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Neutral ASD conformal structures with null

Killing vectors

Simon West

SUMMARY

We study four dimensional conformal structures in neutral signature whose

Weyl tensor is anti-self-dual, and which possess a null conformal Killing vec-

tor. We show that the Killing vector gives rise to a natural foliation by

totally null anti-self-dual surfaces, and that the leaf space inherits a projec-

tive structure. In the analytic case we show that the conformal structure

and projective structure twistor spaces are related by dimensional reduction.

We find a complete local classification that branches according to whether

or not the Killing vector has twist. We study special types of metric within

the conformal classes of the local classification, in particular Ricci-flat and

pseudo-hyper-hermitian metrics, and find examples of conformal classes con-

taining no Ricci-flat metrics. We give several explicit examples of the twistor

space reduction that illustrate the general theory.
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Chapter 1

Introduction

The subject of this thesis is a special class of four dimensional conformal

structures in neutral signature, namely those whose Weyl tensor is anti-self-

dual and which possess a null conformal Killing vector. In Section 1.4 of this

chapter we will summarize the main results, but before doing so we put the

topic into its proper context by providing some background material.

1.1 Anti-self-duality in four dimensional ge-

ometry

Let (M, g) be an oriented smooth four manifold with a metric, which may be

indefinite. This is enough to induce a Hodge-∗ operator which is a linear map

from p-forms to (4− p)-forms. In particular, ∗ takes two-forms to two-forms.

When g has Riemannian signature + + ++ or neutral signature + + −−, ∗

is an involution on two-forms and induces a decomposition

Λ2M = Λ2
+M ⊕ Λ2

−M (1.1)
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into ±1 eigenspaces. The splitting (1.1) is actually conformally invariant, i.e.

any metric in the conformal class of g will induce the same splitting. The

details are explained in Section 2.1.

Given a connection on a vector bundle over M , the curvature is a two-

form with values in the Lie algebra of the structure group of the vector

bundle. The Lie algebra will be some subalgebra of gl(n,R), where n is

the real dimension of the vector bundle. For example, the curvature of the

Levi-Civita connection of a neutral metric on an oriented four manifold is a

two-form with values in so(2, 2). As a two-form, the curvature decomposes

under (1.1), and this is a fundamental feature of differential geometry in

four dimensions. We now describe two distinct applications of this curvature

decomposition.

The first application is gauge theory: a metric is fixed and one studies

vector bundles with connection over M , using the splitting (1.1) to impose

conditions on the curvature. The standard example is anti-self-dual (ASD)

Yang-Mills theory, where one usually considers oriented complex Hermitian

vector bundles with connection whose curvature is ASD. Another example

is Seiberg-Witten theory, where one has a connection on a Hermitian line

bundle whose self-dual curvature is required to satisfy an equation involving

a parallel section of an associated vector bundle.

The second application is when one uses the splitting (1.1) to impose

conditions on the Levi-Civita connection of the metric. This is fundamentally

different from gauge theory, because the metric itself determines the splitting

(1.1), and the connection is defined on the tangent bundle only. The most

common example, and the one which this thesis is concerned with, is when the

Weyl tensor is required to be ASD. The Weyl tensor is conformally invariant,

and so is the splitting (1.1), so this is a well defined condition for a conformal
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class. We shall refer to a four dimensional metric/conformal class with ASD

Weyl tensor as an ASD metric/conformal class.

In Riemannian signature these two basic situations have been intensively

studied by both pure mathematicians and theoretical physicists, resulting in

a wealth of interesting results and applications which we shall not attempt to

survey here. We merely remark that in Riemannian signature the theory of

elliptic PDEs can be applied, resulting in finite dimensional moduli spaces of

solutions when suitable boundary conditions are imposed (for instance when

working on compact manifolds).

In neutral signature, which will be our focus, one no longer has ellipticity;

this results in behaviour that is fundamentally different from the Riemannian

case. There are no finite dimensional moduli spaces of global solutions. Lo-

cal rather than global behaviour becomes interesting, since the existence of

‘time directions’ allows reduction to hyperbolic and parabolic type equations.

There are interesting links with integrable systems theory; many integrable

systems are special cases of the neutral ASD Yang-Mills equations or ASD

conformal structure equations. We shall not dwell on this, because it turns

out that integrable systems do not play a role in our situation.

1.2 Twistor theory

Twistor theory encodes certain differential geometric objects into the holo-

morphic structure of complex manifolds. We now sketch the bare bones of

the twistor theory that we need for the statement of the main results in

the Section 1.4. Our presentation of twistor theory is biased in favour of

neutral signature, and follows the original Penrose approach [25] rather than

the Atiyah-Hitchin-Singer version [1], since the latter only applies to the
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Riemannian case.

Suppose (M, [g]) is a neutral ASD conformal structure, and that there are

local coordinates in which [g] is real-analytic (generically such coordinates

will not exist1). Then replacing the real coordinates with complex coordi-

nates and the real-analytic functions in [g] with holomorphic functions, we

obtain the complexification (MC, [gC]). We call [gC] a holomorphic conformal

structure. Penrose [25] showed that the ASD condition is equivalent to the

existence of a family of complex surfaces in MC, called α-surfaces. These are

totally null and have self-dual tangent bi-vectors. There is a CP
1 family of

them through each point. The space of α-surfaces intersecting some suitable

convex open set in MC is the twistor space PT , a complex three-manifold.

PT contains a four parameter family of holomorphically embedded CP
1s cor-

responding to the CP
1s of α-surfaces through points in MC. (MC, [gC]) can,

at least in principle, be recovered from PT ; to recover (M, g) from PT one

requires extra data on PT called a real structure.

Another twistor correspondence we will need applies to two-dimensional

projective structures [15]. A projective structure [Γ] is an equivalence class

of connections which share the same unparameterized geodesics. Suppose

(U, [Γ]) is a two-dimensional projective structure that is real-analytic in some

coordinate system, i.e. there is a connection Γ ∈ [Γ] whose connection co-

efficients are real analytic. Complexifying as above, one obtains (UC, [ΓC]),

a holomorphic projective structure. The space of complex unparameterized

geodesics intersecting some suitable convex open set in UC is the twistor

space Z, a complex two-manifold. Z contains a two parameter family of holo-

1This can be seen as follows. Neutral ASD metrics exist with curvature scalars con-

taining arbitrary functions. Choose the arbitrary function such that the curvature scalar

is nonzero within some compact set and zero outside it. Such a function is not analytic in

any coordinate system, so there is no coordinate system for which the metric is analytic.
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morphically embedded CP
1s corresponding to the CP

1s of geodesics through

points in UC. As in the conformal structure case, (UC, [ΓC]) can in principle

be recovered from Z; again, to recover (U, [Γ]) requires a real structure.

1.3 ASD conformal structures with Killing

vectors

Our work focuses on neutral ASD conformal structures with null conformal

Killing vectors. The reason we focus on null conformal Killing vectors is

that the non-null case is already well understood. We now briefly explain

the non-null case, as it provides intuition for the null case and significantly

influenced our work.

When the conformal Killing vector is non-null, the three-dimensional

space of its trajectories inherits a non-degenerate conformal structure, simply

by restricting the original conformal structure at each point to the orthogonal

complement of the Killing vector. The Jones-Tod construction [17] (which ap-

plies in both Riemannian and neutral signature) is the fact that this induced

conformal structure on the space of trajectories satisfies the Einstein-Weyl

equations, as a consequence of the anti-self-duality of the four-dimensional

conformal structure. The details are not important here; what is important

is the general philosophy of taking a quotient using the Killing vector, and

looking for geometrical structure on a lower dimensional space. We shall

see that there is an analogue of the Jones-Tod construction for null Killing

vectors. There is a fundamental difference however: the natural quotient in

the null case is by surfaces containing the trajectories of the Killing vector,

resulting in a two-dimensional base space. Of course, this can only be done

in neutral signature, since there are no null vectors in Riemannian geometry.
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1.4 Main results

We now present the main results of the thesis. Let (M, [g], K) be a neutral

ASD conformal structure with null conformal Killing vector. In this case, the

conformal structure induced on the space of trajectories of K is degenerate.

At first sight this does not seem promising. However, it turns out that K lies

in an integrable two-plane distribution; quotienting by the integral surfaces

gives a two-dimensional leaf space U . We find that U inherits a projective

structure.

When (M, [g], K) is real-analytic, the quickest route to the projective

structure is by complexifying and appealing to twistor theory. In fact it

is unlikely we would have discovered the role of two-dimensional projective

structures without the twistor picture. The basic idea is that K induces

a holomorphic vector field K on the twistor space PT . K vanishes on a

hypersurface H ⊂ PT , but one can show that the distribution it defines

on PT − H can be continued over H. One can then quotient PT by the

leaf space of the distribution, obtaining a complex manifold Z which is the

twistor space of a projective structure.

Theorem 1. Let (MC, [gC]) be a holomorphic ASD conformal structure, with

twistor space PT . Suppose there is a null conformal Killing vector KC. Then

there is a holomorphic fibration PT → Z, where Z is the twistor space of a

two dimensional projective structure.

Theorem 1 does not tell us on which space the projective structure is

defined. By analyzing the local geometrical structure of (MC, [gC], KC), one

learns that it is defined on the leaf space of a foliation of MC by anti-self-

dual totally null surfaces (β-surfaces), as mentioned above. The projective

structure geodesics can be related to the way the α-surfaces in MC (which
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exist by virtue of anti-self-duality as explained in Section 1.2) intersect the

β-surfaces. In fact this all works in the smooth real case, where generically

there is no twistor space. Moreover, one can solve the equations and explicitly

write down all ASD conformal structures with null conformal Killing vectors

in terms of the underlying projective structure.

Theorem 2. Let (M, [g], K) be a smooth neutral signature ASD conformal

structure with null conformal Killing vector. Then there exist local coordi-

nates (t, x, y, z) and g ∈ [g] such that K = ∂t and g has one of the fol-

lowing two forms, according to whether the twist K ∧ dK vanishes or not

(K := g(K, .)):

1. K ∧ dK = 0.

g = (dt+ (zA3 −Q)dy)(dy − βdx)−

(dz − (z(−βy + A1 + βA2 + β2A3))dx− (z(A2 + 2βA3) + P )dy)dx,

(1.2)

where A1, A2, A3, β,Q, P are arbitrary functions of (x, y).

2. K ∧ dK 6= 0.

g = (dt+A3∂zGdy+(A2∂zG+2A3(z∂zG−G)−∂z∂yG)dx)(dy−zdx)

− ∂2
zGdx(dz − (A0 + zA1 + z2A2 + z3A3)dx), (1.3)

where A0, A1, A2, A3 are arbitrary functions of (x, y), and G is a func-

tion of (x, y, z) satisfying the following PDE:

(∂x + z∂y + (A0 + zA1 + z2A2 + z3A3)∂z)∂
2
zG = 0. (1.4)

The functions Aα(x, y) in the metrics (1.2) and (1.3) determine projective

structures on the two dimensional space U in the following way. A general
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projective structure corresponds to a second-order ODE

d2y

dx2
= A3(x, y)

(dy
dx

)3

+ A2(x, y)
(dy
dx

)2

+ A1(x, y)
(dy
dx

)
+ A0(x, y). (1.5)

In (1.3) all the Aα, α = 0, 1, 2, 3 functions occur explicitly in the metric.

In (1.2) the function A0 does not explicitly occur. It is determined by the

following equation:

A0 = βx + ββy − βA1 − β2A2 − β3A3, (1.6)

as is shown in the proof of the theorem.

In the real-analytic case, when twistor spaces do exist for the conformal

structure and projective structure in Theorem 2, then the twistor spaces are

related as in Theorem 1.

Theorem 2 can be regarded as an analogue of the Jones-Tod correspon-

dence for null Killing vectors. It works in the smooth case since it is proved

using only local differential-geometric arguments; similarly the Jones-Tod

correspondence can be proved in purely differential-geometric terms [17]

which apply in the smooth neutral case, although it was motivated by twistor

theory.

The two theorems above appeared in [9], and are the core results of the

thesis. Having established them we proceed to special cases, such as exis-

tence of special metrics (Ricci-flat, pseudo-hyper-hermitian) within confor-

mal classes and explicit twistor space constructions.

The thesis is structured as follows. Chapters 2 and 3 are introductory

material. We explain the fundamental geometric structures that we need,

namely neutral ASD conformal structures and projective structures, and set

up the notation. The twistor correspondences are also reviewed. Chapter 4

is devoted to proving Theorem 1. This is done in two different ways. We

also explain how it fits into a generalized picture due to Calderbank [5].
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Chapter 5 is a proof of Theorem 2. This is actually independent of the

previous twistor-theoretic chapter, and applies more generally, since it does

not require analyticity. Having established the main theorems, the remaining

chapters are devoted to special cases. In Chapter 6 we study special types

of metric within the conformal classes that appear in Theorem 2. We find

examples of Ricci-flat metrics, and show how to characterize pseudo-hyper-

hermitian metrics in terms of the underlying projective structure. We also

show how some previously known metrics fit into our picture. Chapter 7 is

devoted to studying some twistor spaces explictly. We explain the flat case

first, which is important as it provided important hints during the conception

of this work, and then explain two curved examples in detail. We conclude

in Chapter 8 with some open issues.
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Chapter 2

Neutral ASD conformal

structures

2.1 The Hodge-∗ and self-duality

Suppose g is a non-degenerate inner product on the tangent bundle of an

oriented four dimensional manifold M . We leave the signature of g unspeci-

fied for the moment. The inner product and orientation determine a volume

form Ω on M , which is given in a local oriented basis ea by

Ω = 4!
√

|det gab| e1 ∧ e2 ∧ e3 ∧ e4, (2.1)

where g = gab ea ⊙ eb. The 4! factor is present so that when Ω is evaluated

on an oriented orthonormal basis, the result is 1. The Hodge-∗ operator

restricted to two-forms is a linear operator ∗ : Λ2M → Λ2M , and is defined

by

(∗ω)ab =
1

2
ωcd Ωcdab, (2.2)

for ωab = ω[ab] ∈ Λ2M . In an oriented orthonormal basis the components of

the volume form are Ωabcd = εabcd, where ε is the unique completely anti-
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symmetric symbol with ε0123 = 1. Evaluating ∗2 in such a basis gives

(∗2ω)ab =
1

4
ωcdε

cdefεefab, (2.3)

where εcdef has been raised using the orthonormal form of g, which is a

diagonal matrix with entries ±1. Let n be the number of positive entries in

this matrix. Now applying the identity εcdefεefab = 2(−1)n(δc
aδ

d
b − δ

d
aδ

c
b) gives

(∗2ω)ab = (−1)n ωab.

So when n = 4 or 2, the Hodge-∗ is an involution on the six dimensional

vector space of two-forms at each point, and by linear algebra we obtain a

decomposition into three dimensional ±1 eigenspaces:

Λ2M = Λ2
+M ⊕ Λ2

−M. (2.4)

Under a conformal transformation gab → cgab for a positive function c, the

volume form (2.1) scales as Ω → c2Ω, and gab → c−1gab, so ∗ as defined in

(2.2) is conformally invariant.

2.2 Spinors in neutral signature

From now on g will refer to a neutral four-metric. Existence of a neutral

metric g on a four-manifold M requires a splitting

TM ∼= T+M ⊕ T−M,

where the summands are two-dimensional and are defined by the fact that

g restricts to be positive/negative definite on them; this splitting imposes

a topological restriction [14]. Further restrictions are imposed if we want

spinors to be defined globally. We will work locally, ignoring these topological

issues.
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Let S, S ′ be real two-dimensional vector bundles, and fix volume forms

ǫ ∈ Γ(S∗ ∧ S∗), ǫ′ ∈ Γ(S ′∗ ∧ S ′∗) on them. Since we are working locally, all

vector bundles are trivial, and we have TM ∼= S ⊗ S ′ since both are four

dimensional. We can then fix a map TM → S ⊗ S ′ which is a vector space

isomorphism at each point. This induces a map T ∗M → S∗⊗S ′∗. Extending

these maps to all tensor products, they identify tensors on M with sections

of tensor products of S and S ′. To make contact with the neutral metric, we

require

g → ǫ⊗ ǫ′ (2.5)

under the linear map T ∗M ⊙ T ∗M → (S∗ ⊗ S ′∗)⊙ (S∗ ⊗ S ′∗). This amounts

to commutativity of the following diagram

TM - S ⊗ S ′

T ∗M

g(V, .)

?

- S∗ ⊗ S ′∗

?

ǫ⊗ ǫ′(V, ., .)

Here ǫ⊗ ǫ′(V, ., .) means contract V as a section of S ⊗ S ′ with the first and

third entries of ǫ⊗ ǫ′ thought of as a section of S∗ ⊗ S∗ ⊗ S ′∗ ⊗ S ′∗. We now

show how this works using local trivializations.

It is convenient in neutral signature to use a local coframe field {eAA′

,

A,A′ = 0, 1} in which the metric takes the form

g = 2(e00′ ⊙ e11′ − e01′ ⊙ e10′); (2.6)

this is always possible by linear algebra. Here eAA′

⊙ eBB′

:= 1
2
(eAA′

⊗

eBB′

+ eBB′

⊗ eAA′

), so that if eAA′ is the dual basis of vectors satisfying

eAA′

(eBB′) = δA
Bδ

A′

δB′ then for example g(e00′ , e11′) = g(e11′ , e00′) = 1. We

will refer to such a frame field as a Newman-Penrose tetrad. The choice of

15



such a frame is equivalent to fixing an isomorphism TM →M×R
4 preserving

the linear structure of the fibres, by means of the map V = V AA′

eAA′ → V AA′

at each point of M .

Now trivialize S and S ′ by picking linearly independent sections {ι, o ∈

Γ(S)}, {ι′, o′ ∈ Γ(S ′)}, such that ǫ(ι, o) = 1. These trivialize S and S ′,

i.e. µ ∈ Γ(S) can be expressed as µ = µ0ι + µ1o, and similarly for sections

of S ′. In other words these ‘spin frames’ fix isomorphisms S → M × R
2,

S ′ →M × R
2 preserving linear structure of the fibres. We use capital letter

for spinor indices, so

ν
A1...AjA′

1
...A′

k

C1...CmC′

1
...C′

n
(x)

is a section of S⊗jS ′⊗kS∗⊗mS ′∗⊗n represented in a trivialization, where x

denotes position on M . The volume forms are anti-symmetric matrices ǫAB,

ǫA′B′ with ǫ01 = ǫ0′1′ = 1 (note we suppress the prime on ǫ′ when using

indices, since the primed indices distinguish it from ǫ). These are used to

raise and lower spinor indices, with the convention µB := µAǫAB and similarly

for primed spinors.

After trivializing the bundles in this way, the linear map TM → S ⊗ S ′

simply sends V = V AA′

eAA′ to the section of S ⊗ S ′ defined by V AA′

. This

map induces (2.5), as can be seen from rewriting (2.6) as

g = ǫABǫA′B′ eAA′

⊗ eBB′

.

One can fix unique connections on S, S ′ (we shall denote both connections,

as well as the Levi-Civita connection on TM , by ∇) by requiring covariant

differentiation on the spin side to agree with covariant differentiation on the

tensor side using the Levi-Civita connection, as well as requiring ǫ, ǫ′ to be

covariantly constant [26]. The connection coefficients Γ C
AA′B , Γ C′

AA′B′ in the
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spin frame described above are defined uniquely by the requirement

∇eBB′
eAA′ = Γ C

BB′A eCA′ + Γ C′

BB′ A′eAC′ ,

together with the requirement that ΓAA′[BC] = ΓAA′[B′C′] = 0, where ΓAA′BC :=

Γ D
AA′B ǫDC , ΓAA′B′C′ := Γ D′

AA′B′ ǫD′C′ . Spinor fields are differentiated using

these coefficients as follows:

∇BB′µA = eBB′(µA) + Γ A
BB′C µC , (2.7)

∇BB′µA = eBB′(µA) − Γ C
BB′A µC , (2.8)

and similarly for primed spinors.

The decomposition of two-forms (2.4) is simple in spinors. Let ωAA′BB′ =

−ωBB′AA′ be a two-form. We have

ωAA′BB′ = ω(AB)(A′B′) + ω[AB](A′B′) + ω(AB)[A′B′] + ω[AB][A′B′].

The first and last terms are not compatible with the index symmetry and

must vanish. Also, wherever two anti-symmetrized indices appear we may

replace with a multiple of ǫ or ǫ′ since there is a unique anti-symmetric two-

by-two matrix up to scale. Hence

ωAA′BB′ = ψABǫA′B′ + φA′B′ǫAB, (2.9)

where ψAB, φA′B′ are symmetric in their indices.

