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Abstract

A dispersionless integrable system underlyiig- 1)-dimensional hyperCR Einstein—Weyl structures is obtained as a sym-
metry reduction of the anti-self-dual Yang—Mills equations with the gauge groupsBjffTwo special classes of solutions are
obtained from well known soliton equations by embedddidf1, 1) in Diff (sh.
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1. From ASDYM equationsto Einstein—-Weyl as symmetry reductions of anti-self-dual Yang—Mills

structures (ASDYM), or as special curved anti-self-dual confor-
mal structure$6,7,16,22]

The idea of allowing infinite-dimensional groups of In this Letter we shall give the first example of a

diffeomorphisms of some manifold as gauge groups  dispersionless integrable system ir-2 dimensions
provides a link between the Yang—Mills—Higgs theo- which fits into this framework Theorem 1.1 As a
ries onR” and conformal gravity theories d&i* x X. spin-off we shall obtain a gauge-theoretic characteri-
The gauge-theoretic covariant derivatives and Higgs sation of hyperCR Einstein—-Weyl spaces ir-2 di-
fields are reinterpreted as a frame of vector fields mensions Theorem 1.2 We shall also construct two
thus leading to a conformal structufl]. This pro- explicit new classes of solutions to the systni)out
gram has lead, among other things, to a dual descrip- of solutions to the nonlinear Schrédinger equation, and
tion of certain two-dimensional integrable systems: the Korteweg—de Vries equation (formulé&2) and
(2.4)).

— . Consider a pair of quasi-linear PDEs
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for two real functionst = u(x, y, t), w = w(x, y, t). These equations are equivalent to the commutativity
This integrable system has recently been used to char-of the Lax pair

acterise a class of Einstein—Weyl structures i 2
dimensiond4]. It has also appeared in other contexts
[8,17-19]as an example of2 + 1)-dimensional dis-
persionless integrable models.

Egs.(1.1) arise as compatibility conditiond., M]
= 0 of an overdetermined system of linear equations
LY = MV =0, where¥ =¥ (x,y,t, ) is a func-
tion, A is a spectral parameter, and the Lax pair is given
by

L=0, —wd, —1dy,

M =0, + ud, — Ad,. (1.2)

This should be contrasted with Lax pairs for other
dispersionless integrable systeifis10,13,14,20,23]
which contain derivatives w.r.t. the spectral parameter.

The first equation irf1.1) resembles a flatness con-
dition for a connection with the underlying Lie algebra
diff (¥), where ¥ = S or R. The following result
makes this interpretation precise.

Theorem 1.1. The systen(l.1) arises as a symmetry
reduction of the anti-self-dual Yang—Mills equations
in signature(2, 2) with the infinite-dimensional gauge
group Diff (¥) and two commuting translational sym-
metries exactly one of which is null. Any such symme-
try reduction is gauge equivalent {t.1).

Proof. Consider the flat metric of signatu(g, 2) on
R* which in double null coordinates” = (1, z, 7, 7)
takes the form

ds? = dr df — dz d?,

and choose the volume element ddf A dz A dz.

Let A e T*R* ® g be a connection one-form, and let
F be its curvature two-form. Herg is the Lie al-
gebra of some (possibly infinite-dimensional) gauge
groupG. In alocal trivialisationA = A, dy* andF =
(1/2)F,, dy* A dy”, where F,, = [D,, D,] takes

its values ing. Here D, = 9, — A, is the covari-
ant derivative. The connection is defined up to gauge
transformationsA — b=1Ab — b~1db, where b ¢
Map(R*, G). The ASDYM equations o, areF =
—xF, or

F,=0, F;—F:=0,  F:=0.

L=D,—AD:, M=D.—\D;

for every value of the parameter

We shall require that the connection possesses two
commuting translational symmetries, one null and one
non-null which in our coordinates are # andd; di-
rections, where =y + ¥, 7 =y — y. Choose a gauge
such thatA; = 0 and one of the Higgs field® = A;
is constant. The Lax pair has so far been reduced to
L=2d —W —1d,,

M=3,—-U—-®, (1.3)

where W = A, and U = A, are functions of(y, t)
with values in the Lie algebrg, and® is an element
of g which does not depend ofy, r). The reduced
ASDYM equations are

W —,U+[W,Ul=0,  3,U+[W,®]=0.

Now chooseG = Diff (¥), where X' is some one-
dimensional manifold, so th&at/, W, @) become vec-
tor fields onX'. We can choose a local coordinaten
X such that

(p:ax’

W =w(x,y,1)d, U=—u(x,y, ), (1.4)

whereu, w are smooth functions oR3. The reduced
Lax pair (1.3) is identical to(1.2) and the ASDYM
equations reduce to the pair of PDEs1). O

Recall that a Weyl structure on anrdimensional
manifold W consists of a torsion-free connecti@n
and a conformal structufé] which is compatible with
D inasense thabh = o ® h for some one-fornm and
h € [h]. We say that a Weyl structure is Einstein—Wey!l
if the traceless part of the symmetrised Ricci tensor
of D vanishes. The three-dimensional Einstein—Weyl
structure is called hyperCR-5,9]if its mini-twistor
spacg11] is a holomorphic bundle ovetP?.

