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Abstract

A dispersionless integrable system underlying(2+ 1)-dimensional hyperCR Einstein–Weyl structures is obtained as a
metry reduction of the anti-self-dual Yang–Mills equations with the gauge group Diff(S1). Two special classes of solutions a
obtained from well known soliton equations by embeddingSU(1,1) in Diff (S1).
 2005 Elsevier B.V. All rights reserved.
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1. From ASDYM equations to Einstein–Weyl
structures

The idea of allowing infinite-dimensional groups
diffeomorphisms of some manifoldΣ as gauge group
provides a link between the Yang–Mills–Higgs the
ries onR

n and conformal gravity theories onRn × Σ .
The gauge-theoretic covariant derivatives and Hi
fields are reinterpreted as a frame of vector fie
thus leading to a conformal structure[21]. This pro-
gram has lead, among other things, to a dual desc
tion of certain two-dimensional integrable system
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as symmetry reductions of anti-self-dual Yang–M
(ASDYM), or as special curved anti-self-dual confo
mal structures[6,7,16,22].

In this Letter we shall give the first example of
dispersionless integrable system in 2+ 1 dimensions
which fits into this framework (Theorem 1.1). As a
spin-off we shall obtain a gauge-theoretic charact
sation of hyperCR Einstein–Weyl spaces in 2+ 1 di-
mensions (Theorem 1.2). We shall also construct tw
explicit new classes of solutions to the system(1.1)out
of solutions to the nonlinear Schrödinger equation,
the Korteweg–de Vries equation (formulae(2.2) and
(2.4)).

Consider a pair of quasi-linear PDEs

(1.1)ut + wy + uwx − wux = 0, uy + wx = 0,
.
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for two real functionsu = u(x, y, t), w = w(x,y, t).
This integrable system has recently been used to c
acterise a class of Einstein–Weyl structures in 2+ 1
dimensions[4]. It has also appeared in other conte
[8,17–19]as an example of(2 + 1)-dimensional dis-
persionless integrable models.

Eqs.(1.1)arise as compatibility conditions[L,M]
= 0 of an overdetermined system of linear equati
LΨ = MΨ = 0, whereΨ = Ψ (x, y, t, λ) is a func-
tion,λ is a spectral parameter, and the Lax pair is gi
by

L = ∂t − w∂x − λ∂y,

(1.2)M = ∂y + u∂x − λ∂x.

This should be contrasted with Lax pairs for oth
dispersionless integrable systems[1,10,13,14,20,23
which contain derivatives w.r.t. the spectral parame

The first equation in(1.1)resembles a flatness co
dition for a connection with the underlying Lie algeb
diff(Σ), whereΣ = S1 or R. The following result
makes this interpretation precise.

Theorem 1.1. The system(1.1) arises as a symmetr
reduction of the anti-self-dual Yang–Mills equatio
in signature(2,2) with the infinite-dimensional gaug
groupDiff (Σ) and two commuting translational sym
metries exactly one of which is null. Any such sym
try reduction is gauge equivalent to(1.1).

Proof. Consider the flat metric of signature(2,2) on
R4 which in double null coordinatesyµ = (t, z, t̃ , z̃)

takes the form

ds2 = dt dt̃ − dzdz̃,

and choose the volume element dt ∧ dt̃ ∧ dz ∧ dz̃.
Let A ∈ T ∗

R
4 ⊗ g be a connection one-form, and l

F be its curvature two-form. Hereg is the Lie al-
gebra of some (possibly infinite-dimensional) gau
groupG. In a local trivialisationA = Aµ dyµ andF =
(1/2)Fµν dyµ ∧ dyν , where Fµν = [Dµ,Dν] takes
its values ing. Here Dµ = ∂µ − Aµ is the covari-
ant derivative. The connection is defined up to ga
transformationsA → b−1Ab − b−1 db, where b ∈
Map(R4,G). The ASDYM equations onAµ areF =
−∗F , or

Ftz = 0, Ft t̃ − Fzz̃ = 0, Ft̃z̃ = 0.
These equations are equivalent to the commutati
of the Lax pair

L = Dt − λDz̃, M = Dz − λDt̃

for every value of the parameterλ.
We shall require that the connection possesses

commuting translational symmetries, one null and o
non-null which in our coordinates are in∂t̃ and∂ỹ di-
rections, wherez = y + ỹ, z̃ = y − ỹ. Choose a gaug
such thatAz̃ = 0 and one of the Higgs fieldsΦ = At̃

is constant. The Lax pair has so far been reduced

(1.3)L = ∂t − W − λ∂y, M = ∂y − U − λΦ,

whereW = At and U = Az are functions of(y, t)

with values in the Lie algebrag, andΦ is an elemen
of g which does not depend on(y, t). The reduced
ASDYM equations are

∂yW − ∂tU + [W,U ] = 0, ∂yU + [W,Φ] = 0.