Given a Newman-Penrose tetrad, with volume form Ω = 4! e00′ ∧ e10′ ∧

e01′ ∧ e11′ , the spinor components of Ω are

ΩAA′BB′CC′DD′ = ǫABǫCDǫA′C′ǫB′D′ − ǫACǫBDǫA′B′ǫC′D′ .

This satisfies Ω00′10′01′11′ = 1, and is antisymmetric on the four pairs of indices

AA′, BB′, CC ′, DD′ so must be the volume form.
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So

(∗ω)AA′BB′ =
1

2
(ψCDǫC

′D′

+ φC′D′

ǫCD)(ǫCDǫABǫC′A′ǫD′B′ − ǫCAǫDBǫC′D′ǫA′B′)

= (−ψABǫA′B′ + φA′B′ǫAB).

Hence φA′B′ǫAB is self-dual, ψABǫA′B′ is anti-self-dual, and (2.9) is just (2.4)

in spinors.

Finally, note that a vector V is null iff it decomposes as V = µ ⊗ ν for

µ, µ ∈ S, S ′, i.e. V AA′

= µAνA′

in components. This follows from the formula

g(V, V ) = det(V AA′

) = 0 and linear algebra.

2.3 Alpha and beta planes

An α/β plane at a point x ∈ M is a totally null plane (i.e. g(V,W ) = 0 for

any V , W in the plane) whose defining two-form is self-dual/anti-self-dual

respectively. Such planes correspond to primed/unprimed spinors at x as

follows. Let µA(x) ∈ Sx. Consider the plane span{µAeAA′ , A′ = 0, 1}. Let

V AA′

= µAιA
′

and WAA′

= µAκA′

lie in this plane. Then

g(V,W ) = ǫABǫA′B′µAιA
′

µBκB′

= 0

so it is totally null. It is defined by any two-form proportional to

V[aWb] = µAιA′µBκB′ − µBιB′µAκA′

= c µAµBǫA′B′ ,

which is anti-self-dual. So µA(x) defines a β-plane. Similarly a primed spinor

at x defines an α-plane.

An α/β surface is a surface whose tangent plane at each point is an α/β

plane.
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2.4 Anti-self-duality and Frobenius integra-

bility

When expressed in terms of spinors, the decomposition of the Riemann tensor

into irreducible components is very natural. One obtains ([26], pg. 236):

Rabcd = CABCDǫA′B′ǫC′D′ + C̃A′B′C′D′ǫABǫCD

+ ΦABC′D′ǫA′B′ǫCD + ΦA′B′CDǫABǫC′D′

+
R

12
(ǫACǫBCǫA′C′ǫB′D′ − ǫADǫBCǫA′D′ǫB′C′). (2.10)

Here CABCD, C̃A′B′C′D′ are completely symmetric, and ΦABC′D′ is symmetric

on each pair of indices. R is the scalar curvature. The C, C̃ terms are the

anti-self-dual and self-dual parts of the Weyl tensor. ΦAA′BB′ is proportional

to the tracefree Ricci curvature:

ΦAA′BB′ = −
1

2
(Rab −

1

4
Rgab).

There is a formulation of the condition CA′B′C′D′ = 0 as a Frobenius inte-

grability condition for self-dual null surfaces, due to Penrose [25], which we

now describe using the spin bundle formalism. Denote the fibre coordinates

of the spin bundle by πA′

, in a tetrad trivialization as described in the last

section. Using the connection on S ′, the horizontal lifts of a Newman-Penrose

tetrad eAA′ are

ẽAA′ = eAA′ − Γ C′

AA′B′ πB′ ∂

∂πC′
. (2.11)

We would like an expression for [ẽAA′ , ẽBB′ ]. To find one, we will need the fol-

lowing formula ([26], pg. 247) relating curvature quantities to the derivatives
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of Γ D′

AA′C′ :

eAA′(Γ F ′

BB′E′ ) − eBB′(Γ F ′

AA′E′ ) = Γ Q′

AA′E′ Γ F ′

BB′Q′ − Γ Q′

BB′E′ Γ F ′

AA′Q′

+ Γ Q′

AA′B′ Γ F ′

BQ′E′ − Γ Q′

BB′A′ Γ F ′

AQ′E′

+ Γ Q
AA′B Γ F ′

QB′E′ − Γ Q
BB′A Γ F ′

QA′E′

+ ǫABǫ
F ′Q′

C̃A′B′E′Q′ + ǫAB(ǫA′E′ǫ F ′

B′ + ǫ F ′

A′ ǫB′E′)
R

24
+ ǫA′B′ǫF

′Q′

ΦE′Q′AB.

Using this one obtains the following after some calculation:

[ẽAA′ , ẽBB′ ] = Γ D
AA′B ẽDB′ + Γ D′

AA′B′ ẽBD′ − Γ D
BB′A ẽDA′ − Γ D′

BB′A′ ẽAD′

+(ǫABǫ
F ′Q′

C̃A′B′E′Q′+ǫAB(ǫA′E′ǫ F ′

B′ +ǫ F ′

A′ ǫB′E′)
R

24
+ǫA′B′ǫF

′Q′

ΦE′Q′AB)πE′ ∂

∂πF ′
.

(2.12)

In turn, we can use this to show

[πA′

ẽAA′ , πB′

ẽBB′ ] = (Γ D
AA′B − Γ D

BA′A )πA′

πB′

ẽDB′

+ πA′

πB′

ǫABǫ
F ′Q′

C̃A′B′E′Q′πE′ ∂

∂πF ′
. (2.13)

One can see from this that if C̃A′B′C′D′ = 0 then

span{LA = πA′

ẽAA′ , A = 0, 1} (2.14)

forms an integrable distribution, called the twistor distribution. Pushing

down a leaf to M gives a surface whose tangent at each point is spanned

by two-planes {πA′

(x)eAA′ , A = 0, 1}, where πA′

(x) is a section of S ′ over

the surface in M . These are α-planes, as explained in 2.3, and the integral

surfaces are called α-surfaces.

We can abstractly define the two-dimensional twistor distribution (2.14)

on S ′ as follows. A point s ∈ S ′ is determined by a primed spinor π at a point

x ∈ M . The null vectors π ⊗ µ for all unprimed spinors µ span an α-plane
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at x. Define the twistor distribution at s to be the subspace of horizontal

vectors at s whose push-down to the base lies in this α-plane.

We have shown that anti-self-duality results in integrability for an α-

surface through any α-plane. The converse is also true. Given an α-surface,

it has a one parameter family of lifts to S ′, each corresponding to a solution

of

µB′

∇BB′µA′

= 0 (2.15)

over the surface. A lift is a section of S ′ over the α-surface given by setting

πA′

(x) = µA′

, and its tangent planes agree with the distribution πA′

eAA′ on

S ′. If there is an α-surface through any α-plane, then lift it to S ′ using (2.15).

This gives a foliation of S ′ by surfaces with tangents of the form (2.14), and

the fact that it is integrable implies CA′B′C′D′ = 0 using (2.13).

If we use the projective primed spin bundle PS ′ then each α-surface has

a unique lift, given by the projective class of any spinor satisfying

µA′µB′

∇BB′µA′

= 0.

These lifts are tangent to the projectivization of LA; since LA are both ho-

mogeneous in the πA′

fibre coordinates, they project to distributions on PS ′,

resulting in an integrable two-dimensional distribution L ⊂ TPS ′ which we

also refer to as the twistor distribution. For a given ASD metric, the twistor

distribution on PS ′ is the unique distribution that pushes down to the α-

surfaces and is spanned by

LA = eA0′ + λeA1′ + fA(x, λ)
∂

∂λ
(2.16)

where f is cubic in λ, and λ is the affine coordinate π1′/π0′ . The uniqueness

follows because for a given α-surface the corresponding leaf is the section

λ(x) of PS ′ given by putting the tangents in the form eA0′ + λ(x)eA1′ . Note
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that (2.16) is in fact only an expression on one patch of PS ′, where π0′ 6=

0. It is cubic because the ∂λ parts comes from the projectivization of the

term −Γ C′

AA′B′ πA′

πB′ ∂
∂πC′ in the distribution (2.14). One calculates this

projectivization by dividing the homogeneous version (2.14) by π0′ to give

an expression homogeneous of degree zero, and then pushing forward using

λ = π1′/π0′ . For example π1′π1′∂/∂π0′ projectivizes as follows:

π1′π1′

π0′

∂

∂π0′
→

π1′π1′

π0′

∂λ

∂π0′
∂λ = −

(π1′)3

(π0′)3
∂λ = −λ3∂λ.

One obtains ∂λ, λ∂λ and λ2∂λ terms from projectivization of the other ∂
∂πA′

parts of (2.14), so fA is cubic in λ.

Putting all this together we have the following reformulation of a famous

result due to Penrose:

Theorem 3. (Penrose [25]) Let eAA′ be four locally defined linearly inde-

pendent vector fields on an open set M ⊂ R
4. Then they form a Newman-

Penrose tetrad for a neutral ASD metric if and only if there exist functions

fA(x, λ), cubic in λ, such that

span{eA0′ + λeA1′ + fA
∂

∂λ
,A = 0, 1} (2.17)

is an integrable distribution on the affine patch of M × RP
1 with affine co-

ordinate λ. The distribution (2.17) is the twistor distribution for the ASD

metric, defined on an affine patch of PS ′.

2.5 Holomorphic ASD conformal structures

Everything in Sections 2.1 - 2.4 applies equally well to holomorphic conformal

structures. A holomorphic metric gC on a complex four-manifold MC is a

non-degenerate section of T ∗MC ⊙ T ∗MC, where T ∗MC is the holomorphic
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cotangent bundle. In local holomorphic coordinates zi, a holomorphic metric

just looks like a real metric, gC = Σ gC

ab dz
i ⊙ dzj, where gC

ab are holomorphic

functions of the zi. A holomorphic conformal structure is an equivalence class

of holomorphic metrics up to multiplication by nonvanishing holomorphic

functions. Given a real metric of any signature that is analytic in some

coordinate system, one can obtain a holomorphic metric simply by replacing

the real coordinates with complex ones and the real-analytic functions with

holomorphic functions.

All the standard facts in real geometry, such as unique Levi-Civita con-

nections, existence of geodesics, the Frobenius theorem, carry over directly

into holomorphic geometry (details can be found in [20]). The spinor for-

malism explained in Section 2.2 applies to the holomorphic case simply by

letting the spinors be complex, i.e. the spinor bundles are now two-complex-

dimensional bundles SC and S ′C, and ǫ, ǫ′ are holomorphic volume forms.

Suppose (MC, [gC]) is a holomorphic ASD conformal structure. Then

Theorem 3 applies. There is a double fibration of PS ′C:

PS ′C

ւ ց

MC PT

where the left arrow is projection to MC, and the right arrow is the quotient

by the leaves of the twistor distribution L, giving the twistor space PT , a

complex three-manifold. Because L is transverse to each CP
1 fibre of PS ′C,

each fibre projects to a holomorphically embedded CP
1 ⊂ PT . Embedded

curves in PT that arise in this way are called twistor lines. The normal

bundle of a twistor line is the quotient of the normal bundle of its preimage

in PS ′C by the restriction of the twistor distribution to the preimage. We

calculate this as follows.
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A theorem of Birkhoff-Grothendieck states that holomorphic line bundles

over CP
1 are completely classified by their first Chern class; we denote the

unique bundle of Chern class n ∈ Z by O(n), with O := O(0) being the trivial

bundle. The four vector fields (2.11) on S ′C are homogeneous of degree 0 in

πA′

, so project to holomorphic vector fields on PS ′C. Restricting to a fibre,

each is non-vanishing and transverse to the fibre, so the normal bundle of a

fibre is the sum of four copies of the trivial bundle O, since O is the only line

bundle over CP
1 with non-vanishing holomorphic sections.

The vector fields LA from (2.14) are homogeneous of degree 1 in the πA′

coordinates, so push down to one-dimensional holomorphic subbundles of

TPS ′C, transverse to the fibres. To obtain a section of one of these subbun-

dles, one must divide L0 or L1 by a homogeneous degree 1 polynomial in πA′

coordinates. This gives a meromorphic section that blows up with order 1 at

the single point at which the polynomial vanishes. Hence the subbundles are

O(−1) by Birkhoff-Grothendieck. This gives an exact sequence of sheaves of

sections of holomorphic bundles over a fibre:

0 → O(−1) ⊗ C
2 → O⊗ C

4 → N → 0 (2.18)

where N is the normal bundle of the image of the fibre in PT . N is easily

seen to be O(1)⊕O(1) as follows. Considering the form of L0 in (2.16), the

push-down of ẽ01′ from SC to PS ′C defines a non-vanishing section of N , the

quotient bundle, over the affine patch π0′ 6= 0. Likewise, the push down of

ẽ00′ defines a non-vanishing section of N on the affine patch π1′ 6= 0. On the

overlap of these two patches we have ẽ00′ ∼ ẽ00′ − (ẽ00′ + λẽ01′) = −λẽ01′ ,

where ∼ is modulo LA, as we are considering the quotient bundle of (2.18).

Let λ̃ = π0′/π1′ = 1/λ be the other affine coordinate. Then the two sections

above define a trivialization of a line subbundle of N . A holomorphic section

on the intersection of the two patches is given by a(λ)ẽ01′ or b(λ̃)ẽ00′ with
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a, b holomorphic functions on C
∗. For these to agree we require

a(λ)e01′ ∼ b(λ̃)ẽ00′ ∼ −λb(λ̃)ẽ01′ ,

so a(λ) = −λb(λ̃). This is the transition function for O(1). Repeating the

argument using ẽ10′ and ẽ11′ gives another O(1) subbundle, and we see that

N ∼= O(1) ⊕O(1).

The power of twistor theory is that there is a converse to this. Let PT

be a complex three-manifold with a holomorphically embedded CP
1 with

normal bundle O(1)⊕O(1). Applying a theorem of Kodaira [19] shows that

this CP
1 belongs to a family of embedded CP

1s parameterized by a complex

manifold MC of dimension 4 (= dimH0(CP
1,O(1) ⊕ O(1))). Holomorphic

vectors at x ∈ MC correspond to sections of the normal bundle of x̂, the

corresponding CP
1, and null vectors are given by sections with a zero. This

defines a conformal structure, because a global section of O(1)⊕O(1) is given

by (aπ0′ +bπ1′ , cπ0′ +dπ1′) for homogeneous coordinates πA′

, (a, b, c, d) ∈ C
4,

and this can only be (0, 0) when ad− bc = 0, which is a quadratic condition.

In this case there is a zero at a single point, at [π0′ , π1′ ] = [−b, a] in non-

homogeneous coordinates. The conformal structure is anti-self-dual, with

α-surfaces defined by families of twistor lines through a fixed point in PT .

In this picture, the α-surfaces are obtained as follows. Let x̂ ⊂ PT be

the twistor line corresponding to a point x ∈ MC. Let V ∈ TxM be a null

vector. We want to show that V lies in a unique α-surface through x. The

corresponding section of the normal bundle of x̂ has a zero at some point

p ∈ PT because V is null. The α-surface corresponds to all the twistor lines

that intersect x̂ at p. There is a two-parameter family of sections that vanish

at p, for instance if p is given by [π0′ , π1′ ] = [−b, a] as above then the sections

α(aπ0′ + bπ1′ , β(aπ0′ + bπ1′))
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vanish at p; the two parameters are α and β. To show that these integrate to

a two-parameter family of lines one must blow-up PT at p and use Kodaira

theory; see [15] for details.

2.5.1 Reality conditions for split signature

In order to obtain a real split signature metric from a twistor space, we

must be able to distinguish a four real parameter family of twistor lines,

which we call real twistor lines, whose parameter space will be the four real

dimensional manifold. In addition we require that given a line in this real

family, the sections of the normal bundle that point to others in the family

inherit a split signature conformal structure. As described above, a section of

O(1)⊕O(1) is defined by four complex numbers (a, b, c, d), with a quadratic

form defined by ad− bc. If we restrict (a, b, c, d) to be real we obtain a real

neutral signature quadratic form. A section of the normal bundle defined by

real (a, b, c, d) with ad − bc = 0 vanishes at a point [π0′ , π1′ ] = [−b, a], and

the locus of all such vanishing points is RP
1, an equator of CP

1.

To obtain a neutral signature conformal structure, each of the real twistor

lines must be equipped with a choice of equator, such that sections of the

normal bundle vanishing on the equator point to other real twistor lines

nearby. This data is all encoded by the real structure σ of the twistor space.

In the neutral signature context, σ is an anti-holomorphic involution PT →

PT which maps a four real parameter family of twistor lines to themselves

(the real twistor lines), and on these real lines restricts to a reflection fixing

an equator.

Let us see how to construct σ, given the twistor space of a real-analytic

neutral ASD metric. The complexificaton MC of M is obtained by letting

the real coordinates become complex. Suppose the complex coordinates are
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(x, y, w, z). Then M is recovered as the set of fixed points of the anti-

holomorphic involution τ : MC →MC defined by

τ(x, y, w, z) = (x̄, ȳ, w̄, z̄).

Now τ maps α-surfaces to α-surfaces. To see this, suppose locally that α-

surfaces are defined by

fa,b,c(x, y, w, z) = 0, ga,b,c(x, y, w, z) = 0,

where f and g depend holomorphically on the three complex parameters

a, b, c, since the space of α-surfaces is three dimensional. Now fa,b,c and ga,b,c

are complexified versions of real analytic functions. So if one expresses them

as power series, the coefficients will all be real. Therefore we have

fā,b̄,c̄(x̄, ȳ, w̄, z̄) = 0, gā,b̄,c̄(x̄, ȳ, w̄, z̄) = 0,

so the α-surface defined by (a, b, c) gets mapped to the one defined by (ā, b̄, c̄).

As an example take the flat case. Here α-surfaces are locally specified by

(λ, σ, µ)1 as follows:

fλ,σ,µ = µ− x− λy = 0, gλ,σ,µ = σ − w − λz = 0.

This includes all α-surfaces except those with λ = ∞. Under (x, y, w, z) →

(x̄, ȳ, w̄, z̄), the α-surface defined by (λ, σ, µ) gets mapped to that defined by

(λ̄, σ̄, µ̄). Therefore we have an anti-holomorphic involution σ : PT → PT .

The fixed points of σ correspond to real α-surfaces through points in

M ⊂ MC. Given a point p ∈ M ⊂ MC, any α-surface through p gets

mapped under τ to another α-surface through p. Hence the corresponding

1We use Greek letters for the three parameters to agree with the conventions in Chapter

7.
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line p̂ ⊂ CP
1 is mapped to itself by σ. The lines p̂ with p ∈ M ⊂ MC are

the real twistor lines. The α-surfaces in MC containing the real α-surfaces

in M , i.e. the complexifications of real α-surfaces, are fixed by τ , and the

set of these through a point p ∈ M ⊂ MC is an equator RP
1 ⊂ CP

1. In the

PS ′C picture, these lift to α-surfaces above p through points [π0′ , π1′ ] where

the πA′

are real, giving an RP
1 of lifts. This RP

1 of α-surfaces corresponds

to the equator fixed by σ in the corresponding twistor line p̂ ⊂ PT .

Given a twistor space PT with an antiholomorphic involution σ with the

above properties, one can reconstruct a real neutral ASD conformal structure

on the four real dimensional space of real twistor lines in PT , by requiring the

normal bundle sections of the real lines that vanish on the fixed equator to

correspond to real null vectors. Null geodesics through a point p correspond

to twistor lines intersecting p̂ at a point on the fixed equator.

Up to holomorphism there are only two anti-holomorphic involutions of

CP
1: the one above fixing an equator, [π0′ , π1′ ] → [π̄0′ , π̄1′ ], and the antipodal

map [π0′ , π1′ ] → [−π̄1′ , π̄0′ ], which is fixed point free. The latter is relevant

for Riemannian twistor theory. The twistor space PT of a Riemannian ASD

conformal structure possesses an antiholomorphic involution that fixes a four

real parameter family of twistor lines and restricts to the antipodal map on

them. The fact that there are no fixed points of σ restricted to real twistor

lines corresponds to the fact that there are no null vectors in Riemannian

geometry.
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Chapter 3

Projective structures in two

dimensions

3.1 Real projective structures

Let (U, [Γ]) be a local two dimensional real projective structure. That is, U is

a local patch of R
2, and [Γ] is an equivalence class of torsion-free connections

whose unparameterized geodesics are the same. Then in a local trivialization,

equivalent torsion-free connections are related in the following way:

Γ̃i
jk − Γi

jk = ajδ
i
k + akδ

i
j, (3.1)

for functions ai on U , and i, j, k = 1, 2. Note that this is a tensor equa-

tion since the difference between two connections is a tensor. The ai are

components of a one-form.

