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Abstract

Anti–self–dual fields and manifolds
Moritz F. Högner

In this thesis we study anti–self–duality equations in four and eight dimen-

sions on manifolds of special Riemannian holonomy, among these hyper–Kähler,

Quaternion–Kähler and Spin(7)–manifolds.

We first consider the octonionic anti–self–duality equations on manifolds with

holonomy Spin(7). We construct explicit solutions to their symmetry reductions,

the non–abelian Seiberg–Witten equations, with gauge group SU(2). These so-

lutions are singular for flat and Eguchi–Hanson backgrounds, however we find a

solution on a co–homogeneity one hyper–Kähler metric with a domain wall, and

the solution is regular away from the wall.

We then turn to Quaternion–Kähler four–manifolds, which are locally deter-

mined by one scalar function subject to Przanowski’s equation. Using twistorial

methods we construct a Lax Pair for Przanowski’s equation, confirming its inte-

grability. The Lee form of a compatible local complex structure gives rise to a

conformally invariant differential operator, special cases of the associated gener-

alised Laplace operator are the conformal Laplacian and the linearised Przanowski

operator. Using recursion relations we construct a contour integral formula for

perturbations of Przanowski’s function. Finally, we construct an algorithm to

retrieve Przanowski’s function from twistor data.

At last, we investigate the relationship between anti–self–dual Einstein met-

rics with non–null symmetry in neutral signature and pseudo–, para– and null–

Kähler metrics. We classify real–analytic anti–self–dual null–Kähler metrics with

a Killing vector that are conformally Einstein. This allows us to formulate a neu-

tral signature version of Tod’s result, showing that around non–singular points

all real–analytic anti–self–dual Einstein metrics with symmetry are conformally

pseudo– or para–Kähler.
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CHAPTER 1

Introduction

1.1 Introduction

The concept of anti–self–duality in four dimensions is very closely tied to the inte-

grability of specific field equations and manifolds of special Riemannian holonomy.

Indeed, interest in the subject arose with Penrose [2] showing that four–manifolds

with anti–self–dual conformal structures can be linked via the twistor correspon-

dence to three–dimensional complex twistor spaces with certain algebraic proper-

ties. Equipping this twistor space with a holomorphic fibration and a symplectic

structure along the fibres yields anti–self–dual Ricci–flat four–manifolds, com-

monly referred to as hyper–Kähler, while a holomorphic contact structure on

twistor space leads to anti–self–dual Einstein manifolds with non–zero cosmolog-

ical constant [3], also known as Quaternion–Kähler. The significance of these

correspondences lies in the fact that they translate differential equations into

algebraic constraints, hence integrating the differential equation. One can also

extract Lax Pairs for these differential equations from the geometry of the twistor

space, thus providing another of the key features of integrable equations. In this

geometric context the Lax Pair spans a distribution which is integrable if and

only if the differential equation is satisfied.

From a physicists point of view the differential equations leading to anti–self–dual,

hyper–Kähler or Quaternion–Kähler manifolds are similar in kind to those of Ein-

stein’s general relativity, as they impose restrictions on the Riemannian curvature

of four–manifolds. Turning to field equations, one of the goals of twistor geometry

is to find solutions of the Yang-Mills equations. Again the concept of anti–self–
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CHAPTER 1. INTRODUCTION

duality plays a prominent role, field equations amenable to twistor transforms

are those that require the self–dual part of the curvature of a Lie algebra–valued

connection on a principal bundle over an anti–self–dual manifold to vanish. These

field equations have been named the anti–self–dual Yang–Mills equations, as their

solutions automatically satisfy the ubiquitous Yang–Mills equations by virtue of

the Bianchi identity. Ward [4] established a correspondence between solutions

of the anti–self–dual Yang–Mills equations on conformally flat background and

vector bundles over twistor space. This correspondence has subsequently been

extended to cover anti–self–dual Yang–Mills equations on all anti–self–dual back-

grounds [5].

A further source of integrable systems stems from the various symmetry reduc-

tions of the anti–self–duality equations to one, two or three dimensions. Such

a dimensional reduction is possible if the four–dimensional system admits one

or more Killing vectors, the features of the resulting symmetry–reduced model

depend on the commutation relations of the Killing vectors and their properties:

whether a Killing vector is conformal, pure or a homothety, whether it is null or

not, whether it is hypersurface orthogonal or not, whether the action is free or

not. One problematic issue with symmetry reductions is that the resulting twistor

spaces are not necessarily Hausdorff if the spacetime on which the field equa-

tions are formulated is not geodesically convex [6, 7]. Lower–dimensional models

that inherit their integrability from the anti–self–dual Yang–Mills equations are

monopoles in three, vortices in two and kinks in one dimension [8, 9]. Examples

of integrable equations include the dispersionless Kadomtsev-Petviashvili (dKP),

SU(∞) Toda, Korteweg-de Vries, non-linear Schrödinger and Toda field equation

as well as Painlevé’s and Nahm’s equations and many others, for an overview see

[7] and references there–in. In fact Ward conjectures [8] that many or perhaps

all integrable differential equations may be obtained by symmetry reduction from

the anti-self-dual Yang-Mills equations or some generalisation.

In this thesis we shall discuss in detail each of the three areas tied so closely

to anti–self–duality: the octonionic instanton equation is a field equation on

eight–manifolds modeled on the anti–self–dual Yang–Mills equation, Quaternion–

Kähler manifolds are examples of Riemannian manifolds with special holonomy

and we will also consider symmetry reductions of anti–self–dual Einstein mani-

folds in neutral signature by a pure, non–null Killing vector.

First we probe the limits of integrability by studying an extended version of anti–

self–duality in higher dimensions. Inspired by the geometry underlying anti–self–

2



1.1. INTRODUCTION

duality in four dimensions, there is a natural extension to higher–dimensional

manifolds with special Riemannian holonomy. We explain this more general no-

tion of anti–self–duality, and use it to introduce the octonionic instanton equa-

tion on manifolds with holonomy Spin(7). Besides G2, this is one of the two

exceptional Riemannian holonomy groups whose origin can be traced back to the

existence of the octonions. The aim of this part of the thesis will be to find

explicit solutions of the octonionic instanton equation. To make the equation

somewhat tractable, we study a symmetry reduction from eight to four dimen-

sions leading to the non–abelian Seiberg–Witten equation [10, 11]. Exploiting

the symmetry of the background we make an Ansatz that mimics the behaviour

of instantons in four dimensions. Since there is no known twistor construction for

Spin(7)–manifolds, we don’t expect the octonionic instanton equation to be in-

tegrable. None the less, our Ansatz reduces the full equations to a second–order

non–linear ordinary differential equation (ODE) for one scalar function. This

is rather remarkable, as in intermediate stages we find highly–overdetermined

coupled non–linear second–order partial differential equations (PDEs). While

regular solutions on flat space are ruled out by scaling arguments, we do find ex-

plicit solutions on a gravitational instanton with a single–sided domain wall that

are regular away from the wall. These can be viewed as solutions on a group–

manifold with a hyper–Kähler metric where the singularity is present only in an

overall conformal factor. We complete the discussion by numeric evaluations of

the 2nd–order ODEs in question. The foundations of this work have been laid in

previous work by the author [1] in collaboration with his supervisor and M. G.

Schmidt, however the results on curved manifolds, in particular the solutions on

Gibbons–Hawking background, are new.

The octonionic instanton equation illustrates rather nicely the effects of the lack

of integrability that one encounters when leaving the territory of the twistor cor-

respondence. The link between integrability and twistor constructions is very

well understood for anti–self–dual Ricci–flat manifolds. The metric of an anti–

self–dual Ricci–flat manifold is determined by the partial derivatives of one scalar

function which is subject to a second–order partial differential equation, Pleban-

ski’s heavenly equation [12]. In [13] it is demonstrated that the heavenly equation

is integrable using twistor methods. The authors derive a Lax Pair for the heav-

enly equation and relate the heavenly function to the geometry of twistor space.

One can also find an contour integral formula for perturbations of the heavenly

function and hence for deformations of the metric [14].
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CHAPTER 1. INTRODUCTION

The aim of the second part of this thesis is to establish similar results for Quaternion–

Kähler manifolds, which represent the second class of manifolds whose Rieman-

nian holonomy is based on the existence of the quaternions. Four–dimensional

Quaternion–Kähler manifolds are by definition anti–self–dual Einstein with non–

zero scalar curvature, hence they also lie within the realm of the twistor correspon-

dence. Without using twistor theory Przanowski [15] showed that anti–self–dual

Einstein four–metrics can be written locally in terms of one scalar function sub-

ject to a second–order non–linear PDE. Hence, by the dogma of twistor theory,

we would expect this equation to be integrable. And indeed, our first result here

is to exhibit Przanowski’s equation as an integrable equation by providing a Lax

Pair. Exploiting the integrability of Przanowski’s equation we go on to estab-

lish an integral formula for perturbations of solutions of Przanowski’s PDE. This

formula links cohomology classes on twistor space to deformations of arbitrary

Quaternion–Kähler four–manifolds, and hence extends previous results of [16],

where only Quaternion–Kähler four–manifolds with isometries were considered.

Finally we clarify the geometric origin of Przanowski’s function in the twistor

correspondence using the double–fibration picture. To illustrate this, we discuss

a number of explicit examples with positive and negative scalar curvature.

At last we want to elaborate on symmetry reductions in the context of integrable

equations. To this end we study anti–self–dual Einstein metrics with a symme-

try. In Euclidean signature the situation is well understood: As we have seen, the

four–metric can be expressed in terms of a scalar function subject to Przanowski’s

equation. In the presence of a Killing vector, the system is dimensionally reduced

to three dimensions and we obtain an Einstein–Weyl structure which can also be

expressed in terms of a scalar function [17], however this scalar function is subject

to the SU(∞) Toda equation. So the symmetry reduction reduces Przanowski’s

equation to the Toda SU(∞) equation.

In neutral signature new features arise, the main difference is the appearance

of null–Kähler metrics linked to another integrable equation, namely the disper-

sionless Kadomtsev-Petviashvili (dKP) equation. The purpose of the last part of

this thesis is to gain some insights into the symmetry reductions of ASD Einstein

manifolds in neutral signature, at least in the real–analytic case. The main new

result in this direction is the classification of real–analytic null–Kähler metrics

with a Killing vector which are conformally equivalent to an anti–self–dual Ein-

stein metric. With this information at our hands, we can show that away from

singular points any real–analytic anti–self–dual Einstein metric with a non–null

4



1.2. OUTLINE

Killing vector is conformally pseudo– or para–Kähler. As a corollary we obtain a

useful classification of anti–self–dual conformal structures with a symmetry that

admit a null–Kähler as well as a pseudo– or para–Kähler metric.

1.2 Outline

The remainder of this thesis is organised as follows. In chapter 2 we provide some

mathematical background, starting with holonomy groups of Riemannian mani-

folds in section 2.1. Here we follow [18, 19] to introduce some concepts that will

appear throughout this thesis. The next sections 2.2–2.5 are devoted to introduc-

ing the reader to spinorial notation, twistor theory, Plebanski’s heavenly equation

and deformation theory following [20, 6, 7, 21, 13]. These are fundamental to the

content of the following chapters. Having established the relevant basics, we pro-

ceed in chapter 3 to discuss the octonionic instanton equation. We start section

3.1 by explaining an extension of anti–self–duality to eight dimensions which is

valid on any Riemannian manifold with holonomy Spin(7), this leads us to the

octonionic instanton equation. Pushing on, in section 3.2 we choose an explicit

holonomy reduction of the background together with a symmetry reduction of the

octonionic instanton equation, leading to a non–abelian version of the Seiberg–

Witten equations. We present an Ansatz with gauge group SU(2) in section 3.3

and deduce some exact solutions on flat and curved background. Also we discuss

the singular or regular behaviour of these exact solutions and provide some fur-

ther numeric solutions. The results of chapter 3 have been published in a joint

paper [22] with M. Dunajski.

Chapter 4 is devoted to Quaternion–Kähler four–manifolds and Przanowski’s

function. After introducing Przanowski’s form of a Quaternion–Kähler metric, we

demonstrate in section 4.1 that a metric of this form is indeed anti–self–dual and

Einstein. Furthermore, we construct a conformally invariant differential operator

and consider the associated generalised Laplacian. In section 4.2 we construct

the twistor space of a Quaternion–Kähler manifold and as a spin–off obtain a Lax

Pair for Przanowski’s equation. We discuss recursion relations relating solutions

of the generalised Laplace equation to cohomology classes on twistor space. At

the end of this section, we focus on the linearised Przanowski operator as a special

case of the generalised Laplacian and describe deformations of the holomorphic

contact structure on twistor space generated by perturbations of Przanowski’s
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CHAPTER 1. INTRODUCTION

function. In section 4.3 we provide an algorithm to obtain Przanowski’s function

from twistor data in the double–fibration picture by making a suitable choice of

gauge. We then use section 4.4 to illustrate this procedure in a few examples: S4,

H4, CP 2 and C̃P 2, the non–compact version of CP 2 with the Bergmann metric.

The content of this chapter has appeared in [23].

The final chapter 5 is concerned with Quaternion–Kähler metrics in neutral sig-

nature with a non–null symmetry. In section 5.1 we review Einstein–Weyl struc-

tures and the Jones–Tod construction for neutral signature metrics with a non–

null symmetry. Furthermore we recall that the SU(∞) Toda equation leads

to scalar–flat pseudo– and para–Kähler and the dKP equation to anti–self–dual

null–Kähler metrics. The next section 5.2 is concerned with the classification of

anti–self–dual Einstein metrics within the conformal class of a null–Kähler metric

with a Killing vector. With this result at our disposal, we proceed in section 5.3

to derive the general form of a real–analytic anti–self–dual Einstein metric with

non–null symmetry in neutral signature, away from singular points. We finish

with the classification of the overlap between null–Kähler and pseudo– or para–

Kähler metrics.

1.3 Notation

We denote frames of the co–tangent bundle and more generally one–forms by ea

or eAA
′
and the dual vector fields by ∂a or ∂AA′ , where a, b, ... = 0, 1, 2, 3 and

A,B, ... = 0, 1. For a coordinate–induced vector field we replace the index by

the coordinate, e.g. if (w, z) are coordinates then ∂w = ∂
∂w

and ∂z = ∂
∂z
. We

abbreviate partial derivatives of a function K(w, z) by Kw = ∂wK = ∂K
∂w

. A

comprehensive list of symbols can be found in the Appendix.
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CHAPTER 2

Mathematical Background

2.1 Riemannian Holonomy

In this section we will introduce the concept of holonomy on Riemannian mani-

folds and give an overview of the classification of Riemannian holonomy groups

based on [18, 19]. Details of selected cases will be discussed in the following

sections. Suppose (M, g) is a connected n–dimensional Riemannian manifold,

then the Levi–Civita connection ∇ associated with the metric g induces parallel

transport of vectors along curves γ : R 7→M . Hence we have a map

P : Tγ(0)M 7→ Tγ(1)M. (2.1)

For every closed loop based at m ∈ M the map P induces an automorphism of

TmM . The set of endomorphisms induced from all possible closed loops inM has

the structure of a Lie group of endomorphisms of TmM , the holonomy groupHolm

associated to m ∈ M . Note that the holonomy group Holm̃ of a different point

m̃ ∈M is given by Holm̃ = PγHolmP
−1
γ , where γ is a path connecting m and m̃.

Hence up to conjugation the Levi–Civita connection associates a holonomy group

Hol to the metric g. By definition the Levi–Civita connection preserves lengths

and angles and hence Hol ⊆ O(n). Note that O(n) is precisely the stabiliser

of the metric g: all orthonormal frames, i.e. frames in which g corresponds to

the identity matrix 1l4 are related by an O(n)–transformation. The holonomy

group can be a proper subset of O(n), hence it is possible to classify Riemannian

manifolds by their holonomy groups. One large class of this classification are the

Riemannian symmetric spaces, which reduce to quotients of Lie groups and are

7



CHAPTER 2. MATHEMATICAL BACKGROUND

characterised by a covariantly constant curvature tensor. The non–symmetric

Riemannian manifolds can locally be decomposed into products of irreducible

components, the possible holonomy groups of these irreducible non–symmetric

Riemannian manifolds have been classified by Berger [24]. Their origin can be

traced back to the existence of the four division algebras R, C, H and O. Most

of these holonomy groups will appear at some point of this thesis, we use this

section to present all of them in one place. We shall see that each of the possible

holonomy groups is the stabiliser of one or more globally–defined, covariantly

constant tensors in addition to the metric.

We start with the Riemannian holonomy groups O(n) and SO(n) corresponding

to automorphisms of Rn. As explained above, every Riemannian manifold with

the Levi–Civita connection has holonomy O(n) with covariantly constant metric

g. If we add an orientation this reduces to holonomy SO(n) and beyond the

metric g there exists a globally–defined covariantly constant volume form voln.

All other holonomy groups are considered ’special’, as they impose substantial

restrictions on the curvature of the metric. Consider first the holonomy groups as-

sociated with automorphisms of Cn, which are U(m) and SU(m) where n = 2m.

The unitary group U(m) characterises Kähler manifolds, i.e. Riemannian man-

ifolds with a compatible and integrable complex structure I and a covariantly

constant Kähler form Σ = g (I(·), ·). The special unitary group SU(m) is the

holonomy group of Calabi–Yau manifolds, which are also Kähler but furthermore

have a ’complex orientation’, namely a covariantly closed holomorphic volume

form ν ∈ Λ(m,0)M . Calabi–Yau manifolds are always Ricci–flat. Manifolds with

holonomy U(m) or SU(m) lie in the overlap of Riemannian and complex geometry

and have been extensively studied, they are amenable to methods of differential

as well as algebraic geometry.

The quaternionic holonomies corresponding to automorphisms of Hn divide into

Quaternion–Kähler manifolds with holonomy1 Sp(k) · Sp(1) and hyper–Kähler

manifolds with holonomy Sp(k), where n = 4k for k > 1. Here Sp(k) denotes the

compact symplectic group. Hyper–Kähler manifolds admit a two–sphere worth

of complex structures compatible with the metric. We can parametrise these by

aI1 + bI2 + cI3, where I1, I2 and I3 are three anti–commuting complex structures

and a2 + b2 + c2 = 1. The metric is Kähler with respect to all of these complex

structures, hence we have a basis of three covariantly constant self–dual Kähler

1Here Sp(k) · Sp(1) = (Sp(k)× Sp(1))
/
Z2.

8



2.1. RIEMANNIAN HOLONOMY

forms Σ1,Σ2 and Σ3. All hyper–Kähler manifolds are Ricci–flat. The case k = 1

is special: we have the isomorphism Sp(1) = SU(2) and hence hyper–Kähler and

Calabi–Yau four–manifolds coincide.

Quaternion–Kähler manifolds in turn are not necessarily complex, however in

every point they admit a two–sphere of local complex structures which are com-

patible with the metric. The metric need not be Kähler with respect to any of

these local complex structures and so the fundamental two–forms Σi need not be

closed. None the less the four–form

∆ := Σ1 ∧ Σ1 + Σ2 ∧ Σ2 + Σ3 ∧ Σ3 (2.2)

is covariantly constant. Quaternion–Kähler manifolds are not Ricci–flat, but Ein-

stein with non–zero scalar curvature. Again the case k = 1 is special: SO(4) ∼=
Sp(1) ·Sp(1) and so every Riemannian four–manifold has holonomy group Sp(1) ·
Sp(1). Hence one defines a Quaternion–Kähler four–manifold to be anti–self–dual

Einstein, for details see section 2.3.

Manifolds with quaternionic holonomies can also be studied with algebro–geometric

tools via the twistor transform, this will be discussed in section 2.2 and is the

object of study in chapter 4 for Quaternion-Kähler manifolds.

Finally we come to the exceptional holonomies G2 and Spin(7), which are re-

lated to the non-associative octonions O. In contrast to the six infinite families of

holonomy groups we have encountered so far, the exceptional holonomy groups

arise only for one particular dimension each.

G2 is the group of automorphisms of the seven–dimensional space of imaginary

octonions. G2 is 14–dimensional and is a subgroup of SO(7), manifolds with

holonomy G2 are seven–dimensional and come equipped with a four–form Θ that

is covariantly constant, as is its Hodge–dual ∗7 Θ.
Spin(7) is the group of automorphisms of O ∼= R8 preserving some part of the

multiplicative structure. As we will work with Spin(7)–manifolds in chapter 3,

we characterise Spin(7) in more detail: It is the 21–dimensional subgroup of

SO(8) preserving a self–dual four–form. Manifolds with holonomy Spin(7) are

eight–dimensional. Set eµνρσ = eµ ∧ eν ∧ eρ ∧ eσ. On any Spin(7)–manifold there

exists an orthonormal frame in which the metric and the four–form are given by

g8 = (e0)2 + (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2 + (e7)2 + (e8)2,

Ξ = e0123 − e0145 − e0167 − e0246 + e0257 − e0347 − e0356 (2.3)

− e1247 − e1256 + e1346 − e1357 − e2345 − e2367 + e4567,

9



CHAPTER 2. MATHEMATICAL BACKGROUND

furthermore Ξ is parallel and self–dual with respect to g8 and the Levi–Civita

connection. Both G2– and Spin(7)–manifolds have vanishing Ricci tensor. As

neither complex geometry nor twistor methods can get a hold on manifolds of

exceptional holonomy, a lot less is known about them. Local existence was first

demonstrated in [25] and the first complete, non–compact examples were given in

[26, 27]. Joyce [28] constructed compact Riemannian manifolds with holonomy

Spin(7), and many further explicit non–compact Spin(7)–metrics have appeared

in the literature since then [29, 30, 31].

It is worth noting that the differential forms Σ1,Σ2,Σ3, ∆, Θ, ∗7 Θ and Ξ on man-

ifolds with quaternionic or exceptional holonomy are in fact covariantly constant

if and only if they are closed. This follows from a representation–theoretic decom-

position of their covariant derivatives, which are all completely anti–symmetric

[18].

2.2 Spinor formalism

In order to discuss hyper–Kähler and Quaternion–Kähler four–manifolds in more

detail, we first introduce spinor formalism in four dimensions following [7, 21].

Following Penrose’s ideas [2] the starting point is a holomorphic Riemannian four–

manifold (M, g), i.e. a complex2 four–dimensional manifold M with a holomor-

phic, symmetric metric g. Under the group isomorphism SO(4,C) ∼= SL(2,C)×
SL(2,C) the tangent bundle TM of (M, g) can locally be regarded as a tensor

product TM = S ⊗ S′ of two rank 2 spin bundles S and S′. We choose a null

tetrad eAA
′
of T ∗M, in which

g = εABεA′B′ ⊗ eAA′
eBB

′
= 2

(
e00

′
e11

′ − e01′e10′
)
, (2.4)

with dual vector fields ∂AA′ . Primed and unprimed indices will always run from

0 to 1. Equation (2.4) amounts to choosing a basis (oA, ρA) of S with dual basis

(oA, ρA) of S∗ and a basis (oA
′
, ρA

′
) of S′ with dual basis (oA′ , ρA′) of S′∗ over every

point of M and setting

e00
′
= oAoA′eAA

′
, e01

′
= oAρA′eAA

′
, (2.5)

e10
′
= ρAoA′eAA

′
, e11

′
= ρAρA′eAA

′
.

2The relation to real Riemannian manifolds, which we are ultimately interested in, will

become clear in the next section.
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2.2. SPINOR FORMALISM

The metric thus induces symplectic structures εAB on S, εAB on S∗, εA′B′ on S′

and εA
′B′

on S′∗ which in the bases (o, ρ) and (o′, ρ′) are simply given by the

Levi–Civita symbols,

εAB = εA
′B′

= εAB = εA′B′ =

(
0 1

−1 0

)
. (2.6)

We can use the ε–symbols to raise and lower indices of primed and unprimed

spinors. Our conventions are

αB = αAεAB, αA = εABαB, (2.7)

and equally for primed spinors. Since a symplectic structure is anti–symmetric

we have αAβ
A = −αAβA, so it is important to maintain the order of indices. The

null tetrad (2.4) identifies a vector V with a 2× 2–matrix

V AA′
=

(
V 00′ V 01′

V 10′ V 11′

)
, (2.8)

the square of the length of the vector is now proportional to the determinant of

the matrix, |V |2 = 2det(V AA′
). A null vector corresponds to a degenerate matrix

and thus can be written as V AA′
= βAαA

′
, where αA

′ ∈ S′ and βA ∈ S. A totally

null plane is a two–dimensional plane spanned by two null vectors V,W which

are orthogonal, VAA′V AA′
= WAA′WAA′

= VAA′WAA′
= 0. Choosing a constant

primed spinor αA
′
and varying βA sweeps out a two–dimensional plane of null

vectors V AA′
= βAαA

′
which are all orthogonal, we call such a totally null plane

an α–plane. Conversely, an α–plane determines a primed spinor up to scale by

αA′V AA′
= 0 for all vectors in the plane. If instead we choose a constant unprimed

spinor and vary the primed spinor, we call the totally null plane a β–plane. It

is easy to see that all totally null planes are either α– or β–planes and are in

one–to–one correspondence with non–zero primed and unprimed spinors up to

scale. We call a surface an α– or β–surface if all its tangent planes are α– or

β–planes.