Now chooseG = Diff (Σ), where Σ is some one-
dimensional manifold, so that(U,W,Φ) become vec-
tor fields onΣ . We can choose a local coordinatex on
Σ such that

Φ = ∂x,

(1.4)W = w(x,y, t)∂x, U = −u(x, y, t)∂x,

whereu,w are smooth functions onR3. The reduced
Lax pair (1.3) is identical to(1.2) and the ASDYM
equations reduce to the pair of PDEs(1.1). �

Recall that a Weyl structure on ann-dimensional
manifold W consists of a torsion-free connectionD
and a conformal structure[h] which is compatible with
D in a sense thatDh = ω⊗h for some one-formω and
h ∈ [h]. We say that a Weyl structure is Einstein–We
if the traceless part of the symmetrised Ricci ten
of D vanishes. The three-dimensional Einstein–W
structure is called hyperCR[3–5,9] if its mini-twistor
space[11] is a holomorphic bundle overCP

1.
In [4] it was demonstrated that ifn = 3, and[h]

has signature(+ + −) then all Lorentzian hyperCR
Einstein–Weyl structures are locally of the form

h = (dy + udt)2 − 4(dx + w dt)dt,

(1.5)ω = ux dy + (uux + 2uy)dt,
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whereu,w satisfy (1.1). This result combined with
Theorem 1.1yields the following coordinate indepen
dent characterisation of the hyperCR Einstein–W
condition.

Theorem 1.2. The ASDYM equations in2 + 2 di-
mensions with two commuting translational sy
metries one null and one non-null, and the gau
group Diff (Σ) are gauge-equivalent to the hyperC
Einstein–Weyl equations in2+ 1 dimensions.

This is a Lorentzian analogue of a theorem prov
in [2] in the Euclidean case. The readers should n
that in [2] the result is formulated in terms of th
Hitchin system, and not reductions of the ASDY
system.

2. Reductions to KdV and NLS

Reductions of the ASDYM equations withG =
SU(1,1) by two translations (one of which is nul
lead to well-known integrable systems KdV, and N
[15]. The groupSU(1,1) is a subgroup of Diff(S1)

which can be seen by considering the Möbius ac
of SU(1,1)

ζ → M(ζ) = αζ + β

β̄ζ + ᾱ
, |α|2 − |β|2 = 1,

on the unit disc. This restricts to the action on t
circle as|M(ζ)| = 1 if |ζ | = 1. We should therefore
expect that Eq.(1.1)contains KdV and NLS as its spe
cial cases (but not necessarily symmetry reductio
To find explicit classes of solutions to(1.1)out of so-
lutions to KdV and NLS we proceed as follows. Co
sider the matrices

τ+ =
(

0 1
0 0

)
, τ− =

(
0 0
1 0

)
,

τ0 =
(

1 0
0 −1

)
,

with the commutation relations

[τ+, τ−] = τ0,

[τ0, τ+] = 2τ+, [τ0, τ−] = −2τ−.

The NLS equation

(2.1)iφ = −1
φ + φ|φ|2, φ = φ(y, t)
t

2
yy
arises from the reduced Lax pair(1.3)with

W = 1

2i

(−|φ|2τ0 + φyτ− − φ̄yτ+
)
,

U = −φτ− − φ̄τ+, Φ = iτ0.

Now we replace the matrices by vector fields onΣ

corresponding to the embedding ofsu(1,1) in diff(Σ)

τ+ → 1

2i
e2ix ∂

∂x
, τ− → − 1

2i
e−2ix ∂

∂x
,

τ0 → 1

i

∂

∂x
,

and read off the solution to(1.1) from (1.4)

u = 1

2i

(
φ̄e2ix − φe−2ix

)
,

(2.2)w = 1

2
|φ|2 + 1

4

(
e2ix φ̄y + e−2ixφy

)
.

The second equation in(1.1) is satisfied identically
and the first is satisfied ifφ(y, t) is a solution to the
NLS equation(2.1).

Analogous procedure can be applied to the K
equation

(2.3)4vt − vyyy − 6vvy = 0, v = v(y, t).

The Lax pair for this equation is given by(1.3)with

W = qyτ+ − κτ− −
(

1

2
qyy + qqy

)
τ0,

U = τ+ − qτ0 − (
qy + q2)τ−, Φ = τ−,

where

κ = 1

4
qyyy + qqyy + 1

2
qy

2 + q2qy,

andv = 2qy . Now we choosex such that

τ+ → −x2 ∂

∂x
, τ− → ∂

∂x
, τ0 → 2x

∂

∂x
,

and read off the expressions foru andw

u = x2 + 2xq + qy + q2,

(2.4)w = −x2qy − x(qyy + 2qqy) − κ.

The second equation in(1.1)holds identically, and the
first is satisfied ifv is a solution to(2.3).

In Refs.[17,18] the so-called ‘universal hierarchy
was studied and a general procedure of constructin
differential reductions was proposed. The system(1.1)
arises from the first two flows of this hierarchy, but
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is not clear how the differential constraints imposed
[17,18] can be understood from the Diff(S1) point of
view. It would be interesting to see whether our red
tions to NLS and KdV are ‘differential’ in the sense
the above references.

One remark is in place: there is a standard p
cedure[12] of constructing anti-self-dual conform
structures with symmetries out of EW structures in
or 2+ 1 dimensions. The procedure is based on s
ing a linear generalised monopole equation on the
background. Moreover, the hyperCR EW structures
ways lead to hyper-complex conformal structures w
a tri-holomorphic Killing vector, and it is possible t
choose a monopole such that there exist a Ricci
metric in the conformal class[9]. Any hyperCR EW
(1.5) structure given in terms of KdV, or NLS poten
tial by (2.4)or (2.2)will therefore lead to a(++−−)

ASD Ricci-flat metric with a tri-holomorphic homo
thety. The explicit formulae for the metric in term
of solutions to(1.1) can be found in[4]. Another
class of ASD Ricci-flat metrics has been construc
from KdV and NLS, by embeddingSU(1,1) in a Lie
algebra of volume preserving transformations of
Poincaré disc[6]. These metrics generically do not a
mit any symmetries, and therefore are different fr
ours.
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