The geodesics satisfy the following ODE:

d2si

dt2
+ Γi

jk

dsj

dt

dsk

dt
= v

dsi

dt
,

where si are local coordinates on U , and t is a parameter, which is called

affine if v = 0.
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One can associate a second-order ODE to a projective structure by picking

a connection in the equivalence class, choosing local coordinates si = (x, y)

say, and eliminating the parameter from the geodesic equations. The re-

sulting equation determines the geodesics in terms of the local coordinates,

without the parameter. The equation is as follows:

d2y

dx2
= Γx

yy

(dy
dx

)3

+ (2Γx
xy − Γy

yy)
(dy
dx

)2

+ (Γx
xx − 2Γy

xy)
dy

dx
− Γy

xx. (3.2)

A general projective structure is therefore defined by a second-order ODE

(1.5). In fact, two of the four functions A0, A1, A2, A3 can be eliminated by

a coordinate transformation (x, y) → (x̂(x, y), ŷ(x, y)) which introduces two

arbitrary functions.

On TU , the horizontal lifts of ∂/∂si are defined by

Si =
∂

∂si
− Γj

ikv
k ∂

∂vj
,

where vi, i = 1, 2 are the fibre coordinates of TU . The geodesics on U lift to

integral curves of the following spray on TU :

Θ = viSi = vi ∂

∂si
− Γi

jkv
jvk ∂

∂vi
, (3.3)

Now Θ is homogeneous of degree 1 in the vi, so it projects to a one-dimensional

distribution on PTU , which we also denote by Θ. If λ is an affine coordinate

on one patch of the RP
1 factor, then the spray has the form

Θ = ∂x + λ∂y + (A0(x, y) + λA1(x, y) + λ2A2(x, y) + λ3A3(x, y))∂λ. (3.4)

There is a unique curve in any direction through a point in U , so each curve

has a unique lift to PTU , and the lifted curves foliate PTU .

To obtain (3.1) we argue as follows. If Θ̃ is the spray corresponding to

a different connection Γ̃, then Γ and Γ̃ are in the same projective class if Θ
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and Θ̃ push down to the same spray on PTU . This gives

Θ − Θ̃ ∝ vi ∂

∂vi
,

from which (3.1) follows, using the fact that the connections are torsion-free

(i.e. symmetric in their lower indices).

3.2 Holomorphic projective structures

If UC is a local patch of C
2 and ΓC are holomorphic functions, one has a

holomorphic connection, which gives rise to a holomorphic projective struc-

ture (UC, [ΓC]) using the holomorphic version of (3.1) in which the one-form

a is holomorphic. Given a real-analytic projective structure, one can com-

plexify by analytic continuation to obtain a holomorphic projective structure

that will come equipped with a reality structure (see below).

Let (UC, [ΓC]) be a holomorphic projective structure. Then there is a

double fibration of PTUC:

PTUC

ւ ց

UC Z

where the left arrow is projection to UC, and the right arrow is the quotient

by the leaves of Θ, giving the twistor space Z, a complex two-manifold.

Because Θ is transverse to each CP
1 fibre of PTUC, each fibre projects to

a holomorphically embedded CP
1 ⊂ Z. As in the ASD conformal structure

case, embedded curves in Z that arise in this way are called twistor lines.

The normal bundle of a twistor line in Z is calculated using exactly the

same method as that in Section 2.5 for an ASD conformal structures. The

spray (3.4) is homogeneous of degree 1 in the vi coordinates, and by the same
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reasoning as in Section 2.5 we obtain an exact sequence of sheaves on a CP
1

fibre of PTUC:

0 → O(−1) → O ⊗ C
2 → N → 0 (3.5)

where N is the normal bundle of the image of the fibre in Z. The same

arguments show that N ∼= O(1).

Again there is a converse. Let Z be a complex two-manifold with a

holomorphically embedded CP
1 with normal bundle O(1). Kodaira’s theorem

shows that this CP
1 belongs to a family of embedded CP

1s parameterized by a

complex manifold UC of dimension 2 (= dimH0(CP
1,O(1))). A holomorphic

vector V ∈ TuU
C corresponds to a global section of the normal bundle O(1)

of û, the corresponding CP
1. Such a section vanishes at a single point p ∈ Z.

The geodesic of the projective structure through this direction is given by

points in U corresponding to twistor lines in Z that intersect û at p. That

there is a one-parameter family of such lines can be shown by blowing up Z

at the vanishing point and using Kodaira theory, see [15].

3.2.1 Reality conditions for projective structures

In order to obtain a real projective structure from a twistor space, we must

be able to distinguish a two real parameter family of twistor lines, which we

call real twistor lines, whose parameter space will be the two real dimensional

manifold. This is done by means of an anti-holomorphic involution σ : Z → Z

that maps a two real parameter family of twistor lines to themselves, and

fixes an equator of each line. The involution is obtained in exactly the same

way as the one for the twistor space of a neutral ASD conformal structure

explained in Section 2.5.1. That is, if (x, y) are complexified coordinates then

the involution (x, y) → (x̄, ȳ) maps complex geodesics to complex geodesics,

and generates the map σ. By the same reasoning as in Section 2.5.1, the
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involution σ leaves an equator on each real twistor line p̂ unchanged, cor-

responding to the RP
1 of complexified real geodesics through p ∈ U ⊂ UC.

The real geodesics of the projective structure through p correspond to the

twistor lines intersecting p̂ at a point on its fixed equator.

The other possible anti-holomorphic involution of CP
1, the antipodal

map, does not play a role in the twistor theory of real two dimensional

projective structures.

3.3 Flatness of projective structures

A projective structure is said to be flat if the corresponding second order

ODE (1.5) can be transformed to the trivial ODE

d2y

dx2
= 0 (3.6)

by coordinate transformation (x, y) → (x̂(x, y), ŷ(x, y)). The terminology

comes from the fact that given any second order ODE one can construct a

Cartan connection on a certain G-structure [4], and when this connection is

flat the equation can be transformed to the trivial ODE (3.6). It turns out

that a second order ODE must be of the form (1.5) to be flat, and in addition

the functions A0, A1, A2, A3 must satisfy some PDEs. Defining

F (x, y, λ) = A0(x, y) + λA1(x, y) + λ2A2(x, y) + λ3A3(x, y),

the following must hold [4]:

d2

dx2
F11 − 4

d

dx
F01 − F1

d

dx
F11 + 4F1F01 − 3F0F11 + 6F00 = 0, (3.7)

where

F0 =
∂F

∂y
, F1 =

∂F

∂λ
,

d

dx
=

∂

∂x
+ λ

∂

∂y
+ F

∂

∂λ

This is a set of PDEs for the functions A0, A1, A2, A3.
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Chapter 4

Null Killing vectors and twistor

space reduction

In this chapter we show how the standard twistor constructions in Sections

2.5 and 3.2 are related when an ASD conformal structure possesses a null

Killing vector.

4.1 Two foliations

Suppose g is a neutral metric, which is not required to be ASD at this point.

A conformal Killing vector field K satisfies

LKg = ηg, (4.1)

for some smooth function η. It follows that LK(ecg) = (K(ec) + ecη)g, so K

is a conformal Killing vector for any conformally rescaled metric, and we can

refer to K as a conformal Killing vector (C.K.V.) for the conformal structure

[g].

Now suppose g has a null conformal Killing vector K. We shall show

that M is foliated in two different ways, by α and β surfaces, whose leaves
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intersect tangent to K. This is a property of the conformal structure [g],

since the Hodge-∗ acting on 2-forms is conformally invariant.

The spinor form of the conformal Killing equation (4.1) is:

∇aKb = φA′B′ǫAB + ψABǫA′B′ +
1

2
ηǫABǫA′B′ , (4.2)

where φA′B′ , ψAB are the self-dual and anti-self dual parts of the 2-form

∇[aKb].

Since K is null, we have K = ι ⊗ o, where ι is a section of S and o a

section of S ′. Choosing a null tetrad, we have KAA′

= ιAoA′

. These spinors

are defined up to multiplication by a non-zero function α, since KAA′

=

ιAoA′

= (αιA)(oA′

/α).

Lemma 1. Let K = ιAoA′

eAA′ be a null conformal Killing vector. Then

1. The following algebraic identities hold:

ιAιBψAB = 0, (4.3)

oA′

oB′

φA′B′ = 0. (4.4)

2. ιA and oA′

satisfy

ιAιB∇BB′ιA = 0, (4.5)

oA′

oB′

∇BB′oA′ = 0. (4.6)

Proof. Using KAA′ = ιAoA′ , the Killing equation (4.2) becomes

oA′∇BB′ιA + ιA∇BB′oA′ = φA′B′ǫAB + ψABǫA′B′ +
1

2
ηǫABǫA′B′ . (4.7)

Contracting both sides with ιAoA′

gives

0 = oA′

ιBφA′B′ + ιAoB′ψAB +
1

2
ηιBoB′ .

35



Multiplying by ιB and oB′

respectively leads to (4.3) and (4.4). To get (4.5)

and (4.6), multiply (4.7) by ιAιB and oA′

oB′

, and use (4.3) and (4.4). �

Equations (4.5) and (4.6) are equivalent to the statement that the dis-

tributions spanned by ιAeAA′ and oA′

eAA′ are Frobenius integrable. So M is

foliated in two different ways by α-surfaces and β-surfaces. It is clear that

the α-surfaces and β-surfaces intersect on integral curves of K. Denote the

β-surface distribution by Dβ; this will be used later.

4.2 Lift of K to PS ′

Let (M, [g], K) be a holomorphic 1 ASD conformal structure with conformal

Killing vector K (we abandon the superscript C notation). The infinitesimal

conformal isometry generated by K maps α-surfaces to α-surfaces, since the

conformal structure g is preserved. So K gives rise to a canonically defined

holomorphic vector field on PT , which we denote by K. When K is null, it

is tangent to a two-parameter family of α-surfaces by Lemma 1. These α-

surfaces are fixed by the infinitesimal motion generated by K, so K vanishes

on a hypersurface H ⊂ PT .

It will be useful to express these facts using the double fibration picture

of Section 2.5. We will need the following:

Proposition 1. Let K = KAA′

eAA′ be a conformal Killing vector for an

ASD metric g. Define a vector field K̃ on S ′ by

K̃ := KAA′

ẽAA′ + πA′φA′B′ ∂

∂πB′
+

1

2
ηπA′ ∂

∂πA′
. (4.8)

1Most of what we do in this section remains valid in the smooth case. However when

we get to the proof of Theorem 1, holomorphicity is required.
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Then this satisfies

[K̃, LA] = (KBB′

Γ D
BB′A − ψ D

A )LD +
3

4
(eAB′η)πB′

πC′ ∂

∂πC′
. (4.9)

[Here the φA′B′ , ψAB spinors come from the spinor form of the Killing

equation (4.2).]

Proof. We will need the following identity:

KaRabcd = ∇b∇cKd −
1

2
(η,bgcd − η,cgbd + η,dgbc), (4.10)

where η is the conformal factor appearing in (4.2).

One can calculate

[KAA′

ẽAA′ , πB′

ẽBB′ ]

with the aid of (2.12). One obtains

[KAA′

ẽAA′ , πB′

ẽBB′ ] =

KAA′

πB′

(Γ D
AA′B ẽDB′ − Γ D

BB′A ẽDA′ − Γ D′

BB′A′ ẽAD′)+

KAA′

πB′

(ǫAB(ǫA′E′ǫ F ′

B′ + ǫ F ′

A′ ǫB′E′)
R

24
+ ǫA′B′ǫF

′G′

ΦE′G′AB)πE′

)
∂

∂πF ′

− πB′

(eBB′KAA′

)ẽAA′ . (4.11)

Using the spinor expression for the Riemann tensor (2.10), one can re-express

the second term on the RHS as follows:

KAA′

πB′

(ǫAB(ǫA′E′ǫ F ′

B′ + ǫ F ′

A′ ǫB′E′)
R

24
+ ǫA′B′ǫF

′G′

φE′G′AB)πE′

)
∂

∂πF ′

=
1

2
KAA′

R EF ′

AA′BB′EE′ πB′

πE′ ∂

∂πF ′
.
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But now one can use (4.10) as follows:

1

2
KAA′

R EF ′

AA′BB′EE′ πB′

πE′ ∂

∂πF ′
=

1

2
(∇BB′(ψ E

E ǫ F ′

E′ + Φ F ′

E′ ǫ E
E

+
1

2
ηǫ F ′

E′ ǫ E
E ) −

1

2
(eBB′η)ǫE Eǫ

F ′

E′ +
1

2
ǫF

′G′

(eGG′η)ǫGBǫE′B′

−
1

2
(eBE′η)ǫF

′

B′)πE′

πB′ ∂

∂πF ′

= (∇BB′φ F ′

E′ −
1

4
(eBE′η)ǫF

′

B′)πE′

πB′ ∂

∂πF ′

Substituting this back into (4.11) and collecting terms gives:

[KAA′

ẽAA′ , πB′

ẽBB′ ] = (KAA′

Γ D
AA′B − ψ D

B )LD

− πB′

(φ A′

B′ ǫ A
B +

1

2
ηǫ A′

B′ ǫ A
B ) ẽAA′ + πB′

πE′

(eBB′φ F ′

E′ − Γ G′

BB′E′ φ F ′

G′

+ Γ F ′

BB′G′ φ G′

E′ −
1

4
(eBE′η)ǫF

′

B′)
∂

∂πF ′
. (4.12)

We wish to add a vertical term to KAA′

ẽAA′ which will cancel all the non-LA

terms on the RHS of (4.12), modulo a multiple of the Euler vector field, as

this vanishes on projectivizing. A simple calculation shows that K̃ as defined

in (4.8) does the trick. �

Since K̃ is weight zero in the πA′

coordinates, it defines a vector field on

PS ′, which we will also refer to as K̃ by abuse of notation. The last term on

the right hand side of (4.9) is proportional to the Euler vector field, so does

not contribute to K̃ on PS ′. Hence (4.9) shows that K̃ commutes with the

twistor distribution L on PS ′. The vector field K on PT is the push-forward

of K̃ to PT , which is well defined because K̃ is Lie-derived along L. The

following lemma shows that when K is null, K vanishes on a hypersurface in

PT .

Lemma 2. Let KAA′

= ιAoA′

be a null conformal Killing vector for an ASD

metric g, with K̃ defined as in Proposition 4.9. Then on the hypersurface

H ⊂ PT defined by {[πA′

] = [oA′

]}, K̃ lies in the twistor distribution.
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Proof. From (4.8) we have

K̃ := ιAoA′

ẽAA′ + πA′φA′B′ ∂

∂πB′
+

1

2
ηπA′ ∂

∂πA′
. (4.13)

Now since the twistor distribution on PS ′ is the push down of πA′

ẽAA′ on

S ′, it is clear that when [πA′

] = [oA′

] the first term on the RHS of (4.13)

lies in the twistor distribution. Now from (4.4), we obtain oA′φA′B′

∝ oB′

.

It follows that when [πA′

] = [oA′

], the second term on the RHS of (4.13) is

proportional to the Euler vector field πA′ ∂
∂πA′ , so vanishes on pushing down

to PS ′. The third term is a multiple of the Euler vector field everywhere, so

is irrelevant. �

The hypersurface H ⊂ PS ′ occurring in the previous lemma pushes down

to the hypersurface H ⊂ PT , points of which correspond to the α-surfaces

in the foliation defined by oA′

. The lemma shows that K vanishes on H,

as expected from the argument at the beginning of this section. It is clear

that K is non-vanishing away from H, since when {[πA′

] 6= [oA′

]} on PS ′, the

vector field K̃ is not tangent to the twistor distribution.

4.3 Beta surface lifts

Lemma 1 showed that a null C.K.V. gives rise to two foliations of M , one by

α-surfaces and one by β-surfaces. Here we show that the β-surfaces lift to

PS ′. Each β-surface has a one-parameter family of lifts, with a unique lift

passing through each point in a fibre of PS ′. This contrasts with α-surface

lifts which are unique.

Define a vector field

V = ιALA = ιAπA′

ẽAA′

on S ′. This is weight one in the πA′

coordinates, so gives a one dimensional
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distribution on PS ′ which restricts to the line bundle O(−1) on fibres, by the

argument in Section 2.5. Together with span{K̃}, we get a two dimensional

distribution on PS ′ − H. We exclude H for the following reason. By the

arguments in the proof of Lemma 4.8, K̃ reduces to the push-forward of

ιAoA′

ẽAA′ on H, which lies in the span of the distribution defined by V . So

the distribution defined by K̃ and V drops its rank from two to one on H.

The two dimensional distribution defined by {V, K̃} on PS ′ −H pushes

down to the β-plane distribution Dβ on the base.

Lemma 3. The two dimensional distribution on PS ′ − H determined by

{V, K̃} is integrable.

Proof. We work on S ′ for convenience, and push down to PS ′ at the end.

The distribution span{K̃, V } on S ′ is two dimensional on S ′ when πA′

oA′ 6= 0.

[V, K̃] = [K̃, ιCLC ]

= ιC [K̃, LC ] + K̃(ιB)LB

= ιC((KBB′

Γ D
BB′C − ψ D

C )LD +
3

4
(eCB′η)πB′

πC′ ∂

∂πC′
)

+KBB′

eBB′(ιC)LC

= (KBB′

∇BB′ιC − ιDψ C
D )LC + #Υ

= (ιBoB′

∇BB′ιC − ιDψ C
D )LC + #Υ.

From (4.3) we have ιDψ C
D ∝ ιC , and from (4.5) we have ιBoB′

∇BB′ιC ∝

ιC . Hence the RHS is proportional to V , ignoring the irrelevant Euler vector

field part. �

Next we will show that it is possible to continue this distribution over

the hypersurface H so it is rank two on the whole of PS ′, and that the

resulting distribution commutes on the hypersurface. It will then be possible

to quotient PS ′ by the leaves of this distribution.
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Lemma 4. There is a two-dimensional integrable distribution D over PS ′,

which on PS ′−H is determined by {K̃, V }. Let ̺ be the projection PS ′ →M .

Then for every p ∈ PS ′, we have ̺∗(D |p) = Dβ|̺(p).

Remark. One can think of D as a lift of the β-surfaces to PS ′, where

each β-surface has a CP
1 of lifts. Given a β-surface, take a CP

1 fibre of PS ′

over some point on the surface. Then there is a unique leaf of D through

each point in the fibre. By Lemma 4, each of these leaves projects to the

β-surface under the projection PS ′ → M . So there is a CP
1 of lifts of the

β-surface.

Proof. Choose a spinor ιA
′

satisfying oA′

ιA′ = 1. Define the following

(singular) vector field on S ′:

W =
1

πC′oC′

(V − (πD′

ιD′)K̃). (4.14)

This is weight zero in the πA′

, so defines a vector field on PS ′ by push-forward,

which we shall also call W . We will now show that W is well defined even

over H ⊂ PS ′, despite the 1/(πC′

oC′) factor in (4.14).

Without loss of generality, choose a tetrad such that

K = ιAoA′

eAA′ = e00′ .

That is, ιA = (1, 0), oA′

= (1, 0). Define λ = π1′/π0′ to be the coordinate

on the π0′ 6= 0 patch of CP
1, and extend this to a patch of PS ′; we call the

patch U . Then H lies entirely within U at λ = 0. We have the following

expression for K̃, obtained by ‘projectivizing’ (4.8):

K̃ = ẽ00′ + (φ 1′

0′ + λ(φ 1′

1′ − φ 0′

0′ ) + λ2φ 0′

1′ )
∂

∂λ

= ẽ00′ + (λ(φ 1′

1′ − φ 0′

0′ ) + λ2φ 0′

1′ )
∂

∂λ
,

where φ 1′

0′ = 0 due to (4.4).
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In the above conventions, we have V = πA′

ẽ0A′ . On U ⊂ PS ′, the push

forward of 1
πC′

oC′

V is

1

λ
ẽ00′ + ẽ01′ ,

which is singular at H, corresponding to λ = 0. Choosing ιA
′

= (0,−1), we

then obtain the following expression for W on U :

W =
1

λ
ẽ00′ + ẽ01′ −

1

λ
K̃ = ẽ01′ − ((φ 1′

1′ − φ 0′

0′ ) + λφ 0′

1′ ))
∂

∂λ
.