Now consider a two–form F given by

F =
1

2
FAA′BB′eAA

′ ∧ eBB′
. (2.9)

Since FAA′BB′ is anti–symmetric in the index–pairs AA′ and BB′, we must have

a decomposition

FAA′BB′ = F+
A′B′εAB + F−

ABεA′B′ , (2.10)

11



CHAPTER 2. MATHEMATICAL BACKGROUND

with two symmetric spinors F+
A′B′ and F

−
AB. We now fix an orientation by choosing

a volume form

volg :=
1

4!
εAA′BB′CC′DD′eAA

′ ∧ eBB′ ∧ eCC′ ∧ eDD′
= e00

′ ∧ e10′ ∧ e01′ ∧ e11′ ,

(2.11)

where

εAA′BB′CC′DD′ := (εACεBDεA′D′εB′C′ − εADεBCεA′C′εB′D′) . (2.12)

Then

F+ :=
1

2
F+
A′B′εABe

AA′ ∧ eBB′
, F− :=

1

2
F−
ABεA′B′eAA

′ ∧ eBB′
(2.13)

correspond to the self–dual and anti–self–dual parts of F respectively,

∗gF+ = F+, ∗gF− = −F−. (2.14)

Hence we have a splitting

Λ2M = Λ2
+M⊕ Λ2

−M, (2.15)

and we can define a basis ΣA′B′
of the self–dual (SD) two–forms Λ2

+M as well as

a basis ΣAB of the anti–self–dual (ASD) two–forms Λ2
−M by

ΣA′B′
:=

1

2
εABe

AA′ ∧ eBB′
, ΣAB :=

1

2
εA′B′eAA

′ ∧ eBB′
. (2.16)

These satisfy identities

ΣA′B′ ∧ ΣC′D′
=

1

4
εABεCDe

AA′ ∧ eBB′ ∧ eCC′ ∧ eDD′
, (2.17)

and similarly for ΣAB, while all other wedge products vanish. Note that ev-

ery α–plane associated to a primed spinor α determines a SD two–form Σ =

αA′αB′ΣA′B′
. Since every SD two–form is of that form for some primed spinor,

the converse also holds and similarly we have a one–to–one correspondence be-

tween unprimed spinors and ASD two–forms up to scale.

On the Lie algebra level, we have an induced isomorphism of so(4,C) ∼= sl(2,C)⊕
sl(2,C) which leads to a splitting of the Levi–Civita connection Γ. Taking Car-

tan’s first structural equation3

deAA
′
= ΓAA

′
BB′ ∧ eBB′

(2.18)

3We are suppressing the one–form index, ΓAA′
BB′ = ΓAA′

BB′CC′eCC′
.
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2.2. SPINOR FORMALISM

as the definition of the connection coefficients the decomposition

ΓAA′BB′ = εABΓA′B′ + εA′B′ΓAB, (2.19)

of Γ into a symmetric unprimed connection ΓAB on S and a symmetric primed

connection ΓA′B′ on S′ preserves the splitting of the tangent bundle. Similarly, the

curvature of M splits up into the primed curvature RA′
B′ of S′ and the unprimed

curvature RA
B of S, where

RA
B = dΓAB + ΓAC ∧ ΓCB, RA′

B′ = dΓA
′
B′ + ΓA

′
C′ ∧ ΓC

′
B′ . (2.20)

Using the SD and ASD two–forms to decompose the primed and unprimed cur-

vature spinors, we find

RA′
B′ =

1

12
RΣA′

B′ +WA′
B′C′D′ΣC′D′

+ %A
′

B′CDΣ
CD, (2.21)

RA
B =

1

12
RΣA

B +WA
BCDΣ

CD + %ABC′D′ΣC′D′
.

Here WA
BCD and WA′

B′C′D′ are the anti–self–dual and self–dual Weyl spinors,

%ABC′D′ is the trace–free Ricci spinor and R = 12Λ is the scalar curvature. Re-

garding the curvature R = RA
B +RA′

B′ as a map

R : Λ2M 7−→ Λ2M (2.22)

then under the splitting (2.15) this map becomes

R =


W+ + Λ %

% W− + Λ


, (2.23)

with short–hand notation W± for the SD and ASD Weyl spinor and % for the

trace–free Ricci spinor. There are various curvature restrictions one can impose:

� The metric is ASD if and only ifW+ = 0. SinceW is conformally invariant,

it suffices to consider ASD conformal structures.

� The metric is scalar–flat if and only if Λ = 0.

� The metric is Einstein if and only if % = 0. In this case g satisfies Einstein’s

vacuum field equations with cosmological constant Λ.

Of course one can combine these curvature restrictions to obtain Ricci–flat met-

rics, ASD Einstein metrics and so forth.
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CHAPTER 2. MATHEMATICAL BACKGROUND

2.3 Twistor theory

Having at hand the spinor formalism for four–manifolds, we turn to the twistor

correspondence [20, 7, 6, 21], which will be a valuable tool throughout this thesis.

Consider the primed spin bundle without the zero section, F = S′\{ξA′
= 0},

where ξA
′
are coordinates on the fibres of S′. For every section of F, we obtain a

distribution of α–planes in TM spanned by two vector fields ξA
′
∂AA′ . Multiplying

a spinor section ξA
′
by a non–vanishing function on M leaves the null planes

unchanged, to eliminate this redundancy we need to projectivise the fibres of F

and we arrive at the correspondence space F . The fibres are now no longer copies

of C2 without the origin but copies of CP 1. The space F can be understood as

a holomorphic line bundle over F , the points in the fibre representing different

multiples of a given null plane. When restricted to a fibre of F over M, this line

bundle is just the tautological bundle C× ↪−→ C2\{0, 0} −→ CP 1.

Parallel transport with respect to the Levi–Civita connection maps null planes

to null planes, giving rise to a one–form τ homogeneous of degree two on F,

τ := ξA′

(
dξA

′
+ ξB

′
ΓA

′
B′

)
. (2.24)

Using τ , we can lift the vector fields ξA
′
∂AA′ to F to obtain4

dA := ξA
′
∂AA′ − ξA′

ξB
′
ΓAA′B′

C′
∂ξC′ . (2.25)

Since the Euler vector field

Υ := ξA
′
∂ξA′ (2.26)

lies in the kernel of the one–form τ , the vector fields dA are only determined up

to the addition of terms proportional to Υ . Since by definition dA τ = 0, the

vector fields dA form a distribution on F that lies within the kernel of τ , called

the twistor distribution. It is well–known [2] that this twistor distribution is

integrable if and only if (M, g) is ASD. In general the following identity

[d0, d1] = ξA
′
ΓAA′

ABdB (2.27)

holds for manifolds with vanishing self–dual Weyl spinor. The leaves of this

integrable distribution are the α–surfaces of M. From this we can construct

4Here AA′ are one–form indices, so ΓB′C′ = ΓAA′B′C′eAA′
.
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the following spaces: take the quotient space T = F
/

< d0, d1 >, this four–

dimensional complex manifold is the non–projective twistor space T. The vector

fields dA project to non–zero vector fields lA on F , so we can also consider the

three–dimensional complex manifold T = F
/
< l0, l1 >, the projective twistor

space. Now a point p ∈ T corresponds to an integral surface α of the twistor

distribution in F . We can restrict the line bundle F to this integral surface to

obtain a line bundle Fα. However this line bundle has to be trivial, since we can

find a global trivialisation over α using the leaves of the distribution < d0, d1 >.

Thus by construction T is a line bundle over the twistor space T and if we pull

T back to the correspondence space F we recover F.

The fibres of F over M project to a four–parameter family of copies of C2\{0} in
T, correspondingly the CP 1–fibres of F project to the twistor lines in T . Again,

T restricted to such a twistor line is the tautological bundle over CP 1. So we

have the following double fibration:

F
πT−−−→ T

πF

y yπT
M π1←−−− F

π2−−−→ T

(2.28)

Taking the pre–image of a point m ∈M and mapping it to T and vice versa, we

obtain the following correspondence: The point m ∈M corresponds to the set of

all α–surfaces which contain m, this is a CP 1 or twistor line m̂ in T . Conversely,

a point in T corresponds to an α–surface in M. Two points m1,m2 ∈ M are

connected by a null geodesic if and only if they lie on a common α–surface, in

this case their twistor lines intersect.

The last step in this correspondence is to identify the normal bundle Nm̂ of

a twistor line m̂, denoting the tangent bundle of twistor space by TT , this is

defined as the quotient

Nm̂ = TT
∣∣∣
m̂

/
Tm̂. (2.29)

So elements of the normal bundle are tangent vectors of the twistor space modulo

tangent vectors of the twistor line m̂. Suppose the integral surface α correponding

to a point p ∈ T contains the point m ∈ M, a vector Y ∈ TpT corresponds

to a tangent vector X ∈ TmM plus a variation of the integral surface α going

through m, where X is determined only up to the addition of an element in Tα.

Therefore a fibre of the normal bundle can be identified with the quotient of TmM
by Tα. This quotient is given by XAA′ 7→ XAA′

ξA′ , which is linear in ξA′ and thus
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N = O(1)⊕O(1). More rigorously we obtain the same result from the following

exact sequence, where < d0, d1 > denotes the twistor distribution in F ,

0 −→ < d0, d1 > −→ π∗
1TM −→ π∗

2Nm̂ −→ 0.

µA 7−→ µAξA
′

(2.30)

XAA′ 7−→ XAA′
ξA′

The converse is the statement of

Theorem 2.3.1 [2] There is a one–to–one correspondence between complex ASD

conformal structures and three–dimensional complex manifolds containing a four–

parameter family of rational curves with normal bundle N = O(1)⊕O(1).

What makes this theorem so useful is the fact that it turns the differential prob-

lem of finding ASD metrics into an algebraic question of determining complex

manifolds with certain properties. The theorem shows that the ASD equations

W+ = 0 are integrable in the sense that they have a Lax Pair given by the vector

fields spanning the twistor distribution. Imposing further constraints on the met-

ric will result in additional properties of the twistor space. We will discuss two

examples, ASD Ricci–flat and ASD Einstein metrics. For an exhaustive list and

more details see [20, 7, 6, 21], as well as [32, 33] for similar curvature restrictions

in supergravity theories.

First we turn to ASD Ricci–flat metrics with W+ = % = R = 0. Then the

only non–vanishing component of the curvature is W− and from (2.21) we see

that RA′
B′ = 0. Therefore we can choose a null tetrad such that ΓA′B′ = 0 and

consequently

τ = ξA′dξA
′
, dA = ξA

′
∂AA′ . (2.31)

It’s easy to see that LdAτ = 0, so τ descends to a well–defined one–form on T

or an O(2)–valued one–form τT on T , as it is quadratic in the primed indices.

Furthermore on T it satisfies

dτ ∧ τ = 0, (2.32)

and defines an integrable distribution with two–dimensional leaves. The points

on the leaves correspond to parallel, non–intersecting α–surfaces and the leaves

are parametrised by all α–planes going through an arbitrary base point, i.e. they
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are parametrised by a twistor line. Then T has the structure of a fibre bundle

over C2\{0}, the twistor lines of T are sections of this fibre bundle. On top of

this, we have a non–degenerate two–form Σ(ξ) = ξA′ξB′ΣA′B′
on the fibres of this

fibration. To see this, first note that on an ASD Ricci–flat manifold we always

have dΣA′B′
= 0 as a consequence of (2.18) and (2.19) since the curvature of S′

vanishes. Then the Lie derivative LdAΣ(ξ) vanishes since dA Σ(ξ) = 0 and so

Σ(ξ) descends to T as it is constant along the twistor distribution. Along the

fibres of T over C2\{0} this two–form can be regarded as a symplectic structure,

as it is non–degenerate and closed when treating ξA′ as a parameter. Projecting

to T we arrive at the following characterisation of ASD Ricci–flat manifolds

Theorem 2.3.2 [2, 34] There is a one–to–one correspondence between complex

ASD Ricci–flat metrics and three–dimensional complex manifolds T with

� a projection µ : T → CP 1

� a four–parameter family of sections of µ with normal bundle O(1)⊕O(1)

� a non–degenerate two–form Σ on the fibres of µ, with values in the pull–back

of O(2) from CP 1.

Remark 1: Starting from a basis of Λ2
+M consisting of three covariantly con-

stant self–dual two–forms ΣA′B′
we construct three non–degenerate closed two–

forms

Σ1 := 2iΣ0′1′ , Σ2 := i
(
Σ0′0′ − Σ1′1′

)
, Σ3 := −

(
Σ0′0′ + Σ1′1′

)
. (2.33)

Using the metric these give rise to three complex structures Ji via Σi(X,Y ) =

g(JiX,Y ). All of the Ji are compatible with the metric with respective Kähler

form Σi. As the curvature of S′ vanishes, we have a full S2 of Kähler structures

and hence an ASD Ricci–flat metric is hyper–Kähler and vice versa.

Remark 2: Note that we can use ξA
′
as coordinates on the base manifold

C2\{0} of the fibre bundle T, as ξA
′
are annihilated by dA in (2.31).

Finally consider ASD Einstein metrics with W− = % = 0 and R = 12Λ,

where now Λ 6= 0. We still have LdAτ = 0, as this only requires % = 0, so

τ as defined in (2.24) descends to a well–defined one–form on T. However, τ

now satisfies dτ ∧ dτ = 4Λρ and so defines a symplectic structure on T. Here
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ρ = dξA
′ ∧ dξA′ ∧ ξB′

ξC
′
ΣB′C′ serves only to encode the cosmological constant.

LeBrun [35] shows that symplectic structures on the total space of holomorphic

line bundles are in one–to–one correspondence with contact structures on the

base manifold of the bundle. This works as follows: The pull–back of a contact

form τ̃ from the base manifold to the total space of a line bundle is equal to the

contraction of the symplectic structure ω with the Euler vector field Υ ,

π∗τ̃ = Υ ω. (2.34)

Here π is the projection from the total space of the line bundle to the base

manifold. A short computation shows that in our setting π∗
T τ̃ is simply τ and the

contact form τ̃ on T satisfies τ̃ ∧ dτ̃ = 4Λρ̃, where π∗
T ρ̃ = 2Υ ρ. Hence we arrive

at the following5

Theorem 2.3.3 [34, 3] There is a one–to–one correspondence between complex

ASD Einstein metrics and three–dimensional complex manifolds T with

� a four–parameter family of rational curves with normal bundle O(1)⊕O(1)

� a holomorphic contact structure τT

� a volume form ρ such that τT ∧ dτT = 4Λρ.

Remark 3: As mentioned earlier, by definition four–dimensional Quaternion–

Kähler manifolds are ASD Einstein. Hence the curvature restrictions we are

investigating in this section are precisely the two cases of special quaternionic

Riemannian holonomies.

A final step of the twistor correspondence is to relate all these results to real

Riemannian manifolds. Some crucial input at this stage is provided by Atiyah,

Hitchin and Singer [5]: an anti–self–dual real Riemannian four–manifold (M, g)

in Euclidean signature is always real–analytic. Hence we can complexify such a

manifold M by regarding the coordinates as complex and making the transition

functions holomorphic, call the resulting complex four–manifold M. The metric

g is then also holomorphic and symmetric. We can now apply the spinor for-

malism and the results of twistor theory as presented above to the complex ASD

Riemannian four–manifold (M, g).

5We now drop the tilde over τ̃ and ρ̃, and denote them by the same symbol as their pullbacks.
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The converse task is to recover the underlying real manifold M from the com-

plexified manifold M. To achieve this we restrict the metric to a real slice M

of M. The real structure on M is encoded in the twistor picture by an anti–

holomorphic involution ι on twistor space T , inherited from complex conjugation

on M. The points of M are real and hence invariant under complex conjugation,

the corresponding twistor lines are invariant under ι when acting on T . However

the involution has no fixed points on T but acts as the antipodal map on such a

twistor line. We can recover M by restricting M to twistor lines on which ι acts

in this way. The details of this procedure will be illuminated in the context of

ASD Einstein manifolds in chapter 4.

While the concept of anti–self–duality is trivial for Lorentzian signature, it is

meaningful to extend it to neutral signature. The twistor methods as introduced

in this section only apply to real–analytic metrics, and not all ASD metrics in neu-

tral signature are real–analytic. However twistor approaches can be extended to

include all neutral signature metrics [36] when using the single–fibration picture

established by [5]. We will consider ASD neutral signature metrics in chapter 5,

but without resorting to twistor constructions explicitly and therefore are content

with referring to the literature.

2.4 Heavenly equation

As mentioned in the introduction, the virtue of the twistor correspondences is

to turn differential equations into algebraic ones, thus effectively integrating the

initial equations. This has been studied in detail for various different curvature

restrictions [37, 13, 38, 39, 40], as an example of the interplay between ASD

structures and integrable equations we will now discuss the connection between

ASD Ricci–flat metrics and the integrability of Plebanski’s [12] heavenly equation.

In chapter 4 we will extend much of the following to ASD Einstein manifolds.

As we pointed out in Remark 1 in section 2.3, ASD Ricci–flat metrics admit a

basis of closed self–dual two–forms ΣA′B′
. From the identities (2.17) we read off

that Σ0′0′ and Σ1′1′ have rank 2, whereas Σ0′1′ has rank 4 and furthermore that

Σ0′0′ ∧Σ1′1′ 6= 0. Then Darboux’ theorem implies that we can choose coordinates

(w, z, w̄, z̄) on M such that

Σ0′0′ = dw ∧ dz, Σ1′1′ = dw̄ ∧ dz̄. (2.35)
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Here (w, z, w̄, z̄) are four independent holomorphic coordinates on the complex

manifold M, when returning to an underlying real ASD Ricci–flat manifold M

we would find that (w̄, z̄) are complex conjugates of (w, z). Now Σ0′1′ ∧Σ0′0′ = 0

constrains the form of Σ0′1′ to be

Σ0′1′ =
1

2
(dw ∧ dx− dz ∧ dy) , (2.36)

for two functions x, y, whereas Σ0′1′ ∧ Σ1′1′ = 0 enforces

xz + yw = 0, (2.37)

which is the integrability condition for the existence of a function H(w, z, w̄, z̄)

such that

x = Hw, y = −Hz. (2.38)

Then

Σ0′1′ =
1

2
(Hww̄dw ∧ dw̄ +Hwz̄dw ∧ dz̄ +Hzw̄dz ∧ dw̄ +Hzz̄dz ∧ dz̄) , (2.39)

and Σ0′1′ ∧ Σ0′1′ = −2Σ0′0′ ∧ Σ1′1′ yields Plebanski’s heavenly equation,

Hww̄Hzz̄ −Hwz̄Hzw̄ = 1. (2.40)

Out of the S2 worth of complex structures that exist on any hyper–Kähler mani-

fold, we have picked a preferred one. It comes with holomorphic coordinates (w, z)

and Kähler form −2iΣ0′1′ . The heavenly function H acts as Kähler potential for

the metric,

g = 2 (Hww̄dwdw̄ +Hwz̄dwdz̄ +Hzw̄dzdw̄ +Hzz̄dzdz̄) . (2.41)

Choosing a null tetrad adapted to the previous discussion,

e00
′
= dw, e01

′
= −Hzw̄dw̄ −Hzz̄dz̄, (2.42)

e10
′
= dz, e11

′
= Hww̄dw̄ +Hwz̄dz̄,

we obtain for the vector fields spanning the twistor distribution

d0 = ξ0
′
∂w + ξ1

′
(Hwz̄∂w̄ −Hww̄∂z̄) , (2.43)

d1 = ξ0
′
∂z + ξ1

′
(Hzz̄∂w̄ −Hzw̄∂z̄) ,
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subject to (2.40). The vector fields d0 and d1 commute if and only if (2.40) is

satisfied, and so constitute a Lax Pair for the heavenly equation, which arises as

the compatibility condition of an over–determined system

d0Θ = 0, d1Θ = 0, (2.44)

for some function Θ(w, z, w̄, z̄, ξ). The existence of a such a Lax Pair is a char-

acteristic feature, if not the defining property, of an integrable equation.

2.5 Deformation theory

A further aspect of the twistor correspondence is the fact that it paves the way

for a deformation theory of ASD metrics. Again we will illuminate this using the

example of ASD Ricci–flat metrics. Let us first approach deformations starting

from the heavenly equation. Perturbations of the metric (2.41) are governed by a

perturbation δH of the heavenly function, where this perturbation has to satisfy

the linearisation of (2.40),

(Hww̄∂zz̄ +Hzz̄∂ww̄ −Hwz̄∂zw̄ −Hzw̄∂wz̄) δH = 0. (2.45)

This simply requires δH to lie in the kernel of the background–coupled wave

operator,

2HδH := εABεA
′B′
∂AA′∂BB′ (δH) = 0. (2.46)

On the other hand, coming from the twistor space picture, such a deformation

is generated by a complex deformation of twistor space T together with a de-

formation of the symplectic structure along the fibres [2]. However we have to

check that this deformation preserves the properties of T as a twistor space. A

discussion of deformation theory by Kodaira [41] reveals that CP 1 is rigid and

cannot be deformed, so a deformation can only affect the fibres of T over CP 1.

Furthermore a theorem of Kodaira [42] ensures that a sufficiently small deforma-

tion preserves the existence of a four–parameter family of twistor lines with the

appropriate normal bundle. The third property of a twistor space of ASD Ricci–

flat metrics is the existence of a symplectic structure along the fibres of T . Hence

the transformation has to be canonical. While a general complex deformation is

determined by an element

θ = fA∂ωA + fA
′
∂ξA′ , (2.47)
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of the first cohomology group H1 (T,Θ(0)) with values in the tangent sheaf Θ(0)

of O(0)–valued holomorphic vector fields, rigidity of CP 1 restricts the form of θ

by fA
′
= 0. Here we are using homogeneous coordinates on T , where we have

supplemented the coordinates ξA
′
on the base of T by two coordinates ωA along

the fibres. The transformation generated by θ is canonical if θ is a Hamiltonian

vector field,

Σ(ξ) (θ, ·) = dΨ, (2.48)

for some Hamiltonian function Ψ
(
ωA, ξA

′)
. Since Σ(ξ) is O(2)–valued, we require

Ψ ∈ H1 (T,O(2)). So in the twistor picture deformations are encoded in elements

of the first cohomology group of O(2)–valued functions on T .

We now want to relate this to the perturbation δH of the heavenly function. To

this end note that the pull–back6 of Ψ satisfies

dAΨ = 0. (2.49)

We can always write Ψ = ξ0
′
ξ0

′
∞∑

n=−∞
ψnξ

n, where ξ = ξ1
′

ξ0′
. Then dividing (2.49)

by the third power of ξ0
′
we obtain

∂00′ψn+1 = −∂01′ψn, (2.50)

∂10′ψn+1 = −∂11′ψn,

for all n ∈ N. Now since [∂00′ , ∂10′ ] = [∂01′ , ∂11′ ] = 0 we can cross–differentiate to

find

2Hψn = 0, ∀n ∈ N, (2.51)

where 2H is defined in (2.46). Therefore every term of the power series of Ψ

satisfies the background–coupled wave equation, which is the linearised heavenly

equation. In this way we obtain an infinite number of perturbations δH from

every Ψ ∈ H1 (T,O(2)). The reverse reasoning goes as follows: Since δH is a

solution of the linearised heavenly equation, we define ψ0 = δH. Then ψ0 satisfies

the integrability condition (2.51) and we can use (2.50) to define ψ1, which will

automatically lie in the kernel of the background–coupled wave operator. Thus

ψ1 satisfies the necessary integrability condition so that we can use (2.50) again

to define ψ2 and so on. In theory this allows us to construct Ψ ∈ H1 (T,O(2))
6For convenience also denoted by Ψ.
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from a single solution of (2.45).

Remark: Since every term in the power series expansion of Ψ satisfies the

linearised heavenly equation (2.45), one can use (2.50) to define a recursion op-

erator that generates new solutions of (2.45) from old ones: Start with a known

solution δH, use (2.50) to generate the next term in the power series of Ψ, which

provides the new solution δ̃H.
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Octonionic Instantons

Gauge theory in dimension higher than four has been investigated in both theo-

retical physics [43, 44, 45, 46, 47] and pure mathematics [11, 48] contexts. While

the solutions to the full second–order Yang–Mills equations seem to be out of

reach, the first–order higher–dimensional analogues of four–dimensional anti–self–

duality equations admit some explicit solutions. Such equations can be written

down on any n–dimensional Riemannian manifold Mn, once a differential form

Ξ of degree (n − 4) has been chosen. The generalised self–duality equations

state that the curvature two–form F of a Yang–Mills connection takes its values

in one of the eigenspaces of the linear operator T : Λ2Mn → Λ2Mn given by

T (F) = ∗(Ξ ∧F). The full Yang–Mills equations are then implied by the Bianchi

identity if Ξ is closed. If n = 4, and the zero–form Ξ = 1 is canonically given

by the orientation, the eigenspaces of T are both two–dimensional, and are inter-

changed by reversing the orientation. In general the eigenspaces corresponding

to different eigenvalues have different dimensions. For the construction to work,

one of these eigenspaces must have dimension equal to 1
2
(n − 1)(n − 2), as only

then the number of equations matches the number of unknowns modulo gauge.

