fact c1 is one of the two twist potentials for the Abelian subgroup generated by < X1, X3 >, the other 
being automatically zero. We insist that c1 �= 0 since otherwise the metric is both OT and diagonalisable.

To proceed, change the time-coordinate by

dt = ac2dτ, so d

dτ
= ac2

d

dt
,

for then

d

dτ

(
f

c

)
= 2abcL = 2c1

(
b

c

)
.

Next set b = Xc, eliminate Λ between the third and fourth of (37) and substitute to find

Ẍ

X
+
(
ȧ

a
+ 2 ċ

c

)
Ẋ

X
+ 4L2 = 0,

or equivalently

d2X

dτ2 + 4c21X = 0,

which is readily solved. Under the symmetry (36) we have X → μν−1X so without loss of generality we 
may suppose that

X = sin(2c1τ),

and the symmetry is reduced to (36) but with μ = ν. Next the second of (37) translates to

d

dτ

(
X

a

da

dτ

)
= a4

2X − Λa2c4X.

To make progress, set Λ = 0, when

X2
(
da

dτ

)2

= 1
4(a6 + c2a

2),

for new constant c2 which we suppose for now is nonzero and positive. The residual freedom in (36) allows 
us to set c2 = 4. Now

2da
a(a4 + 4)1/2

= dτ

X
.

This can be simplified by setting a4 = 16g/(g − 1)2 for then

g = c3(tan c1τ)−2/c1 .
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To find c we go back to the Hamiltonian constraint and calculate

0 = a2c4H =
(
c′

c
+ a′

a
+ X ′

2X

)2

− 1
4

(
X ′

X

)2

− c21 −
1
X2 ,

with prime for d/dτ . With X known, this gives

acX1/2 = c4(tan c1τ)β/2c1 where β2 = c21 + 1.

This will give c and therefore the general vacuum solution. Solutions with c2 < 0 can be obtained by analytic 
continuation and solutions with c2 = 0 are SD. They have neutral signature, and are not cited in the list of 
type II solutions in [10]. The metric can be written in the form

g = 1
8c31

(v0 − v)e−2vdv2 + 2c1
v0 − v

σ2
1 + (v0 − v)

2c1
e−v

(
cosh v(σ2

2 + σ2
3) + 2 sinh vσ2σ3

)
. (40)

Appendix

Here we address the question of how many distinct ways there are to obtain real type VIII metrics by 
taking slices of diagonal complex type IX metrics. We shall see that the two choices made in Section 3.1 are 
essentially all, up to equivalences.

With σi, Σi the invariant 1-forms for type VIII and type IX respectively, set σ = (σ1, σ2, σ3)T and 
Σ = (Σ1, Σ2, Σ3)T . There is freedom

σ → Lσ, Σ → PTΣ

for real Lorentz transformation L and complex orthogonal P . Suppose the forms are related by

σ = MΣ = MΣ,

where the second equation is the reality condition. The allowed freedom has the effect

M → LMP,

so, provided the top row of M is not a null vector we can use complex P to set the top row of M to be 
(α, 0, 0) with α �= 0. (If the top row of M is a null vector then we can use real P to set it to be a(1, i, 0) for 
nonzero real a, in which case

σ1 = a(Σ1 + iΣ2) when σ1 ∧ dσ1 = 0,

which is a contradiction.)
Now

σ1 = αΣ1, σ2 = βΣ1 + γΣ2 + δΣ3, σ3 = λΣ1 + μΣ2 + νΣ3

for some β, γ, δ, λ, μ, ν. From the exterior derivatives

dσ1 = αdΣ1 = αΣ2 ∧ Σ3

but also
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= 2σ2 ∧ σ3 = 2(βΣ1 + γΣ2 + δΣ3) ∧ (λΣ1 + μΣ2 + νΣ3).

Thus

βν − λδ = 0 = βμ− λγ, 2(γν − δμ) = α,

whence β = 0 = λ. With M parametrised as

M =
(
α 0
0 M̃

)
,

parametrise M̃ as
(
β γ

δ ε

)

then

dσ2 = βdΣ2 + γdΣ3 = βΣ3 ∧ Σ1 + γΣ1 ∧ Σ2

but also

= −σ3 ∧ σ1 = −α(δΣ2 + εΣ3) ∧ Σ1

so that

αδ = γ, αε = −β.

Consideration of dσ3 similarly leads to

αβ = ε, αγ = −δ,

so that, since e.g. β and γ are not both zero, we deduce that α2 = −1. Without loss of generality we may 
choose α = i whence also

ε = iβ, δ = −iγ.

The remaining condition from consideration of dσ1 now entails

β2 + γ2 = 1. (41)

The complex type IX metric is

g = dt2 + AΣ2
1 + BΣ2

2 + CΣ2
3,

and we wish to obtain a real type VIII metric as

= dt2 −Aσ2
1 + B(βσ2 + iγσ3)2 + C(γσ2 − iβσ3)2

= dt2 −Aσ2
1 + (Bβ2 + Cγ2)σ2

2 + 2iβγ(B − C)σ2σ3 − (Bγ2 + Cβ2)σ2
3 .



M. Dunajski, P. Tod / Differential Geometry and its Applications 54 (2017) 11–30 29
For this to be real we require the following to be real

A, Bβ2 + Cγ2, Bγ2 + Cβ2, iβγ(B − C).

By taking combinations of the last three (first minus second plus or minus twice the third) we see that 
(β ± iγ)2(B − C) must be real and therefore so must (β + iγ)2/(β − iγ)2, so that

(β + iγ)2(β + iγ)2 = (β − iγ)2(β − iγ)2

whence

(ββ − γγ)(γβ + βγ) = 0. (42)

Note that

(ββ − γγ)2 + (γβ + βγ)2 = 1

by virtue of (41) so that there is no loss of generality in supposing that whichever factor is zero in (42) the 
other factor can be assumed to be one.

The reality conditions on the Σi are

Σ1 = −Σ1, βΣ2 + γΣ3 = βΣ2 + γΣ3, −iγΣ2 + iβΣ3 = iγΣ2 − iβΣ3,

whence also

Σ2 = (ββ − γγ)Σ2 + (γβ + βγ)Σ3, Σ3 = (γβ + βγ)Σ2 − (ββ − γγ)Σ3.

Now by (42) these simplify and we have just two choices: either

Σ2 = Σ2, Σ3 = −Σ3

which is Kamada’s choice (17) or

Σ2 = Σ3

which is (19), the other choice.
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