This is a non-singular vector field on U . By construction, away from H

this lies in span{K̃, Ṽ }. Define D on U to be span{K̃,W}. This is clearly

two-dimensional everywhere on U . Note that W is also well defined over the

other patch (i.e. at λ = ∞) so we can define D as span{K̃,W} over the

whole of PS ′.

We now want to show that D is integrable over H. We know (Lemma 3)

that D is integrable away from H. Therefore on U we have

[K̃,W ] = fK̃ + gW + Y,

where f, g are holomorphic functions on U and Y is a holomorphic vector

field vanishing on U −H. But such a vector field must vanish, otherwise it

is not even continuous, so is certainly not holomorphic.

The last part of the lemma is obvious, just from inspecting the coordinate

expressions of K̃, W . �

Note that Lemma 4 applies equally well to the smooth case; in Section 5

we shall study it using local coordinates and find the general smooth solution.

We now have enough information to prove Theorem 1 from Section 1.4

(stated again below). There is a three dimensional integrable distribution

L + D on PS ′. It is three dimensional because L and D have a direction in

common, which is the distribution defined by the push-forward to PS ′ of V

on S ′. Define Z to be the quotient of PS ′ by L + D.
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Theorem 1. Let (MC, [gC]) be a holomorphic ASD conformal structure, with

twistor space PT . Suppose there is a null conformal Killing vector KC. Then

there is a holomorphic fibration PT → Z, where Z is the twistor space of a

two dimensional projective structure, as defined in Section 3.2.

Proof. PT is the quotient of PS ′ by L. By Lemma 4, L + D is an

integrable distribution on PS ′, so there is a one-dimensional distribution on

PT ; define Z to be the quotient of PT by this distribution. Equivalently,

Z is the quotient of PS ′ by L + D. Since the distribution is holomorphic,

there is a holomorphic fibration PT → Z. It remains to show that Z is a

projective structure twistor space. Now L+D is transverse to each CP
1 fibre

in PS ′, so each fibre projects to a holomorphically embedded CP
1 ⊂ Z. We

need to show that the normal bundle of such a CP
1 is O(1).

The quotient of PS ′ by L + D can be done by first quotienting by D

and then quotienting by the residual one-dimensional distribution defined

by L. One can calculate the normal bundle of the projection of a fibre

by considering a two-dimensional sub-bundle of TPS ′|CP
1 , transverse to the

CP
1 fibre, and not in D, with the residual L distribution as a sub-bundle.

The required normal bundle is the quotient bundle of this two-dimensional

distribution by the residual L distribution.

In the conventions of Lemma 4, the vector fields ẽ10′ , ẽ11′ on PS ′, re-

stricted to a fibre, do not lie in D. The residual L distribution is simply

the distribution defined by L1. This is a linear combination of ẽ10′ and ẽ11′ ;

it is span{ẽ10′ + λẽ11′} on the π0′ 6= 0 patch, and span{λ̃ẽ10′ + ẽ11′} on

the π1′ 6= 0 patch. So span{ẽ10′ , ẽ11′} is the two-dimensional sub-bundle of

TPS ′|CP
1 described in the previous paragraph.

The normal bundle N of an image of a fibre under the quotient of L+D
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fits into an exact sequence

0 → O(−1) → O⊗ C
2 → N → 0,

where the O⊗C
2 corresponds to the ẽ10′ , ẽ11′ vectors restricted to the fibre.

The O(−1) is the subdistribution of this vector bundle defined by L1. From

this exact sequence, the Chern class of N must be 1, so N ∼= O(1) by the

Birkhoff-Grothendieck theorem. Alternatively, one can see this by explictly

coordinatizing N , using precisely the same method as that given under (2.18)

in Section 2.5. Hence Z is a projective structure twistor space. �

In fact we can canonically identify PS ′/D with PTU , where U is the

space of β-surfaces in M , as follows. Using the conventions of Lemma 4, the

tangent planes to the β-surfaces in the base are spanned at each point by

e00′ , e01′ . Now L1 has the form e10′ + λe11′ + (. . .)∂λ, so at each point in

the fibre above a point x ∈ M , L1 pushes down to a different null direction

transverse to the β-plane at x. Now suppose we take a lift of a β-surface Π,

i.e. a leaf of D that projects down to Π. Push down L1 at each point over

this lift. This will give a vector field Θ = e10′ + λe11′ over Π, where λ is now

a function on the M .

We want to show that this determines a projective vector at the point

s ∈ U corresponding to Π ⊂M . This means we require

[e00′ ,Θ] ∝ Θ mod{e00′ , e01′}, [e01′ ,Θ] ∝ Θ mod{e00′ , e01′}.

But this follows from the fact that the distribution on PS ′ spanned by

{K̃,W,L1} commutes. Hence to determine the projective vector correspond-

ing to a leaf of D, just choose a point on the leaf and push down L1. Because

of the above considerations, this direction will be independent of the choice

of point on the leaf.
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Figure 4.1: Relationship between foliation spaces.

What all this shows is that Z is the twistor space for a projective structure

on U , the space of β-surfaces in M . Figure 1 illustrates the situation. Here

p and q are the obvious projections. Dβ represents the β-surface distribution

on M . The K̂ labelling the map from PT to Z requires some explanation.

The vector field K̃ over PS ′ commutes with the twistor distribution (Lemma

1), so determines a vector field K on PT . This vector field vanishes on

a hypersurface H ⊂ PT , corresponding to the α-surfaces to which K is

tangent; these are the α-surfaces appearing in Lemma 1. Now K on PT

only depends on K̃ modulo L. Lemma 4 shows that we can multiply K̃

modulo L by a meromorphic function (1/λ) and obtain a vector field W

commuting with the twistor distribution. This means that there is a one-

dimensional distribution K̂ over the whole of PT that never degenerates,

and which agrees with span {K} on PT − H. The quotient of PT by this

distribution gives Z, as illustrated in the diagram.

4.4 The divisor line bundle of H

One can rephrase the above in terms of a divisor line bundle (some of the

details in what follows are adapted from Calderbank [5]), leading to an alter-

native proof of Theorem 1. There is a holomorphic line bundle E over PT
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defined by the property that it has a meromorphic section ζ with a pole of

order one on H. This is the line bundle of the divisor 2 −H. Then ζ ⊗ K

defines a meromorphic section of E ⊗ TPT . Restricting to a twistor line,

K gives a section of the normal bundle O(1) ⊕ O(1). Also, E restricts to

O(−1) because H intersects the twistor line at a point, and there is a section

of E with a pole of order one on H. So restricting this section to a twistor

line gives a holomorphic section of the restriction of E to the line, with a

pole of order one at a point. Hence by Birkhoff-Grothendieck E ∼= O(−1).

Therefore ζ ⊗ K restricts to a meromorphic section of O ⊕ O on a twistor

line. This section is bounded away from the singular point, since K has a first

order zero and ζ a first order pole, and non-zero, so must be non-vanishing

everywhere on the line. Since this is true for every twistor line, ζ ⊗ K is a

holomorphic, non-vanishing section of E⊗TPT . Equivalently, this is a non-

vanishing section of Hom(E∗, TPT ), i.e. an identification of a sub-bundle

of TPT with E∗. Z is the quotient of PT by this sub-bundle. Note that

this procedure for continuing the span of K over H is unique, so must be

equivalent to the one explicitly constructed in Section 4.3.

In fact, the sub-bundle E∗ must be transverse to twistor lines in PT . This

is because restricting the nonvanishing section of Hom(E∗, TPT ) to a twistor

line gives a nonvanishing section of Hom(O(1),O(1)⊕O(1)) ∼= O⊕O, where

O(1) ⊕ O(1) is the normal bundle of a line. All such sections are constant,

so we get a non-vanishing section of the normal bundle, which means E∗ is

transverse to the line.

2In a complex manifold, a divisor is a formal sum of complex hypersurfaces ΣiniHi

where Hi are hypersurfaces. It is a standard fact, see [13] for details, that there is a cor-

responding line bundle, denoted [ΣiniHi], with the property that there is a meromorphic

section with zeros and poles on the hypersurfaces Hi, with orders specified by the numbers

ni. Positive ni specifies a zero of order ni, and negative ni specifies a pole of order |ni|.
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Since the sub-bundle is transverse to all twistor lines, a twistor line

projects to a line in Z. Now E∗ restricts to O(1) on twistor lines. This

gives the exact sequence

0 → O(1) → O(1) ⊗ C
2 → O(1) → 0, (4.15)

where the middle entry is the normal bundle of a twistor line in PT , the

left entry is the sub-bundle defined by the restriction of E∗ (thought of as a

subbundle of TPT ), and the final entry is the quotient. Thus, the normal

bundle of a line in Z that is the projection of a twistor line in PT is O(1).

This is the promised alternative proof of Theorem 1.

4.5 The relation between PT and Z

Here we investigate the quotient PT → Z in more detail. We first note

that there is a correspondence between β-planes at x ∈ M and O(1) sub-

bundles of the normal bundle of x̂ ⊂ PT . This is seen as follows. A β-plane

at x corresponds to a one-dimensional subspace of Sx. That is, it consists

of vectors of the form V AA′

= µAσA′

for σA′

varying and fixed non-zero

µA. Now V AA′

gives corresponds to a section of O(1) ⊕ O(1) by the map

V AA′

→ (V 0A′

πA′ , V 1A′

πA′), where πA′ are the homogeneous coordinates of

CP
1. So sections corresponding to a β-plane are of the form

(µ0σA′

πA′ , µ1σA′

πA′). (4.16)

Clearly these sections define an O(1) sub-bundle [a, b] = [µ0, µ1], where (a, b)

are fibre coordinates of O(1) ⊕ O(1). Conversely, suppose we have an O(1)

sub-bundle of O(1) ⊕ O(1). Then a section of the sub-bundle will give a

section of O(1) ⊕ O(1) with a single zero. This must be of the form (4.16)

for some µA, and hence defines a β-plane.
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In summary we have:

Lemma 5. There is a one-one correspondence between β-planes at x ∈ M

and O(1) sub-bundles of the normal bundle of x̂ ⊂ PT .

In the previous section we showed that in the presence of a null C.K.V.,

there is a sub-bundle E∗ of TPT that restricts to an O(1) sub-bundle of the

normal bundle on twistor lines. It is easy to see that the β-plane to which

K is tangent at x ∈ M corresponds to the O(1) sub-bundle of the normal

bundle obtained by restricting E∗ to the twistor line x̂. This is because K,

when restricted to x̂, defines a section of the restriction of E∗ to x̂, and this

section corresponds to K at x.

Now given E∗ it is also easy to show that the corresponding β-plane

distribution is integrable, using Kodaira deformation theory. Consider the

union of trajectories of E∗ intersecting a given twistor line x̂. This is a divisor

on PT . Within this, x̂ has normal bundle O(1) and hence by Kodaira theory

there is a two-parameter family of nearby CP
1s lying in the divisor, each of

which intersects x̂ at a point. The normal bundle of any of these nearby ones,

within the divisor, is the sub-bundle of the total normal bundle determined

by E∗, so corresponds to the β-plane to which K is tangent. Hence we have

a β-surface distribution. Each β-surface corresponds in this way to a surface

in PT , the union of trajectories through any twistor line corresponding to a

point on the β-surface.

Fig. 4.5 illustrates the situation. In M , a one parameter family of β-

surfaces is shown, each of which intersects a one parameter family of α-

surfaces, also shown. The β-surfaces correspond to a projective structure

geodesic in U , shown at the bottom left.

The β-surfaces in M correspond to surfaces in PT , as discussed above.

These surfaces intersect at the dotted line, which corresponds to the one
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Figure 4.2: Relationship between M , U , PT and Z.

parameter family of α-surfaces in M . When we quotient PT by K̂ to get Z,

the surfaces become twistor lines in Z, and the dotted line becomes a point

at which the twistor lines intersect; this is shown on the bottom right. This

family of twistor lines intersecting at a point corresponds to the geodesic of

the projective structure.

4.6 Calderbank’s generalization

This picture was generalized by Calderbank in [5], who found a converse to

Theorem 1. In this section we shall briefly explain his ideas; detailed proofs

can be found in [5].

Suppose we start with a twistor space PT for an ASD conformal struc-

ture (M, [g]), and that PT has a holomorphic sub-bundle B → TPT of the

tangent bundle, that is transverse to twistor lines, and restricts to an O(1)
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sub-bundle of the normal bundle on these lines. One can use the same Ko-

daira deformation argument as in Section 4.5 and Lemma 5 to show that

there is a foliation of M by β-surfaces. This foliation need not be induced by

a null C.K.V. in general. However, Calderbank shows that the foliation must

be of a special type, which he calls an anti-self-dual β-surface foliation3. We

shall now explain this.

A β-plane distribution is equivalent to a line sub-bundle L → S, de-

termined by a non-zero spinor ιA up to scale. In order to treat this scale

invariantly one introduces a connection4 D on L∗. The sub-bundle L→ S is

equivalent to a section of L∗ ⊗ S, i.e. a line-bundle valued spinor. A change

in the local trivialization of the line bundle is equivalent to a change in scale

of the spinor. Now in a particular trivialization of L∗ and S, denote the

L∗-valued spinor by ιA, and let the connection one-form of D be γ. Let ∇D

be the connection on L∗ ⊗ S that couples the connection ∇ on S to D on

L∗. In the trivialisation, we have

ιAιB∇D

AA′ιB = ιAιB(∇AA′ιB + γAA′ιB) (4.17)

= ιAιB∇AA′ιB. (4.18)

Now the β-plane distribution is integrable iff ιAιB∇AA′ιB = 0, which by the

above is equivalent to ιAιB∇D

AA′ιB = 0. This last equation is equivalent to

∇D

A′(AιB) = ∇A′(AιB) + γA′(AιB) = AA′(AιB) + γA′(AιB),

for a one-form AAA′ . We have used the fact that ιAιB∇AA′ιB = 0 implies

∇A′(AιB) = AA′(AιB). (4.19)

3In [5] the terminology is a self-dual distribution, because his conventions are the reverse

of ours.
4Unfortunately this corresponds to ∇ in [5], whilst our ∇ corresponds to his D. This

is a consequence of our use of ∇ for the connections on S, S′ induced by the Levi-Civita

connection of g.
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To see this simply expand ∇A′(AιB) using orthonormal bases for S and S ′:

∇A′(AιB) = c1ιA′ιAιB + c2ιA′ι(AoB) + c3ιA′oAoB

+c4oA′ιAιB + c5oA′ι(AoB) + c6oA′oAoB.

Now using ιAιB∇AA′ιB = 0 we get c3 = c6 = 0. Then (4.19) follows, with

AA′A = c1ιA′ιA + c2ιA′oA + c4oA′ιA + c5oA′oA.

Since changing the connection on L∗ is achieved by adding an arbitrary

one form to γ, there is a unique connection D̃, with connection form −A,

satisfying

∇D̃

A′(AιB) = 0.

Calderbank calls D̃ the canonical connection associated to a β-surface folia-

tion, and if this connection has anti-self-dual curvature he calls the foliation

an anti-self-dual foliation. In other words, dA is an anti-self-dual Maxwell

field when the foliation is anti-self-dual. In more down-to-earth terms, a

β-surface foliation is anti-self-dual if for any spinor ιA determining it, the

one-form AAA′ defined by

∇A′(AιB) = AA′(AιB)

has the property that dA is anti-self-dual. This property doesn’t depend on

the choice of scale of ιA because changing the scale results in A changing by

df for a function f , so dA is unchanged. Calderbank argues that in the case

that ιA comes from a null C.K.V., this is satisfied.

In the case of a β-surface foliation that arises from a line sub-bundle B,

one obtains a connection on L∗ using the Penrose-Ward transform of B⊗κ1/4,

where κ is the canonical bundle of PT . This line bundle is trivial on twistor

lines, so the Penrose-Ward transform gives rise to an ASD connection on a
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line bundle over M , which one can identify with L∗. One can then show

that this connection is in fact canonical in the above sense, so the β-surface

foliation is anti-self-dual.

Conversely, suppose one has an integrable β-plane distribution. By Lemma

5 this corresponds to an O(1) section of the normal bundle of each twistor

line. To generate a sub-bundle of TPT , these sub-bundles must agree where

any two twistor lines intersect. Calderbank shows that this happens iff the

β-surface distribution is anti-self-dual.
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Chapter 5

The general solution

5.1 Coordinate choices adapted to the twistor

distribution

In this chapter we introduce local coordinates in order to construct explicit

metrics with null CKVs, the end result being Theorem 2. The material pre-

sented in Section 4.3 is useful as a guide in choosing coordinates that highlight

the geometrical structures involved, such as the integrable β-surfaces and the

projective structure. It turns out that one can essentially solve the anti-self-

duality equations completely to find all neutral ASD conformal structures

with null CKVs, once suitable coordinates have been chosen. One obtains ex-

plicit expressions for the twistor distribution, where the geometry presented

in Chapter 4 is transparent. An interesting feature of these calculations is

that they do not require any analyticity assumptions, and therefore apply

to the general smooth case. This is similar to the fact that the Jones-Tod

correspondence works for smooth neutral ASD metrics with non-null Killing

vectors, even though the Penrose twistor correspondence only applies to the
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analytic case.

In the following calculations we will often use a shorthand for coor-

dinate transformations: t → F (t, x, y, z) means define a new coordinate

t̃ = F (t, x, y, z) and then relabel it t again. This avoids having to intro-

duce new symbols for new coordinates. Partial derivatives will be denoted

by subscripts, for example Fz := ∂zF .

Let (M, g,K) be a smooth, neutral ASD metric with null conformal

Killing vector. Choose a conformal factor such that K is a pure Killing

vector; this can always be done since it amounts to solving an ODE. We will

use the conventions of Lemma 4, that is we choose a Newman-Penrose tetrad

with K = e00′ , where the tangent planes to the β-surfaces are spanned by

K and e01′ . Now choose coordinates (t, z, x, y) in which K = ∂t. Since K

is pure Killing, in these coordinates the metric contains no functions of t.

Hence [K, e01′ ] = 0 and we may take e01′ = ∂z. Then we have

K̃ = ∂t, (5.1)

L0 = ∂t + λ∂z + f(x, y, z, λ)∂λ, (5.2)

where L0 is half of the twistor distribution (2.16). Note that f does not

depend on t because it comes from connection coefficients, which do not

depend on t since it does not occur in the metric. Also note that K̃ = ∂t,

because L0 and L1 do not contain functions of t, so it commutes with both

as required.

The next step is to eliminate the ∂λ dependence in L0. This is achieved

by a Möbius transformation, λ → (β̂ + δ̂λ)/(α̂ + γ̂λ), where α̂, β̂, γ̂, δ̂ are

functions on M . Now the new λ coordinate satisfies K̃(λ) = L0(λ) = 0.
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Therefore α̂, . . . , δ̂ do not depend on t. This gives the following general form:

K̃ = ∂t, (5.3)

L0 = α ∂t + β ∂z + λ(γ ∂t + δ ∂z). (5.4)

What we have done here is trivialize PS ′ by the requirement that λ is constant

over any β-surface lift. One can see that this is possible invariantly as follows.

Take a surface in M that is transverse to the β-surface foliation. On each

fibre of PS ′ above this surface, choose a λ coordinate, smoothly varying along

the surface. Now at each point in the surface, extend the coordinate along

fibres above the unique β-surface through the point, by the requirement that

it remain constant on the lifts of the β-surface. This gives a λ coordinate

satisfying L0λ = 0, hence of the form (5.4).

The projective structure now emerges naturally. Clearly (x, y) are the

coordinates on the space of β-surfaces. The other vector in the twistor dis-

tribution has the form

L1 := J0(x, y, z)∂x + J1(x, y, z)∂y + λ(J2(x, y, z)∂x + J3(x, y, z)∂y)

+ (A0(x, y, z) + λA1(x, y, z) + λ2A2(x, y, z) + λ3A3(x, y, z))∂λ

+ (C(x, y, z) + λD(x, y, z))∂t + (E(x, y, z) + λF (x, y, z))∂z. (5.5)

where J0J3 − J1J2 6= 0. This is the most general possible form for L1, where

no functions depend on t since ∂t is a Killing vector. The Ai functions

multiplying ∂λ are combinations of connection coefficients, which are partial

derivatives of functions in the metric, and therefore because the functions

in the metric do not have t dependence, neither do the functions Ai. The

twistor distribution span{L0, L1} is required to be integrable, by Theorem 3.