Any Riemannian manifold with special holonomy Hol ⊂ SO(n) admits a pre-

ferred parallel (n − 4)–form, and the eigenspace conditions above can be equiv-

alently stated as F ∈ hol, where we have identified the Lie algebra hol of the

holonomy group with a subspace of Λ2Mn
∼= so(n). One of the most interesting

cases corresponds to eight–dimensional manifolds with holonomy Spin(7). The

only currently known explicit solution on M8 = R8 with its flat metric has a
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gauge group Spin(7), while we will construct explicit solutions to the system

∗8(F ∧ Ξ) = −F, (3.1)

with gauge group SU(2). This will be achieved by exploiting the embedding

SU(2)× SU(2) ⊂ Spin(7). This holonomy reduction allows a canonical symme-

try reduction to the Yang–Mills–Higgs system in four dimensions– a non–abelian

analogue of the Seiberg–Witten equations involving four Higgs fields [11, 46, 49].

The explicit SU(2) solutions arise from a t’Hooft–like ansatz which turns out to

be consistent despite a vast overdeterminancy of the equations. The resulting

solutions on R8 fall into two classes, both of which are singular along a hypersur-

face. To overcome this, and to evade Derrick’s theorem prohibiting finite action

solutions in dimensions higher than four we shall consider the case of curved

backgrounds of the form M8 = M4 × R4, where M4 is hyper–Kähler. The gauge

fields on the Eguchi–Hanson gravitational instanton are still singular, but ifM4 is

taken to be a Bianchi II gravitational instanton representing a domain wall [50],

then the Yang–Mills curvature is regular away from the wall. The following the-

orem is the main result of this chapter. The relevant notation will be developed

in detail in section 3.2, while the proof will follow from section 3.3.2.

Theorem 3.0.1 Let H denote the quaternions and H be the simply–connected

Lie group whose left–invariant one–forms satisfy the Maurer–Cartan relations

dσ0 = 2σ0 ∧ σ3 − σ1 ∧ σ2, dσ1 = σ1 ∧ σ3, dσ2 = σ2 ∧ σ3, dσ3 = 0,

with the regular and left–invariant metric

ĝ = σ0
2 + σ1

2 + σ2
2 + σ3

2.

� The metric g = e3ρĝ, where dρ = σ3, is hyper–Kähler.

� The su(2)–valued one–form and su(2)⊗H–valued Higgs field

A =
3

4
(σ2 ⊗ T1 − σ1 ⊗ T2 + σ0 ⊗ T3), Φ = −

√
21

4
e−

3
2
ρ (iT1 + jT2 + kT3)

with [T1, T2] = T3, [T3, T1] = T2, [T2, T3] = T1 satisfy the non–abelian

Seiberg–Witten equations

FA
+ −

1

4
[Φ, Φ̄]I = 0, /D

A
Φ = 0,

where FA
+ is the self–dual part of FA = dA+A∧A with respect to g, Φ̄ is

the quaternionic conjugate of Φ, I a map ImH 7→ Λ2
+H and /D

A
the Dirac

operator coupled to A acting on Φ under the identification H ∼= R4.
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Finally we should mention that there are other candidates for ’self–duality’ equa-

tions in higher dimensions. One possibility in dimension eight, exploited by

Polchinski in the context of heterotic string theory [51], is to consider the system

∗F ∧ F = ±F ∧ F. (3.2)

These equations are conformally invariant, and thus the finite action solutions

compactify R8 to the eight–dimensional sphere, but unlike the system (3.1) con-

sidered in this thesis they do not imply the Yang–Mills equations.

3.1 Anti–self–duality in eight dimensions

Let (M8, g8) be an eight–dimensional oriented Riemannian manifold with holon-

omy Spin(7) and associated four–form Ξ as in (2.3). Let T : Λ2M8 → Λ2M8 be

a self–adjoint operator given by F→ ∗8(Ξ ∧ F), where ∗8 is the Hodge operator

of g8 corresponding to the orientation Ξ ∧Ξ. The 28–dimensional space of two–

forms in eight dimensions splits into Λ2
21M8 ⊕ Λ2

+M8, where Λ2
21M8 and Λ2

+M8

are eigenspaces of T with eigenvalues −1 and 3 respectively. The 21–dimensional

space Λ2
21 can be identified with the Lie algebra spin(7) ⊂ so(8) ∼= Λ2M8. Let

A be a one–form on M8 with values in a Lie algebra g of a gauge group G. The

Spin(7) anti–self–duality condition states that the curvature two–form

F := dA+ A ∧ A (3.3)

takes its values in Λ2
21M8. This leads to a system of seven first order equations

∗8(F ∧ Ξ) = −F, (3.4)

which we call the octonionic instanton equation. Explicitly the components are

given by

F01 + F23 − F45 − F67 = 0,

F02 − F13 − F46 + F57 = 0,

F03 + F12 − F47 − F56 = 0,

F04 + F15 + F26 + F37 = 0, (3.5)

F05 − F14 − F27 + F36 = 0,

F06 + F17 − F24 − F35 = 0,

F07 − F16 + F25 − F34 = 0.
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This is a determined system of PDEs as one of the eight components of A can be

set to zero by a gauge transformation

A −→ ρAρ−1 − dρ ρ−1, where ρ ∈ Map(M8, G). (3.6)

Equations (3.1) were first investigated in [43], and some solutions were found in

[52, 44] for the gauge group Spin(7). If A is a solution to (3.1), then it is a

Yang–Mills connection because

D ∗8 F = −DF ∧ Ξ = 0, where D = d+ [A, . . . ] (3.7)

by the Bianchi identities. The Derrick scaling argument (see e.g. [21, 9]) shows

there are no nontrivial finite action solutions to the pure Yang–Mills equations

on R8. This obstruction can be overcome if some dimensions are compactified.

If (M8, g8) is a compact manifold with holonomy Spin(7), then the Yang-Mills

connections which satisfy (3.1) are absolute minima of the Yang–Mills functional

E(A) := − 1

4π

∫
M8

tr (F ∧ F) . (3.8)

To see this write F = F+ +F−, where F+ ∈ Λ2
+M8⊗ g and F− ∈ Λ2

21M8⊗ g, then

verify that

F ∧ ∗8F = F+ ∧ ∗8F+ + Ξ ∧ F ∧ F. (3.9)

The integral of the trace of the second term on the right–hand side is independent

of A.

3.2 Non–abelian Seiberg–Witten equations

Holonomy reduction

We shall consider the special case of product manifolds with holonomy equal to

or contained in SU(2)× SU(2) ⊂ Spin(7), namely

M8 =M4 × M̃4, g8 = g4 + g̃4, (3.10)

where M4 and M̃4 are hyper–Kähler manifolds. This is one of the possible holon-

omy reductions of a Spin(7)–manifold [19]. Let Σi
± span the spaces Λ2

+M4 and

Λ2
−M4 of self–dual and anti–self–dual two–forms respectively. Thus

g4 = (e0)2 + (e1)2 + (e2)2 + (e3)2, and Σi
± := e0 ∧ ei ± 1

2
εijke

j ∧ ek, (3.11)
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where i, j, · · · = 1, 2, 3 with analogous expressions for g̃4 and Σ̃±
i . The self–dual

Spin(7) four–form (2.3) is then given by

Ξ := vol4 + ṽol4 −
3∑
i=1

Σi
+ ∧ Σ̃+

i , (3.12)

where vol4, ṽol4 are volume forms on M4 and M̃4 respectively. Ξ is closed if

Σ+
i and Σ̃+

i are, which can always be achieved by parallel transport along the

flat bundles Λ2
+M4 and Λ2

+M̃4. Hence we have a global parallelism of self–dual

two–forms on M4 and M̃4. Furthermore the Spin(7)–structure on the product

manifoldM8 determined by Ξ induces an isomorphism between Σ+
i onM4 and Σ̃+

i

on M̃4 and so we can also identify the fibres of Λ2
+M4 and Λ2

+M̃4 with each other.

By contraction with the metric the self–dual two–forms Σ+
i and Σ̃+

i correspond to

two algebras of endomorphisms (I1, I2, I3) of Λ
1M4 and (Ĩ1, Ĩ2, Ĩ3) of Λ

1M̃4, each

of which is isomorphic to the imaginary quaternions Im(H). Here the S2 worth of

complex structures on the two hyper–Kähler manifolds corresponds to imaginary

quaternions of unit length. We choose to identify (I1, I2, I3) with (i, j, k) and

hence every fibre of Λ2
+M4 with ImH using a map

I : ImH 7→ Λ2
+M4, I(i) = Σ+

1 , I(j) = Σ+
2 , I(k) = Σ+

3 , (3.13)

and similarly for Λ2
+M̃4. The map (3.13) is unique up to global (i.e. constant)

Sp(1) gauge transformations.

Symmetry reduction

We shall now consider the anti–self–duality equations (3.1) for a g–valued con-

nection A over an eight–manifoldM8 of the form (3.10), whereM4 is an arbitrary

hyper–Kähler four–manifold, and M̃4 = R̃4 is flat. We shall look for solutions

A that admit a four–dimensional symmetry group generated by the translations

on R̃4. The product structure of M8 and the translational symmetry along the

second factor M̃4 imply a decomposition of A into

A = A+ Φ, (3.14)

where A ∈ Γ (M4,Λ
1M4 ⊗ g) and Φ ∈ Γ

(
M4,Λ

1M̃4 ⊗ g
)
∼= Γ (M4,R4 ⊗ g). If

we require admissible gauge transformations to obey the translational symmetry

then A can be regarded as a g–valued connection on M4 but Φ corresponds to

29



CHAPTER 3. OCTONIONIC INSTANTONS

four g–valued Higgs fields. On the level of the curvature F of A, the product

structure of M8 enforces a further decomposition into F = F(2,0) + F(1,1) + F(0,2)

since

Λ2M8 = Λ2M4 ⊕
(
Λ1M4 ⊗ Λ1M̃4

)
⊕ Λ2M̃4. (3.15)

Using (3.14) and the definition of the curvature, F = dA + 1
2
[A,A], we find the

components of this decomposition,

F = dA+
1

2
[A,A] + dΦ + [A,Φ] + 1

2
[Φ,Φ] = FA +DAΦ +

1

2
[Φ,Φ], (3.16)

where FA is the curvature of the connection A and DAΦ the covariant derivative

of Φ under the adjoint action. The octonionic instanton equation (3.1) imposes

constraints on these components, the first three equations of (3.5) translate into

FA
+ −

1

2
[Φ,Φ]+ = 0. (3.17)

This is well–defined due to the isomorphism of Λ2
+M4 and Λ2

+M̃4. The conditions

on DAΦ are harder to interpret geometrically. First note that the map I allows

us to identify the fibres of Λ1M4 and Λ1M̃4 with the quaternions: Choose frames

ea of T ∗M4 and ẽa of T ∗M̃4 in which Σ+
i and Σ̃+

i are given by (3.11) and define

A = Aaea 7−→ A = A0 + iA1 + jA2 + kA3, (3.18)

Φ = Φaẽ
a 7−→ Φ = Φ4 + iΦ5 + jΦ6 + kΦ7,

then the action of (I1, I2, I3) on Λ1M4 and (Ĩ1, Ĩ2, Ĩ3) on Λ1M̃4 is simply given

by quaternionic multiplication with (i, j, k) on the left. Note that (3.18) is de-

fined up to SU(2) gauge transformations of S and S̃, the unprimed spin bundles

of M4 and M̃4. These gauge transformations are part of the gauge freedom via

SU(2) × SU(2) ⊂ Spin(7). Under the identification (3.18) the octonionic in-

stanton equation (3.1) is a set of equations for a g–valued connection A and a

H⊗ g–valued Higgs field Φ on M4, given by

FA
+ −

1

4
[Φ, Φ̄]I = 0, /D

A
Φ = 0. (3.19)

Here Φ̄ and /D
A
= DA

0 −iDA
1 −jDA

2 −kDA
3 are the quaternionic conjugates of Φ and

the quaternion–valued covariant derivative DA coupled to A. The bracket in the

first equation is a combination of the Lie bracket and point–wise identification of
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ImH with self–dual two–forms on M4 using the map I. The freedom of choosing

I in (3.13) corresponds to a global SU(2)–rotation of Λ2
+M4 and Λ2

+M̃4. In the

identification of Λ1M4 and Λ1M̃4 with H this comes down to multiplying Φ by a

unit quaternion and Φ̄, /D
A
by its quaternionic conjugate. Expanding equations

(3.19) into real and imaginary parts shows the equivalence with (3.5). We call

(3.19) the non–abelian Seiberg–Witten equations.

To motivate the choice of this name as well as the symbol /D
A
for the differential

operator in (3.19) note the following: M4 is hyper-Kähler and hence its primed

spinor bundle is flat. Thus we can identify the product space M8 = M4 × R̃4

with the primed spinor bundle ofM4. Then A is a g–valued connection as before,

but Φ in this setting is a g–valued section of the primed spinor bundle. In this

context, /D
A
is precisely the Dirac operator coupled to A acting on S and S′ and

mapping them onto each other. Hence the system (3.19) can indeed be regarded

as a non–abelian version [46, 11, 53, 54, 49] of the equations found by Seiberg

and Witten [55].

3.3 Ansatz for SU(2) solutions

To find explicit solutions to (3.19) and (3.1) we specialise to the gauge group

G = SU(2). We shall proceed with an analogy to the t’Hooft ansatz for the self–

dual Yang–Mills equations on R4. Let Ti, (i = 1, 2, 3) denote a basis of su(2) with

commutation relations [Ti, Tj] = εijkTk and TiT
i := TiTjδ

ij = −3
4
1l2. We can then

define two su(2)–valued two–forms σ and σ̃ such that ∗4σ = σ and ∗4σ̃ = −σ̃ by

σ :=
1

2
σabe

a ∧ eb =
∑
i

Ti Σi
+, σ̃ :=

1

2
σ̃abe

a ∧ eb =
∑
i

Ti Σi
−, (3.20)

where Σi
± are given by (3.11). Thus the forms σab select the three–dimensional

space of SD two forms Λ2
+M4 from the six–dimensional space Λ2M4 and project

it onto the three–dimensional subspace su(2) of so(4). An analogous isomor-

phism between Λ2
−M4 and another copy of su(2) is provided by σ̃. The following

identities [21] hold

σ̃abσ
ab = 0, σabσ

b
c =

3

4
1l2 δac + σac, σabσ

ab = −3 1l2. (3.21)

We now return to equations (3.19) and, identifying the su(2) ⊗ H–valued Higgs

field Φ = Φ0 + iΦ1 + jΦ2 + kΦ3 with Φ = Φae
a, we make the following ansatz for
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two su(2)–valued one–forms,

A := ∗4(σ ∧ dG) = σab∂
bGea, Φ := ∗4(σ ∧ dH) = σab∂

bHea, (3.22)

where G,H :M4 → R are functions onM4 and ∂a are the vector fields dual to e
a.

This Ansatz for A was first suggested by t’Hooft, it leads to instantons in four

dimensions if and only if G is harmonic. Let 2 = ∗d ∗ d+ d ∗ d∗ be the Laplacian
and d be the exterior derivative onM4, and let d(ea) = Ca

bce
b∧ec. The following

Proposition will be proved in Appendix A:

Proposition 3.3.1 [1] The non–abelian Seiberg–Witten equations (3.19) are sat-

isfied by Ansatz (3.22) if and only if G and H satisfy the following system of

coupled partial differential equations:

2G+ |dG|2 − |dH|2 = 0, (3.23a)(
εea

bcCa
bcσ

ed − σabCd
ab

)
∂dG = 0, (3.23b)

σ̃acσ
c
b

(
∂a∂bH − 2∂aG∂bH

)
= 0, (3.23c)

σab
(
∂a∂bH − 2∂aG∂bH

)
= 0. (3.23d)

Note that equation (3.23d) is equivalent to the anti–self–duality of the anti-

symmetric part of

∂a∂bH − 2∂aH∂bG. (3.24)

A similar interpretation of equation (3.23c) is given by the following

Lemma 3.3.2 [1] Let Ψab be an arbitrary tensor. Then

σ̃abσcbΨac = 0 ⇔ Ψ(ac) =
1

4
Ψb

bδac. (3.25)

Proof. Starting from the left hand side we first define a two–form (Ψσ) :=

σc[bΨa]c e
a ∧ eb. Therefore

σ̃abσcbΨac = σ̃abσc[bΨa]c = ∗[σ̃ ∧ (Ψσ)] = 0, (3.26)

and so (Ψσ) is self–dual, i.e.

(Ψσ)01 = (Ψσ)23, (Ψσ)02 = −(Ψσ)13, (Ψσ)03 = (Ψσ)12. (3.27)

Using the definition (3.20) of σab in terms of the generators of su(2) this is equiv-

alent to a system of nine linear equations for the components of Ψac: six of them
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set off–diagonal terms to zero, three more equate the four diagonal terms of Ψac.

Solving this system is straightforward: the only solution is Ψ(ac) = Ψδac for some

scalar function Ψ. 2

Thus equations (3.23c) and (3.23d) together imply that ∂a∂bH − 2∂aH∂bG is

the sum of a (symmetric) pure–trace term and an (anti–symmetric) ASD term.

To continue with the analysis of (3.23) we need to distinguish between flat and

curved background spaces.

3.3.1 Flat background

Our first choice forM4 is the flat space R4 with ea = dxa for Cartesian coordinates

xa. Since the one–forms ea are closed we have Ca
bc = 0 and the dual vector fields

∂a commute. This implies that (3.23b) is identically satisfied. Equation (3.23d)

implies that the simple two–form dG ∧ dH is ASD. Therefore this form is equal

to zero, since there are no real simple ASD two–forms in Euclidean signature and

thus H and G are functionally dependent. Therefore we can set H = H(G). Thus

the tensor Ψab = ∂a∂bH − 2∂aH∂bG is symmetric. Next, we turn our attention

to (3.23c). Applying lemma 3.3.2 we deduce that Ψab is pure trace. Defining a

one–form f := exp (−2G)dH we find that

∂afc = Ψe−2Gδac (3.28)

for some Ψ. Equating the off–diagonal components of (3.28) to zero shows that

fc depends on x
c only, and the remaining four equations yield

dH = e2Gdw, (3.29)

where w := 1
2
γxax

a + κax
a, for some constants γ, κa. Thus G also depends only

on w and, defining g(w) := expG(w), equation (3.23a) yields

g′′(2γw + κ2) + 4γg′ − g5(2γw + κ2) = 0. (3.30)

There are two cases to consider

� Assume that γ = 0, in which case

g′ = ±
√

1

3
g6 + γ1. (3.31)
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Figure 3.1: Numerical plot of solutions to g′′ = g5

To obtain an explicit solution we set the constant γ1 = 0. Using the trans-

lational invariance of (3.19) we can always put w = x3. Reabsorbing the

constant of integration and rescaling yields

G = −1

2
ln |x3|, H =

√
3

2
ln |x3|. (3.32)

Using these functions in the ansatz (3.22) we obtain

A =
1

2x3
(
e2 ⊗ T1 − e1 ⊗ T2 + e0 ⊗ T3

)
, Φ = −

√
3

2x3
(T3 − iT2 + jT1) ,

(3.33)

with curvature

F =
−1

8(x3)2
(3σ + σ̃) . (3.34)

Note that the connection A is singular along a hyperplane in R4 and thus

A is also singular along a hyperplane in R8 because of the translational

symmetry. The curvature for this solution is singular along a hyper–plane

with normal κa, and blows up like |x3|−2. A numerical plot of solutions

of (3.31) for different γ1 is displayed in Figure 3.1. Since the equation is

autonomous, one can obtain the general solution by translating any curve

in the x3–direction. The red line corresponds to (3.32). Note that all other

curves have two vertical asymptotes and do not extend to the whole range

of x3.
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� We will now present a second, radially symmetric solution. If γ 6= 0 we

translate the independent variable by w → w − κ2

2γ
, then (3.30) is

g′′w + 2g′ − g5w = 0. (3.35)

Figures 3.2 and 3.3 contain numerical plots for two different sets of initial

conditions obtained using the computer algebra systemMAPLE. An explicit

analytic solution is given by

g(w) =
1√

1
3
w2 − 1

. (3.36)

If we define the radial coordinate r :=
∣∣∣√ γ

2
√
3

(
xa +

κa
γ

) ∣∣∣, then w =
√
3r2

and

G(r) = −1

2
ln
(
r4 − 1

)
, H(r) =

√
3

2
ln

[
r2 − 1

r2 + 1

]
, (3.37)

leading to

A =
−r2

r4 − 1
xaσabe

b, Φ =

√
3

r4 − 1
(iq ⊗ T1 + jq ⊗ T2 + kq ⊗ T3) , (3.38)

using the quaternionic coordinate q := x0 + ix1 + jx2 + kx3. Both A and Φ

are singular on the sphere r = 1 in R4. In R8 this corresponds to cylinders

of a hypersurface type. The curvature is given by

F =
2

(r4 − 1)2
(
−r2σ + xcx[aσ b]ce

a ∧ eb
)
, (3.39)

with the same singularity. The numerical results suggest that there are no

regular solutions to (3.35) and most solution curves do not even extend to

the full range of r.

This concludes the process of solving the initial system of coupled partial differ-

ential equations (3.23) for vanishing Ca
bc. We have shown that the most general

solution to this system is given by two functions of one variable, G(w) and H(w)

with w := 1
2
γxax

a+κax
a, which are determined by an ordinary differential equa-

tion. We presented two classes of solutions on R8 in closed form.
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Figure 3.2: Solutions of ODE (3.35) I Figure 3.3: Solutions of ODE (3.35) II

3.3.2 Curved backgrounds

The solutions we found in the last section 3.3.1 have extended singularities re-

sulting in an unbounded curvature and infinite action. While we could argue that

the former is an artifact resulting from the form of our ansatz, there is no hope

to cure the latter. The existence of the finite action solutions to pure Yang–Mills

theory on R8 or to Yang–Mills–Higgs theory on R4 is ruled out by the Derrick

scaling argument [21]. To evade Derrick’s argument we shall now look at curved

hyper–Kähler manifolds M4 in place of R4. The one–forms ea in the orthonormal

frame (3.11) are no longer closed and the vector fields ∂a do not commute, as

Cc
ab 6= 0. The equations (3.23c) and (3.23d) imply that ∂a∂bH − 2∂aG∂bH is

a sum of a pure–trace term and an ASD term, but examining the integrability

conditions shows that the trace term vanishes unless the metric g4 is flat. Thus

∂aH = δae
2G, (3.40)

where δa are some constants of integration. We shall analyse two specific examples

ofM4. The first class of solutions on the Eguchi–Hanson manifold generalises the

spherically symmetric solutions (3.37), which were singular at r = 1. In the

Eguchi–Hanson case the parameter in the metric can be chosen so that r = 1

does not belong to the manifold. The second class of solutions on the domain

wall backgrounds generalises the solutions (3.32).
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Eguchi–Hanson background

Consider (M4, g4) to be the Eguchi–Hanson manifold [56], with the metric

g4 =

(
1− a4

r4

)−1

dr2 +
1

4
r2
(
1− a4

r4

)
σ2
3 +

1

4
r2(σ2

1 + σ2
2). (3.41)

Here σi, i = 1, 2, 3 are the left–invariant one–forms on SU(2)

σ1 + iσ2 = e−iψ(dθ + i sin θdφ), σ3 = dψ + cos θdφ (3.42)

and to obtain the regular metric we take the ranges

r > a, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π. (3.43)

Choose an orthonormal frame

e0 =
1√

1− a4

r4

dr, e1 =
r

2

√
1− a4

r4
σ3, e2 =

r

2
σ2, e3 =

r

2
σ1. (3.44)

Computing the exterior derivatives d(ea) explicitly we can evaluate (3.23b) and

find that it is trivially zero. Furthermore, we know that equations (3.23c) and

(3.23d) are equivalent to (3.40). The integrability conditions d2H = 0 imply

df = 2f ∧ dG, where f = δae
a (3.45)

The condition dG 6= 0 implies δi = 0. Then

f =
δ0dr√
1− a4

r4

, (3.46)

and df = 0. Thus f ∧ dr = dH ∧ dr = dH ∧ dG = 0 and consequently H and G

depend on r only and satisfy the following relation:

dH

dr
=

δ0e
2G√

1− a4

r4

. (3.47)

Using this in equation (3.23a) and substituting g := eG√
δ0

yields(
1− a4

r4

)
g′′ +

1

r

(
3 +

a4

r4

)
g′ − g5 = 0. (3.48)

The numerical results (Figures 3.4 and 3.5, where a = 1) indicate that yet again

there are no regular functions among the solutions. Analysing the limit r → a we
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find that the solution curves have to satisfy g′(a) = a
4
g(a)5 if they intersect with

the line r = a in the (r, g) plane for finite g. All other curves necessarily blow up

for r → a. However, numerical evidence strongly suggests that all curves that do

intersect with the line r = a for finite g are monotonically in– or decreasing and

escape to infinity in finite time.

It is interesting to note that for r � a the ODE (3.48) simplifies to

g′′ +
3

r
g′ − g5 = 0, (3.49)

which is the same as the equation we obtain from (3.48) when considering the

flat limit a = 0. The reason is that far away from the lump of curvature in the

middle of the Eguchi–Hanson manifold, the gravitational instanton approximates

flat–space. The equation differs from ODEs (3.31) and (3.35) since we are using

a non–integrable coordinate frame. We would expect the same equation when

starting with Ansatz (3.22) on R4 using the frame (3.44) with a = 0.