In [4] it was demonstrated that if = 3, and[A]
has signaturé+ + —) then all Lorentzian hyperCR
Einstein—Weyl structures are locally of the form

h = (dy + udr)® — 4(cx + wdr) dr,

o =uydy + (uuy + 2u,) dt, (1.5)
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whereu, w satisfy (1.1). This result combined with
Theorem 1.Yields the following coordinate indepen-
dent characterisation of the hyperCR Einstein—Weyl
condition.

Theorem 1.2. The ASDYM equations i@ + 2 di-
mensions with two commuting translational sym-
metries one null and one non-null, and the gauge
group Diff (X) are gauge-equivalent to the hyperCR
Einstein—Weyl equations i+ 1 dimensions.

This is a Lorentzian analogue of a theorem proved
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arises from the reduced Lax péir.3) with
1 -

W= 2 (—I¢lP0+ gyt — dyty),

U=—¢t_ —¢r4,

Now we replace the matrices by vector fields Bn
corresponding to the embeddingsaf1, 1) in diff (X)

D =i1p.

1 21',\78 1 —2[,\7a
T R T
19
00— ——,
07 T ox

in [2] in the Euclidean case. The readers should note and read off the solution td..1) from (1.4)

that in [2] the result is formulated in terms of the
Hitchin system, and not reductions of the ASDYM
system.

2. Reductionsto KdV and NLS

Reductions of the ASDYM equations witGd =
SU(1, 1) by two translations (one of which is null)
lead to well-known integrable systems KdV, and NLS
[15]. The groupSU(1, 1) is a subgroup of Diffs1)
which can be seen by considering the Mobius action
of SU(L, 1)
al+p
Bs+a’
on the unit disc. This restricts to the action on the

circle as|M(¢)| =1 if |¢| = 1. We should therefore
expect that Eq(1.1)contains KdV and NLS as its spe-

r—> M) = | — 181> =1,

cial cases (but not necessarily symmetry reduction).
To find explicit classes of solutions {&.1) out of so-
lutions to KdV and NLS we proceed as follows. Con-
sider the matrices
0 1 . 00
0 0)’ -~ \1 o)
o 1 0
o=\g _1):
with the commutation relations
[+, -] =10,

[z0, T4] = 274,
The NLS equation

[t0, T-]1=—27_.

1
iy ==y +0101%, d=0(,1) (2.1)

1 ((/T)eZix

U= —

2i
1 1, 5. - Y
w=§|¢|2+z(32u¢y+e 21x¢y).

_ ¢e—2ix)’
2.2)

The second equation ifl.1) is satisfied identically,
and the first is satisfied i (y, ¢) is a solution to the
NLS equation2.1).

Analogous procedure can be applied to the KdV
equation

v=uv(y,1). (2.3)
The Lax pair for this equation is given K§§.3) with

4v; — vyyy — 6vvy, =0,

1
W=gqgyty — K7 — (ECIyy +‘IQy>TOa

U:r+—qr0—(qy+q2)r_, D =1_,
where

1 1, 5
k= Z‘Iyyy +4qqyy + ECIy +4q°qy,

andv = 2g,. Now we choose such that

0
r+—>—x2—, _ —, 0 —> 2x —,
0 9x

X
and read off the expressions feandw

u =x2+2xq+qy +4°,
w:—xzqy —x(qyy +29qy) — . (2.4)

The second equation {1.1) holds identically, and the
first is satisfied ifv is a solution tq(2.3).

In Refs.[17,18]the so-called ‘universal hierarchy’
was studied and a general procedure of constructing its
differential reductions was proposed. The sysfér)
arises from the first two flows of this hierarchy, but it
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is not clear how the differential constraints imposed in
[17,18] can be understood from the Diff') point of
view. It would be interesting to see whether our reduc-
tions to NLS and KdV are ‘differential’ in the sense of
the above references.

One remark is in place: there is a standard pro-
cedure[12] of constructing anti-self-dual conformal
structures with symmetries out of EW structures in 3
or 2+ 1 dimensions. The procedure is based on solv-
ing a linear generalised monopole equation on the EW
background. Moreover, the hyperCR EW structures al-
ways lead to hyper-complex conformal structures with
a tri-holomorphic Killing vector, and it is possible to
choose a monopole such that there exist a Ricci-flat
metric in the conformal clasi®]. Any hyperCR EW
(1.5) structure given in terms of KdV, or NLS poten-
tial by (2.4)or (2.2) will therefore lead to &+ + — —)
ASD Ricci-flat metric with a tri-holomorphic homo-
thety. The explicit formulae for the metric in terms
of solutions to(1.1) can be found in[4]. Another
class of ASD Ricci-flat metrics has been constructed
from KdV and NLS, by embeddin§U(1, 1) in a Lie
algebra of volume preserving transformations of the
Poincaré dis¢6]. These metrics generically do not ad-
mit any symmetries, and therefore are different from
ours.
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