This requires

(J0)z

J0

=
(J1)z

J1

=
(J2)z

J2

=
(A0)z

A0

= . . . =
(A3)z

A3

,
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which means that all these functions share a common factor that depends on

z, and when this is divided out one obtains functions of (x, y). Dividing L1

by this common factor 1 results in an L1 of the form

L1 := J0(x, y)∂x + J1(x, y)∂y + λ(J2(x, y)∂x + J3(x, y)∂y)

+ (A0(x, y) + λA1(x, y) + λ2A2(x, y) + λ3A3(x, y))∂λ

+ (C(x, y, z) + λD(x, y, z))∂t + (E(x, y, z) + λF (x, y, z))∂z, (5.6)

One now observes that the ∂x, ∂y, ∂λ terms precisely correspond to a projec-

tive structure spray on PTU . Since D is spanned by ∂t, ∂z, the quotient of

L1 by D gives a projective structure.

To put the projective structure spray occuring in (5.6) into the more

standard form (3.4) (i.e. J0 = J3 = 1, J1 = J2 = 0) it is necessary to

perform a Möbius transformation of λ depending on (x, y). Since this does

not depend on t or z, the general form (5.4) of L0 is unchanged by this, and

we can assume that the projective structure spray in L1 is of the form (3.4),

which we shall do from now on.

We have found a general form that any {K̃, LA} can be put into. For

it to give an ASD conformal structure, the LA must commute modulo LA.

Imposing this gives equations for the unknown functions, which will lead us

to the metrics appearing in Theorem 2.

First, it is convenient to change coordinates yet again, because together

with conformal rescaling we can elimate three of the four functions in L0. We

may assume δ 6= 0 (if δ = 0 then β 6= 0, in which case perform the coordinate

change λ → 1/λ). Now change coordinates by (t, x, y, z) → (t̃, x̃, ỹ, z̃) =

1This corresponds to a conformal transformation of the metric. Since we are only

interested in the conformal structure in this theorem, we will perform such operations

freely and use the same symbol L1.
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(t+ j(x, y, z), x, y, k(x, y, z)), where kz 6= 0. This does not affect the general

form (5.6) of L1.

We obtain

L0 = α∂t̃ + β(
∂k

∂z
∂z̃ +

∂j

∂z
∂t̃) + λ(γ∂t̃ + δ(

∂k

∂z
∂z̃ +

∂j

∂z
∂t̃)).

Here we regard ∂k
∂z

and ∂j
∂z

as functions of (x̃, ỹ, z̃). Now choose j(x, y, z) such

that the following equation is satisfied:

∂j

∂z
= −

γ

δ
.

The right hand side is not singular because δ 6= 0. Then we have

L0 = (α−
βγ

δ
)∂t̃ + β

∂k

∂z
∂z̃ + λδ

∂k

∂z
∂z̃

Since the function (α− βγ
δ

) 6= 0, we can divide by it. Finally one can choose

k(x, y, z) to satisfy
∂k

∂z
=

1

δ
(α−

βγ

δ
),

where the right hand side is non-vanishing.

Removing the tildes, we end up with

K̃ = ∂t, (5.7)

L0 = ∂t − β(x, y, z)∂z + λ∂z, (5.8)

L1 = ∂x + λ∂y + (A0(x, y) + λA1(x, y) + λ2A2(x, y) (5.9)

+λ3A3(x, y))∂λ + (C(x, y, z) + λD(x, y, z))∂t + (E(x, y, z) + λF (x, y, z))∂z.

One can now read off an NP tetrad eAA′ for a metric g ∈ [g] corresponding

to the twistor distribution, using LA = eA0′ + λeA1′ + fA∂λ. One finds that

K ∧ dK = βzdx ∧ dy ∧ dz, where K = g(∂t, .). Thus the twist of the Killing

vector ∂t vanishes iff β does not depend on z. Since existence of twist is a
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conformally invariant property 2, the cases βz = 0 and βz 6= 0 are genuinely

distinct, not an artefact of our coordinate choices. We now analyse each in

turn.

5.2 Twist-free case

We have βz = 0. Calculating the commutator of L0 and L1 we obtain

[L0, L1] = (−β + λ)(Cz + λDz)∂t + (βx + λβy − βEz − λβFz + λEz + λ2Fz

−(A0 + λA1 + λ2A2 + λ3A3))∂z. (5.10)

Since we require {L0, L1} to be integrable, this must be a multiple of L0. We

deduce that

[L0, L1] = (−β + λ)(Cz + λDz)L0. (5.11)

Now comparing the ∂z coefficients of (5.10) and (5.11) we get four equations,

one for each power of λ.

The λ3 equation is

Dz = −A3 → D(x, y, z) = −zA3(x, y) +Q(x, y), (5.12)

where Q is arbitrary.

The λ2 equation is

Fz − Cz = A2 + 2βA3. (5.13)

Substituting (5.12) into this and solving gives

F (x, y, z) − C(x, y, z) = z(A2(x, y) + 2β(x, y)A3(x, y)) + P (x, y), (5.14)

where P is arbitrary.

2Let K := g(K, .), and K̃ := cg(K, .), where c is a conformal factor. Now K̃ ∧ dK̃ =

cK ∧ (dc ∧ K + cdK) = c2
K ∧ dK, so K̃ ∧ dK̃ = 0 iff K ∧ dK = 0.
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The λ equation is

Ez + βCz = −βy + A1 + βA2 + β2A3, (5.15)

which integrates to gives

E(x, y, z) + β(x, y)C(x, y, z) = z(−βy +A1 + βA2 + β2A3) +R(x, y), (5.16)

where R is arbitrary. Substituting D,F,E from (5.12), (5.14), (5.16) into

L1, we find the following:

L1 = ∂x + λ∂y + (A0 + λA1 + λ2A2 + λ3A3)∂λ

+λ(−zA3 +Q)∂t +(z(−βy +A1 +βA2 +β2A3)+λ(z(A2 +2βA3)+P ))∂z,

(5.17)

where P and Q are arbitrary functions of (x, y) and we have eliminated one

arbitrary function by translating the z coordinate. There is one remaining

equation to solve, corresponding to the λ0 coefficient of ∂z. This equation is

as follows:

βx + ββy − A0 − βA1 − β2A2 − β3A3 = 0. (5.18)

The metric (1.2) in Theorem 2 corresponds to the twistor distribution given

by L0, with βz = 0, and (5.17). If β(x, y) is regarded as defining a section of

PTU , then (5.18) says that this section is tangent to lifted geodesics of the

projective structure. In terms of the base, a solution is given by a congruence

of geodesics.

5.3 Twisting case

We have βz 6= 0. We may perform a coordinate transformation z → β(x, y, z).

This does not affect the general form (5.9) of L1. Performing the coordinate
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change and dividing by βz gives the following form for L0:

L0 = H(x, y, z)∂t − z∂z + λ∂z, (5.19)

where H is a non-zero arbitrary function. Calculating the commutator gives

[L0, L1] = ((−z + λ)(Cz + λDz) − (E + λF )Hz)∂t

+((−z + λ)(Ez + λFz) − (E + λF )

−(A0 + λA1 + λ2A2 + λ3A3))∂z.

We require [L0, L1] = αL0 for some function α(x, y, z, λ), which is at most

quadratic in λ, since otherwise αL0 will contain powers of λ greater than

three, and such terms do not occur in the commutator above. We make a

replacement L1 → L1−FL0, and analyze equations obtained from comparing

coefficients of ∂z, ∂t. This puts L1 in the form

L1 = ∂x + λ∂y + (A0 + λA1 + λ2A2 + λ3A3)∂λ

+(C + λD)∂t + (A0 + zA1 + z2A2 + z3A3)∂z,

where C(x, y, z), D(x, y, z), H(x, y, z) satisfy

Cz − 2zDz = −HA2 +Hy. (5.20)

Dz = −HA3. (5.21)

and

(∂x + z∂y + (A0 + zA1 + z2A2 + z3A3)∂z)H = 0. (5.22)

The only things remaining now are to find expressions for C and D and

construct the metric. In order to integrate equations (5.20) it is convenient

to express H(x, y, z) as the second derivative of another function G(x, y, z),

i.e. we set

H(x, y, z) =
∂2G

∂z2
(x, y, z).
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Then equations (5.20) and (5.21) integrate to give

C = −GzA2 − 2A3(zGz −G) +Gzy + ρ(x, y),

D = −GzA3 + σ(x, y),

where ρ and σ are arbitrary functions. Notice that G has a ‘gauge freedom’

G→ G+ zγ(x, y)+ δ(x, y), since (1.4) will still be satisfied. Using this and a

coordinate change t→ t+ ξ(x, y), one can set the functions ρ and σ to zero.

The twistor distribution {L0, L1} is now fully determined:

L0 = Gzz∂t − z∂z + λ∂z,

L1 = ∂x + λ∂y + (A0 + λA1 + λ2A2 + λ3A3)∂λ

+(−GzA2 − 2A3(zGz −G) +Gzy) − λ(GzA3))∂t

+(A0 + zA1 + z2A2 + z3A3)∂z.

The distribution is integrable iff G satisfies (1.4). Calculating the corre-

sponding null tetrad gives the conformal structure (1.3) in Theorem 2. This

completes the proof of Theorem 2.

5.4 Interpretation as a gauge theory

As explained by Calderbank [5], the calculations above can be attractively

expressed in terms of a gauge theory. The idea is to consider a connection on a

principal bundle over U , with fibre the diffeomorphism group of a surface. Let

this surface have coordinates (t, z), while U has coordinates (x, y). The Lie

algebra of the diffeomorphism group is the Lie algebra of vector fields on the

(t, z) surface. The connection, being a Lie-algebra valued one-form on U , has

the form αxdx+αydy, where αx, αy are vector fields on the (t, z) surface (note

that we are now using subscripts to denote components of a one-form, not
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partial derivatives). Explicitly, we have αx = F (t, z, x, y)∂t + G(t, z, x, y)∂z

and similarly for αy. This connection is read off from the form (5.9) of L1,

by rewriting it as

L1 = ∂x + αx + λ(∂y + αy)

+ (A0(x, y) + λA1(x, y) + λ2A2(x, y) + λ3A3(x, y))∂λ. (5.23)

One can also rewrite the (5.8) form of L0 as

L0 = φx + λφy,

where the φi are interpreted as the components of a Lie-algebra valued one-

form on U . Now take a connection D in the projective class defined by the

projective structure, and couple it to the gauge connection defined above. Let

Dα denote this coupled connection. Now one can covariantly differentiate

the one-form φ. Vector field commutators take the place of using matrix

commutators, for example

Dα
xφx = ∂xφx + [αx, φx] + Γx

xxφx + Γy
xxφy.

Then Calderbank shows that the equations that one obtains by requiring the

twistor distribution to be integrable are given by

Dα
(aφb) = 0. (5.24)

Moreover, he shows that these equations are projectively invariant, i.e. do

not depend on the choice of connection within the projective class.

In fact this gauge theory formulation applies to the more general case

of anti-self-dual β-surface foliations explained in Section 4.6. The essential

point is that this more general case applies when α and φ are allowed to

be functions of t. When this happens, one still obtains an integrable β-

surface foliation for a neutral ASD metric (which is anti-self-dual in the
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terminology of Section 4.6), but ∂t will no longer be a Killing vector (unless

the t dependence can be removed by a Möbius transformation of λ, which is

equivalent to a rotation of the tetrad and a conformal transformation).
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Chapter 6

Special metrics

Theorem 2 provides a local form for any neutral ASD conformal structure

with null CKV. It does not provide any information about metrics within a

particular conformal class. In this chapter we will study examples of special

types of metric within the conformal classes of the theorem, in particular

pseudo-hyper-Kähler and pseudo-hyper-hermitian metrics. We also find ex-

amples of conformal classes possessing no Ricci-flat metrics. Finally, we show

that neutral analogues of the well-known Lorentzian Fefferman metrics fits

into our framework.

6.1 Pseudo-hyper-Kähler metrics

Consider a structure (M, I, S, T ), where M is a 4-dimensional manifold and

I, S, T are anti-commuting endomorphisms of the tangent bundle satisfying

S2 = T 2 = 1, I2 = −1, ST = −TS = I. (6.1)

Consider the hyperboloid of almost complex structures on M given by aI +

bS + cT , for (a, b, c) satisfying a2 − b2 − c2 = 1. If each of these almost
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complex structures is integrable, we call (M, I, S, T ) a pseudo-hypercomplex

manifold.

So far we have not introduced a metric. A natural restriction on a met-

ric given a pseudo-hypercomplex structure is to require it to be hermitian

with respect to each of the complex structures. This is equivalent to the

requirement:

g(X,Y ) = g(IX, IY ) = −g(SX, SY ) = −g(TX, TY ), (6.2)

for all vectors X,Y . A metric satisying (6.2) must be neutral. To see this

consider the endomorphism S, which squares to the identity. Its eigenspaces

decompose into +1 and −1 parts. Any eigenvector must be null from (6.2).

So choosing an eigenbasis one can find four null vectors, from which it follows

that the metric is neutral. Given a pseudo-hypercomplex manifold, we call

a metric satisfying (6.2) a pseudo-hyperhermitian metric.

Given a local pseudo-hypercomplex structure in four dimensions one can

construct many pseudo-hyperhermitian metrics for it as follows. Take a vec-

tor field V and let (V, IV, SV, TV ) be an orthonormal basis in which the

metric has diagonal components (1, 1,−1,−1). The fact that these vectors

are linearly independent follows from (6.1). It is easy to check that (6.2)

holds for any two vectors in the above basis, and hence by linearity for any

(X,Y ). By varying the length of V one obtains different metrics in the same

conformal class. However, even the conformal class is not uniquely deter-

mined by the pseudo-hypercomplex structure. To see this take a vector W

that is null for the metric specified by V , and form a new metric by the same

procedure using W . Then W is not null in this new metric, so this metric

must be in a different conformal class.

Now suppose we are given a pseudo-hypercomplex structure, and a pseudo-
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hyperhermitian metric. If the 2-forms

ωI(., .) = g(., I.), ωS(., .) = g(., S.), ωT (., .) = g(., T.), (6.3)

are closed, g is called pseudo-hyper-Kähler.

It follows from similar arguments to those in standard Riemannian Kähler

geometry that (I, S, T ) are covariant constant, and hence so are ωI , ωS, ωT .

As in the Riemannian case, pseudo-hyperkähler metrics are equivalent to

Ricci-flat anti-self-dual metrics. One can deduce this by showing that the

2-forms (6.3) are self-dual, and since they are also covariant constant there

exists a basis of covariant constant primed spinors. Then using the spinor

Ricci identities one can deduce anti-self-duality and Ricci-flatness.

6.1.1 Plebański tetrads

Plebański [27] discovered that any pseudo-hyper-Kähler metric can be ex-

pressed using a tetrad that involves a single function of four variables subject

to a single PDE. We shall use this to find examples of pseudo-hyper-Kähler

metrics with null CKVs. Plebański’s result is the following:

Proposition. Given any pseudo-hyper-Kähler metric, there are coordinates

in which it is locally of the form

g = dY (dT − ΘXXdY − ΘTXdZ) − dZ(dX + ΘTTdZ + ΘTXdY ), (6.4)

where Θ(T,X, Y, Z) satisfies the equation

ΘTY − ΘZX + ΘTT ΘXX − Θ2
TX = 0. (6.5)

The metric (6.4) is in NP tetrad form. Let oA′

= (1, 0), ιA
′

= (0,−1)

be a basis of primed spinors, normalized so that oA′

ιA′ = 1. It follows that
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ιA′oB′

− oA′ιB
′

= δ B′

A′ . A basis of self-dual two-forms is given by

(Σ0′0′)AA′BB′ = ιA′ιB′ǫAB, (6.6)

(Σ0′1′)AA′BB′ = (ιA′oB′ + ιB′oA′)ǫAB, (6.7)

(Σ1′1′)AA′BB′ = oA′oB′ǫAB. (6.8)

It is easy to check using these spinor expressions that the following endomor-

phisms satisfy (6.1):

I BB′

AA′ = (Σ0′0′) BB′

AA′ + (Σ1′1′) BB′

AA′ , (6.9)

S BB′

AA′ = (Σ0′0′) BB′

AA′ − (Σ1′1′) BB′

AA′ , (6.10)

T BB′

AA′ = (Σ0′1′) BB′

AA′ . (6.11)

Using equation (6.5) one can show that dΣA′B′

= 0. Hence the metric (6.4)

is indeed pseudo-hyper-Kähler.

The Cartan structure equations are

dΣA′B′

= Γ
(A′

C′ ∧ ΣB′)C′

, (6.12)

where ΓA′

C′ are connection one-forms for the primed spin connection. This

gives ΓA′

C′ = 0 using dΣA′B′

= 0. Hence the primed spin connection is flat.

Moreover the spinors ιA
′

and oA′

are covariantly constant, and hence so are

the two-forms ΣA′B′

and the endomorphisms I, S, T .

Here we will consider pure and homothetic (constant conformal factor)

null Killing vectors. If K is such a vector field, it satisfies

KaRabcd = ∇b∇cKd.

Using this together with the spinor expression (2.10) for the Riemann tensor

and the Killing equation (4.2) gives

KAA′

CABCDǫA′B′ǫC′D′ = ∇BB′(φC′D′ǫCD + ψCDǫC′D′ +
1

2
ηǫCDǫC′D′).
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Contracting with ǫCD gives

∇BB′φC′D′ = 0.

Thus in a Plebański tetrad the components of φC′D′ are constant. Killing

vectors come in three invariant classes:

1. φB′C′ = 0.

2. φB′C′ 6= 0, det φB′C′ = 0.

3. det φB′C′ 6= 0.

These are invariant in the sense that given a Killing vector one of the three

is true, regardless of which tetrad is being used.

We shall find examples of the first two for which the Heavenly equation

can be solved explicitly, and we calculate the underlying projective structures

for these cases. We will not attempt to classify all possibilities. Such a

classification is attempted in [10], however it is known to be incomplete, as

the reduction in [7] was not found.

Case 1: φB′C′ = 0

Let K = ∂T . This is null and satisfies dK = 0 where K := g(K, .). So

when it is a Killing vector, it has φB′C′ = 0.

The Killing equations LKg = 0 give

ΘTTT = 0,

ΘTTX = 0,

ΘTXX = 0.

These integrate to:

Θ = A(X,Y, Z) + TB(Y, Z) + T 2C(Y, Z) +XTD(Y, Z),
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where the Fi are arbitrary functions. Substituting this into (6.5) we obtain

BY + 2TCY +XDY − TDZ − AXZ + 2CAXX −D2 = 0.

Since A,B,C,D are all independent of T , compare coefficients of T :

2CY −DZ = 0,

which can be integrated using a potential function H(Y, Z) such that

2C = HZ , D = −HY .

Substituting back into the metric we get

g = dY (dT − AXXdY +HY dZ) − dZ(dX +HZdZ +HY dY ). (6.13)

This can be simplified by changing coordinates X → X +H and T → T −G

where G = G(Y, Z) is arbitrary. Then we get

g = dY (dT + (GY − AXX)dY + (HY −GZ)dZ) − dZdX.

Pick G such that GZ = −HY . Finally, since the coefficient of dY 2 is just an

arbitrary function of (X,Y, Z), call it Θ̃XX . The resulting metric is

g = dY dT − dZdX + Θ̃XXdY
2 .

This is in the same form as (6.4), with Θ̃T = 0. Equation 6.5 for this metric

is simply

Θ̃XZ = 0, (6.14)

which has solution

Θ̃ = A(Y, Z) +B(X,Y ).

Equation (6.14) is the reduction of (6.5) that we were looking for. A(Y, Z)

does not affect the form of the metric, so can be ignored. The final form of

the metric is

g = dY dT − dWdX −Q(X,Y )dY 2, (6.15)
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where Q(X,Y ) is arbitrary. The form of the null Killing vector was not

changed by the coordinate transformations and remains ∂T . This is simply

the split-signature pp-wave metric, and is a special case of (1.2).

The local expression (6.15) can be used to find a class of global neutral

metrics on certain compact four-manifolds. To see this we compactify the

flat projective space R
2, with (X,Y ) coordinates, to two-dimensional torus

U = T 2 with the projective structure coming from the flat metric. We choose

Q(X,Y ) to be periodic in both variables. Both T and Z in are then also taken

to be periodic, thus leading to π̂ : M −→ U , the holomorphic toric fibration

over a torus. This leads to a commutative diagram

M

T 2 ↓ ց π̂∗Q

U
Q

−→ R.