Figure 3.4: Solutions of ODE (3.48) I Figure 3.5: Solutions of ODE (3.48) II

Non–abelian Seiberg–Witten equations on Bianchi II domain wall

In this Section we shall prove theorem 3.0.1. Consider the Gibbons–Hawking [57]

class of hyper–Kähler metrics characterised by the existence of a tri–holomorphic

isometry. The metric is given by

g4 = V
(
(dx1)2 + (dx2)2 + (dx3)2

)
+ V −1

(
dx0 + α

)2
. (3.50)

The function V and the one–form α = αidx
i depend on xj and satisfy

∗3dV = −dα, (3.51)
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where ∗3 is the Hodge operator on R3. Thus the function V is harmonic. Chose

the orthonormal frame

e0 =
1√
V
(dx0 + α), ei =

√
V dxi, (3.52)

and the dual vector fields ∂0 and ∂i. In comparison to the Eguchi–Hanson back-

ground, for the Gibbons–Hawking case the equation (3.23b) is no longer trivially

satisfied. It only holds if dG ∧ dV = 0. Thus, in particular ∂0G = 0. The equa-

tions (3.23c) and (3.23d) are equivalent to (3.40). The integrability conditions

force δ0 = 0. Setting w := δix
i, we can determine H from the relation

dH =
√
V e2Gdw. (3.53)

Thus H and
√
V e2G are functions of w only. We claim that

√
V e2G 6= C for any

constant1 C. Therefore dV ∧dw = dG∧dw = 0, since dV ∧dG = 0, and we must

have V := V (w), G := G(w). Furthermore V (w) is harmonic, so the potential

must be linear in w, i.e. without loss of generality

V = x3, α = x2dx1. (3.55)

The resulting metric admits a Bianchi II (also called Nil) group of isometries

generated by the vector fields

X0 :=
∂

∂x0
, X1 :=

∂

∂x1
, X2 :=

∂

∂x2
− x1 ∂

∂x0
(3.56)

with the Heisenberg Lie algebra structure

[X0, X1] = 0, [X0, X2] = 0, [X2, X1] = X0. (3.57)

There is also a homothety generated by

D := 2x0
∂

∂x0
+ x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
, (3.58)

1Suppose the opposite. Using V = C2e−4G in (3.23a) we find ∂xi∂
xiG+∂xiG∂xiG = C2δiδ

i.

The Laplace equation on V implies ∂xi∂
xiG = 4∂xiG∂xiG, and

∂xi∂
xiG = 4c2, ∂xiG ∂xiG = c2, where c2 :=

C2δiδ
i

5
. (3.54)

Differentiation of the first relation reveals that all derivatives of G are harmonic. Two partial

differentiations of the second relation and contracting the indices then yields |∂xi∂xjG|2 = 0.

This implies c = 0 and thus ∂xiG = 0, which rules out this special case.
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such that

LDg4 = 3g4. (3.59)

The conformally rescaled metric ĝ = (x3)−3g4 admits D as as a proper Killing

vector. Using the Bianchi classification [58, 59] of 3–dimensional real Lie alge-

bras we note that the vector fields {X0, X1, X2} span the Bianchi II algebra of

isometries of ĝ and {X0, X1, D} span the Bianchi V algebra of isometries of ĝ.

Setting x3 := exp (ρ) puts g4 in the form

g4 = e3ρ(dρ2 + e−2ρ((dx1)2 + (dx2)2) + e−4ρ(dx0 + x2dx1)2). (3.60)

This metric is singular at ρ → ±∞ but we claim that this singularity is only

present in an overall conformal factor, and g4 is a conformal rescaling of a regular

homogeneous metric on a four–dimensional Lie group with the underlying mani-

fold H = Nil×R+ generated by the right–invariant vector fields {X0, X1, X2, D}.
To see it, set

σ0 := e−2ρ(dx0 + x2dx1), σ1 := e−ρdx1, σ2 := e−ρdx2, σ3 := dρ. (3.61)

Then

g4 = e3ρĝ where ĝ = σ0
2 + σ1

2 + σ2
2 + σ3

2, (3.62)

and the left–invariant one–forms satisfy

dσ0 = 2σ0 ∧ σ3 − σ1 ∧ σ2, dσ1 = σ1 ∧ σ3, dσ2 = σ2 ∧ σ3, dσ3 = 0. (3.63)

Thus the metric ĝ is left–invariant and hence complete [60], i.e. regular. In [50]

the singularity of g4 at ρ = −∞ has been interpreted as a single side domain wall

in the space–time

M4 × Rp−3,1 (3.64)

with its product metric. This domain wall is a p–brane: either a nine–brane of

11D super gravity if p = 9 or a three–brane of the 4 + 1 dimensional space–time

g4 − dt2. In all cases the direction ρ is transverse to the wall. In the approach of

[50] the regions x3 > 0 and x3 < 0 are identified. In this reference it is argued

that (M4, g4) with such identification is the approximate form of a regular metric

constructed in [61] on a complement of a smooth cubic curve in CP 2.
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Using this linear potential V = w = x3 in (3.23a) and setting g(w) := eG(w)

yields

g′′ − wg5 = 0. (3.65)

This equation changes its character as w changes from positive to negative sign,

we find infinitely many singularities for G(w) for w < 0. We thus focus on the

region w > 0, which is in agreement with the identification of these two regions

proposed by [50]. Numerical plots for solutions of this equation corresponding to

two one–parameter families of initial conditions are given in Figures 3.6 and 3.7.

One explicit solution is given by

g(w) = ±1

2
4
√
21w− 3

4 . (3.66)

If we choose w = x3, the curvature for this solution blows up like (x3)−3, this is

singular only on the domain wall. Alternatively, the curvature is regular on H,
however the metric g4 restricted to H, while conformal to a regular metric ĝ, is

not complete.

Figure 3.6: Solutions of ODE (3.65) I Figure 3.7: Solutions of ODE (3.65) II

Explicitly, the solution (3.66) gives

G = −3

4
ρ+

1

4
ln 21− ln 2, H = −

√
21

3
G. (3.67)
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and

A =
3

4
(σ2 ⊗ T1 − σ1 ⊗ T2 + σ0 ⊗ T3), Φ = −

√
21

4
e−

3
2
ρ (iT1 + jT2 + kT3) ,

F =
( 9

16
σ0 ∧ σ1 +

3

4
σ2 ∧ σ3

)
⊗ T1 +

( 9

16
σ0 ∧ σ2 −

3

4
σ1 ∧ σ3

)
⊗ T2

+
(3
2
σ0 ∧ σ3 −

3

16
σ1 ∧ σ2

)
⊗ T3. (3.68)

Here we exploited the gauge freedom in (3.18) by multiplying Φ with k ∈ ImH
on the left.
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Quaternion–Kähler

four–manifolds

Quaternion–Kähler four–manifolds can be characterised in three rather differ-

ent ways. Firstly, with motivation coming from higher–dimensional Quaternion–

Kähler manifolds which are Riemannian manifolds with holonomy Sp(n) · Sp(1),
one can define a four–dimensional Quaternion–Kähler manifold to be anti–self–

dual Einstein with non–vanishing cosmological constant [62]. Secondly, as ex-

plained in section 2.3, they can be described by means of their twistor space, a

three–dimensional complex manifold with a four–parameter family of holomor-

phic curves and a contact structure [3, 6, 7, 2]. Finally, these manifolds are locally

determined by one scalar function, known in the literature as Przanowski’s func-

tion, which is subject to a second–order partial differential equation [15].

While this last description is only local in nature, it appears to be very useful in

applications, as explicit expressions for the metric in local coordinates are easily

obtained. In particular the hyper–multiplet moduli space in string theory is an

example of a Quaternion–Kähler four–manifold, and Przanowski’s function has

been used in that context [16, 63, 64].

The purpose of this chapter is to introduce Przanowski’s function and the as-

sociated partial differential equation as well as its linearisation and clarify their

geometric origin in the twistor construction. In particular, we construct a Lax

Pair for Przanowski’s Equation and exhibit its linearisation as the generalised

Laplacian associated to a natural, conformally invariant differential operator.

We relate solutions of the generalised Laplace equation to twistor cohomology
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using recursion relations, leading to a contour integral formula for perturbations

of Przanowski’s function. Eventually, we provide an algorithm that extracts

Przanowski’s function from twistor data in the double–fibration picture, extend-

ing work of [16]. All considerations and computations in this chapter will be local

in nature.

4.1 Invariant differential operators

In this section, we will introduce Przanowski’s form of a Quaternion–Kähler met-

ric on a four–manifold (M, g). Locally on M one can always [18] find a complex

structure compatible with g with complex coordinates (w, z) and complex con-

jugates (w̄, z̄). Of course this need not be true globally, as a counter–example

consider S4 which is anti–self–dual Einstein with the round metric, but does not

admit a global complex structure. With respect to such a local complex structure

the metric can be written in Hermitian form [15]

g = 2

(
Kww̄dwdw̄ +Kwz̄dwdz̄ +Kzw̄dzdw̄ +

(
Kzz̄ +

2

Λ
eΛK

)
dzdz̄

)
, (4.1)

where Λ 6= 0 is the cosmological constant and K(w, w̄, z, z̄) is a real function on

M . The metric g is ASD Einstein if and only if K satisfies Przanowski’s equation

Kzw̄Kwz̄ −Kww̄

(
Kzz̄ +

2

Λ
eΛK

)
+KwKw̄e

ΛK = 0. (4.2)

as shown in [15]. We will see that equation (4.2) is sufficient at the end of

this section, while the necessity will become clear when recovering Przanowski’s

formulation from the twistor description of a Quaternion–Kähler manifold. Lo-

cally we can always find a null tetrad adapted to the complex structure so that

eA0
′ ∈ Λ(1,0)M while eA1

′ ∈ Λ(0,1)M . This reduces the gauge freedom from

SO(4,C) to GL(2,C) ∼= SL(2,C) × C×. Here SL(2,C) acts on S while C×

is a subgroup of SL(2,C) acting on S′ via1 eA0
′ 7→ eΘeA0

′
and eA1

′ 7→ e−ΘeA1
′
.

We can fix the gauge freedom by choosing

e00
′
= dw, e01

′
= −Kzw̄dw̄ −

(
Kzz̄ +

2

Λ
eΛK

)
dz̄, (4.3)

e10
′
= dz, e11

′
= Kww̄dw̄ +Kwz̄dz̄.

1This corresponds to a transformation oA
′ 7→ eΘoA

′
and ρA

′ 7→ e−ΘρA
′
in (2.5).
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Using the abbreviation

K̃ := Kwz̄Kzw̄ −Kww̄

(
Kzz̄ +

2

Λ
eΛK

)
, (4.4)

we obtain for the self–dual two–forms (2.16) on M

Σ0′0′ = dw ∧ dz, Σ1′1′ = −K̃dw̄ ∧ dz̄, (4.5)

as well as

2iΣ0′1′ = i∂∂̄K +
2i

Λ
eΛKdz ∧ dz̄, (4.6)

which is Hermitian. Here d = ∂ + ∂̄ is the splitting of the exterior derivative

induced by the complex structure. Again, note the Dolbeault types of these

forms: Σ0′0′ ∈ Λ(2,0)M , Σ0′1′ ∈ Λ(1,1)M and Σ1′1′ ∈ Λ(0,2)M . The Hermitian two–

form depends only on the choice of complex structure, while the other self–dual

two–forms transform with weight ±2 under the C×–action, e.g. Σ0′0′ 7→ e2ΘΣ0′0′ .

Using the vector fields

∂00′ := ∂w, ∂11′ :=
1

K̃

[
−
(
Kzz̄ +

2

Λ
eΛK

)
∂w̄ +Kzw̄∂z̄

]
,

∂10′ := ∂z, ∂01′ :=
1

K̃
[−Kwz̄∂w̄ +Kww̄∂z̄] , (4.7)

which are dual to the null tetrad, we obtain for the primed connection

Γ0′0′ = −∂A0′(lnKw̄)e
A1′ , Γ1′1′ = ∂A1′(lnKw)e

A0′ , (4.8)

Γ0′1′ =
1

2

[
∂A0′(ln K̃ − lnKw̄)e

A0′ + ∂A1′ (lnKw) e
A1′
]
.

To simplify these expressions we used Przanowski’s equation. Our choice of

adapted null tetrad (4.3) leads to a particularly simple form of the primed con-

nection:

Γ0′0′ ∈ Λ(0,1)M, Γ1′1′ ∈ Λ(1,0)M, dΓ0′1′ ∈ Λ(1,1)M, (4.9)

with Γ0′0′ ∧ dΓ0′0′ = Γ1′1′ ∧ dΓ1′1′ = 0.

At this point we can check directly that the metric (4.1) is ASD and Einstein.

To do this, we compute the primed curvature spinor RA′B′ and upon substituting

(4.2) find

RA′B′ = ΛΣA′B′ . (4.10)
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Thus the self–dual Weyl spinor and the trace–free Ricci spinor vanish as claimed.

The converse was already shown by Przanowski almost 30 years ago [15]. We will

obtain it from the twistor picture in section 4.3. Using the exterior derivative of

(4.10) we define the Lee form B according to

dΣ0′1′ =: B ∧ Σ0′1′ , (4.11)

and a second one–form A by

dΣ0′0′ =: (B − A) ∧ Σ0′0′ , dΣ1′1′ =: (B + A) ∧ Σ1′1′ . (4.12)

The Lee form B only depends on the choice of complex structure, while A trans-

forms as A 7→ A − 2dΘ under the C×–action. Using these definitions, the one–

forms A and B are related to the connection coefficients by

A = ΓA(A′0′1′)e
AA′

, B = −2ΓA1′0′0′eA0
′
+ 2ΓA0′1′1′e

A1′ , (4.13)

or in terms of K, they are given by

A = ∂
(
ln K̃ − 2 lnKw̄

)
+ ∂̄ (2 lnKw) , B = ∂ (lnKw) + ∂̄ (lnKw̄) . (4.14)

Remark: When Kw = Kw̄ the Lee form B is exact, so in this case (M, g)

is locally conformally Kähler. However, Kw = Kw̄ implies that (M, g) has an

isometry [65, 66]. Hence this is an example of the more general correspondence

proved in [67] that an ASD Einstein four–manifold is conformally Kähler if and

only if it has an isometry.

More generally, under conformal rescalings where g 7→ e2Ωg the Lee form

transforms as B 7→ B+2dΩ, we also have A 7→ A+2dΩ if we keep eA0
′
invariant.

We can now consider the line bundle

Ll,m =
(
Λ(2,0)M

) l
2 ⊗

(
Λ(2,2)M

)m
4 , (4.15)

which is locally well–defined. A local trivialisation of Ll,m is determined by the

complex structure as well as a choice of conformal scale and the C×–gauge, namely

we can choose the volume form as basis of Λ(2,2)M and the element Σ0′0′ as basis

of Λ(2,0)M . A section fl,m of Ll,m transforms as fl,m 7→ elΘ+mΩfl,m under the

C×–action and a change of conformal scale. Defining a differential operator D

acting on sections fl,m of Ll,m by

Dfl,m :=

(
d+

l

2
A− l +m

2
B

)
fl,m, (4.16)
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we find that Dfl,m is an Ll,m–valued one–form and so D is a well–defined first–

order differential operator on Ll,m that depends only on the conformal class of the

ASD Einstein metric and the choice of a compatible complex structure. The origin

of D lies in twistorial methods and will be explained in section 4.2.2, however the

relevance of D can be understood without making use of twistor theory: Taking

care to transform the conformal weight of an Ll,m–valued one–form appropriately

under the action of the Hodge star operator we note that ∗Dfl,m ∈ Ll,m+2⊗Λ3M

and we can consider the Laplacian ∗D ∗D. Evaluating this Laplacian explicitly

using the definition (4.14) of B in terms ofK, we find that when acting on sections

of L0,−1 it reproduces the conformal Laplacian

∗D ∗D = ∗d ∗ d− 1

6
R, (4.17)

since first–order derivatives cancel and ∗d ∗ B − 1
2
∗ (B ∧ ∗B) = −1

3
Λ using

Przanowski’s equation (4.2). For sections of L0,1 in turn we find

∗D ∗D = ∗d ∗ d+ 2 ∗ (∗B ∧ d) + 3

4
∗ (B ∧ ∗B)− 1

2
∗ d ∗B, (4.18)

which is equivalent to the linearised Przanowski operator defined by

DPrz := Kzw̄∂wz̄ +Kwz̄∂zw̄ −Kww̄∂zz̄ −
(
Kzz̄ +

2

Λ
eΛK

)
∂ww̄ (4.19)

+ eΛK (Kw∂w̄ +Kw̄∂w + ΛKwKw̄ − 2Kww̄) ,

when expressed in terms of K and the vector fields ∂AA′ . Solutions δK ∈
Γ (M,L0,1) to the differential equation ∗D ∗ D δK = 0 are infinitesimal per-

turbations of the Przanowski function K and thus correspond to deformations of

the underlying Quaternion–Kähler manifold. Having established the linearised

Przanowski operator as a Laplacian acting on sections of a line bundle L0,1 over

M is the first step towards extracting solutions to the linearised Przanowski equa-

tion from cohomology classes on twistor space, which we will achieve in section

4.2.2.

4.2 Twistor theory and Przanowski’s function

As was explained in section 2.3, from any four–dimensional Quaternion–Kähler

manifold one can construct an associated three–dimensional complex twistor

space with a four–parameter family of holomorphic curves called twistor lines
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and a contact structure [3, 6, 7, 2, 21, 5]. We will first use the more general corre-

spondence for anti–self–dual manifolds to construct a Lax Pair for Przanowski’s

equation as well as a recursion relation relating solutions of a generalised Laplace

equation to cohomology classes H1 (T,O(k)). Using the recursion relation we

provide a contour integral for perturbations δK of Przanowski’s function.

We will work with the double–fibration picture, so we need to complexify the

underlying manifold M , which we can assume to be real–analytic [5]. We thus

promote (w, w̄, z, z̄) to four independent complex variables (w, w̃, z, z̃) and denote

the resulting complex four–manifold by M. From the complex conjugation of the

underlying real manifold M we inherit an anti–holomorphic involution

ιM : M −→M, (w, w̃, z, z̃) 7−→ ( ¯̃w, w̄, ¯̃z, z̄). (4.20)

The fixed points of this map allow us to retrieve M , corresponding to reality

conditions w̄ = w̃, z̄ = z̃. To make notation more convenient we use four inde-

pendent holomorphic coordinates (w, w̄, z, z̄) on M, we retrieve M when (w̄, z̄)

are complex conjugates of (w, z). Note that the action of the involution ιM can

be extended to an involution ι on F . ι∗M pulls back (2, 0)–forms to (0, 2)–forms

and therefore ι, while leaving the fibres over real points in M invariant, acts as

the antipodal map on such a fibre.

4.2.1 Lax Pair

While the integrability of the twistor distribution < d0, d1 > is equivalent to the

anti–self–duality of (M, g), the fact that K satisfies Przanowski’s equation (4.2)

is sufficient but not strictly necessary for this. To obtain a Lax Pair consider the

modified vector fields

∂̃A0′ := ∂A0′ , ∂̃01′ := −
K̃

eΛKKwKw̄

∂01′ , ∂̃11′ = −
K̃

eΛKKwKw̄

∂11′ , (4.21)

which reduce to (4.7) if and only if (4.2) is satisfied. Similarly

d̃A := ξA
′
∂AA′ − ξA′

(
ξB

′
∂̃AB′ ΓC

′
A′

)
∂ξC′ , (4.22)

reduces to dA as defined in (2.25) if and only if (4.2) holds. We now introduce a

trivialisation of F over F based on the standard trivialisation of the tautological

line bundle over CP 1: Consider

U0 :=
{
x ∈ F

∣∣∣ ξ0′ 6= 0
}
, U1 :=

{
x ∈ F

∣∣∣ ξ1′ 6= 0
}
. (4.23)
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On U0, define ξ = ξ1
′

ξ0′
and on U1, define

2 η = ξ0
′

ξ1′
. Holomorphic functions on U0

homogeneous of degree zero, which can be regarded as functions on F holomorphic

in ξ, are annihilated by the Euler vector field Υ and thus ∂ξA′ acts as
ξA′

(ξ0′ )2
∂ξ. So

the projection of d̃A to TF is

l̃A = ξA
′
∂AA′ + (ξ0

′
)−2ξA

′
ξB

′
ξC

′
(
∂̃AA′ ΓB′C′

)
∂ξ, (4.24)

or in terms of K we find in inhomogeneous form the vector fields

l0 = ∂w − ξ
Kwz̄

K̃
∂w̄ + ξ

Kww̄

K̃
∂z̄ +

(
K̃w + eΛKKwKww̄

K̃
− Kww̄

Kw̄

)
ξ∂ξ, (4.25)

l1 = ∂z −
ξ

K̃

(
Kzz̄ +

2

Λ
eΛK

)
∂w̄ + ξ

Kzw̄

K̃
∂z̄+

+

(
K̃z + eΛKKwKzw̄ − eΛKKw̄ξ

K̃
− Kzw̄

Kw̄

+
ξ

Kw

)
ξ∂ξ.

Note that ∂w and ∂z commute and hence l0 and l1 form an integrable distribution

if and only if they commute. Przanowski’s equation (4.2) is a sufficient and

necessary condition for [l0, l1] = 0. To see this, write the various components of

the commutator as

[l0, l1] = A∂01′ +B∂11′ +
(
C1ξ + C2ξ

2 + C3ξ
3
)
∂ξ, (4.26)

we find

A =
ξKwKzw̄ − ξ2Kw̄

K̃KwKw̄

· PrzK , B = −ξKww̄

K̃Kw

· PrzK , (4.27)

C1 = −
1

Kw̄

(Kww̄∂z −Kzw̄∂w)

(
PrzK

K̃

)
, C3 = −

1

Kw

∂01′

(
PrzK

K̃

)
,

C2 =

(
∂00′∂11′ − ∂10′∂01′ +

eΛKKw̄

K̃
∂w +

eΛKKw

K̃
∂w̄ +

2eΛKKww̄

K̃

)(
PrzK

eΛKKwKw̄

)
,

where

PrzK := K̃ +KwKw̄e
ΛK (4.28)

and (4.2) is equivalent to

PrzK = 0. (4.29)

2Whenever we use this trivialisation of F over F , we will work in the patch U0. The formulae

valid over U1 can be easily inferred.
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First consider the coefficient A, it vanishes only if Przanowski’s equation (4.2)

holds. Conversely, if (4.2) is satisfied all coefficients vanish, so (4.25) are a Lax

Pair for Przanowski’s equation, showing that it is another example of an integrable

equation coming from anti–self–duality equations in four dimensions. While we

used twistorial methods to derive this Lax Pair, the advantage of having a Lax

Pair for (4.2) is that it makes many of the usual properties of integrable systems

manifest without resorting to the twistor construction explicitly.

4.2.2 Recursion relations

We now want to explain how one can construct solutions to generalised Laplace

equations from elements of H1(T,O(k)), or conversely construct those cohomol-

ogy classes from solutions of the generalised Laplace equation using a recursion

relation. So suppose we have constructed the twistor space T from F by taking

the quotient along the twistor distribution. Furthermore we have an involution

ι, a holomorphic contact structure τ and the volume form ρ on non–projective

twistor space as defined above theorem 2.3.3. Starting with Ψ ∈ H1(T,O(k)), we
can pull Ψ back to F to obtain Ψ ∈ H1(F,O(k)) satisfying

dAΨ = 0, (4.30)

where dA span the twistor distribution in F and were defined in (2.25). Since Ψ is

an element of the first cohomology group, its domain can be assumed to be U0∩U1

where ξ0
′ 6= 0, so we can trivialise and write Ψ =

∑
n

(
ξ0

′)(k−n) (
ξ1

′)n
ψn where ψn

are functions onM . Recall that the C×–action scales the null tetrad according to

eA0
′ 7→ eΘeA0

′
and eA1

′ 7→ e−ΘeA1
′
, hence we need to scale the basis of the twistor

lines by ξ0
′ 7→ eΘξ0

′
and ξ1

′ 7→ e−Θξ1
′
since the vector fields (2.25) spanning the

twistor distribution have to be invariant under any change of frame. Note that this

leaves the volume form ρ invariant. Similarly under a conformal transformation

g 7→ e2Ωg we scale the null tetrad by eA0
′ 7→ eA0

′
and eA1

′ 7→ e2ΩeA1
′
, since this

keeps the trivialisation of Λ(2,0)M invariant. Keeping (2.25) invariant requires

ξ0
′ 7→ ξ0

′
and ξ1

′ 7→ e2Ωξ1
′
, which would also scale the volume form by ρ 7→ e6Ωρ.

However we still have the freedom to change the normalisation of ξA
′
, we choose

to keep ρ invariant and hence compensate the transformation of ρ by scaling the

entire basis of the twistor lines simultaneously by a factor of e−
3
2
Ω and hence

obtain ξ0
′ 7→ e−

3
2
Ωξ0

′
and ξ1

′ 7→ e
1
2
Ωξ1

′
. Consequently the functions ψn transform

as ψn 7→ e(2n−k)Θ+( 3
2
k−2n)Ω ψn under a change of C×–gauge and conformal scale.
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Hence we see that ψn are sections of the line bundle L
(2n−k, 3

2
k−2n) defined in (4.15).