This example can be put into the framework of [18] and [11], where M is

regarded as a primary Kodaira surface C
2/G and G is the fundamental group

of M represented injectively in the group of complex affine transformations of

C
2. In this framework the Kähler structure onM is given by Ωflat+i∂∂(π̂∗Q),

where (∂,Ωflat) is the flat Kähler structure on the Kodaira surface induced

from C
2.

Another example with φB′C′ = 0 is found in [2]. In that paper the authors

find the following metric:

g = dpdt−
1

2
p2du(dv +H(p, u)du), (6.16)

where H(p, u) is arbitrary. They show that the Killing vector ∂v has anti-

self-dual dK, i.e. it belongs to the class φA′B′ = 0. This is distinct from

the pp-wave case above, because dK 6= 0. Dividing by p2 and redefining the
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p coordinate one sees that the metric is conformal to the pp-wave metric,

with the Killing vector mapping to the one above. Hence in this case the

underlying projective structure is again flat. In fact they obtain the strong

result that any anti-self-dual neutral metric with null Killing vector with

anti-self-dual dK 6= 0 is of the form (6.16), and therefore is Ricci-flat.

Case 2: φB′C′ 6= 0, det φB′C′ = 0

Let K = Y ∂X +Z∂T . We get dK = 2dZ ∧ dY . In the Plebański tetrad (6.4)

this is just e00′ ∧ e10′ . But this is a self-dual two-form. To see this consider

the spinor version:

2dZ ∧ dY = 2e00′ ∧ e10′ = oA′oB′ǫABeAA′

⊗ eBB′

where oA′ = (1, 0), a covariantly constant spinor. So we have φA′B′ = oA′oB′ ,

and therefore det φA′B′ = 0 as desired.

The Killing equations for K give:

YΘTTX + ZΘTTT = 0, (6.17)

YΘXXX + ZΘXXT = 0, (6.18)

YΘTXX + ZΘTTX = 0. (6.19)

Integrating equation (6.17) w.r.t. (T, T ), equation (6.18) w.r.t. (X,X) and

equation (6.19) w.r.t. (T,X) gives

YΘX + ZΘT = T A(X,Y, Z) +B(X,Y, Z),

YΘX + ZΘT = X C(T, Y, Z) +D(T, Y, Z),

YΘX + ZΘT = E(X,Y, Z) + F (T, Y, Z).

where A, . . . , F are arbitrary functions. These equations are only consistent

if A = C = 0 and B,D,E, F are functions of (Y, Z) only. That is

YΘX + ZΘT = P (Y, Z) .
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Now Θ has a gauge freedom Θ → Θ + Q(Y, Z) for arbitrary Q since this

doesn’t change the metric. So we can choose a Q that will set P = 0. This

can also be expressed as K(Θ) = 0, and has solution Θ = Θ(s, Y, Z) where

s = Y T − ZX. Equation (6.5) then conveniently simplifies to:

ΘTY − ΘXZ = 0 .

In terms of (s, Y, Z) this equation becomes

2Θs + YΘY s + ZΘZs + sΘss = 0 .

Letting u = Θs we obtain

2u+ Y uY + ZuZ + sus = 0,

which is a linear first order PDE so can be solved by standard methods, to

give

Θs =
1

Y 2
F (
Y

Z
,
s

Y
) .

Integrate this w.r.t. s to get Θ:

Θ =
1

Y
G(
Y

Z
,
s

Y
) + α(Y, Z).

Here G is the integral of F w.r.t. its second argument, which is of course

just another arbitrary function, and α(Y, Z) is the integration ‘constant’. To

find the metric we need to find second derivatives w.r.t. T and X:

ΘTT =
1

Y
G(0,2), ΘXX =

Z2

Y 3
G(0,2), ΘTX = −

Z

Y 2
G(0,2).

Now G(0,2) is just another arbitrary function, call it J . The metric takes the

form:

g = dY dT − dZdX −
J

Y
(dZ −

Z

Y
dY )2.
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This may be written more symmetrically with respect to (Y, Z) as:

g = dY dT − dZdX −
H( Y

Y T−ZX
, Z

Y T−ZX
)

(Y T − ZX)3
(Y dZ − ZdY )2, (6.20)

where H is arbitrary. This is a generalisation of the Sparling-Tod metric [28].

Using the following coordinate transformation

t = −
1

2
(
X

Y
+
T

Z
),

z = (Y Z)−
1

2 ,

x =
Y T −XZ

(Y Z)
1

2

,

y = log
(Z
Y

)
, (6.21)

whose inverse is

T =
1

2
ey/2(x−

2t

z
),

X = −
1

2
e−y/2(x+

2t

z
),

Y =
e−y/2

z
,

Z =
ey/2

z
,

the metric (6.20) takes the following form:

g =
1

z2
(dydt− dzdx+ zA3(x, y)dy

2), (6.22)

where now the Killing vector is ∂t. Multiplying by the conformal factor z2,

we get a special case of (1.2). The projective structure is non-trivial, unlike

for the pp-wave above. The projective structure is special in that it depends

on only one arbitrary function A3.

We now show how the coordinate transformation above can be found sys-

tematically. The basic idea is to follow the transformations used in the proof
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of Theorem 2. The first step is to find coordinates on the two dimensional

space of β-surfaces. The dual of the NP tetrad for the metric (6.20) is as

follows:

e00′ = ∂T ,

e01′ = ∂Z −
Y ZH

(Y T − ZX)3
∂T +

Y 2H

(Y T − ZX)3
∂X ,

e10′ = ∂X ,

e11′ = ∂Y +
Z2H

(Y T − ZX)3
∂T −

Y ZH

(Y T − ZX)3
∂X .

In this tetrad we have K = Y ∂X + Z∂T = ιAoA′

eAA′ with ιA = (Z, Y ),

oA′

= (1, 0). Consider the vector U = −ιAιA
′

eAA′ = Y ∂Y + Z∂Z , where

ιA
′

= (0,−1). This is linearly independent of K, and {K,U} spans the

integrable β-plane distribution defined by ιA. They satisfy

[K,U ] = −K, (6.23)

so the distribution is integrable, as expected from Lemma 1. Coordinates

on the space of β-surfaces are given by two independent functions which are

annihilated by both K and U . It is easy to show that Z
Y T−ZX

and Y
Y T−ZX

sat-

isfy these requirements. Moreover, these are the arguments of the arbitrary

function H in (6.20).

In the proof of Theorem 2, coordinates (t, x, y, z) are chosen so that K =

∂t, and the β-surface distribution is spanned by K and V = ∂z. Clearly

[K,V ] = 0. The tetrad is chosen so that K = e00′ , V = e01′ . Therefore we

need to transform (6.20) into the form

g = 2(K ⊙ e11′ − v ⊙ e10′), (6.24)

where K, V are the algebraic duals of K, v, and [K,V ] = 0. Before doing

so, we make some coordinate changes. We take the functions s = Z
Y T−ZX
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and t = Y
Y T−ZX

as two new coordinates, as they are coordinates on the

space of β-surfaces. The other two coordinates, a and b say, are determined

by the requirement that K = ∂a, U = ∂b − a∂a. This is possible since

[K,U + aK] = [∂a, U + a∂a] = 0 using (6.23), therefore by the Frobenius

theorem one can find a coordinate system such that U + a∂a = ∂b. The

following choices of a and b work:

a =
1

2
(
X

Y
+
T

Z
), (6.25)

b =
1

2
log(−Y Z). (6.26)

In the new coordinates (a, b, s, t) the metric is

g = (da− e−bJ(s, t)(
ds

s
−
dt

t
))(e2b(

ds

s
−
dt

t
)) − db(

1

2

eb

t1/2s1/2
(
ds

s
+
dt

t
)).

This is of the form (6.24), with K = ∂a, V = ∂b. The arbitrary function

J(s, t) is related to H(s, t) by J(s, t) = 4stH(s,t)+1

4s1/2t1/2
. Then define

u = log s+ log t,

v = log s− log t,

giving du = ds
s

+ dt
t
, dv = ds

s
− dt

t
. Using these new coordinates the metric

becomes

g = (da− e−bJ(u, v)dv)(e2bdv) − db(
1

2
e−u/2+bdu).

Calculating the twistor distribution for this metric gives

L0 = ∂a + λ∂b + λ2∂λ,

L1 = 2eu/2−b∂u + λ(e−2b∂v + e−3bJ(u, v)∂a) + λ3e−3bJ(u, v)∂λ.

Now divide L1 by e−b; this is equivalent to multiplying the metric by the

conformal factor e−b. The Lax pair becomes

L0 = ∂a + λ∂b + λ2∂λ,

L1 = 2eu/2∂u + λ(e−b∂v + e−2bJ(u, v)∂a) + λ3e−2bJ(u, v)∂λ.
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Now ιALA is just L0, so we now need a function of λ which is constant along

the distribution spanned by {K̃, L0}. This will eliminate the ∂λ term in L0,

putting it into the canonical form of Theorem 2. Any function that doesn’t

depend on a is constant along K̃. As an ansatz, we let λ̂ = β(b, u, v)λ. We

solve the PDE Lλ̂ = 0 to get β(b, u, v) = e−bf(u, v) and set f(u, v) = 1. So

λ̂ = e−bλ.

So we change coordinates to (â, b̂, û, v̂, λ̂) = (a, b, u, v, ebλ), which gives

L0 = ∂â + λ̂eb̂∂b̂,

L1 = 2eû/2∂û + λ̂(∂v̂ + e−b̂J(û, v̂)∂â) + λ̂3J(û, v̂)∂λ̂.

Finally we set eb̂∂b̂ = ∂ĉ by the coordinate change ĉ = −e−b̂, and rescale

û so that 2eû/2∂û = ∂ŵ to get

L0 = ∂â + λ̂∂ĉ,

L1 = ∂ŵ + λ̂(∂v̂ − ĉJ(ŵ, v̂)∂â) + λ̂3J(ŵ, v̂)∂λ̂.

This is the final and most simplified form of the Lax pair.

One can read off the projective structure spray from M to be

Θ = ∂ŵ + λ̂∂v̂ + λ̂3J(ŵ, v̂)∂λ̂.

This projective structure is special in that it depends on only a single arbi-

trary function. It is flat iff Jŵ = 0, as can be shown using (3.7). We can

also read off the form of the conformal structure from the above Lax pair.

Relabelling the coordinates and the arbitrary function gives

g = (dt+ zA3(x, y)dy)dy − dzdx. (6.27)

This is in the form (6.24), and is a special case of (1.2), with β = A0 = A1 =

A2 = P = Q = 0. Following through all the coordinate transformations
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above, one obtains the total transformation (6.21), and the Ricci-flat metric

(6.22), of which (6.27) is a conformal transformation.

Case 3: φB′C′ 6= 0, det φA′B′ 6= 0

Consider the vector field K = T∂T +X∂X . We have

dK = dT ∧ dY − dX ∧ dZ = e11′ ∧ e00′ − e01′ ∧ e10′ = φA′B′ǫABeAA′

⊗ eBB′

,

where

φA′B′ =
1

2



 0 1

1 0



 .

It is easy to show that K does not satisfy the pure Killing equations, but

can be a conformal Killing vector. One finds that it is easy to solve the

conformal Killing equation for Θ, but substitution into Equation (6.5) gives

a complicated nonlinear equation for a function of three variables in this

case. In principle, one should be able to put the metric into the form (1.3),

since K has twist. However, we have not succeeded in finding the coordinate

transformation that does this.

6.2 Pseudo-hyper-hermitian metrics

Pseudo-hyper-hermitian ASD metrics are described by the following:

Lemma. [6] Given any local pseudo-hyper-hermitian ASD metric, there is

an NP-tetrad eAA′ such that the twistor distribution is of the form

L0 = e00′ + λe01′ , L1 = e10′ + λe11′ .

This also applies to the complexified hyper-hermitian case, where there

is a twistor space. Then since there are no ∂λ in the twistor distribution, the

lemma says that there is a holomorphic fibration PT → CP
1.
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It follows from the proof of the Lemma that pseudo-hypercomplex en-

domorphisms I, S, T are constructed by taking spinors oA′

= (1, 0), ιA
′

=

(0,−1) in a tetrad with no ∂λ terms, and using the formulae (6.6)-(6.8) and

(6.9)-(6.10).

Now suppose we have a triholomorphic null C.K.V. This is defined to be

a C.K.V. that preserves each complex structure in the hyperboloid. That is,

LKI = 0, LKS = 0, LKT = 0.

It follows that

LKΣA′B′

= −cΣA′B′

, (6.28)

where ΣA′B′

are the self-dual two-forms defined by (6.6)-(6.8), and c is defined

by LKg = cg. The ΣAA′

are given explicitly by:

Σ00′ = 2 e00′ ∧ e10′ , (6.29)

Σ01′ = 2(e00′ ∧ e11′ + e01′ ∧ e10′), (6.30)

Σ11′ = 2 e01′ ∧ e11′ . (6.31)

Now we can use (6.28) to obtain restrictions on LKeAA′

. For example, we

have

1

2
LKΣ00′ = LK(e00′ ∧ e10′)

= (LKe00′) ∧ e10′ + e00′ ∧ (LKe10′)

= (f00′e
00′ + f01′e

01′ + f10′e
10′ + f11′e

11′) ∧ e10′

+e00′ ∧ (g00′e
00′ + g01′e

01′ + g10′e
10′ + g11′e

11′)

= (f00′ + g10′)e
00′ ∧ e10′ + f01′e

01′ ∧ e10′

+f11′e
11′ ∧ e10′ + g01′e

00′ ∧ e01′ + g11′e
00′ ∧ e11′ ,

for functions fAA′ , gAA′ . It follows from (6.28) that f01′ = f11′ = g01′ = g11′ =
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0, so we get

LKe00′ = f00′e
00′ + f10′e

10′ , (6.32)

LKe10′ = g00′e
00′ + g10′e

10′ , (6.33)

where we have absorbed the 1
2

into the functions fAA′ , gAA′ . The same

arguments for Σ1′1′ give

LKe01′ = h01′e
01′ + h11′e

11′ ,

LKe11′ = j01′e
01′ + j11′e

11′ ,

for functions h01′ , h11′ , j01′ , j11′ . We also have

f00′ + g10′ = h01′ + j11′ , (6.34)

since both sides of this equation are equal to −c/2, using (6.28). Finally

we consider (6.28) for (Σ0′1′), using (6.32)-(6.34). This gives h11′ = f10′ ,

j01′ = g00′ , and

f00′ + j11′ = h01′ + g10′ . (6.35)

Equations (6.34) and (6.35) imply f00′ = h01′ , j11′ = g10′ . In total then, we

have the following:

LKe00′ = f00′e
00′ + f10′e

10′ ,

LKe01′ = f00′e
01′ + f10′e

11′ ,

LKe10′ = g00′e
00′ + g10′e

10′ ,

LKe11′ = g00′e
01′ + g10′e

11′ .

Dualizing, one obtains

LKe00′ = −f00′e00′ − g00′e10′ , (6.36)

LKe01′ = −f00′e01′ − g00′e11′ , (6.37)

LKe10′ = −f10′e00′ − g10′e10′ , (6.38)

LKe11′ = −f10′e01′ − g10′e11′ . (6.39)
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Now let K̃ denote the lift of K to PS ′ in which there are no ∂λ terms. One

can use (6.36)-(6.39) to show that

[K̃, L0] = −f00′L0 − g00′L1, [K̃, L1] = −f10′L0 − g10′L1. (6.40)

Hence K̃ commutes with the twistor distribution, so it is the correct lift (4.8).

Reversing the argument, one sees that if K̃ is the lift of a C.K.V. with no ∂λ

terms, then it is triholomorphic. We have proved the following

Lemma 6. Let K be a triholomorphic C.K.V. for a pseudo-hyper-hermitian

ASD metric. Then in a tetrad for which the twistor distribution contains no

∂λ terms, the lift of K to PS ′ also contains no ∂λ terms.

We can use Lemma 6 to obtain a full classification in the case of a null

triholomorphic Killing vector.

Proposition 2. All pseudo-hyper-hermitian ASD metrics with triholomor-

phic null conformal Killing vectors are of the form (1.2) or (1.3) up to a

conformal factor, where the corresponding ODE (1.5) is point equivalent to

the derivative of a first order ODE.

Proof. Let g be a pseudo-hyper-hermitian ASD metric, and K be a triholo-

morphic conformal Killing vector. Since g is ASD, it follows from Theorem

2 that there are coordinates such that, up to a conformal factor, g is of the

form (1.2) or (1.3). From [6], it is possible to find a tetrad such that the

twistor distribution has no ∂λ terms. Now a change in tetrad corresponds to

a Möbius transformation of λ. Since K is triholomorphic, its lift will have no

∂λ terms, by Lemma 6. Therefore the Möbius transform does not depend on

t, otherwise ∂t will no longer Lie-derive the twistor distribution (one would

have to add ∂λ terms). Furthermore, the Möbius transformation does not

depend on z, otherwise ∂λ terms will be introduced into L0. Hence there is a
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Möbius transformation of λ, depending only on (x, y), such that the ∂λ terms

in L1 are eliminated.

After this change in λ, the projective structure spray in L1 will be of the

following form:

Θ = a∂x + b∂y + λ(c∂x + e∂y),

where a, b, c, e are functions of (x, y) with ae − bc 6= 0. Coordinate freedom

(x, y) → (x̂(x, y), ŷ(x, y)) and scaling freedom (the projective structure is

unchanged if Θ is multiplied by a non-zero function) allows us to set a = 1,

c = 0, e = 1, giving Θ = ∂x + (b + λ)∂y. Now perform another Möbius

transformation λ→ b+ λ, which gives the following spray:

∂x + λ∂y + (bx + λby)∂λ. (6.41)

This corresponds to the second-order ODE

d2y

dx2
= A1(x, y)

(dy
dx

)
+ A0(x, y), (6.42)

where A1 = ∂b
∂y

, A0 = ∂b
∂x

for a function b(x, y). This is the derivative of the

general first-order ODE
dy

dx
= b(x, y). (6.43)

Hence the original projective structure is point-equivalent to the one corre-

sponding to (6.42).

Note that if a (holomorphic) projective structure spray contains no ∂λ

terms, its twistor space fibres over CP
1, since each integral curve can be

labelled by the λ coordinate. So a by-product of the proof of the above

proposition and the twistor correspondence for projective structures is the

following
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Proposition 3. There is a one to one correspondence between holomorphic

2D projective structures s.t. the corresponding second order ODE is point

equivalent to the derivative of a first order ODE, and complex surfaces which

contain a holomorphic curve with normal bundle O(1) and fiber holomorphi-

cally over CP
1.

This is of interest purely as a statement about projective structures. Note

that although all first order ODEs can be transformed to the trivial first order

ODE dy/dx = 0 by coordinate transformation, this does not mean that the

derivative of any such equation is flat, in the sense of Section 3.3. This can

be shown by calculating the invariant (3.7) for (6.42) and showing that it

does not necessarily vanish.

In [6], Plebański’s formulation of the hyper-Kähler condition was gener-

alized to the hyper-hermitian case, in the complexified setting. As in the

hyper-Kähler case, this can be naturally adapted to neutral signature. The

generalization states that any pseudo-hyper-hermitian metric has the local

form

g = dY (dT +
∂Θ0

∂X
dY +

∂Θ0

∂T
dZ) − dZ(dX +

∂Θ1

∂X
dY +

∂Θ1

∂T
dZ), (6.44)

where the two functions Θ0,Θ1 satisfy the following pair of PDEs:

∂2ΘA

∂T∂Y
−

∂2ΘA

∂X∂Z
+
∂Θ0

∂X

∂2ΘA

∂T 2
−
∂Θ0

∂T

∂2ΘA

∂T∂X
+
∂Θ1

∂X

∂2ΘA

∂T∂X
−
∂Θ1

∂T

∂2ΘA

∂X2
= 0,

(6.45)

for A = 0, 1. The endomorphisms I, S, T are formed in the same way as in

the last section, as defined by (6.9), (6.10) and (6.11). They are integable as

a consequence of (6.45).

To find a non-trivial example with a null Killing vector, impose ∂ΘA/∂T

= 0. Then ∂T is twist-free null Killing. This is a generalization of the first
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case in the last section. Equations (6.45) reduce to

∂2Θ0

∂X∂Z
= 0, →

∂Θ0

∂X
= Q(X,Y ),

∂2Θ1

∂X∂Z
= 0, →

∂Θ1

∂X
= R(X,Y ).