Now we look at the action of dA when acting on Ψ, expanding in powers of ξA
′

and using (4.13) we have

dAΨ =
∞∑

n=−∞

(
ξ0

′
)(k−n) (

ξ1
′
)n
ξA

′
(
∂AA′ +

(
n− k

2

)
AAA′ − k

4
BAA′

)
ψn, (4.31)

where we recognise the bracket on the right side of the equation3 as the linear

first–order operator4 D(n,k) acting on L(2n−k, 3
2
k−2n) defined in (4.16). From (4.30)

we obtain the recursion relations

D
(n+1,k)
A0′ ψn+1 = −D(n,k)

A1′ ψn. (4.32)

For (4.32) to be consistent, ψn has to satisfy an integrability condition. Since

(2.27) implies

εABξA
′
ξB

′
[
D

(n,k)
AA′ D

(n,k)
BB′ −

(
ΓBA′B′

C′
+ ΓCB′B

CεA′
C′
)
D

(n,k)
AC′

]
= 0, (4.33)

cross–differentiating (4.32) and imposing (4.33) requires(
D

(n,k)
AA′ + ΓAB′A′

B′
+ ΓBA′A

B +BAA′

)
D(n,k) AA′

ψn = 0. (4.34)

Rewriting this expression covariantly, we find

∗D ∗D ψn = 0. (4.35)

So starting with ψn satisfying this integrability condition we can use the recur-

sion relations (4.32) to determine ψn+1, where ∗D ∗D ψn+1 = 0 is automatically

guaranteed, again using (4.33). This allows us to use the recursion relations to

define ψn+2, and so forth. Thus a single coefficient ψn satisfying (4.35) is sufficient

to determine Ψ ∈ H1 (T,O(k)). Conversely, given such a Ψ , each coefficient will

satisfy a second–order integrability condition.

We will now show that one can use the correspondence above to construct coor-

dinates on T from solutions to (4.35). Consider solutions of (4.35) with weight

(0, 0), one can check that holomorphic functions f(w, z) on M as well as anti–

holomorphic functions f(w̄, z̄) onM are examples. If we choose ψ0 to be an anti–

holomorphic function onM , then the recursion relations (4.32) imply that ψn = 0

for all negative coefficients and so Ψ will in fact be an element of H0 (U0,O(0))
3The one–forms A and B were defined in (4.11) and (4.12).
4To avoid confusion we denote the indices (n, k) of D explicitly.
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that descends to T . Therefore we can recursively construct coordinates of T on

the image of U0 under the canonical projection to T by setting ψ0 equal to w̄, z̄

or a constant. Similarly, on the image of U1 we can start with ψ0 equal to w, z

or a constant.

4.2.3 Perturbations

The twistor space with its twistor lines only encodes the conformal structure of

M, the information necessary to retrieve an Einstein metric within the conformal

class is contained in the contact structure on T . Essentially all that is needed to

fix the metric within the conformal class is a scale, which is specified uniquely

by the symplectic structures εAB and εA′B′ of S and S′. Since the basis ξA
′
of S′

is normalised such that ε0′1′ξ
0′ξ1

′
= 1 and similarly εAB is contained within the

definition of ΓA′B′ , all this information is stored in the one–form τ on F, given by

(2.24). It corresponds to a one–form τF quadratic in ξ on F , where

τF = dξ − Γ0′0′ − 2ξΓ0′1′ − ξ2Γ1′1′ . (4.36)

As explained in section 2.3, the Lie derivative of τ along the twistor distribu-

tion vanishes and hence τ descends to a holomorphic one–form homogeneous of

degree two on T. In inhomogeneous form, this yields an O(2)–valued contact

form τT on the twistor space T . According to Darboux’ theorem, one can always

choose canonical coordinates on T such that τT = dx − ydt. Comparing with

the illustration (2.28), τ gives rise to a contact structure on the projective and

non-projective twistor and correspondence space. However, the pull–back of τT

from T to F is proportional but not in general equal to τF . This proportional-

ity factor will prove important when retrieving Przanowski’s function from the

twistor picture.

Now recall that for (l,m) = (0, 1) or equivalently (n, k) = (1, 2) equation (4.35)

is the linearised Przanowski equation. Thus by definition the coefficient ψ1 of

every element Ψ ∈ H1(T,O(2)) is a solution δK ∈ L0,1 of (4.35). Indeed per-

turbations of Quaternion–Kähler metrics are known to be generated by elements

of H1 (T,O(2)) [35]. To see this, regard a representative Ψ of this cohomology

class as a Hamiltonian of a one–parameter family of symplectic transformations.

So dΨ = dτT (θ, ·) where θ ∈ H1 (T,Θ(0)) is an element of the first cohomology

group with values in the sheaf of holomorphic vector fields. Therefore θ encodes
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a deformation of the holomorphic symplectic structure of T and consequently a

deformation of the metric of M . For details on complex deformations see [41].

We can obtain δK from Psi ∈ H1 (F,O(2)), Cauchy’s integral formula yields

δK =
1

2πi

∮
Γ

ψ1

ξ
dξ =

1

2πi

∮
Γ

ΨξA′dξA
′

(ξA′oA′)2 (ξA′ρA′)2
. (4.37)

The constant spinors oA′ = (1, 0) and ρA′ = (0, 1) are determined by the choice

of complex structure on M and Γ is any contour around the equator of CP 1.

This is similar to [68] but for non–zero cosmological constant, and extends results

of [69, 16] to Quaternion–Kähler four–manifolds with no isometries.

4.3 Przanowski’s function from Twistor data

We now want to explain how to derive the existence of Przanowski’s function as

well as the second–order partial differential equation (4.2) it satisfies from the de-

scription of a Quaternion–Kähler four–manifold by its twistor space. From this,

we will obtain an algorithm to extract Przanowski’s function and a compatible

complex structure from twistor data.

A similar procedure has been established in [16] in the single–fibration picture:

While in this thesis we employ the twistor correspondence in the double–fibration

picture (2.28) introduced by Penrose [2, 20], there is an equivalent version estab-

lished by Atiyah, Hitchin and Singer [5] called the single–fibration picture. The

starting point of the double–fibration picture are complex anti–self–dual four–

manifoldsM, since real anti–self–dual four–manifolds are always real–analytic this

captures the general case. The correspondence space F is then a five–dimensional

complex manifold, taking the quotient by the two–dimensional twistor distribu-

tion we obtain a three–dimensional complex twistor space T . The single–fibration

picture instead starts with real anti–self–dual four–manifolds M . Their corre-

spondence space Z is a six–dimensional real manifold with a two–dimensional

real integrable twistor distribution. Rather than take a quotient one extends

the twistor distribution to a three-dimensional integrable distribution which one

defines to be T (0,1)M . Atiyah, Hitchin and Singer show that this defines an inte-

grable complex structure on Z, which is hence a three–dimensional complex man-

ifold. In this context Z is usually referred to as twistor space of M , and we have

a fibration of Z over M explaining the term single–fibration picture. The advan-

tage of the single–fibration picture is that it extends easily to Quaternion–Kähler
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manifolds of higher dimensions, while the double–fibration picture is restricted

to four dimensions. Furthermore, Swann [70] showed that Z admits a Kähler

Einstein metric if M is ASD Einstein. The Kähler potential of this metric has

been identified in [16] as the origin of Przanowski’s function: Given the twistor

data in the single–fibration picture of an ASD Einstein four–manifold, one can

read of Przanowski’s function from the Kähler potential subject to the choice of

complex structure.

In the double–fibration picture a similar algorithm achieves the same, however

we don’t require any information about a metric or Kähler structure on twistor

space. We thus assume we have at our disposal the complete twistor data that

describes a real ASD Einstein manifold M : a three–dimensional complex twistor

space T with a four–parameter family M of twistor lines, furthermore a holo-

morphic contact structure on T determined by a one–form τT homogeneous of

degree two such that τT (Q) 6= 0 for any non–zero vector Q tangent to one of the

twistor lines. And finally let R = 12Λ be the scalar curvature and cosmological

constant of the Quaternion–Kähler manifold respectively. The real structure of

the underlying manifold M is encoded in an involution ι on T . The steps of the

algorithm to extract K from twistor data are as follows:

� Find canonical coordinates (x, y, t) for the contact form τT = dx − ydt on
twistor space T and pull them back5 to correspondence space F .

� M inherits a complex structure from the complex surface S = {p ∈ F | t =
0} with holomorphic coordinates w̄ = y

∣∣∣
S
, z̄ = x

∣∣∣
S
and complex conjugates

w = ι(y)
∣∣∣
ι(S)

, z = ι(x)
∣∣∣
ι(S)

, where ι is the anti–holomorphic involution on

twistor space preserving the real lines. The asymmetry of w and z in (4.2)

is reflected in the fact that τF

∣∣∣
S
= dz̄.

� Extend these coordinates to a coordinates system (w, w̄, z, z̄, ξ) on corre-

spondence space such that ξ
∣∣∣
S
= 0 and (ξ)−1

∣∣∣
ι(S)

= 0. In a neighbourhood

of S, the restriction of the contact form to the twistor lines m̂ for m ∈M is

of the form τF

∣∣∣
m̂
= eΦdξ, defining a ’contact potential’ Φ on correspondence

space. Similarly we obtain around ι(S) the contact potential Φ̃ and find the

Przanowski function to be K = − 1
Λ

(
Φ
∣∣∣
S
+ Φ̃

∣∣∣
ι(S)

)
.

5We denote the pull–backs by (x, y, t) and τT as well.
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Not all choices in this procedure are unique, the resulting freedom will be seen

to be a gauge freedom of the Przanowski gauge.

Remark 1: In this procedure the coordinates (w, z, w̄, z̄) are determined only

up to holomorphic coordinate transformations given by

w → w′(w, z), z → z′(z), w̄ → w̄′(w̄, z̄), z̄ → z̄′(z̄). (4.38)

Under such a change of coordinates, K will transform as

K(w, z, w̄, z̄)→ K(w′, z′, w̄′, z̄′)− 1

Λ
ln(∂zz

′)− 1

Λ
ln(∂z̄ z̄

′). (4.39)

One can check that this gives rise to the same metric.

Remark 2: The Przanowski function K determines dΓ0′1′ , a non–degenerate

closed two–form. This symplectic form, which is neither compatible with the

metric nor covariant, admits both (w, z,−Kw,−Kz) as well as (w̄, z̄, Kw̄, Kz̄) as

canonical coordinates,

dΓ0′1′ = dKw̄ ∧ dw̄ + dKz̄ ∧ dz̄ = −dKw ∧ dw − dKz ∧ dz. (4.40)

Thus K(w, z, w̄, z̄) can be regarded as the generating function for the symplectic

transformation that maps ’initial positions’ (w, z) to ’final positions’ (w̄, z̄). This

is a remnant of the interpretation of the heavenly function as a transition function

on Hyper–Kähler manifolds [13].

We now give the details of the construction. Suppose that x, y, t are local

holomorphic coordinates on T and τT = dx − ydt. To obtain a local complex

structure, choose a complex surface S ′
1 in the twistor space T transversal to the

twistor lines. A Quaternion–Kähler manifold does not in general carry a global

complex structure, hence this may not be possible for all lines, the complex

structure is not defined for points in M whose twistor lines are tangent to S ′
1,

we may wish to exclude these points from M . For instance we can choose S ′
1 =

{p ∈ T | t = 0}. The pre–image of this surface in the correspondence space

F is a four–dimensional holomorphic surface S1 which is also a section s of the

CP 1–bundle over the base manifold M. We can use x, y as coordinates on S ′
1,

pulled back to F the one–forms dx and dy annihilate the twistor distribution.

We define z̄ = x
∣∣∣
S1

, w̄ = y
∣∣∣
S1

and

Λ(0,1)M :=< dw̄, dz̄ > . (4.41)
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From S ′
2 = ι(S ′

1) with pre-image S2 in F we obtain two more coordinates z =

ι(x)
∣∣∣
S2

and w = ι(y)
∣∣∣
S2

. By construction these will be complex conjugates of

(w̄, z̄) on the underlying real manifold M . We use them to define Λ(1,0)M :=<

dw, dz >. As any two non–intersecting totally null planes through a point span

the entire tangent space, the functions (w, z, w̄, z̄) will be independent onM . Lo-

cally this defines an integrable complex structure compatible with the metric [18].

Remark: Infinitely many other choices for S ′
1 are possible, each correspond-

ing to a different local complex structure compatible with the metric. Since a

contact structure on a three–dimensional manifold has no integral sub–manifolds

of dimension higher than one, the one–form τT is non–zero when restricted to

any two–dimensional surface S ′
1. Darboux’ theorem ensures that we can always

choose coordinates (w, z, w̄, z̄) on M such that τT = f ′
1dz̄ on S1 and τT = f ′

2dz

on S2 for some functions f ′
1 and f ′

2 on M . This step is well–defined up to trans-

formations of the form (4.38) and is the origin of the asymmetry between w and

z in the Przanowski equation.

By construction the metric g ofM is Hermitian with respect to the coordinates

(w, z, w̄, z̄), choosing an adapted tetrad with eA0
′ ∈ Λ(1,0)M and eA1

′ ∈ Λ(0,1)M

reduces the gauge freedom to GL(2,C). In the trivialisation (4.23) the pre–

images of the hypersurfaces S ′
1 and S ′

2 are then given by S1 = {p ∈ F | ξ = 0}
and S2 = {p ∈ F | η = 0}. For convenience we choose e00

′
= dw, e10

′
= dz

to fix the frame uniquely, to find K we need the explicit expressions of eA1
′
.

Using the primed connection one–forms they can be obtained from Σ0′1′ , which

is proportional to the Hermitian two–form compatible with the metric g and the

complex structure.

To see how Przanowski’s function arises, we show that the primed connection

one–forms are of the form

Γ0′0′ = f1dz̄, Γ1′1′ = f2dz, dΓ0′1′ =
Λ

2
∂̄∂K, (4.42)

for some complex–valued functions f1, f2 and K on M with K = 1
Λ
ln f1f2. Under

the induced real structure on M , K is a real function and we will identify it with

Przanowski’s function. It may be instructive to compare (4.42) with (4.8). We

start by classifying ΓA′B′ according to their Dolbeault–type. By definition,

deAA
′
= (ΓAA

′
CC′)BB′eBB

′ ∧ eCC′
. (4.43)
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Now integrability of the complex structure means that

ΓA1
′
[00′10′] = 0, ΓA0

′
[01′11′] = 0. (4.44)

Therefore, using anti–symmetry in the Lie algebra indices and considering sepa-

rately the cases A = 0 and A = 1,

Γ0′0′ ∈ Λ(0,1)M, Γ1′1′ ∈ Λ(1,0)M. (4.45)

Now recall the components of the ASD Einstein equation,

dΓ0′0′ + 2Γ0′0′ ∧ Γ0′1′ = ΛΣ0′0′ ,

dΓ0′1′ + Γ0′0′ ∧ Γ1′1′ = ΛΣ0′1′ , (4.46)

dΓ1′1′ + 2Γ0′1′ ∧ Γ1′1′ = ΛΣ1′1′ .

Denoting the component of Γ0′1′ in Λ(a,b)M by Γ
(a,b)
0′1′ , the first of equations (4.46)

splits up into

dΓ
(0,2)
0′0′ + 2Γ

(0,1)
0′0′ ∧ Γ

(0,1)
0′1′ = ΛΣ0′0′ , dΓ

(1,1)
0′0′ + 2Γ

(0,1)
0′0′ ∧ Γ

(1,0)
0′1′ = 0. (4.47)

Note that Γ0′0′ = Γ
(0,1)
0′0′ , hence dΓ

(0,2)
0′0′ ∧ Γ0′0′ = dΓ

(1,1)
0′0′ ∧ Γ0′0′ = 0, and therefore

dΓ0′0′ ∧ Γ0′0′ = 0. (4.48)

In fact all identities in (4.9) follow from this analysis. Now recall that on S ′
1

we have τT = dz̄ and on S ′
2 we find τT = dz. Similarly τF = −Γ0′0′ on S1 and

τF = −Γ1′1′ on S2. But the contact structure on T is induced from the one on F ,

so the pull–back of τT to F is proportional to τF , consequently

Γ0′0′ = f1dz̄, Γ1′1′ = f2dz, (4.49)

for some complex–valued functions f1 and f2. Furthermore, since dΓ0′1′ is a closed

(1,1)–form, it can be written as

dΓ0′1′ =
Λ

2
∂̄∂K (4.50)

for some complex–valued functionK. So far we have established (4.42), it remains

to show that K is indeed the Przanowski function and real.

From (4.50) K is determined only up to the addition of two functions c(w, z) and
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c̃(w̄, z̄). Using equations (4.46) it is easy to show that one can choose c and c̃

such that

Γ0′0′ = eΛKKwdz̄, Γ1′1′ =
1

Kw

dz, Γ0′1′ =
1

2
(d(ln(Kw)) + Λ∂K) , (4.51)

together with the self–dual two–forms ΣA′B′
as in (4.5) and (4.6). Then Σ0′0′ ∧

Σ1′1′ = −2Σ0′1′ ∧ Σ0′1′ , which follows from (2.17), is equivalent to Przanowski’s

equation (4.2). We saw earlier that 2iΣ0′1′ is the Hermitian two–form with respect

to the complex structure and metric g on M , so g must be given by (4.1). Thus

K in (4.50) is indeed Przanowski’s function and real. To determine K explicitly,

observe that (4.51) implies

K =
1

Λ
ln f1f2. (4.52)

Evaluating the restriction of τ to the sections (ξ0
′
, ξ1

′
) = (1, 0) and (0, 1) of F

provides f1 and f2 from (4.49) and thus yields Przanowski’s function using (4.52).

This however requires knowledge of the symplectic structure on F, to obtain

Przanowski’s function from the associated contact structure on T note that the

pull-back of τT to F is a scalar multiple of τF as they are contact forms of the

same contact structure. This scalar function, which depends on the choice of

complex structure and associated coordinates onM , is referred to as the ’contact

potential’ in [16]. Evaluating the contact potential along S1 and S2 yields f1 and

f2. Hence f1(m) and f2(m) for m ∈ M can be obtained from the restriction of

τT to the twistor line m̂, since on the intersection of m̂ and S1 this restriction of

τT satisfies

τT

∣∣∣
m̂
= f1(m)dξ, (4.53)

while in the intersection of m̂ with S2 we have

τT

∣∣∣
m̂
= f2(m)dη. (4.54)

Both f1 and f2 are functions on M and yield Przanowski’s function using (4.52).

4.4 Examples

We will demonstrate the procedure of writing a Quaternion–Kähler metric in

Przanowski’s form explicitly for a few examples: S4, H4, CP 2 with the Fubini–
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Study metric and C̃P 2 with the Bergmann metric. The first two cases are con-

formally flat with negative and positive scalar curvature respectively6 and are

treated in [16]. The other two examples instead are non–trivial, the Fubini–

Study metric has negative scalar curvature and the Bergmann metric positive

scalar curvature. The twistor data for the Fubini–Study metric is given in [5, 3]

and can be easily adapted to accommodate for the Bergmann metric7.

4.4.1 S4 and H4

S4 and H4 are conformally flat, the only difference in their twistor data arises in

the contact structure. However, it is convenient to use slightly different parametri-

sations of the twistor lines. Defining ε to be the sign of the cosmological constant,

Λ = ε|Λ|, we can treat both cases simultaneously by including ε as a parameter.

We will initially normalise Λ to ±1 and return to the general case at the end.

To obtain S4, set ε = −1, to obtain H4, set ε = 1. The twistor space is CP 3

for S4 and an open subset thereof for H4. Parametrising CP 3 by homogeneous

coordinates (u0, u1, v0, v1), the twistor lines are given by [16]

u0 =
ξ0

′√
1− ε|w|2(1 + |z|2)

, v0 =
wξ0

′
+ w̄z̄ξ1

′√
1− ε|w|2(1 + |z|2)

, (4.55)

u1 =
ξ1

′√
1− ε|w|2(1 + |z|2)

, v1 =
wzξ0

′ − w̄ξ1′√
1− ε|w|2(1 + |z|2)

.

The incidence relations are obtained from this by eliminating (ξ0
′
, ξ1

′
),

v0 = wu0 + w̄z̄u1, v1 = wzu0 − w̄u1. (4.56)

Here (w, z, w̄, z̄) are coordinates on M, the four–parameter family of twistor lines,

and (ξ0
′
, ξ1

′
) are homogeneous coordinates along such a line. The twistor lines

are invariant under the involution ι if (w̄, z̄) are complex conjugates of (w, z). We

specify a contact structure by

τ = εAB (uAduB + εvAdvB) . (4.57)

The parametrisation of the twistor lines is chosen so that when restricted to a

line the contact form is τ
∣∣∣
m̂
= εA′B′ξA

′
dξB

′
so (ξ0

′
, ξ1

′
) is a normalised basis of S′.

6According to our conventions S4 has negative scalar curvature, following [3, 21].
7See [16] for a description of the latter twistor space with Przanowski’s function in a different

gauge.
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On U0 = {u ∈ CP 3 | u0 6= 0} we can introduce inhomogeneous coordinates(
u1
u0
,
v0
u0
,
v1
u0

)
:= (ξ, w + w̄z̄ξ, wz − w̄ξ) , (4.58)

and choose a holomorphic surface in T by setting S1 = {p ∈ T | ξ = 0}. On

U1 = {u ∈ CP 3 | u1 6= 0} we use coordinates(
u0
u1
,
v0
u1
,
v1
u1

)
:= (η, w̄z̄ + ηw,−w̄ + ηwz) , (4.59)

and find S2 = ι(S1) = {p ∈ T | η = 0}. This yields a complex structure on M

with holomorphic coordinates w, z induced from

w :=
v0
u0

∣∣∣∣∣
S1

, wz :=
v1
u0

∣∣∣∣∣
S1

. (4.60)

As complex conjugates we obtain w̄, z̄ from S2. Now observe that

τ

∣∣∣∣∣
S1

=
εw2dz

1− ε|w|2(1 + |z|2)
, τ

∣∣∣∣∣
S2

=
εw̄2dz̄

1− ε|w|2(1 + |z|2)
, (4.61)

so we can use (4.52) to find Przanowski’s function,

K =
2

Λ
ln

[
|w|2

1− ε|w|2(1 + |z|2)

]
, (4.62)

where we have now included the cosmological constant as a free parameter.

4.4.2 CP 2 and C̃P 2

As a non–trivial example we now consider CP 2 = SU(3)
/
U(2) with the Fubini–

Study metric, which has negative scalar curvature, and its non–compact version

C̃P 2 = SU(2, 1)
/
U(2) with the Bergmann metric, which has positive scalar

curvature. Recall that CP 2 is the space of lines through the origin in C3, the

Fubini–Study metric is induced from a Hermitian form with signature (+ + +).

In contrast, for C̃P 2 consider C3 equipped with a Hermitian form with signature

(+ + −). Then C̃P 2 is the space of time–like lines and the Hermitian form

induces the Bergmann metric. Although not conformally equivalent, we can again

treat both cases simultaneously by introducing a parameter ε where Λ = ε|Λ|,
alternatively ε is the negative of the third eigenvalue of the Hermitian form. We
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initially assume Λ = ±1. The twistor space T is the flag manifold F12 of C3, so

every point of T consists of a pair (l, p) where p is a plane in C3 and l is a line in p,

both containing the origin. For C̃P 2 we furthermore require that l be space–like

and that p contain a time–like direction. Using homogeneous coordinates, we can

write any point in T as a pair (lj, pj) where j = 0, 1, 2 and pjl
j = 0.

Next we need the twistor lines, these are of the following form [5]: let P be a

plane in C3 and L a line in C3 not in P . For C̃P 2 we need L to be time–like

while P must be spanned by two space–like vectors. Then a twistor line in T is

given by all pairs (l, p) where p contains L and where the two planes p and P

intersect in l. According to this description the equation for the twistor line is

Pjl
j = pjl

j = pjL
j = 0 using homogeneous coordinates for P and L. If we write

Pj = (W,Z, 1) and Lj = (W̃ , Z̃, 1) we can use (W,Z, W̃ , Z̃) as coordinates8 on

M. One can check [3] that

lj =

(
−(1 + ZZ̃)ξ1

′
,

ξ0
′

1 + ZZ̃
+WZ̃ξ1

′
,
−Zξ0′

1 + ZZ̃
+Wξ1

′
)
, (4.63)

pj =

(
ξ0

′

1 +WW̃ + ZZ̃
,

−W̃Zξ0
′

(1 + ZZ̃)(1 +WW̃ + ZZ̃)
+ ξ1

′
,

−W̃ ξ0
′

(1 + ZZ̃)(1 +WW̃ + ZZ̃)
− Z̃ξ1′

)
,

satisfy the defining equations of a twistor line. To fix a metric within the confor-

mal structure, we chose a contact form

τ =
1

2

(
pjdl

j − ljdpj
)
. (4.64)

The parametrisation (4.63) of the twistor lines has been chosen to ensure that

the restriction of the contact form to the twistor lines is in canonical form,

τF

∣∣∣∣∣
m̂

= ξ0
′
dξ1

′ − ξ1′dξ0′ . (4.65)

A further difference between the Fubini–Study metric and the Bergmann metric

on the level of their twistor description arises when we describe the involution on

T . This involution ι is induced from the Hermitian form on C3 which defines an

anti–linear map from C3 to the dual space, and thus an anti–holomorphic map

from T to itself. Under this map ι a pair (l, p) is mapped to (p̄, l̄), pairs invariant

8These serve as coordinates on all of C̃P 2, but only on a coordinate patch of CP 2.
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under this map correspond to real twistor lines. Applied to a twistor line (Lj, Pj)

we obtain the reality conditions

W̄ = −εW̃ , Z̄ = −εZ̃. (4.66)

For the Bergmann metric, the condition that L be time–like and P space–like

together with the reality conditions impliesWW̄+ZZ̄ < 1. This gives a complete

description of the two metrics in terms of twistor data. We can now use this

information to deduce a complex structure and Przanowski’s function in both

cases.