The metric (6.44) is then

g = dY dT − dZdX +Q(X,Y )dY 2 −R(X,Y )dY dZ.

This is not yet in our standard twist-free form (1.2). To put it in this form,

perform the coordinate transformation T → T − R(X,Y )Z. Changing up-

percase coordinates to lowercase to agree with (1.2), the metric takes the

form

g = (dt− zRydy)dy − (dz + zRxdy)dy, (6.46)

This is a special case of (1.2), with β = A0 = A1 = P = Q = 0, and

A2 = −Rx, A3 = −Ry. It is a generalization of the neutral pp-wave (6.15),

where now the projective structure is not flat. The projective structure spray

corresponding to (6.46) is

Θ = ∂x + λ∂y − (λ2Rx + λ3Ry)∂λ. (6.47)

Multiplying by 1/λ and performing the coordinate transformation λ→ 1/λ,

one obtains

Θ = λ∂x + ∂y + (Ry + λRx)∂λ.

The corresponding ODE is

d2x

dy2
= Ry +Rx

dx

dy
.

This is the derivative of the general first order ODE

dx

dy
= R(x, y).

An explicit twistor construction of a hyper-hermitian metric is given later

in Section 7.2.2.
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6.3 Neutral Fefferman conformal structures

Consider the general neutral ASD metric with twisting null KV (1.3). If Gzz

is simply a constant, then (1.4) is satisfied. So given any projective structure

and setting Gzz = 1 we obtain a family of conformal structures with twist

which reduce to the given projective structure. Solving for G gives

G =
z2

2
+ zγ(x, y) + δ(x, y).

The corresponding metric takes the form

(dt+ ((z+ γ)A3 + σ)dy+ ((z+ γ)A2 + 2A3(
z2

2
− δ)− γy + ρ)dx)(dy− zdx)

− (dz − (A0 + zA1 + z2A2 + z3A3)dx)dx, (6.48)

where we have chosen not to eliminate σ and ρ. By direct calculation one

can show that the ASD Weyl tensor has Petrov-Penrose type III or N, and

it is type N precisely when the following hold:

γA3 + σ =
1

3
A2,

γA2 − 2A3δ − γy + ρ =
2

3
A1.

One can always choose ρ, σ, γ, δ so that these are satisfied. In this case, the

metric is the same as (31) in [24], with their Q cubic in p. These are neutral

signature analogues of Fefferman conformal structures.

6.4 Generalized ASD pp-waves

Consider the general neutral ASD metric with non-twisting null Killing vector

(1.2). It does not explicitly contain the function A0(x, y) of the projective

structure. The metric is always ASD for any choice of β,A1, A2, A3; one can
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regard (5.18) as giving A0(x, y) in terms of these functions. On the other

hand, if one wants to specify A0, then one must choose a solution of (5.18)

for β. In the special case A0 = 0, we have the solution β = 0. One then

obtains the following metric:

g = (dt+ (P + zA2)dx+ (Q+ zA3dy))dy − (dz + zA1dx)dx, (6.49)

which generalizes the ASD pp-wave.

As an aside, it is worth mentioning that different choices of β(x, y) in

(1.2) can give rise to different metrics. Suppose we choose the flat projective

structure by setting Ai = 0, i = 0, . . . , 3, so β satifies the equation (1.6) with

these choices. By direct calculation one can show that the metric (1.2) is

type III iff βyy 6= 0, otherwise it is type N. So the conformal structures with

βyy = 0 and βyy 6= 0 are genuinely distinct.

6.5 Conformal structures containing no Ricci-

flat metrics

In this section we show that there are conformal structures of the form (1.2)

which do not contain Ricci-flat metrics. Conformal structures of the form

(1.3) with no Ricci-flat metrics are found using twistor methods in Section

7.2.2. First we discuss the Petrov-Penrose classification for the conformal

structures (1.2) and (1.3).

Proposition 4. Let KAA′

= ιAoA′

be a null conformal Killing vector for

ASD conformal structure. Then ιA is a principal direction, that is

ιAιBιCιDCABCD = 0. (6.50)
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Moreover if the twist of K vanishes the conformal structure is of type III or

N , that is

ιAιBCABCD = 0. (6.51)

Proof. From (4.3) we have

∇AA′(ιCιDψCD) = 0.

Expanding this out we obtain

ιBιC∇AA′ψBC = −2ψBCι
C∇AA′ιB = ιAµA′ , (6.52)

for some spinor µA′ . The last equality follows from (4.3) and (4.5).

Now pick a conformal frame in which K is a pure Killing vector. The

well known identity ∇a∇bKc = RbcadK
d implies

∇A′

AψBC = −2CD
ABCK

A′

D −2KB′

(AΦA′

BC)B′ +
1

6
RǫA(BK

A′

C)−
4

3
ǫA(BΦ DD′A′

C) KDD′ .

On contracting both sides by ιAιBιC and using (6.52), all terms vanish except

the term involving CD
ABC , giving (6.50).

Now let us assume that K is non–twisting, i. e. K ∧ dK = 0 where

K := g(K, ). The Frobenius theorem implies the existence of functions P

and Q such that K = PdQ. We can now choose a conformal factor such that

dK = 0. Then K is covariantly constant (∇aKb = 0), and we deduce

∇AA′ιB = AAA′ιB, (6.53)

∇AA′oB′ = −AAA′oB′ , (6.54)

for some one-form AAA′ . Consider the spinor Ricci identity [26]

△A′B′oC′ = (CA′B′C′D′ −
1

12
RǫD′(A′ǫB′)C′)oD′

,
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where △A′B′ = ∇A(A′∇A
B′). Substituting (6.54) into this and using CA′B′C′D′ =

0 gives

oC′∇A(A′AA
B′) = −

1

12
Ro(A′ǫB′)C′ .

By contracting with oC′

we find R = 0. Now consider the Ricci identity

△ABιC = (CABCD −
1

12
RǫD(AǫB)C)ιD.

Substituting R = 0 and (6.53) into this gives

ιC∇A′(AA
A′

B) = CABCDι
D.

Contracting this with ιC gives (6.51), from which it follows that the curvature

is type III or N. �

In the twisting case the algebraic type of the Weyl spinor can be general.

This can be shown by using the following two scalar invariants [26]:

I = CABCDC
ABCD, J = C CD

AB C EF
CD C AB

EF .

The condition for type III is I = J = 0, and for type II that I3 = 6J2.

Now consider the metric (1.3), with the flat projective structure Ai = 0, i =

0, . . . , 3. The function Gzz satisfies

(∂x + z∂y)Gzz = 0,

which is solved in general when Gzz is an arbitrary function of (zx − y).

Suppose G is given by:

G(x, y, z) =
ezx−y

x2
+ zB(x, y),

where B(x, y) is arbitrary, so Gzz = ezx−y. Then the two scalar invariants

are as follows:

I = −
3

2
xByye

−3(zx−y), (6.55)

J =
3

8
x(xByyx + 3Byy + xzByyy)e

−4(zx−y). (6.56)
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Therefore, from the conditions above, the metric is neither type II nor type

III.

To find metrics that are not conformally Ricci-flat we use results of Szek-

eres [29]. Although these were derived for Lorentzian signature, they can

also be applied to our ASD neutral signature case, essentially because the

Weyl curvature is still made up of a single spinor Cabcd = CABCDǫA′B′ǫC′D′ as

in the Lorentzian case (of course in Lorentzian case it is complex hermitian,

not real).

Consider the metric (6.49) with A1 = 0. By direct calculation, one finds

that CABCD is type N iff (A2)x = 0, otherwise it is type III. Now suppose it

is type III, i.e. (A2)x 6= 0. The reason for this is that we can apply a result

of Szekeres to obtain an obstruction to Ricci-flatness. It is shown in [29] that

for types I, II, D or III, a necessary condition for existence of a Ricci-flat

metric in the conformal class is the following tensor equation

−
1

2
CpqfhC

fh
rs C d

abc ;d + (C df
pq C h

rsf ;h + C df
rs C h

pqf ;h) = 0.

This is just the tensor version of the spinor identity (3.1), page 209 [29]. Cal-

culating this one finds that (A2)xx is an obstruction to its vanishing (we used

MAPLE for the calculation). Therefore we have a class of non-conformally

vacuum type III neutral ASD conformal structures with non-twisting null

conformal Killing vectors.
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Chapter 7

Twistor examples

Here we give examples of the twistor space reduction PT → Z of Theorem

1. First we look at flat space where there are essentially only two cases to

consider. As an aside, we also show how flat twistor space fibres over O(4).

Then we present two curved twistor spaces, both of which fibre over O(1),

the twistor space of the flat projective structure. One of these is already well

known (the twistor space of the pp-wave metric), but the other is new.

7.1 Flat examples

The twistor space PT of the flat conformal structure defined on C
4 is the

total space of O(1) ⊕ O(1). It can be shown [30] that up to conformal

transformations there are only two null CKVs in this case. Writing the flat

metric as

g = dTdY − dXdZ,

the null CKVs are ∂T and T∂T +X∂X . The first is twist-free whilst the second

has twist. PT can be covered with two patches (λ, σ, µ), (λ̃, σ̃, µ̃) ∈ C
3, with

transition functions (λ̃, σ̃, µ̃) = (1/λ, σ/λ, µ/λ). The twistor distribution on
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one patch of PS ′ is

L0 = ∂T + λ∂Z , (7.1)

L1 = ∂X + λ∂Y . (7.2)

We take

σ = Z − λT, µ = Y − λX. (7.3)

To calculate the transition functions of the holomorphic tangent bundle, write

ã∂λ̃ + b̃∂σ̃ + c̃∂µ̃ = a∂λ + b∂σ + c∂µ

= a(−λ̃2∂λ̃ − σ̃λ̃∂σ̃ − µ̃λ̃∂µ̃) + bλ̃∂σ̃ + cλ̃∂µ̃.

This gives the transition matrix




ã

b̃

c̃




=





−λ̃2 0 0

−σ̃λ̄ λ̃ 0

−µ̃λ̄ 0 λ̃









a

b

c




(7.4)

7.1.1 Twist-free case, K = ∂T

It is clear from (7.3) that ∂T generates the vector field K = −λ∂σ = ∂σ̃

on twistor space, or in the above notation b(λ) = −λ, b̃(λ̃) = −1. The

hypersurface H on which K vanishes is simply λ = 0. Now the divisor line

bundle [H] is just the pull-back of O(1) to PT , because if e, ẽ are the fibre

coordinates on the two patches, with ẽ = e/λ, then {e(λ) = λ, ẽ(λ̃) = 1}

gives a holomorphic section vanishing to first order at λ = 0, as required.

Dividing K by this section gives a non-vanishing section of TPT ⊗ [−H].

This is spanned by ∂σ in one patch, and ∂σ̃ in the other, and so the quotient

of PT by the trajectories simply removes the first O(1) factor, resulting in

Z = O(1). The projective structure is the flat projective structure in (X,Y )

that can be read off from (7.2), since all the conventions of Theorem 2 are
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satisfied. Twistor lines in PT are sections of O(1) ⊕ O(1), and it is clear

that they are projected to sections of O(1), which are the twistor lines for

the flat projective structure.

7.1.2 Twisting case, K = T∂T +X∂X

This case is slightly more subtle, because the twistor distribution as written

above is not adapted to the conventions of Theorem 2. In fact the underlying

projective structure is again flat. One way of showing this would be to

transform the twistor distribution into the form appearing in Theorem 2

and then read off the projective structure. This is a special case of the

calculation following the metric (6.20), with the arbitrary function in that

metric vanishing. Here we will proceed in a different way that does not

require coordinate transformation.

A simple calculation shows that the following lift of K commutes with

the twistor distribution:

K̃ = T∂T +X∂X − λ∂λ.

This satisfies K̃(λ) = −λ, K̃(σ) = 0, K̃(µ) = 0, where λ, σ, µ are regarded

as functions on PS ′. Therefore K = −λ∂λ = λ̃∂λ̃ + σ̃∂σ̃ + µ̃∂µ̃. This vanishes

at the union of a the hypersurface λ = 0 with the point λ̃ = σ̃ = µ̃ = 0.

Since the hypersurface H is the same as in the non-twisting case, the divisor

line bundle [H] is also the same. Dividing by λ, the section of TPT ⊗ [−H]

in this case is spanned by ∂λ on one patch and λ̃∂λ̃ + σ̃∂σ̃ + µ̃∂µ̃ on the other

one (note that it still vanishes at the point λ̃ = σ̃ = µ̃ = 0, as this will be

important below).

To determine the space of trajectories it is easiest to work with homo-

geneous coordinates, in which O(1) ⊕ O(1) is the open set of CP
3 defined
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by [ω0, ω1, π0′ , π1′ ] with (π0′ , π1′) 6= (0, 0), and λ = −π0′/π1′ , σ = ω0/π1′ ,

µ = ω1/π1′ . Then K has the homogeneous form

−π0′∂π
0′
. (7.5)

The projection of this to PT vanishes at π0′ = 0 and (ω0, ω1, π1′) = (0, 0, 0),

where it becomes proportional to the Euler vector field. Therefore a tra-

jectory in the non-projective space is specified by the constant values of

(ω0, ω1, π1′). Now a different trajectory defined by these values multiplied

by some non-zero constant c projects down to the same trajectory in PT ,

because a point (ω0, ω1, π0′ , π1′) on the original trajectory projects down to

the same point as c(ω0, ω1, π0′ , π1′), which is certainly on the other trajectory

as this consists of all possible π0′ values, leaving the other variable constant.

Now removing the point (ω0, ω1, π1′) = (0, 0, 0) where K vanishes, the

above argument shows that the space of trajectories is CP
2, with homoge-

neous coordinates [ω0, ω1, π1′ ]. We must now show that twistor lines in PT

project to CP
1s in CP

2 with normal bundle O(1). The twistor lines in PT

are defined by (7.3), and project down to lines in CP
2 defined by

[ω0, ω1, π1′ ] = [π1′Z + π0′T, π1′Y + π0′X, π1′ ].

Since these are lines in CP
2, they have normal bundle O(1) as desired. The

lines are defined by the following homogeneous equation:

Xω0 − Tω1 − (XZ − TY )π1′ = 0.

So there is a two parameter family of them depending, when X 6= 0 say,

on T/X and (XZ − TY )/X. Regarded as functions on M , it is easy to

check that these are annihilated by K and T∂Z +X∂Y , which together span

the β-surfaces, so they determine coordinates on the space of β-surfaces as

expected.
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7.1.3 A digression: flat twistor space as a bundle over

O(4)

As a contrast to the two cases above, we exhibit another way the flat twistor

space can be regarded as a bundle over a complex surface. Here the surface

is the total space of O(4). Let PT ∼= O(1) ⊕O(1), the flat twistor space.

We shall consider a nonvanishing sections of TPT ⊗ σ∗O(2), where σ :

PT → CP
1 is the obvious projection to the base. The transition matrix for

TPT ⊗ σ∗O(2) is




ã

b̃

c̃




=





−λ̃4 0 0

−σ̃λ̃3 λ̃3 0

−µ̃λ̃3 0 λ̃3









a

b

c




(7.6)

Take the global section given by




a

b

c




=





0

λ3

1




,





ã

b̃

c̃




=





0

1

λ̃3




.

This is clearly nonvanishing. It therefore defines a holomorphically varying

one dimensional subbundle D of TPT (a one dimensional distribution in

other tereminology). We now quotient PT by the leaves of this distribution.

In the U0 patch a vector field lying in D is given by λ3∂σ + ∂µ. The

integral curves are as follows, using t for the parameter along them:

λ = λ0,

σ = λ3
0t+ σo,

µ = t,

where they are chosen so that (λ, σ) = (λ0, σ0) at t = 0. It is clear that any

integral curve is transverse to any hypersurface of constant µ, and that each
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curve passes through such a hypersurface precisely once. So we can change

coordinates on this patch to (λ0, σ0, t); one should regard these coordinates

as specifying a trajectory (by λ0 and σ0) and a point along it (by t).

In the U1 a vector field lying in D is ∂σ̃ + λ̃3∂µ̃. The integral curves are

as follows, using s for the parameter along them:

λ̃ = λ̃0,

σ̃ = s,

µ̃ = λ̃3
0s+ µ̃0,

and we change coordinates in this patch to (λ̃0, µ̃0, s), labelling a trajectory

and a point along it as in the U0 case.

We now have new coordinates (λ0, σ0, t) and (λ̃0, µ̃0, s) for the U0 and U1

patches respectively. We would like to determine the transition functions in

these coordinates. They intersect at λ0, λ̃0 ∈ C
∗. Clearly λ0 = 1

λ̃0

. Now

consider the trajectory defined by (λ0, σ0), where λ0 ∈ C
∗. We need the

corresponding value of µ̃0 for this trajectory. We have

s = σ̃

=
1

λ
σ

=
1

λ0

(λ3
0t+ σo)

= λ2
0t+

σ0

λ0

. (7.7)

Now µ̃0 is the value of µ̃ at s = 0, so at this point we have

0 = λ2
0t+

σ0

λ0

→ t = −
σ0

λ3
0

.

Hence

µ = −
σ0

λ3
0

,
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and

µ̃0 = −
1

λ̃0

σ0

λ3
0

= −
σ0

λ4
0

.

Therefore the space of trajectories is covered by two patches coordinatized

by (λ0, σ0) ∈ C
2, (λ̃0, µ̃0) ∈ C

2, with transition functions λ̃0 = 1
λ0

, µ̃0 = −σ0

λ4

0

for λ0, λ̃0 ∈ C
∗. This is simply total space of O(4). So we have a holomorphic

fibration PT → O(4).

The following relation between s and t was already established above in

equation (7.7):

s = λ2
0t+

σ0

λ0

.

This exhibits PT as an affine line bundle over O(4). Denoting the total

space of O(4) by W , the underlying translation bundle of the affine bundle

is π∗O(−2), where π : O(4) → CP
1 is the map to the base. The function

σ0

λ0

on the overlap can be interpreted as an element of the sheaf cohomology

group H1(W , π∗O(−2)).

7.2 Curved examples

Our general method of constructing curved examples consists of taking the

total space of O(1), the twistor space of the flat projective structure on C
2,

and building twistor spaces PT over it. Let B be a holomorphic bundle over

O(1) with one-dimensional fibres. Then if we want the total space of B to be

an ASD conformal structure twistor space, we require the normal bundle of

x̂ in Bx̂ to be O(1). This does not guarantee that B will be the twistor space

of a conformal structure with a null CKV; in general the conformal structure

will have an ASD β-surface foliation (see Section 4.6). For a null CKV to

exist, there must be a section of TPT that vanishes on a hypersurface H that

intersects each twistor line once. This follows because by standard twistor
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theory, CKVs are in one-one correspondence with sections on TPT that are

transverse to twistor lines, and when such a section vanishes once on each

twistor line it must give a null CKV. In the examples we consider, such a

section shall exist and we do in fact obtain conformal structures with null

CKVs.

7.2.1 Non-twisting example using an affine bundle

In this section we will consider a Ricci-flat ASD metric with a tri-holomorphic

null Killing vector. We now sketch some facts about the twistor spaces

of Ricci-flat metrics. The following goes back to Penrose, though we use

Hitchin’s formulation [15]:

Theorem. A Ricci-flat ASD metric is equivalent to a twistor space PT with

the following properties:

1. A holomorphic fibration σ : PT → CP
1

2. A family of holomorphic sections of the fibration σ, each with normal

bundle O(1) ⊕O(1)

3. An isomorphism KPT
∼= σ∗O(−4)

In this situation, there is a nonvanishing section θ ∈ H0(Λ1PT ⊗σ∗O(2))

given by πA′

dπA′ where πA′ are the homogeneous coordinates of the CP
1 over

which PT fibres. In non-homogeneous coordinates this is just dλ in one

patch and dλ̃ in the other. The tangent vectors along the fibres of σ are in

the kernel of θ. The isomorphism KPT
∼= σ∗O(−4) means KPT ⊗ O(4) is

trivial. So one can find a global volume form ρ twisted by O(4). One then

obtains a holomorphic section

̟ ∈ H0(PT ,Λ2T ∗
F ⊗ σ∗O(2)), (7.8)
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where T ∗
F is the cotangent bundle to the fibres, by requiring θ ∧ ̟ = ρ.

The twisted two form ρ has a nice formulation on the correspondence space

as follows. We will use the non-projective correspondence space F with

fibre coordinates πA′ , which also correspond to the homogeneous coordinates

of the CP
1 over which PT fibres. The pullback of ̟ to F is a two-form

homogeneous of degree two in the πA′ , Σ = πA′πB′ΣA′B′

, since ̟ is twisted

by O(2). Then one can apply the following:

Proposition. (Plebański [27], Gindikin [12]) If a two-form of the form

Σ = πA′πB′ΣA′B′

on the correspondence space satisfies

dhΣ = 0, Σ ∧ Σ = 0 (7.9)

where dh is the exterior derivative holding πA′ constant, then there exist one

forms e
AA′

related to ΣA′B′

by

e
AA′

∧ e
BB′

= ǫABΣA′B′

+ ǫA
′B′

ΣAB, (7.10)

which are a tetrad for an ASD Ricci-flat metric.

One can show that (7.9) are satisfied by the two form constructed above,

using the fact that it is Lie-derived along the twistor distribution. In the

other direction, the Ricci-flat condition is equivalent to the existence of a

covariantly constant basis of primed spinors [27]. Therefore the connection

on S ′ must be flat, so there is a tetrad such that the primed connection

coefficients vanish. In this tetrad, the twistor distribution on F has no ∂
∂πA′

components, so each leaf has unique πA′ coordinates, and this gives the map

σ : PT → CP
1 of the Proposition above. Form the basis of ASD two-

forms ΣA′B′

using the formula (7.10); these are covariantly constant since
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they are constructed out of covariantly constant spinors. It follows that the

two-form πA′πB′ΣA′B′

on F is Lie-derived along the twistor distribution, and

it descends to give ̟, which is twisted by O(2) as Σ is quadratic in the πA′

coordinates.

Now suppose we have a Ricci-flat metric with a triholomorphic null Killing

vector. From the discussion in Section 6.2, we know that there is a tetrad

in which the twistor distribution and the lift of K have no ∂λ terms. At the

twistor space level, this means that K is tangent to the fibres of PT → CP
1,

and it Lie-derives ̟. Although ̟ is line-bundle valued, this statement is

well defined, because sections of the line-bundle σ∗O(2) are constant along

fibres, and K is tangent to the fibres.

Assume that the spinor oA′

, defined by K = ιAoA′

eAA′ , is covariantly

constant. This means that K vanishes on a fibre of σ : PT → CP
1, and

[H] ∼= σ∗O(1).

Now the discussion of Section 4.4 shows that ζ ⊗ K is a holomorphic

section of [−H]⊗TPT ∼= σ∗O(−1)⊗TPT . We can still say this Lie derives

̟, as sections of σ∗O(−1) are constant on the fibres of PT → CP
1. On the

fibre at which ζ ⊗K is non-zero but K vanishes, ζ ⊗K will still Lie derive ̟

because the Lie derivative is holomorphic, and vanishes everywhere else on

the twistor space.

This means that there is an σ∗O(n) valued Hamiltonian function h, for

some n, such that if

̟(ζ ⊗K, .) = dh.

Here dh is the fibrewise exterior derivative of h, giving an O(n) valued one-

form. Now ̟ is σ∗O(2)-valued, and ζ ⊗ K is σ∗O(−1)-valued, so h must

be σ∗O(1) valued. Moreover, it is not constant on fibres. So it induces a

holomorphic map PT → O(1), with fibres the trajectories of ζ ⊗ K. Hence
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the underlying projective structure is flat. We have proved the following:

Proposition. Let (M, g,K) be a Ricci-flat ASD metric with null triholo-

morphic Killing vector K = ιAoA′

eAA′, with oA′

covariantly constant. Then

the underlying projective structure is flat.

The pp-wave metric (6.15) is an example of this. It may be the only

possibility, but we will not investigate this question here. We now show how

to construct the pp-wave metrics from their twistor spaces. This has been

known since Ward’s work [31], but we present it in a way that highlights the

relationship with projective structures. We also use power series rather than

contour integrals, to make everything very explicit.

We start with the total space of O(1) as the minitwistor space Z. The

twistor lines are global holomorphic sections of O(1) → CP
1. The flat twistor

space O(1) ⊕ O(1) can be formed as follows. Consider the projection τ :

O(1) → CP
1. Then O(1) ⊕ O(1) is the pull-back bundle τ ∗O(1) over the

total space of O(1). It is easy to check that this is the same as taking K
−1/3
Z

where KZ is the canonical bundle of Z = O(1). To obtain curved twistor

spaces, we can take affine bundles over O(1) modelled on τ ∗O(1). Explicitly,

let (λ, µ) and (λ̃, µ̃) ∈ C
2 coordinatize O(1), with (λ̃, µ̃) = (1/λ, µ/λ) on

the overlap. Let f(λ, µ) be a holomorphic function on the overlap, i.e. for

λ 6= 0. This defines a cohomology element [f ] ∈ H1(O(1), τ ∗O(1)). Then

letting σ, σ̃ ∈ C be fibre coordinates on the two patches, the affine bundle

corresponding to [f ] has transition function

σ̃ =
σ

λ
+ f(λ, µ). (7.11)

The total space of this bundle has an obvious projection σ to CP
1. Moreover,

on the overlap the following holds:

dλ̃ ∧ dµ̃ ∧ dσ̃ = −
1

λ4
dλ ∧ dµ ∧ dσ.
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It follows that KPT
∼= σ∗O(−4). So the first and third parts of the theorem

above are satisfied. The second part will be demonstrated below by explicitly

constructing twistor lines. Therefore this is the twistor space of a Ricci-flat

metric. Let the twistor lines in the base O(1) be given by the holomorphic

sections, µ = X + λY for (X,Y ) ∈ C
2. Now restricting to one of these, we

get

f(λ,X + λY ) = h(X,Y, λ) − h̃(X,Y, λ̃),

where h, h̃ are holomorphic in λ and λ̃ respectively. Abstractly this is because

when restricted to one of the sections, f defines an element in H1(CP
1,O(1)),

and this group vanishes. More concretely, h consists of the λ terms in the

power series of the left hand side, and h consists of the λ̃ terms. The four

parameter family of twistor lines is given by

µ = X + λY, σ = W + λZ − λh(X,Y, λ), (7.12)

in one patch, and

µ̃ = λ̃X + Y, σ̃ = λ̃W + Z − h̃(X,Y, λ̃). (7.13)

in the other. It is easy to see that (7.11) is obeyed.

Using the identity (λ∂/∂X − ∂/∂Y )f(λ,X + λY ) = 0, we deduce

λ
∂h

∂X
−
∂h

∂Y
= λ

∂h̃

∂X
−
∂h̃

∂Y
. (7.14)

Now expand h̃ in a power series:

h̃ = h̃0(X,Y ) + h̃1(X,Y )λ̃+ h̃2(X,Y )λ̃2 + . . .

Now the right hand side of (7.14) is

∂h̃1

∂X
−
∂h̃0

∂Y
+ λ

∂h̃0

∂X
+

1

λ
(
∂h̃2

∂X
−
∂h̃1

∂Y
) +

1

λ2
(
∂h̃3

∂X
−
∂h̃2

∂Y
) + . . .
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Now since the left hand side of (7.14) is holomorphic in λ, we see that

∂h̃i

∂X
−
∂h̃i−1

∂Y
= 0

for i ≥ 2. So we have

λ
∂h

∂X
−
∂h

∂Y
= λ

∂h̃

∂X
−
∂h̃

∂Y
=

∂h̃1

∂X
−
∂h̃0

∂Y
+ λ

∂h̃0

∂X

= A(X,Y ) + λB(X,Y ), (7.15)

where A(X,Y ), B(X,Y ) are arbitrary functions.

To calculate the conformal structure one could take infinitesimal changes

(δX, δY, δW, δZ) and find the quadratic condition for a (δµ̃, δσ̃) to vanish.

Rather than do this, we will pull back the form ̟ discussed above to obtain

the ASD two-forms ΣA′B, and thence a tetrad. The advantage of this is that

the tetrad is guaranteed to give a Ricci-flat metric, by the arguments above.

The form ̟ is dµ ∧ dσ on one patch. Using (7.12) we can calculate the

pull back to PS ′:

Σ = dλ(X + λY ) ∧ dλ(W + λZ − λh(X,Y, λ)),

where dλ denotes exterior differentiation keeping λ constant. This is because

̟ is a twisted section of Λ2T ∗
FPT , not Λ2T ∗PT . Expanding, we get

Σ = dX ∧ dW + λ(dY ∧ dW + dX ∧ dZ) + λ2dY ∧ dZ (7.16)

−λ(
∂h

∂Y
− λ

∂h

∂X
)dX ∧ dY

= dX ∧ dW + λ(dY ∧ dW + dX ∧ dZ + A(X,Y )dX ∧ dY )

+λ2(dY ∧ dZ +B(X,Y )dX ∧ dY ), (7.17)

using (7.15). Now we have

Σ = Σ00′ + 2λΣ0′1′ + λ2Σ1′1′

= e0′0′ ∧ e10′ + λ(e01′ ∧ e10′ + e00′ ∧ e11′) + λ2e01′ ∧ e11′ . (7.18)
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Comparing (7.17) with (7.18) we find that the NP tetrad form of the metric

is

g = dX(dZ −B(X,Y )dZ) − dY (dW − A(X,Y )dX).

One can eliminate one of the arbitrary functions, for example by a translation

Z → Z + F (X,Y ). The resulting metric is just the pp-wave metric. There

are in fact two obvious null triholomorphic Killing vectors, these are ∂W and

∂Z . It is easy to show that these correspond to the holomorphic vector fields

∂σ and λ∂σ on PT .

7.2.2 Twisting example using a Ward bundle

In this section we construct a new twistor example that is hyper-hermitian.

It is also never Ricci-flat unless it is flat, which is easily seen using twistor

methods. The idea is as follows. Again, we take the minitwistor space Z to

be the total space of O(1), the twistor space of the flat projective structure.

Suppose we are given a 1-form ω on U . Regard ω as a holomorphic connection

on a holomorphic line bundle B → U . This gives rise to a holomorphic line

bundle E → Z, where the vector space over z ∈ Z is the space of parallel

sections of B over the geodesic in U corresponding to z. The twistor lines

in Z are the two-parameter family of embedded CP
1s, each corresponding

to the set of geodesics through a single point in U . We denote the twistor

line corresponding to a point x ∈ U by x̂. Now E restricted to a twistor line

x̂ is trivial, because to specify a parallel section of B through any geodesic

through x, one need only know its value at x. This is a simple analogue of

the Ward correspondence relating solutions of the anti-self-dual Yang-Mills

equations on C
4 to vector bundles over the total space of O(1) ⊕O(1) that

are trivial on twistor lines. The situation here is simpler since there are

no PDEs involved; this is because there are no integrability conditions for
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a vector space of parallel sections to exist on a line. As with the Ward

correspondence, the construction is reversible, i.e. given a holomorphic line

bundle trivial on twistor lines one can find a connection on U to which it

corresponds in the manner described above. We will not prove this here, as

it is simply a case of mimicking the argument for the Ward correspondence

[32].

Now to create the twistor space PT , we must tensor E with a line bundle

L so that E ⊗ L restricts to O(1) on the twistor lines in Z. Then the total

space of E ⊗ L will have embedded CP
1s with normal bundle O(1) ⊕O(1),

so will be a twistor space for an ASD conformal structure. For L we choose

the pull back of O(1) to the total space of O(1).

Let us now make the above explicit. We use the same coordinatization

(λ, µ) and (λ̃, µ̃) as in the previous section. Now suppose we have a line

bundle E → Z = O(1), that is trivial on holomorphic sections of Z → CP
1.

Let σ, σ̃ be the fibre coordinates on the two patches, satisfying a transition

relation σ̃ = F (λ, µ)σ, where F (λ, µ) is holomorphic and nonvanishing on

the overlap, i.e. for λ ∈ C − {0}, µ ∈ C. In sheaf terms, F is an element of

H1(O(1),O∗). Now the short exact sequence of sheaves

0 → Z → O → O∗ → 0 (7.19)

gives rise to a long exact sequence of sheaf cohomology groups, part of which

is:

. . .→ H1(O(1),Z) → H1(O(1),O) → H1(O(1),O∗) → H2(O(1),Z) → . . .

(7.20)

The first term in (7.20) vanishes and the final term is Z, by topological

considerations. The final term gives the Chern class of the line bundle deter-

mined by the element of H1(O(1),O∗). This vanishes for E, since it is trivial
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on twistor lines. The third arrow in (7.19) is the exponential map. Together

these facts imply that F can be written F (λ, µ) = ef(λ,µ), where f(λ, µ) is a

holomorphic function on the overlap that may have zeros. After twisting by

L, we obtain the following transition function for E ⊗L, again using σ, σ̃ as

fibre coordinates:

σ̃ =
1

λ
ef(λ,µ)σ. (7.21)

We now have the twistor space, and can proceed to find twistor lines and cal-

culate the conformal structure. Before doing this let us consider the structure

of the twistor space in a bit more detail. A quick calculation gives

dλ̃ ∧ dµ̃ ∧ dσ̃ = −
ef

λ4
dλ ∧ dµ ∧ dσ.

It follows that KPT
∼= E−1 ⊗ σ∗O(−4), where σ is the projection PT → Z.

We only have KPT
∼= σ∗O(−4), and hence a Ricci-flat metric, when E−1

is trivial. In that case we obtain the flat twistor space. So whenever E is

non-trivial we obtain a conformal structure with no Ricci-flat metric. Such

twistor spaces correspond to the conformal classes promised in Section 6.5;

we calculate them explicitly below.

A standard result of twistor theory going back to Boyer [3] states that if

the twistor space of an ASD conformal structure fibres holomorphically over

CP
1 then there is a hyperhermitian metric in the conformal structure. A

proof in the complexified situation can be found in [6]. This applies to the

twistor space constructed above, since there is an obvious fibration to CP
1.

Now let us construct the twistor lines. The two parameter family in O(1)

is given in one patch by µ(λ) = Xλ+Y , and in the other by µ̃(λ̃) = X+ λ̃Y .

Restricting to one of these we can split f :

f(λ,Xλ+ Y ) = h(X,Y, λ) − h̃(X,Y, λ̃), (7.22)
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where h and h̃ are functions on U×CP
1 holomorphic in λ and λ̃ respectively.

For fixed (X,Y ) there is then a further two parameter family of twistor lines,

given by

σ(λ) = e−h(X,Y,λ)(W − λZ) (7.23)

in one patch, and

σ̃(λ̃) = e−h̃(X,Y,λ̃)(λ̃W − Z). (7.24)

It is easy to check that (7.21) is satisfied by (7.23) and (7.24).

By the same power series arguments as in the previous section, we obtain

(
∂

∂X
− λ

∂

∂Y
)h = A(X,Y ) + λB(X,Y ) (7.25)

for arbitrary functions A(X,Y ), B(X,Y ).

To calculate the conformal structure one could take infinitesimal changes

(δX, δY, δW, δZ) and find the quadratic condition for a (δµ̃, δσ̃) to vanish,

using (7.25). Rather than do this, we will use the method of Dunajski found

in [6]. This has the advantage that it produces a tetrad for a hyperhermitian

metric, so we need not worry about the conformal factor.

The isomorphism KPT
∼= E−1 ⊗ σ∗O(−4) means that there is a non-

vanishing section ρ of KPT ⊗E⊗O(4). We also have a nonvanishing section

θ ∈ H0(Λ1PT ⊗ σ∗O(2)) given by dλ in one patch and dλ̃ in the other,

whose kernel at any point of PT is the tangent space of the fibre through

that point. Similarly to the Ricci-flat case, these two differential forms give

rise to a holomorphic section

̟ ∈ H0(PT ,Λ2T ∗
F ⊗ σ∗O(2) ⊗ E), (7.26)

where TF is the tangent bundle to the fibres, by the requirement that

θ ∧̟ = ρ.
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Notice that the difference between (7.26) and (7.8) is the extra twist by E.

In the above coordinates, ̟ has the form dµ∧ dσ on one patch, and dµ̃∧ dσ̃

on the other. Now pulling back dµ ∧ dσ to PS ′, where we keep λ constant

for the same reason as in the Ricci-flat case above:

dλ(λX + Y ) ∧ dλ(e
−h(X,Y,λ)(W − λZ)).

Using Dunajski’s method we see that multiplying this by eh gives a two-

form Σ that is quadratic in λ, from which we can read off a tetrad for a

hyperhermitian metric. We get

Σ = dY ∧ dW + λ(dX ∧ dW − dY ∧ dZ) + λ2dZ ∧ dX (7.27)

+(W + λZ)(dX ∧ dY )(
∂h

∂X
− λ

∂h

∂Y
)

= dY ∧ (dW −WAdX) (7.28)

+λ(dX ∧ dW − dY ∧ dZ + (ZA+WB)dX ∧ dY )

+λ2dX ∧ (−dZ + ZBdY ), (7.29)

using (7.25). Using (7.18) to find a tetrad, we obtain the following hyperher-

mitian metric:

g = dXdW + dY dZ − (WdX + ZdY )(A(X,Y )dX +B(X,Y )dY ). (7.30)

This possesses the null conformal Killing vector K = W∂W + Z∂Z , which

is twisting. The global holomorphic vector field on PT induced by K is

σ∂σ = σ̃∂σ̃ where the equality holds on the intersection of the two coordinate

patches. This vanishes on the hypersurface defined by σ = 0 in one patch

and σ̃ = 0 in the other, which intersects each twistor line at a single point,

as expected.

The 1-form AdX + BdY occuring in the metric (7.30) is the inverse

Ward transform of F ∈ H1(O(1),O∗). It can be also interpreted as an ASD
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Maxwell field on the background (7.30), using Dunajski’s interpretation of

hyperhermitian twistor spaces via the twisted photon construction.

To compare with (1.3) one must transform to coordinates (t, x, y, z) in

whichK = ∂t. Dividing by a conformal factorW , transforming with (t, x, y, z) =

(logW,Y,−X,Z/W ), and then translating φ to eliminate an arbitrary one

function of (x, y) gives

g = (dt+ f(x, y)dx)(dy − zdx) − dzdx, (7.31)

a special case of (1.3) with flat projective structure, and G = z2/2−zC(x, y),

where f = ∂yC.
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Chapter 8

Conclusion

We end by discussing some open issues. Despite the classification provided

by Theorem 2, there are many local questions remaining. Perhaps the most

significant is as follows. There is a theory of local scalar invariants of second

order ODEs, and hence projective structures as a special case, going back

to Cartan. The expression (3.7) is an example of one such local invariant.

Now given a conformal structure one can construct local scalar invariants by

contracting polynomials in the conformal curvature and its covariant deriva-

tives. An obvious question is: what is the relationship between the projective

structure invariants and the conformal structure invariants for ASD confor-

mal structures with null CKV? One might hope to construct the projective

structure invariants tensorially from the conformal structure invariants. Per-

haps twistor methods could shed light on these questions. It is known [16]

that the local invariants of an analytic projective structure can be expressed

in terms of formal neighbourhoods of twistor lines. Presumably something

similar holds for local conformal structure invariants, and one might be able

to relate the two using the fibration of Theorem 1.

Another local question concerns the existence of special metrics within
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the conformal classes. Does existence of a particular type of metric, for in-

stance an Einstein metric with non-vanishing Ricci-tensor, impose conditions

on the local invariants of the underlying projective structure? We have al-

ready seen in Section 6.2 that for pseudo-hyper-hypermitian metrics with

tri-holomorphic null Killing vector, the projective structure is of a special

type. It is conceivable that twistor methods might shed light on such ques-

tions. For instance an Einstein metric results in a twistor space with extra

structure, namely a holomorphic contact form, and combining this with the

fibration of Theorem 1 might give information about the projective structure

twistor space.

There are also some interesting global issues. The only compact example

we have is the pp-wave metric, where the underlying projective structure is

the flat one on a 2-torus. It would be nice to find compact examples with

non-flat underlying projective structure.

There is a recent global twistor construction [21] for smooth neutral ASD

conformal structures on S2 × S2, whose null geodesics are periodic. This

follows an earlier global twistor construction [22] for smooth projective struc-

tures on S2 with periodic geodesics. In [23] it was shown in a special case

that these two twistor constructions can be related by dimensional reduction,

using the ideas of Theorems 1 and 2. In this special case, the projective struc-

ture in question is flat. It would be satisfying if one could demonstrate global

dimensional reduction using an example with a non-flat underlying projec-

tive structure. Moreover there is a concrete way of approaching this. In [22],

the general axisymmetric projective structure on S2 with periodic geodesics

is found explicitly. Plugging the resulting functions Ai into the conformal

structures of Theorem 2, one might hope to find a conformal structure defined

on S2 × S2 with periodic null geodesics.
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