We set l0 = 0 to select a holomorphic surface in T , from (4.63) we see that

this amounts to choosing the complex structure induced from S1 = {(l, p) ∈
T | (ξ0′ , ξ1′) = (1, 0)}. The twistor lines restricted to S1 are

lj = (0, 1,−Z) , pj =
(
1 + ZZ̃,−W̃Z,−W̃

)
, (4.67)

so we can choose holomorphic coordinates z := Z and w := (1+ZZ̃)

WW̃
W . Note that

the contact form restricted to S1 is indeed proportional to dz:

τ

∣∣∣∣∣
S1

=
W̃(

1 +WW̃ + ZZ̃
)(

1 + ZZ̃
)2dZ. (4.68)

The parametrisation (4.63) is chosen to ensure that ι(S1) = S2 where S2 =

{(l, p) ∈ T | (ξ0′ , ξ1′) = (0, 1)} for both reality conditions. On S2 we have

lj =
(
−(1 + ZZ̃),WZ̃,W

)
, pj =

(
0, 1,−Z̃

)
, (4.69)

so we can choose anti–holomorphic coordinates z̄ := −εZ̃ and w̄ := −ε (1+ZZ̃)
WW̃

W̃ .

Again

τ

∣∣∣∣∣
S2

=WdZ̃ (4.70)

as required. To retrieve the Przanowski function we need only use (4.52),

K =
1

Λ
ln

 WW̃(
1 +WW̃ + ZZ̃

)(
1 + ZZ̃

)2
 , (4.71)

which is valid for arbitrary cosmological constant. In terms of the coordinates

(w, z, w̄, z̄) and taking account of reality conditions we have

K = − 1

Λ
ln [(1− εww̄ − εzz̄) (zz̄ − ε)] . (4.72)
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ASD Einstein metrics with

symmetry

Having dealt with the general case of ASD Einstein metrics in chapter 4, we

now specialise to ASD Einstein metrics with Killing vectors. Let us first consider

Euclidean signature: Generic ASD Einstein metrics in Euclidean signature are

generated by solutions of Przanowski’s equation, as we have seen in the previous

chapter. Przanowski [66] and Tod [65, 17] considered symmetry reductions of this

system and showed that all ASD Einstein metrics with at least one Killing vector

can be derived from solutions of the SU(∞) Toda field equation. Conversely ev-

ery solution of the SU(∞) Toda field equation leads to an ASD Einstein manifold

with a Killing vector. The underlying reason for the appearance of Toda’s equa-

tion in this setting is the fact that ASD Einstein metrics with a Killing vector

in Euclidean signature are always conformal to scalar–flat Kähler metrics, and

these are known to be generated by the SU(∞) Toda equation [71]. The cru-

cial difference between Toda’s and Przanowski’s equation lies in the number of

independent variables: four for Przanowski’s equation, but only three for Toda’s

equation. This dimensional reduction is possible because of the additional sym-

metry in the system.

We now turn to neutral signature, as this is the only other signature where the

concept of anti–self–duality is non–trivial. A couple of new features arise in neu-

tral signature: besides pseudo–Kähler metrics, which are the equivalent of Kähler

metrics in Euclidean signature, we can introduce para–Kähler and null–Kähler

metrics. Whereas a pseudo–Kähler structure is a triple (g, J,Σ) of a neutral–
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signature metric g Hermitian with respect to a parallel, complex structure J such

that the associated self–dual fundamental form Σ is closed and hence Kähler, we

define a para–Kähler structure to be a triple (g, S,Σ) of a neutral–signature met-

ric g anti–Hermitian with respect to a parallel involutive structure S such that

the associated self–dual fundamental form Σ is closed. A null–Kähler structure

in turn is a triple (g,N,Σ) consisting of a neutral–signature metric g compatible

with a with a parallel, nilpotent structure N in the sense that

g(N(X), Y ) + g(X,N(Y )) = 0, (5.1)

for two vector fields X, Y on M . Furthermore we require the associated self–dual

two–form Σ = g(N(·), ·) to be closed. By construction Σ ∧ Σ = 0 and hence the

name null–Kähler. Examples of pseudo–Kähler, para–Kähler and null–Kähler

structures will be presented in section 5.1.2.

The aim of this chapter is to understand better the relationship between ASD

Einstein four–metrics with a non–null symmetry in neutral signature and pseudo–

Kähler, para–Kähler and null–Kähler metrics. One of our main results is the

general form of an ASD Einstein metric that is conformally equivalent to a real–

analytic null–Kähler metric with a Killing vector. Such metrics are type N grav-

itational waves in a conformally flat background parametrised by one free scalar

function of one variable. We then turn to pseudo– and para–Kähler metrics and

find that away from singular points all real–analytic ASD Einstein metrics with a

non–null Killing vector are generated by solutions of the SU(∞) Toda equation.

This is the neutral signature analogon of the results in [65, 17]. Finally, we clas-

sify ASD conformal structures with symmetry that contain both a real–analytic

null–Kähler as well as a scalar–flat pseudo– or para–Kähler metric.

5.1 Einstein–Weyl structures

Throughout this last chapter of the thesis we consider ASD Einstein metrics g

with a symmetry, where by a symmetry we mean the existence of a conformal

Killing vector K such that

LKg = cg, (5.2)

where c is some function. For constant c we call K a homothety, if c = 0 we

have a (pure) Killing vector K. Throughout this first section 5.1 we will drop the
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Einstein condition, so it suffices to consider ASD conformal structures [g] since

anti–self–duality is a conformally invariant concept. A conformal structure [g] has

a symmetryK if one and hence every ĝ ∈ [g] satisfies (5.2). The conformal Killing

vector K can be non–null or null with respect to [g], we will restrict attention

to non–null symmetries, null symmetries are related to projective structures and

have been discussed extensively in [72]. The study of ASD conformal structures

with a non–null symmetry can be dimensionally reduced to the study of three–

dimensional Einstein–Weyl (EW) spaces. Guided by [40], we will now introduce

EW spaces and continue with the Jones–Tod correspondence [73] relating EW

spaces to ASD conformal structures.

Before continuing to do so, we should mention that there is also a twistor cor-

respondence for EW spaces leading to mini–twistor spaces. Their geometry was

first explored by Hitchin [34]. The relation between the twistor correspondence

for four–dimensional ASD manifolds and the mini–twistor correspondence for

EW spaces is presented in great detail in [73]. In fact, just as the EW space

arises as the symmetry reduction of a four–dimensional ASD manifold, the mini–

twistor space arises by a similar reduction out of the twistor space of that four–

manifold. However, as mentioned earlier, there are some subtleties when working

with twistor theory in neutral signature. For the rest of this chapter we will only

make use of the Jones–Tod correspondence without resorting to twistor theory

and so will not go into any further details.

5.1.1 Einstein–Weyl geometry

LetW be a three–dimensional manifold with a conformal structure [h] of signature

(2, 1) and a torsion–free connection D that preserves [h], i.e.

Dh = ω ⊗ h, (5.3)

for some h ∈ [h] and some 1–form ω, which depends on the choice of h ∈ [h].

Then we call the triple (W , [h], D) a Weyl space, for convenience denoted by

(h, ω). Condition (5.3) is weaker than compatibility of D with h, the Levi–Civita

connection of h will satisfy (5.3), but so will any connection D under which

null geodesics of [h] remain geodesic. If ω is exact, then D is the Levi–Civita

connection of some h ∈ [h].

Both the curvature W i
jkl of D and its Ricci tensor Wij, which is not necessarily

symmetric, depend only on the connection D. However, to compute a scalar
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curvature W =Wijh
ij, we need to choose a scale within the conformal structure

[h]. Under conformal transformations h → e2Ωh we have W → e−2ΩW and

thus W is of conformal weight −2. This allows us to write down a conformally

invariant version of the Einstein equations for D and [h],

W(ij) −
1

3
Whij = 0. (5.4)

Note that the left–hand side is indeed conformally invariant, as the weights of

W and hij cancel. We call a Weyl space satisfying (5.4) an Einstein–Weyl (EW)

structure. The Jones–Tod construction relates Einstein–Weyl structures to ASD

conformal structures with a symmetry.

Theorem 5.1.1 [73, 72] Let (M, [g]) be a neutral signature ASD four–manifold

with a non–null conformal Killing vector K. An Einstein–Weyl structure on the

space W of trajectories of K is defined by

h := |K|−2g − |K|−4K�K, ω := 2|K|−2 ∗g (K ∧ dK) , (5.5)

where |K|2 := g(K,K), K := g(K, ·) and ∗g is the Hodge star operator with

respect to g. All EW structures arise in this way. Conversely, there is a pair

(V, α) consisting of a function V of weight −1 and a one–form α on W satisfying

the generalised monopole equation

∗h
(
dV +

1

2
ωV

)
= dα, (5.6)

such that [g] with conformal Killing vector K = ∂z is determined by

g = V h− 1

V
(dz + α)2 . (5.7)

Note that the Jones–Tod construction is conformally invariant, although we used

explicit representatives of the conformal structures [g] and [h] in the theorem.

Also, as a consequence of (5.6), the function V has to satisfy the integrability

condition d ∗h
(
d+ 1

2
ω
)
V = 0.

5.1.2 Examples

In this section we want to present three examples of EW structures and describe

the corresponding ASD conformal structures. We start with a neutral signature

version of LeBrun’s [71] scalar–flat Kähler metrics.

66



5.1. EINSTEIN–WEYL STRUCTURES

Scalar–flat pseudo–Kähler metrics

The first example are scalar–flat pseudo–Kähler metrics arising from the SU(∞)

Toda equation. One can check that

h := eU
(
dx2 + dy2

)
− dt2, ω := 2Utdt, (5.8)

is an EW structure if and only if the function U(x, y, t) satisfies the SU(∞) Toda

equation1, (
eU
)
tt
− Uxx − Uyy = 0. (5.9)

By theorem 5.1.1 the conformal class determined by

g = V
(
eU
(
dx2 + dy2

)
− dt2

)
− 1

V
(dz + α)2 (5.10)

is ASD and LKg = 0 where K = ∂z if V and α obey the generalised monopole

equation (5.6). In particular the integrability condition implies that V is a solu-

tion of the linearised SU(∞) Toda equation,(
V eU

)
tt
− Vxx − Vyy = 0. (5.11)

Furthermore, and this goes beyond theorem 5.1.1, the particular element g of

the conformal class [g] given by (5.10) is scalar–flat and pseudo–Kähler. The

vanishing of the scalar curvature is easy to confirm by direct computation, to see

the latter we define an almost complex structure J on M by

dt 7→ V −1 (dz + α) , dx 7→ dy, (5.12)

such that J2 = −1. Note that g is Hermitian with respect to this complex

structure, g(JX, JY ) = g(X, Y ). Integrability of J follows from the generalised

monopole equation (5.6). The pseudo–Kähler form Σ associated to J and g is

Σ := (dz + α) ∧ dt+ V eUdx ∧ dy, (5.13)

which again is closed by virtue of (5.6). LeBrun [71] also shows the converse2,

every scalar–flat pseudo–Kähler metric with a Killing vector is ASD and locally

of the form (5.10) subject to the SU(∞) Toda equation, its linearisation and the

generalised monopole equation.

1This equation will appear with different signs, we always refer to it as SU(∞) Toda equa-

tion.
2LeBrun’s theorem deals with Euclidean signature, but carries over to neutral signature [72].
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Scalar–flat para–Kähler metrics

In neutral signature there is some freedom in choosing space–like and time–like

directions, a slight modification of (5.8) yields the Weyl space given by

h := eU
(
dx2 − dy2

)
+ dt2, ω := 2Utdt, (5.14)

which is an EW structure if and only if

−
(
eU
)
tt
− Uxx + Uyy = 0. (5.15)

Again, the conformal class determined by this EW structure is ASD and has a

Killing vector ∂z if V and α satisfy (5.6), but the integrability condition of (5.6)

is now

−
(
V eU

)
tt
− Vxx + Vyy = 0. (5.16)

We define an involution S by (5.12) with the difference that S2 = 1, the eigen-

values of S are ±1 and the corresponding two–dimensional eigenspaces form an

integrable distribution by virtue of the generalised monopole equation (5.6). The

specific element of [g] given by

g = V
(
eU
(
dx2 − dy2

)
+ dt2

)
− 1

V
(dz + α)2 , (5.17)

is anti–Hermitian with respect to the involution, g(SX, SY ) = −g(X,Y ), and

scalar–flat. The associated para–Kähler form Σ = g(S(·), ·) is given by

Σ := − (dz + α) ∧ dt+ V eUdx ∧ dy, (5.18)

and closed by virtue of (5.6). Again, following LeBrun’s proof with S2 = 1, we

find that every scalar–flat para–Kähler metric with a Killing vector is ASD and

locally of the form (5.17). So we see that in neutral signature the SU(∞) Toda

equation gives rise to scalar–flat pseudo– and para–Kähler metrics, we will refer

to the EW structures (5.8) and (5.14) as EW structures in Toda–form.

Anti–self–dual null–Kähler metrics

A further example of an EW structure comes from the dispersionless Kadomtsev-

Petviashvili (dKP) equation [40], indeed the Ansatz

h := dy2 − 4dt (dx+ Udt) , ω := −4Uxdt (5.19)
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satisfies equation (5.4) if

(Ut − UUx)x − Uyy = 0, (5.20)

which is the dKP equation for U . It has been shown in [74] that an EW structure

is locally of dKP–form (5.19) whenever there is a covariantly constant vector l of

weight −1
2
,

Dl +
1

4
ω ⊗ l = 0. (5.21)

Here D is the connection of the EW space.

Remark 1: [74] There is some freedom in the choice of coordinates, the coor-

dinate transformation(
x̃, ỹ, t̃

)
:= (x+ f ′y + 2ff ′ + k, y + 2f, t) , (5.22)

where f := f(t), k := k(t) are arbitrary functions and f ′ := ft, leaves (5.19)

invariant if U transforms according to

Ũ
(
x̃, ỹ, t̃

)
:= U

(
x̃− f ′ỹ − k, ỹ − 2f, t̃

)
− ỹf ′′ − f ′2 − k′. (5.23)

The new dKP function Ũ
(
x̃, ỹ, t̃

)
then satisfies the dKP equation in the new

coordinates.

Remark 2: [74] We can also map t 7→ t̂, where t̂ := c(t) is an arbitrary

function with first derivative c′ etc. The transformation(
x̂, ŷ, t̂

)
:=

(
c′

1
3x+

c′′

6c′
2
3

y2, c′
2
3y, c(t)

)
, (5.24)

and a redefinition of U along

Û
(
x̂, ŷ, t̂

)
:= c′−

2
3U

(
c′−

1
3 x̂− c′′ŷ2

6c′
7
3

, c′−
2
3 ŷ, t

)
− x̂c′′

3c′2
+

ŷ2

18c′3

(
5c′′

c′
− 3c′′′

)
(5.25)

can be compensated by a change of the conformal scale of h. If we define ĥ := e2Ωh

where Ω := 2
3
ln c′ and change ω accordingly, then ĥ is of the form (5.19) with

hats over all coordinates and the dKP function Û , which accordingly satisfies the

dKP equation (5.20) in hatted coordinates.
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Now we use the correspondence between EW structures and ASD conformal

structures in four dimensions: If V is a solution of the linearised dKP equation,

Vxt − (UV )xx − Vyy = 0, (5.26)

and α is determined by (5.6), then

g = V
(
dy2 − 4dxdt− 4Udt2

)
− 1

V
(dz + α)2 (5.27)

represents an ASD conformal structure with a Killing vector K = ∂z. Again,

we can say more about g than what the Jones–Tod construction tells us about

the conformal class [g]. Namely, g is an example of an ASD null–Kähler metric,

which we define now.

Definition 5.1.2 [40] A null–Kähler structure on a four–manifold consists of a

metric g of neutral signature and a real spinor field ι ∈ Γ(S ′) parallel with respect

to the Levi–Civita connection. A null–Kähler metric is ASD if the self–dual part

of the Weyl tensor vanishes.

Null–Kähler metrics are always scalar–flat [40]. The relation to the equivalent

but less technical definition given at the start of this chapter is the following: The

isomorphism Λ2
+M
∼= S′ � S′ between the bundle of self–dual two–forms and the

symmetric tensor product of S′ with itself implies that the real self–dual two–form

Σ := ιA′ιB′ΣA′B′
is covariantly constant and null, i.e. Σ ∧ Σ = 0. Associated to

the null–Kähler metric is an endomorphism N using the relation (5.1) between

the metric and the null–Kähler form. By construction N is parallel and nilpotent

[72].

Similar to LeBrun’s characterisation of scalar–flat Kähler metrics we have the

following theorem by Dunajski, which provides a very useful explicit form of

real–analytic ASD null–Kähler metrics:

Theorem 5.1.3 [40] Let H := H(x, y, t) and W := W (x, y, t) be smooth, real–

valued functions on an open set W ⊂ R3 which satisfy

Hyy −Hxt +HxHxx = 0, (5.28)

Wyy −Wxt + (HxWxx)x = 0. (5.29)

Then

g = Wx

(
dy2 − 4dxdt− 4Hxdt

2
)
−W−1

x (dz −Wxdy − 2Wydt)
2 (5.30)
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is an ASD null–Kähler metric on a circle bundle M →W. All real–analytic ASD

null–Kähler metrics with a Killing vector preserving the parallel spinor arise from

this construction.

Defining U := Hx and V := Wx and differentiating (5.28) and (5.29) with respect

to x yields the dKP equation and its linearisation. The advantage of using the

potential forms (5.28), (5.29) is that one can solve the monopole equation and

determine α in (5.27) explicitly so that g in (5.30) depends on two functions H

and W only. If we pick a null tetrad for g by defining

e00
′
=
dz − 2Wydt

2Wx

, e01
′
= dx+Hxdt, (5.31)

e10
′
= 2Wxdt, e11

′
= −dz + 2Wxdy + 2Wydt,

then the two–forms Σ0′0′ and Σ0′1′ are closed. Here Σ0′0′ = dz ∧ dt is the null–

Kähler form associated to the parallel spinor ιA′ := (1, 0), note that LKΣ0′0′ = 0

and hence LKι = 0 as claimed. Despite the closure of Σ0′1′ the metric g is not

necessarily pseudo–Kähler: While the ideal spanned by eA0
′
is closed, the ideal

spanned by eA1
′
is not unless g is pseudo hyper–Kähler [40]. Therefore in general

the almost–complex structure associated with g and Σ0′1′ is not integrable.

5.2 Anti–self–dual Einstein and null–Kähler met-

rics

We now return to ASD Einstein metrics with a non–null symmetry, thus we

consider a particular representative g of an ASD conformal class, where g satisfies

the Einstein equation and has a conformal non–null Killing vector. As mentioned

above, in Euclidean signature there is a well–known result by Tod [65] which

establishes that every solution of the SU(∞) Toda field equation with a suitable

potential and conformal factor gives rise to an ASD Einstein manifold with a

Killing vector. In this section we ask a similar question in neutral signature with

regard to the dKP equation: Are there ASD Einstein metrics with a non–null

symmetry that project to an EW structure in dKP–form (5.19)? Equivalently,

starting with a metric g as in (5.30), is there a conformal factor Ω and a monopole

V = Wx such that the metric ĝ = e2Ωg is Einstein with non–zero cosmological

constant? The answer to this question will be very useful in section 5.3, where

we extend Tod’s result to neutral signature. It is given by the following
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Theorem 5.2.1 Let g be a real–analytic ASD null–Kähler metric with a non–

null Killing vector K and a parallel spinor ι whose Lie derivative LKι vanishes.
If g admits an Einstein metric ĝ within its conformal class then ĝ is a type N

gravitational wave embedded in a conformally flat background, it is given by

ĝ =
4

(w − Λt)2

[
dydz − dtdw +

(
f(w)− 1

2
ḟ(w) (w − Λt)

)
dz2
]
, (5.32)

where f(w) 6= 0 is an arbitrary function with derivative ḟ(w) := fw(w) and the

Killing vector is K = ∂z.

Note that in the limiting case f = 0 the Killing vector K becomes null. The

only non–trivial parts of the curvature of the metric (5.32) are the cosmological

constant Λ and the anti–self–dual Weyl spinor. Indeed, in the frame

e00
′
=

dz

w − Λt
, e10

′
=

2dt

w − Λt
, e01

′
=

dw

w − Λt
, e11

′
=

2dy − 2F (w, t)dz

w − Λt
,

(5.33)

where

F (w, t) :=
1

2
ḟ(w) (w − Λt)− f(w), (5.34)

we find that the only non–vanishing component of the Weyl spinor is

W0000 = (w − Λt)3
...
f . (5.35)

So we obtain a conformally flat metric for f(w) quadratic in w. The metric (5.32)

is of type N according to the Penrose–Petrov classification [20]. Direct inspection

of the metric shows it consists of a conformally flat background metric3 of neutral

signature and an additional term proportional to dz2, representing a gravitational

wave propagating with the speed of light along the null wave vector ∂y. Hence

the solution is a neutral signature version of the Kerr–Schild spacetimes explored

in [75], where the authors discuss gravitational waves in de–Sitter background.

The rest of this section is devoted to proving this theorem. To do so, we first

establish two lemmas.

Lemma 5.2.2 Let g be a real–analytic ASD null–Kähler metric with a non–null

Killing vector K such that LKι = 0. If g admits an Einstein metric ĝ within its

conformal class, then g has a second Killing vector K0 which is null.

3The neutral signature analogons of S4 and H4 coincide up to an overall sign of the metric.
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Proof: Suppose g is real–analytic ASD null–Kähler and consider a conformal

rescaling ĝ := e2Ωg, we choose to scale the symplectic structures on S and S′ by

ε̂AB := eΩεAB, ε̂A′B′ := eΩεA′B′ . (5.36)

Let ι ∈ S′ be the parallel spinor associated to the ASD null–Kähler metric g, it

transforms with weight 1 under changes of the conformal scale, ι̂A′ := eΩιA′ . This

is accompanied by a change of the Levi–Civita connection given by [20, 6]

∇̂AA′χB′ = ∇AA′χB′ −ΥAB′χA′ , (5.37)

for any primed spinor χB′ , where ΥAA′ := ∇AA′Ω. By definition ∇ι = 0, this is

no longer true for the conformally rescaled metric, instead we have

∇̂AA′ ι̂B′ = α̂Aε̂A′B′ , (5.38)

for α̂A := ιA
′
ΥAA′ . Note that neither α̂A′ nor ΥAA′ are conformally invariant, we

denote α̂ with a hat to indicate that we use ε̂AB to raise the index. Taking second

derivatives and using the Ricci spinor identities [20]

2ABιB′ = %ABA′B′ιA
′
, (5.39)

2A′B′ιC′ = ΨA′B′C′D′ιD
′ − R

12
ι(A′ εB′)C′ , (5.40)

where

2AB := ∇A′(A∇B)
A′
, 2A′B′ := ∇A(A′∇A

B′), (5.41)

we find

∇̂AA′α̂B = −%̂ABA′B′ ι̂B
′ − R̂

24
ι̂A′ ε̂AB. (5.42)

So if %̂ABA′B′ ι̂B
′
= 0, which is weaker than the Einstein condition, then

∇̂AA′ (α̂Aι̂A′) = α̂Aα̂B ε̂A′B′ − R̂

24
ι̂A′ ι̂B′ ε̂AB (5.43)

is antisymmetric, so K0 := α̂Aι̂A
′
∂̂AA′ is a null Killing vector of ĝ. Now let

eAA
′
be the null tetrad of g defined in (5.31) with dual vector fields ∂AA′ , then

êAA
′
= eΩeAA

′
is a null tetrad of ĝ with dual vector fields ∂̂AA′ . Now we can

determine the null Killing vector,

K0 = e−Ω∂A1′Ω ∂A1′ =
e−Ω

2Wx

(Ωy∂x − Ωx∂y) . (5.44)
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Since K0 annihilates Ω, it is also a null Killing vector of the null–Kähler metric

g. 2

While the Lie–derivatives of both g and ĝ with respect to K0 vanish, the

vector K is a pure Killing vector for the real–analytic null–Kähler metric g but

in general only a conformal Killing vector of the Einstein metric ĝ. If K happens

to be a pure Killing vector of ĝ, then the null Killing vector K0 descends to the

associated EW structure:

Lemma 5.2.3 Let g be a real–analytic ASD null–Kähler metric with a non–null

Killing vector K and a parallel spinor ι such that LKι = 0. If g admits an

Einstein metric ĝ with the same Killing vector K within its conformal class, then

g and ĝ have a null Killing vector K0 that descends to the EW structure (h, ω).

Two possibilities arise:

• the Killing vector K0 is space–like with respect to h, then K0 = ∂y and

ĝ =
1

(W0(s) +W1(r))
2

[
V
(
dy2 − 4 (1− rF (s)) drds

)
− 1

V
(dz − V dy)2

]
,

(5.45)

with V := ∂sW0(s)
1−rF (s)

for some functions W0(s), W1(r) and F (s),

• the Killing vector K0 is null with respect to h, then K0 = ∂s and

ĝ =
−1

(W0(r)y +W1(r))
2

[
W0(r)

(
dy2 − 4drds

)
− 1

W0(r)
(dz −W0(r)dy)

2

]
,

(5.46)

for some functions W0(r) and W1(r).

Proof: Using the same notation as above, (5.31) is a null tetrad for g, the Einstein

metric is ĝ = e2Ωg and K = ∂z. Now lemma 5.2.2 implies that g and ĝ have a null

Killing vector K0 of the form (5.44). Since K is a pure Killing vector of g and ĝ,

the conformal factor Ω cannot depend on z. As W does not depend on z either,

K0 commutes with K and so descends to a Killing vector of the Einstein–Weyl

structure (h, ω). Note that while K0 is null with respect to g, it is only null with

respect to h if Ωx = 0. We consider independently the cases where K0 is null

with respect to h, and the case Ωx 6= 0 where K0 is space–like with respect to

h. First assume Ωx 6= 0 and impose LK0 ĝ = 0, as explained above this implies
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LK0h = LK0ω = 0. These two equations are equivalent to4

(
∂y −

(yat
2a

+ bt

)
∂x

) Ω

Wx

Hx

 =

 0

0
aatt−2(at)

2

2a2
y + bt − at

a
b

 , (5.47)

and

ae−Ω +W −W2(y, t) = 0. (5.48)

Here a(t), b(t) andW2(y, t) are arbitrary functions arising as constants of integra-

tion. The functions H and W are furthermore subject to equations (5.28) and

(5.29). Exploiting the symmetries [40] of the dKP equation we can set a = 1 and

b = 0. To achieve this, we use a combination of (5.22) and (5.24) and introduce

coordinates

x̂ :=
√
a

(
x+

y2at
4a

+ by

)
,

ŷ := ay − 2F, (5.49)

t̂ := t̂(t),

where dF = −abdt and dt̂ = a
3
2dt and an adapted dKP function Û and monopole

Ŵx̂ by

Û :=
1

a

[
U − xat

2a
− y2att

4a
+

3y2

8

(at
a

)2]
+ y

bat − 2abt
2a2

+
b2

a2
, (5.50)

Ŵ :=
W√
a
.

Then the equations (5.47) reduce to

∂ŷ

 Ω

Ŵx̂

Û

 = 0. (5.51)

Here Ŵ satisfies the Monopole equation (5.29) in the hatted coordinates and we

have

Ŵ = −
√
ae−Ω + Ŵ2(ŷ, t̂). (5.52)

4The individual components of the two equations can be found in Appendix B.
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The metric h now reads h = 1
a2
ĥ, where

ĥ = dŷ2 − 4dt̂
(
dx̂+ Ûdt̂

)
, (5.53)

with Killing vector K0 = ∂ŷ and Û satisfies the dKP equation (5.20) in the hatted

coordinates. So our change of coordinates corresponds to a change of conformal

scale in the Einstein–Weyl structure. Note that V = aV̂ , where V̂ = Ŵx̂, and so

a can be absorbed into the conformal factor by defining Ω̂ = Ω− 1
2
ln a. Since the

one–form transforms trivially,

dz −Wxdy − 2Wydt = dz − Ŵx̂dŷ − 2Ŵŷdt̂, (5.54)

we then have

ĝ = e2Ω̂
[
V̂ ĥ− 1

V̂

(
dz − Ŵx̂dŷ − 2Ŵŷdt̂

)2]
(5.55)

as well as

Ŵ = −e−Ω̂ + Ŵ2(ŷ, t̂). (5.56)

This reduces the general situation to the case where a = 1 and b = 0 and therefore

we can now drop the hats and ignore a and b in equations (5.47) and (5.48).

Next, we show that we can also set W2(y, t) = 0. We have so far imposed

LK0h = 0, which already implies LK0Wx = 0. Then we are left with

LK0 (dz − 2Wxdy − 2Wydt) = 0, (5.57)

which is equivalent toWyy = 0. ThusW is linear in y andWy a function of t only.

But then the term 2Wydt can be absorbed by a change of the coordinate z, which

will not effect any other part of the metric. This effectively sets W2(y, t) = 0, so

we now have

Ωy =Wy = Uy = 0, and W = −e−Ω. (5.58)

These relations greatly simplify the dKP and monopole equation, so that we can

now solve them. The dKP equation reads

Ut − UUx = α(t), (5.59)

where again α(t) is a constant of integration. The method of characteristics

implies that the general solution is of the form

U = f(x+ tU + g1(t)) + g2(t), (5.60)
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where g1(t) and g2(t) are functions of t satisfying

∂tg1(t) = −tα(t), ∂tg2(t) = α(t), (5.61)

and f is an arbitrary function of s := x + tU + g1(t). We can now make a

hodograph [74, 76, 77] transform (x, y, t)→ (s, y, r), where r := t and

∂s = (1− t∂sf(s)) ∂x, ∂r = ∂t − U∂x. (5.62)

Using

Ux =
∂sf(s)

1− t∂sf(s)
, Ut =

U∂sf(s)

1− t∂sf(s)
+ α(t), (5.63)

we have

ds =
dx+ Udt

1− t∂sf(s)
, (5.64)

and thus

h = dy2 − 4 (1− t∂sf(s)) drds. (5.65)

We now turn to the monopole equation which, using Wy = 0, is

(Wt − UWx)x = 0, (5.66)

or, after the hodograph transform, simply Wrs = 0. So we find

W = −W0(s)−W1(r), (5.67)

and consequently, defining F (s) = ∂sf(s),

ĝ =
1

(W0(s) +W1(r))
2

[
V
(
dy2 − 4 (1− tF (s)) dtds

)
− 1

V
(dz − V dy)2

]
(5.68)

as claimed. We now turn to the second case, where Ωx = 0 and K0 is null. Again

we impose LK0h = LK0ω = 0, this implies5

Wxx = Wxy = Hxxx = Hxxy = 0, (5.69)

eΩ =
1

a(t)y + b(t)
, ∂t ln

(
Wx

a(t)

)
−Hxx = 0.

5See Appendix B for the individual components of these two equations.
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Here a(t) and b(t) are constants of integration. In combination with the dKP

equation, these relations imply that the dKP function is of the form

U(x, y, t) = U0(t)x+
1

2
y2
(
∂tU0(t)− U0(t)

2
)
+ U1(t)y + U2(t). (5.70)

Such a dKP function leads to a conformally flat Einstein–Weyl structure. To see

this, we again use the symmetries of the dKP equation and consider the change

of coordinates combining (5.22) and (5.24),

x̂ := c′
1
3

(
x+

y2

6
(ln c′)

′
)
− f ′c′

2
3y − g,

ŷ := c′
2
3y − 2f, (5.71)

t̂ := c(t)

where c′ := ∂tc(t) and (ln c′)′ := 3U0(t), f
′′ := −c′− 4

3U2(t), g
′ := −c′− 2

3U3(t)− f ′2.

One can check that under this coordinate transformation we have

g = e2Ω̂
[
Ŵx̂

(
dŷ2 − dx̂dt̂

)
− 1

Ŵx̂

(
dz − Ŵx̂dŷ − 2Ŵŷdt̂

)2]
, (5.72)

for Ŵ := c′−
1
3W , Ω̂ := Ω + 1

3
ln c′ with Ŵx̂ŷ = Ŵx̂x̂ = 0 and e−Ω̂ = Ŵx̂ŷ +W1(t).

Furthermore Ŵ satisfies the Monopole Equation in hatted coordinates. So we

can drop the hats and work with (5.69) using H = 0. The Monopole equation

then leads to

W = −1

2
W ′

0(t)y
2 − xW0(t) + yW2(t) +W3(t), (5.73)

where W0(t),W2(t) and W3(t) are arbitrary functions. The last term W3(t) is

irrelevant for the metric and can be dropped, while the term linear in y can be

absorbed into the definition of the coordinate z. But then the final form of the

metric arises from the transformation (t, x)→ (r, s),

ĝ =
−1

(W0(r)y +W1(r))
2

[
W0(r)

(
dy2 − 4drds

)
− 1

W0(r)
(dz −W0(r)dy)

2

]
.

(5.74)

2

We are now in a position to prove the theorem established on the first page of

this section:
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Proof of Theorem 5.2.1: By definition the Einstein metric ĝ has a conformal

Killing vector K. Now a well-known result which goes back to Brinkmann [78],

see also Corollary 2.10 in [79], states that any four–dimensional Einstein mani-

fold with non–zero cosmological constant that admits a proper conformal Killing

vector (i.e. a conformal Killing vector which is neither a homothety nor a Killing

vector) is conformally flat. Conformally flat Einstein metrics are the special case

of (5.32) when
...
f = 0. Hence we continue with Killing vectors K that are not

proper conformal, i.e. we assume K is either a homothety or a Killing vector. If

K is a homothety then it is necessarily a scalar curvature collineation [80] and

hence

LKg = cg, LKΛ = −cΛ, (5.75)

for some constant c. But Λ 6= 0 implies c = 0 and so K must be (pure) Killing

vector. So now the assumptions of lemma 5.2.3 are satisfied and ĝ is of the

form (5.45) or (5.46). Imposing the Einstein equations amounts to the conditions

%̂AB0′0′ = 0 and R̂ = 12Λ in the frame given by (5.31). The case where K0

is null with respect to the EW structure is trivial: Imposing constant scalar

curvature enforces W0(r) = CΛ, but then the Weyl spinor vanishes identically so

this case is reduced to conformally flat spacetimes as well. More interesting is the

case where K0 is space–like with respect to the EW structure, here the constant

scalar curvature condition is simply

∂rW1 = −Λ, (5.76)

so W1(r) = −Λr. Then all that remains of %̂AB0′0′ = 0 is one single ODE for f(s)

and W0(s):

∂sfW0∂ssW0 + ∂sf(∂sW0)
2 −W0∂sW0∂ssf − Λ∂ssW0 = 0. (5.77)

This equation determines f(s) once W0(s) has been chosen, and can be solved

for f(s),

f(s) = −Λ
∫
W0∂sW0

(∫
∂ssW0

(W0∂sW0)2
ds+ C

)
ds. (5.78)

However this leaves us with a quadrature that cannot be performed in general

entering the final form of the metric. A way to circumvent this is to interchange

dependent and independent variables. We thus consider the function s(w) where
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w = W0 replaces the coordinate s and f(s(w)) is now also a function of w.

Equation (5.77) now reads

ḟ − wf̈ + Λs̈ = 0, (5.79)

which is readily integrated to give

2f − wḟ + Λṡ− k = 0, (5.80)

Here k is a constant of integration and ḟ = ∂wf . Note that we cannot have

2f = k, as then either Λ = 0 or ṡ = 0, implying V = 0 in (5.45). Redefining

f → Λf + k
2
, absorbing a factor of 2 into the coordinate y and using (5.80) to

replace ṡ in ĝ yields the final form of the metric given by (5.32). 2

5.3 Einstein metrics and the SU(∞) Toda equa-

tion

In section 5.1.2 we mentioned three sources of examples of EW structures, leading

to scalar–flat pseudo–Kähler, scalar–flat para–Kähler and anti–self–dual null–

Kähler metrics respectively. In the previous section we discussed ASD Einstein

metrics arising from solutions of the dKP equation. These metrics are conformally

equivalent to a null–Kähler metric. Now we turn to the relation of ASD Einstein

metrics and pseudo–Kähler or para–Kähler metrics generated by solutions of the

SU(∞) Toda equation. We shall see that locally all real–analytic ASD Einstein

metrics with a non–null Killing vector are conformally pseudo– or para–Kähler.

5.3.1 From Einstein metrics to the SU(∞) Toda equation

Tod [65, 17] showed that ASD Einstein metrics in Euclidean signature with a

Killing vector are always conformally scalar–flat Kähler. Using LeBrun’s charac-

terisation of Euclidean scalar–flat Kähler metrics, this boils down to EW struc-

tures in Toda–form. In neutral signature, the same construction is possible and

certainly leads to examples of ASD Einstein metrics. However, we need to take

into account the existence of para–Kähler and null–Kähler metrics. We restrict

attention to the real–analytic category, as we need to make use of theorem 5.1.3.
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Theorem 5.3.1 Let g be a real–analytic ASD Einstein metric in neutral signa-

ture with a non–null Killing vector K, where dK+ is the SD part of the exterior

derivative of the one–form K dual to K. Then ∗g (dK+ ∧ dK+) 6≡ 0 in any neigh-

bourhood, if c := ∗g (dK+ ∧ dK+) 6= 0 in a point, then locally g is conformally

scalar–flat pseudo–Kähler (c > 0) or para–Kähler (c < 0) and of the form

g =
V

t2
(
eU
(
dx2 ± dy2

)
∓ dt2

)
− 1

V t2
(dz + α)2 , (5.81)

with Killing vector K = ∂z and potential

V (x, y, t) := ±tUt − 2

2Λ
. (5.82)

Proof: The fact that ∗g (dK+ ∧ dK+) is not identically zero follows from theorem

5.2.1 using [40]. To prove the second half of the statement we follow [65, 17],

translating it to neutral signature.

Assume that g is ASD Einstein in neutral signature with a non–null Killing vector

K. The Killing equation implies

∇aKb = φABεA′B′ + ψA′B′εAB, (5.83)

where φAB and ψA′B′ are symmetric spinors. Using the identity

∇a∇bKc = RbcadK
d, (5.84)

which holds for every Killing vector, we obtain from (5.83)

∇AA′φBC = −W−
BCADK

D
A′ − ΛεA(BKC)A′ , (5.85)

∇AA′ψB′C′ = −ΛεA′(B′KC′)A. (5.86)

The second of these equations shows that ψA′B′ satisfies the twistor equation [20],

∇A(A′ψB′C′) = 0. (5.87)

Note that dK+ = 1
2
ψA′B′eB

A′ ∧ eBB′
, so

c := ∗g (dK+ ∧ dK+) = ψA′B′ψA
′B′
. (5.88)

First we want to rule out that this wedge product is identically zero, so assume

the converse. Note that dK anti–self–dual leads to Λ = 0 using (5.86), so c ≡ 0
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implies dK+ is null. Then we must have ψA′B′ = ιA′ιB′ for some constant spinor

ιA′ ∈ S′. The twistor equation (5.87) implies

∇AA′ (ιB′ιC′) = εA′(B′ ιC′)∇AD′ιD
′ − ιD′∇AD′

(
ι(B′
)
εC′)A′ , (5.89)

using the Leibniz rule on the left–hand side we get

∇AA′ (ιB′ιC′) = ιC′∇AA′ιB′ + ιB′∇AA′ιC′ . (5.90)

Now choose a second constant spinor oA′ ∈ S′ such that oA′ιA
′
= 1. Then con-

tracting both sides of (5.89) with oA
′
oB

′
oC

′
, oA

′
ιB

′
ιC

′
and oA

′
oB

′
ιC

′
+ ιA

′
oB

′
oC

′

respectively we find

∇A(A′ ιB′) = 0. (5.91)

But this equation is conformally invariant and implies that g is conformally null–

Kähler [40]. We will now deduce that the conformally equivalent null–Kähler

metric ĝ has the same Killing vector as g. From (5.86) we have

0 = − 1

2Λ
∇AA′

(
ψB′C′ψB

′C′
)
= − 1

Λ
ψB

′C′∇AA′ψB′C′ = ψA′B′KA
B′
, (5.92)

since dK+ is null. If instead we contract (5.83) with the Killing vector K, we find

K dK = φABK
B
A′ + ψA′B′KA

B′
, (5.93)

K ∗g (dK) = −φABKB
A′ + ψA′B′KA

B′
,

and thus, using (5.92),

K dK+ = 0. (5.94)

Now LKg = 0 implies LKdK+ = 0, and so K d (dK+) = 0. Suppose the null–

Kähler metric is ĝ = e2Ωg, then the null–Kähler form Σ = e3ΩdK+ is closed.

Therefore

0 = K dΣ = K
(
d(e3Ω) ∧ dK+ + e3Ωd (dK+)

)
= 3e3Ω (K dΩ) dK+. (5.95)

Consequently the conformal factor does not depend on z and thus g and ĝ have

the same Killing vector K. Note that furthermore LKΣ = 0 and thus LKι = 0.

As we are working the real–analytic category, g is conformally equivalent to a

real–analytic ASD null–Kähler metric with the same Killing vector K. However

g is also Einstein and such metrics we classified in theorem 5.2.1. So g is of the
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form (5.32) with ∗g (dK+ ∧ dK+) = 0. A short computation reveals6 that this

happens only if f(w) = 0, which is excluded. So c is not identically zero. Note

that this does not exclude the possibility of c vanishing at a point or even along

a hypersurface.

Let p be a point where c is non–vanishing, then there is a neighbourhood U of p

where c 6= 0. On U we define a scalar 2ψ2 := |c| and an endomorphism J by

J ba := ψ−1ψB
′

A′ εBA, (5.96)

so that J2 = ∓1 and thus J is an almost–complex structure or an involution

depending on the sign7 of c. It follows from the twistor equation (5.87) that J is

integrable [81, 67], thus the metric g is (anti)–Hermitian. From the definition of

ψ and equation (5.86) we find

±2ψ∇AA′ψ = ψB
′C′∇AA′ψB′C′ = −ΛψA′B′KA

B′
. (5.97)

Thus J maps K to an exact form, if we define the coordinate t := 1
2
Λψ−1 we have

J (K) = ∓dt
t2
. (5.98)

Next, we introduce a second coordinate z by dz (K) = 1 and a function V related

to the norm of the Killing vector,

g(K,K) = −
(
V t2
)−1

. (5.99)

If c > 0 then g is Hermitian with respect to J , if c < 0 then it is anti–Hermitian,

so

g

(
dt

t2
,
dt

t2

)
= ±g (K,K) = ∓

(
V t2
)−1

. (5.100)

Since J is integrable, we can now introduce two further coordinates x, y such that

dx and dy annihilate both K and J(K). The metric is then of the form

g =
V

t2
(
eU
(
dx2 ± dy2

)
∓ dt2

)
− 1

V t2
(dz + α)2 , (5.101)

for some function U and one–form α. Comparison with (5.8) and (5.14) shows

that g is conformal to a scalar–flat pseudo– or para–Kähler metric with conformal

6For details we refer the reader to the next section 5.3.2.
7Throughout this proof the upper sign corresponds to c > 0 whereas the lower sign corre-

sponds to c < 0.

83



CHAPTER 5. ASD EINSTEIN METRICS WITH SYMMETRY

factor t−2 if U , V and α satisfy the necessary conditions. We start with α, we

have

K dK = d (g(K,K)) , K dK+ = −ψ J(K) = ±Λdt

2t3
. (5.102)

Using these two relations as well as (5.101) to compute K ∗ (dK) leads to

dα = Vxdy ∧ dt± Vydt ∧ dx∓ eU
(
Vt +

2V

t
(1± ΛV )

)
dt ∧ dy. (5.103)

This has an integrability condition that we need to return to. To find conditions

on U and V we need to impose the curvature restriction that g be ASD Einstein.

This yields the SU(∞) Toda equation for U and determines the form of the

monopole,

±2ΛV = tUt − 2. (5.104)

Using (5.104) the equation for α simplifies to

dα = Vxdy ∧ dt± Vydt ∧ dx∓
(
eUV

)
t
dx ∧ dy, (5.105)

with integrability condition

−Vxx ∓ Vyy ±
(
eUV

)
tt
= 0, (5.106)

which is satisfied by V from (5.104). So away from singular points ASD Ein-

stein metrics with a Killing vector are scalar–flat pseudo– or para–Kähler with a

monopole given by (5.104), as claimed. 2

Remark: Some more insight into the underlying reasons for this division into

pseudo–Kähler and para–Kähler metrics can be gained from a closer look at S′�S′,

the space of self–dual two–forms. In Euclidean signature every point on a unit

two–sphere corresponds to a self–dual two–form which, contracting it with the

metric, gives rise to an endomorphism which squares to −1, an almost complex

structure. Not so in split signature, if we define three non–degenerate self–dual

two–forms by

S =: Σ0′0′ − Σ1′1′ , I := Σ0′0′ + Σ1′1′ , T := Σ0′1′ , (5.107)

then we have

I ∧ I = −S ∧ S = −T ∧ T = vol4. (5.108)
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Consequently the endomorphisms obtained by contraction with the metric, which

we will also denote by I, S and T , satisfy

I2 = −S2 = −T 2 = −1, IST = 1, (5.109)

and

g(X, Y ) = g(IX, IY ) = −g(SX, SY ) = −g(TX, TY ), (5.110)

for any real vectorsX and Y . The almost complex structures aI+bS+cT are thus

parametrised by the two–sheeted hyperboloid a2−b2−c2 = 1, while we obtain an

involution for any point on a2−b2−c2 = −1. The behaviour of an endomorphism

under the action of a Killing vector is determined by dK, its self–dual component

corresponds to the action on S′. Anti–self–dual dK implies Λ = 0 via (5.86),

so this can happen at most on a hyper–surface. Excluding such points, we have

a non–trivial action on the two hyperboloids of almost–complex structures and

involutions with a fixed point given by dK+. Depending on whether this fixed

point lies on the one–sheeted or two–sheeted hyperboloid, we obtain an invariant

involution or almost–complex structure. Appropriate rescaling will make this

endomorphism integrable, and so we have a conformally scalar–flat pseudo– or

para–Kähler metric.

5.3.2 Einstein, dKP and SU(∞) Toda

Having reduced ASD Einstein metrics with a Killing vector to EW structures in

Toda–form, we now take a closer look at the class of Einstein metrics (5.32) arising

from the dKP equation and reduce them to the form (5.81) following theorem

5.3.1. So let ĝ be an Einstein metric given by (5.32), the non–null Killing vector

K = ∂z has the dual one–form

K =
2

(w − Λt)2
(dy − 2F (w, t)dz) , (5.111)

where F (w, t) is defined in (5.34). Thus the self–dual part of the exterior deriva-

tive is

dK+ =
4

(w − Λt)3
(Λf(w)dt ∧ dz + dy ∧ dw + F (w, t)dw ∧ dz) , (5.112)

which satisfies

∗ĝ (dK+ ∧ dK+) =
8Λf(w)

(w − Λt)2
. (5.113)
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The wedge product is non–zero since f(w) 6= 0 as claimed. According to theorem

5.3.1 the metric ĝ is conformally equivalent to a scalar–flat pseudo– or para–

Kähler metric g of the form (5.81). Indeed, if we define g := e2Ωĝ with conformal

factor

Ω := ln (w − Λt)− 1

2
ln (4|Λf(w)|) , (5.114)

then Σ := e3ΩdK+ is closed and satisfies

∗g (Σ ∧ Σ) = ±2, (5.115)

depending on the sign of |Λf(w)| = ±Λf(w). With the pseudo– or para–Kähler

form

Σ =
1

2|Λf(w)| 32
(Λf(w)dt ∧ dz − dw ∧ (dy − F (w, t)dz)) , (5.116)

and the metric g at hand, we compute the endomorphism J and find

J : dz 7→ 1√
|Λf(w)|

dw, dt 7→ 1√
|Λf(w)|

(dy − F (w, t)dz) , (5.117)

with J2 = ∓1. One can check that J is integrable using the definition of F (w, t).

Now according to the algorithm from the proof of theorem 5.3.1 we need to use

two coordinates (T, Z) with dZ(K) = 1 and T = ΛeΩ. The remaining coordinates

must be annihilated by K and J(K), where

J(K) =
1

|Λf(w)|
(−Λf(w)∂w − F (w, t)∂t) , (5.118)

one such function is y, another one is determined by

dX :=
Λ2

2
√
|Λf(w)|

(Λf(w)dt− F (w, t)dw) . (5.119)

This is locally well–defined since the right–hand side is closed. In summary we

have a set of new coordinates given by (T,X, Y, Z) = (ΛeΩ, X, 1
2
Λ2y, z), the metric

ĝ is given by

ĝ =
1

T 2

|Λf |
Λ2F

[
1

Λ2f2

(
±dX2 + dY 2

)
∓ dT 2

]
− 1

T 2

Λ2F

|Λf |

(
dZ − 1

2Λ2F
dY

)2

.

(5.120)
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Here f = f(w(X,T )) and F = F (w(X,T ), t(X,T )) are functions of two variables

X,T determined by the free function f(w) and F (w, t) in (5.34). Comparison

with (5.81) shows that (5.120) is in Toda–form if we choose U = −2 ln |Λf | and
the potential V = |Λf |

Λ2F
. And indeed, U satisfies the SU(∞) Toda equation as

can be checked implicitly using the definition of the coordinates X and T . Fur-

thermore, the potential is of the form ±2ΛV = T∂TU − 2 as required, and the

generalised monopole equation is satisfied.

Since every EW structure in Toda–form lifts to an Einstein metric for a suit-

able choice of potential and we have classified all EW structures of dKP–form

(5.19) that lift to an Einstein metric, we have singled out all EW structures that

lie in the overlap of dKP and Toda.

Theorem 5.3.2 Any EW structure (W , [h], D) that admits a metric h1 ∈ [h] in

Toda–form (5.8) or (5.14) as well as a metric h2 ∈ [h] in dKP–form (5.19) is

given by

h = dy2 − 8F (w, t)dtdw, ω = −2Λwḟ(w)

F (w, t)
dt, (5.121)

in some local coordinates (t, w, y) on W, where f(w) 6= 0 is a free function that

uniquely determines F (w, t) = 1
2
ḟ(w) (w − Λt)− f(w).

Equivalently, this is a classification of all ASD conformal structures with a non–

null symmetry that admit both a real–analytic null–Kähler as well as a scalar–

flat pseudo– or para–Kähler metric each with a Killing vector, such conformal

structures hence contain an element of the form (5.32).
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CHAPTER 6

Conclusions and Outlook

In this thesis we studied anti–self–duality equations in four and eight dimensions.

All examples were related to manifolds of special Riemannian holonomy, among

these hyper–Kähler, Quaternion–Kähler and Spin(7)–manifolds.

In chapter 3 we introduced the octonionic instanton equation, an ’anti–self–

duality’ field equation on background with exceptional holonomy Spin(7). We

used the identification of R8 with R4 × R4, or the curved analogue when one

of the R4 factors is replaced by a hyper–Kähler four–manifold (M4, g4) to con-

struct explicit solutions of the ’anti–self–duality’ equations in eight dimensions

with gauge group SU(2). The solutions all admit a four–dimensional symmetry

group along the R4 factor, and thus they give rise to solutions of the non–abelian

Seiberg–Witten equations on M4. Due to the restrictions imposed by this sym-

metry group, the holonomy of the background is reduced to hyper–Kähler.

We have analysed three cases, where M4 is R4 with the flat metric, the Eguchi–

Hanson gravitational instanton, and finally the co–homogeneity one hyper–Kähler

metric with Bianchi II group acting isometrically with three–dimensional orbits.

In this last case the gauge fields are regular away from a domain wall in the five–

dimensional space–time with the metric g4 − dt2. Alternatively, the background

is a Lie group–manifold with a hyper–Kähler metric conformal to the homoge-

neous left–invariant metric and the singularity is only present in the conformal

factor. While some of the contents of chapter 3 are previous work of the author

in collaboration with his supervisor, the results on curved background are new.

The symmetry reduction to four dimensions was based on the holonomy reduction
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SU(2)× SU(2) ⊂ Spin(7). An analogous reduction from R8 with split signature

metrics may provide a source of Lorentz invariant gauged solitons in 3 + 1 di-

mensions. Moreover, there are other special realisations of Spin(7) in terms of

the Lie groups G2, SU(3) and SU(4). Each realisation leads to some symmetry

reduction [82, 83], and picks a preferred gauge group, where an ansatz analogous

to (3.22) can be made.

Witten [10] considered a complex–valued connection A = A+ iΦ on bundles over

four–manifolds of the form M4 = R×M3 with the product metric g4 = dw2 + g3,

where (M3, g3) is a three–dimensional Riemannian manifold. He showed that the

gradient flow equation

dA
dw

= − ∗3
δI
δĀ

(6.1)

for the holomorphic Chern–Simons functional I yields two equations correspond-

ing to the imaginary parts of (3.19). In this setup neither A nor Φ have a dw

component.

The example (3.32) fits into this framework: g3 is the flat metric on R3, and

the corresponding ODE is the reduction of the gradient flow equations. In all

other examples in our paper the underlying four manifold is also of the form

M4 = R ×M3, where M3 is a three–dimensional Lie group with left–invariant

one–forms σi. Moreover in all cases there exists a gauge such that neither A nor

Φ have components in the R–direction orthogonal to the group orbits. However

the Riemannian metric g4 = dw2 + hij(w)σiσj on M4 is not a product metric

unless hij does not depend on w. It remains to be seen whether the gradient flow

formulation of the non–abelian Seiberg–Witten equations can be achieved in this

more general setup.

The dogma of twistor theory suggests that all symmetry reductions of the four–

dimensional anti–self–duality equations should be integrable, as this is true for the

non–reduced equations via the twistor correspondence. No such correspondence

is known for the octonionic instanton equation, and therefore one can only hope

but not expect to find explicit solutions for symmetry reductions of it. A more

comprehensive approach to the octonionic instanton equation would be the at-

tempt to come up with a construction for Spin(7)–manifolds similar to the twistor

correspondence. While many of the properties of ASD four–manifolds are tied to

the existence of α–planes, the same can be said for Spin(7)–manifolds and Cayley

planes [84, 85]. The moduli space of Cayley planes through an arbitrary point of
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a Spin(7)–manifoldM is given by the homogeneous space1 G = Spin(7)
/
Sp(1)3,

thus the analogon of the correspondence space of the twistor construction is a

G–bundle F over M . As it turns out the homogeneous space G, which is isomor-

phic to SO(7)
/
SU(2)3, is a Quaternion–Kähler space appearing on Wolf’s list

[86, 62]. Now in the twistor correspondence of ASD Einstein manifolds the fibre

CP 1 has a complex structure, and the twistor space as a whole is in fact Kähler

[70] with respect to a canonical metric. Salamon [87] introduced the notion of

a quaternionic structure on a 4n–manifold, which in some sense is the quater-

nionic analogon of a complex structure. In terms of G–structures a quaternionic

structure is a GL(n,H) · H–structure admitting a torsion–free connection. As

a Quaternion–Kähler space, the 12–dimensional homogeneous space G has such

a quaternionic structure and so do Cayley planes. It is possible to patch these

structures together to an almost quaternionic structure on the 20– dimensional

space of Cayley planes F . This part of the construction is based merely on linear

algebra and the dimensions work out as naive counting confirms. The interesting

and hard part is to investigate the intrinsic torsion of this almost quaternionic

structure to see if or under what conditions it vanishes. The crucial point is that

quaternionic manifold admit twistor spaces themselves, translating the whole con-

struction into algebraic terms. Depending on the results of these studies on could

then aim to interpret the lift of the octonionic instanton equation to F .

In chapter 4 we considered Quaternion–Kähler four–manifolds, which by def-

inition are anti–self–dual Einstein. We introduced their local description by

Przanowski’s function K and showed that metrics of this form are anti–self–

dual Einstein provided K satisfies Przanowski’s equation (4.2).

We continued with twistorial techniques to construct a Lax Pair, i.e. two vec-

tor fields lA that commute if and only if Przanowski’s equation is satisfied. The

existence of this Lax Pair confirms that Przanowski’s equation is integrable, as

one would expect from an equation arising as a special case of anti–self–duality

equations in four dimensions.

Furthermore, we encountered a conformally invariant differential operator act-

ing on the line bundle Ll,m as well as recursion relations relating solutions of

the associated Laplace equation to cohomology classes on twistor space. Special

cases are the conformal Laplacian and the linearised Przanowski operator. The

1Here Sp(1)3 = Sp(1)× Sp(1)× Sp(1)
/
Z2.
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latter annihilates perturbations δK of Przanowski’s function and thus describes

deformations of the underlying manifold. We explained how the corresponding

deformation of the twistor data is determined by the associated cohomology class

H1(T,O(2)). We also constructed a contour integral formula for δK in terms of

this cohomology class. If desired, it would be straight–forward to write down a

contour integral for all other values of (l,m). The Lax Pair as well as the differ-

ential operator and its relation to deformation theory with the resulting integral

formula are new results obtained by the author and have not appeared in the

literature before.

The next section was dedicated to the procedure of recovering a complex struc-

ture and Przanowski’s function K with the associated choice of holomorphic

coordinates from twistor data. We illustrated the necessary steps explicitly using

a number of examples including the non–trivial cases of CP 2 with the Fubini–

Study and C̃P 2 with the Bergmann metric. The latter is an interesting starting

point for deformations, as CP 2 with the Fubini–Study metric is rigid. A similar

algorithm to obtain Przanowski’s function from twistor data has been employed

in the single–fibration picture in [16], while the version appearing in this thesis

is adapted to the double–fibration picture.

Comparison of the results in chapter 4 with sections 2.4 and 2.5 reveals that we

have extended many of the well–known results [13, 37, 14] valid for the heavenly

function on ASD Ricci–flat manifolds to Przanowski’s function on a background

with non–zero cosmological constant. This includes in particular a Lax Pair for

Przanowski’s function, an integral formula producing perturbations from coho-

mology classes and an algorithm to deduce the explicit form of the ASD Einstein

metric from twistor data. However, one feature that is missing is the recursion

operator. In the twistor correspondence for ASD Ricci–flat metrics every coeffi-

cient of a power series of an element of H1(T,O(2)) serves as a perturbation of

the heavenly function, hence one can retrieve new solutions from old ones2. In the

twistor correspondence for ASD Einstein metrics, only a single coefficient of a sim-

ilar power series satisfies the linearised Przanowski equation, hence the recursion

relation will recover the entire power series – and hence the cohomology class –

from a single coefficient, but not provide new perturbations of Przanowski’s func-

tion. It should be interesting to see whether one can somehow cure this problem

and provide a recursion operator for perturbations of Przanowski’s function.

2See the remark in section 2.5
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Another useful extension of the present work would be to provide Przanowski’s

function for the family of quaternionic Taub–Nut metrics [88]. These are the

family of four–dimensional ASD Einstein metrics that have as conformal infinity

the Berger sphere, i.e. the squashed 3–sphere with metric

ds2 = σ2
1 + σ2

2 + λσ2
3, (6.2)

where (σ1, σ2, σ3) is a basis of left invariant one–forms satisfying dσi =
∑
j,k

εijkσj ∧

σk and λ is a parameter. Quaternionic Taub–Nut metrics are parametrised by

two free parameters, the cosmological constant Λ and the squashing parameter

λ in the metric at conformal infinity [89]. Note that for λ = 1 the Berger sphere

reduces to the round metric on S3, the four–metric corresponding to this case

is simply H4. Taking the limit where λ → ∞ leads to a degenerate metric at

conformal infinity, in this limit the four–metric reduces to C̃P 2. So both of the

examples with positive scalar curvature that we treated in section 4.4 appear

within this family. Hence Przanowski’s function for a quaternionic Taub–Nut

metric should interpolate between (4.72) and (4.62). Note that in comparison S4

and CP 2 are rigid in the sense that any deformation is no longer ASD Einstein,

hence they cannot be part of any continuous family of ASD Einstein metrics.

Section 5.2 suggests a closer investigation of Przanowski’s function for neutral sig-

nature ASD Einstein metrics. In the holomorphic category one would expect that

restricting to a different real slice is all that is necessary. However, Przanowski’s

formulation for ASD Einstein metrics might well extend to non–analytic metrics

in neutral signature, which are not captured by a twistor treatment. For further

insights into that matter it might prove helpful to study Przanowski’s original

work [15, 90], which made no use of twistor theory.

Looking beyond the four–dimensional case, it would be interesting to see how

much of the local description of a Quaternion–Kähler metric by a scalar func-

tion with one associated second–order partial differential equation remains valid

in higher dimensions. Some comments in this direction have been made in [16]

and some rigorous claims appear in [91], however in a much more physical setup.

This generalisation to higher dimensions is more easily approached in the single

fibration picture [5], which works for Quaternion–Kähler manifolds of arbitrary

dimension. The work of Swann [70] shows that one can always construct a Kähler

structure on the non–projective twistor space, hence providing a symplectic struc-

ture. Using LeBrun’s [35] one–to–one correspondence between symplectic and

contact structures we have a contact structure on the projective twistor space,
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which we can use to find canonical coordinates and deduce the existence of po-

tentials necessary to express the metric via an associated Hermitian form. One

would certainly expect the number of PDEs to rise with the dimension of the

Quaternion–Kähler manifold, but could hope that the spirit of the Przanowski

construction carries through.

In chapter 5 we turned to ASD Einstein metrics with a symmetry. In Eu-

clidean signature these metrics have been thoroughly investigated [65, 17, 66],

here we focused on neutral signature metrics with a non–null symmetry. The

symmetry can be exploited to reduce the four–metric to a conformal structure on

a three–dimensional space, an Einstein–Weyl structure. Examples of EW spaces

can be constructed from integrable equations such as the SU(∞) Toda equation

and the dispersionless Kadomtsev-Petviashvili (dKP) equation. Toda’s equation

leads to scalar–flat Kähler metrics in Euclidean signature and scalar–flat pseudo–

and para–Kähler metrics in neutral signature. Furthermore we obtain anti–self–

dual null–Kähler metrics in neutral signature from the dKP equation.

In Euclidean signature all ASD Einstein metrics with a Killing vector are con-

formally scalar–flat Kähler and hence project to EW structures that arise from

Toda’s equation. Conversely, every solution of Toda’s equation leads to an ASD

Einstein metric with a symmetry. To investigate the relationship between ASD

Einstein metrics with non–null symmetry in neutral signature and pseudo–, para–

and null–Kähler metrics in four dimensions was the aim of this last chapter of

the thesis.

The first result was the classification of all ASD Einstein metrics that admit a

real–analytic null–Kähler metric with a Killing vector within the same conformal

class. It follows from the classification that in this case both metrics must have

the same Killing vector unless they are conformally flat. This classification is a

new result that has not appeared elsewhere.

We then continued to formulate a neutral signature version of Tod’s result, show-

ing that around non–singular points all real–analytic ASD Einstein metrics with a

Killing vector are conformally pseudo– or para–Kähler. This includes all metrics

of the classification above, which hence contain an ASD Einstein metric, a null–

Kähler metric and a pseudo– or para–Kähler metric within the same conformal

class. So as a corollary we could clarify and answer affirmatively the open ques-

tion of whether there are anti–self–dual null–Kähler metrics with a Killing vector

that are conformally scalar–flat pseudo– or para–Kähler. Metrics of this type are

94



precisely the ones classified at the start of section (5.2), the corresponding EW

structures arise from the SU(∞) Toda as well as the dKP equation.

Three nearby questions that this discussion leaves open present themselves read-

ily: It would be preferable to eliminate twistorial arguments from the proofs of

the theorems underlying the discussion, so as to be able to extend the results to

all ASD Einstein metrics in neutral signature with non–null symmetry and drop

the analyticity condition. In fact the proof of theorem 5.1.3 is the only one that

uses twistor theory, hence an alternative proof based on purely geometrical and

spinorial arguments would be desirable.

Secondly it would be interesting to study ASD Einstein metrics with symmetry

around what we called singular points. These are points in which

(dK)+ ∧ (dK)+ = 0, (6.3)

where (dK)+ is the self–dual part of the exterior derivative of the one–form K

dual to the Killing vector K. This equation cannot hold in a full neighbourhood

of a point, as theorem 5.3.1 states. However, the theorem doesn’t rule out that

(6.3) is satisfied in isolated points or even on entire hypersurfaces of M. It would

be interesting to see whether this can actually occur, and if so, what is the form of

the metric in such singular points? Note that metric (5.32) satisfies (6.3) along a

hypersurface if f(w) has a simple zero and changes sign along that hypersurface.

However, in this example the Killing vector K is null on the hypersurface, in

fact the hypersurface marks the transition of K from a space–like to a time–like

vector. The question we are raising here concerns the existence of metrics whose

Killing vector is non–null everywhere and yet equation (6.3) holds.

Thirdly, as it stands theorem 5.2.1 only works in one direction: start with a

real–analytic ASD null–Kähler metric with a non–null Killing vector, then every

Einstein metric conformal to it is of the form specified by the theorem. If instead

we start with an ASD Einstein metric with a non–null Killing vector, then what

is the form of a conformal null–Kähler metric? Note that in general this null–

Kähler metric only has a conformal Killing vector and hence need not be in the

form given by theorem 5.1.3. In fact this amounts to extending theorem 5.2.1 to

real–analytic ASD null–Kähler metrics with a conformal Killing vector.
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Appendix A

Proof of Proposition 3.3.1. The non–abelian Seiberg–Witten equations (3.19)

for a g–valued connection A and a g⊗H–valued Higgs field Φ = Φ0+ iΦ1+ jΦ2+

kΦ3 expanded in real and imaginary parts become

σab (Fab − Φa ∧ Φb) = 0, (.0A4)

−σ̃abDaΦb = 0, (.0A5)

DaΦa = 0. (.0A6)

Here DaΦb = ∂aΦb + [Aa,Φb]. Now, substituting (3.22) and using (3.21) in equa-

tion (.0A4) yields

3

4
∂a∂

aG+ σac∂
a∂cG+ σcd∂

dGσabd(ec)ab +
3

4
|∂G|2 − 3

4
|∂H|2 = 0. (.0A7)

The term σcd∂
dGσabd(ec)ab decomposes as

σcd∂
dGσabd(ec)ab =

1

4

[
Ca

da + εda
bcCa

bc

]
∂dG 1l2 + εea

bcCa
bc∂

dGσed. (.0A8)

The closure condition dσ = 0 yields

σa[bC
a
cd] = 0, (.0A9)

which is a system of 12 linear equations. These equations imply the four relations

εda
bcCa

bc = 2Ca
da. (.0A10)

Then the identity–valued part of (.0A4) becomes

3

4
∂a∂

aG+
3

4
Ca

ba∂
bG+

3

4
|∂G|2 − 3

4
|∂H|2 = 0. (.0A11)

The first two terms of these combine to give 2G, as can be seen by computing

2G = ∗d ∗ dG = ∗d( 1
3!
εabcd∂aGe

b ∧ ec ∧ ed) = (∂a∂
a + Cb

ab∂
a)G. (.0A12)
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The other components of (.0A4) are given by(
εea

bcCa
bcσ

ed − σabCd
ab

)
∂dG = 0. (.0A13)

Using the spinor decomposition [21]

Ca
bc = εA

′
B′ΓABCC′ + εABΓ

A′
B′CC′ (.0A14)

with the anti–self–duality conditions dσ = 0 equivalent to

ΓA
′
B′CC′ = 0 (.0A15)

gives

ΓABAC′σC
′B′
∂BB′G = 0, (.0A16)

where σA
′B′

= σ(A′B′) and σab = σA
′B′
εAB. Thus the three–dimensional distribu-

tion spanned by ΓABA(C′∂B′)B is integrable and G is in its kernel. We now move

to equation (.0A5), using the ansatz (3.22) for A and Φ we find

σ̃abσ
bc∂a∂cH + 2σ̃abσ

adσbc∂(cG∂d)H = σ̃abσ
b
c (∂

a∂cH − 2∂aH∂cG) = 0. (.0A17)

Here we had to explicitly evaluate and symmetrise a product of three σ–matrices

to obtain the last line. And finally, for equation (.0A6) we obtain from (3.21)

∂a
(
σab∂bH

)
+ σabσ

a
c∂
bG∂cH − σacσab∂bG∂cH = σab

(
∂a∂bH − 2∂aG∂bH

)
= 0.

(.0A18)

2
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In the notation of lemma 5.2.3 we provide the components of LK0h = LK0ω = 0,

where K0 is defined in (5.44) and (h, ω) is an EW structure that lifts to a real–

analytic null–Kähler metric g. They are

WxΩ
2
x +WxxΩx −WxΩxx = 0,

WxΩxΩy +WxxΩy −WxΩxy = 0,

WxΩxΩy +WxyΩx −WxΩxy = 0, (.0A19)

WxΩxΩt +WxtΩx −WxΩxt + 2Ω2
yWx + 2WxyΩy − 2WxΩyy = 0,

WxΩyΩt +WxtΩy −WxΩyt −WxΩyHxx +WxΩxHxy = 0,

and

ΩxHxxy − ΩyHxxx = 0, (.0A20)

which is already implicitly contained in the system above. Furthermore, the

vanishing of the Lie derivative LK0α of the one–form α = dz −Wxdy − 2Wydt

arising from the generalised monopole equation (5.6) in conjunction with the

potential leading to the null–Kähler metric g is equivalent to

WxΩ
2
y −WxΩyy + ΩxWyy = 0. (.0A21)

As one would expect, we obtain a linear combination of the same six equations

when setting

%̂ABA′B′ιB
′
= 0, (.0A22)

for a metric ĝ = e2Ωg.
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List of related publications

The following list comprises the scientific work of the author that was published

before or throughout the development of this thesis.

Moritz F. Högner

Quaternion-Kähler four-manifolds and Przanowski’s function

J. Math. Phys. 53, (2012), hep-th/1205.3977

Quaternion-Kähler four-manifolds, or equivalently anti-self-dual Einstein man-

ifolds, are locally determined by one scalar function subject to Przanowski’s

equation. Using twistorial methods we construct a Lax Pair for Przanowski’s

equation, confirming its integrability. The Lee form of a compatible local com-

plex structure, which one can always find, gives rise to a conformally invariant

differential operator acting on sections of a line bundle. Special cases of the

associated generalised Laplace operator are the conformal Laplacian and the lin-

earised Przanowski operator. We provide recursion relations that allow us to

construct cohomology classes on twistor space from solutions of the generalised

Laplace equation. Conversely, we can extract such solutions from twistor coho-

mology, leading to a contour integral formula for perturbations of Przanowski’s

function. Finally, we illuminate the relationship between Przanowski’s function

and the twistor description, in particular we construct an algorithm to retrieve

Przanowski’s function from twistor data in the double-fibration picture. Using a

number of examples, we demonstrate this procedure explicitly.
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LIST OF RELATED PUBLICATIONS

Maciej Dunajski, Moritz F. Högner

SU(2) solutions to self–duality equations in eight dimensions

J. Math. Phys. 53, (2012), hep-th/1205.3977

We consider the octonionic self–duality equations on eight–dimensional man-

ifolds of the form M8 = M4 × R4, where M4 is a hyper–Kähler four–manifold.

We construct explicit solutions to these equations and their symmetry reduc-

tions to the non–abelian Seiberg–Witten equations on M4 in the case when the

gauge group is SU(2). These solutions are singular for flat and Eguchi–Hanson

backgrounds. For M4 = R× G with a co–homogeneity one hyper–Kähler metric,

where G is a nilpotent (Bianchi II) Lie group, we find a solution which is singular

only on a single–sided domain wall. This gives rise to a regular solution of the

non–abelian Seiberg–Witten equations on a four–dimensional nilpotent Lie group

which carries a regular conformally hyper–Kähler metric.

Moritz F. Högner

Anti–self–duality over eight–manifolds

Diploma Thesis (2010), Ruprecht–Karls–Universität Heidelberg

We consider Yang-Mills theory with gauge group SU(2) over eight-manifolds.

Using an extension of anti-self-duality to eight-manifolds with Spin(7)-structure,

we attempt to find explicit solutions for the Yang-Mills equations. Our first

example is flat-space: Imposing a four-parameter translational symmetry, we re-

duce the anti-self-dual Yang-Mills equations for a specific choice of Ansatz to a

second-order ODE for a scalar function. From this equation we obtain two ex-

plicit solutions, neither of which is regular. Then we consider the corresponding

symmetry reduction of the Yang-Mills action to four dimensions and investigate

the topological properties of this model. A scaling argument shows that no so-

lutions with finite action exist. This leads us to consider a curved manifold as

our second example: MEH ×R4, where MEH is the Eguchi-Hanson gravitational

instanton. Similar to the first instance, we choose an Ansatz and impose trans-

lational symmetry. Again we succeed in reducing the anti- self-dual Yang-Mills

equations to a second-order ODE. We cannot find any explicit solutions to this

ODE.
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List of symbols

R,C,H,O real and complex numbers, quaternions and octonions

M , Mn (pseudo-)Riemannian manifold (of dimension n)

M complex Riemannian manifold

(w, w̄, z, z̄), (s, t, x, y) coordinates on 4–manifolds

U0, U1 neighbourhoods on M

H,K Heavenly and Przanowski’s function on M

d exterior derivative

∂, ∂̄ Dolbeault operators

K,K0, K1 vector fields

LK Lie derivative wrt vector field K

TM tangent bundle of M

ΛnM, Λ(m,n)M bundle of differential n- or (m,n)-forms on M

L(l,m) line bundle on M

ω,K one–forms on M

K ω contraction of one–form ω with vector field K

< ·, ·, ·, ... > span of vector fields or one–forms

g, h metrics on M or M
∇ Levi–Civita connection

Γ Christoffel symbols of ∇
P parallel transport wrt ∇
∗ Hodge star operator

R Riemannian curvature of ∇
W± self–dual and anti–self–dual Weyl curvature

% trace–free Ricci curvature

Λ cosmological constant

eΩ conformal factor
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LIST OF SYMBOLS

I, J complex structures on M

S, T involutive structures on M

N nilpotent structure on M

Σ,Σi,ΣAA′ self–dual two–forms on M or M
B Lee form wrt a complex structure

∆,Θ, Ξ global parallel differential four–forms on M

G Lie group

g Lie algebra

T1, T2, T3 basis of su(2)

σ0, σ1, ... Maurer–Cartan one–forms on G

A,A g–valued connections on M8 and M4

Φ g–valued Higgs field on M4

F,F g–valued curvature of A and A
eAA

′
null tetrad on the complexified cotangent bundle of M

S′, S primed and unprimed spin bundle over M

oA
′
, oA sections of S′ and S

εA′B′ , εAB symplectic structures on S′ and S
F projective correspondence space, dimCF = 5

F non–projective correspondence space, dimCF = 6

T projective twistor space, dimCT = 3

T non–projective twistor space, dimCT = 4

CP 1 Riemann sphere

O(−1) tautological bundle over CP 1

ξA
′
, ξ homogeneous and inhomogeneous coordinates on CP 1

ι involution on CP 1

u0, u1, v0, v1 homogeneous coordinates on CP 3

Υ Euler vector field on O(−1)
Hn (T,O(m)) n–th cohomology group with values in O(m)

Ψ cohomology class in Hn (T,O(m))

τ homogeneous one–form on F

τF , τT the one–form τ written in inhomogeneous coordinates on F and T

ρ volume form on T

dA, lA vector fields spanning the twistor distribution in F and F

S1, S2 hypersurfaces in F

S ′
1, S

′
2 hypersurfaces in T

ιA parallel unprimed spinor on M
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[22] M. Dunajski and M. F. Högner, J. Geom. Phys. 62, 1747 (2012),

arXiv:1109.4537.
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