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Chapter 1

Introduction

Since the late 19th century, the study of differential equations has been under-

pinned by the ideas of geometric formalism. Associating a system of differential

equations with a manifold structure allows us to view problems in a more intu-

itive way. Obstructions to solvability, for example, can be linked with notions of

curvature or torsion on some geometric structure. Central to this paradigm evo-

lution are the contributions of Lie on continuous symmetry groups and those of

Cartan on exterior differential systems. The existence of invariance and symme-

tries provides us with substantial information on the integral curves or surfaces

of a given system and so these ideas are of fundamental importance in the geo-

metric approach. Mathematical physicists will have encountered the strength of

this framework whether it be the symplectic structure that arises from Hamil-

tonian mechanics, Frobenius Theorem on solutions to PDE systems or, more

recently, Penrose’s twistor correspondence.

A path geometry on some open domain U ⊂ Rn is a set of unparametrised paths

with the condition that there is exactly one passing through each point in any

given direction. Regarding these curves as a solution to a system of n−1 second

order ordinary differential equations (ODEs), one can give an alternative defi-

nition of the path geometry as an equivalence class of systems of second order

ODEs. Two systems are considered equivalent if, locally, they can be mapped

7



8 CHAPTER 1. INTRODUCTION

into each other by a change of dependent and independent variable. Such ge-

ometries play a broad and important role in mathematical physics where, for

example, they arise as the trajectories of free particles moving under the influ-

ence of some force in some background metric. The general theory was first

formalised by Douglas in [1] who showed how to construct the second order

system representing an arbitrary path geometry.

d2xa

dt2
= fa

(
t, xb,

dxb

dt

)
, a, b = 1, . . . , n.

One natural question that arises in this theory is, for a given system, does there

exist a point transformation xi = xi(x̃j) and a reparametrisation t = t(t̃) such

that
d2x̃a

dt̃2
= 0 , a = 1, . . . , n

that is, the system is trivial for some choice of local coordinates and the integral

curves correspond to straight lines? The answer to this question comes down to

the construction of a set of invariants for an equivalence class of systems, the

vanishing of which correspond to the given system being equivalent to a trivial

one. This invariants can naturally be divided into two groups or branches, which

we term as the projective branch and the conformal branch. The vanishing of

the invariants in a given branch corresponds to the system having some extra

geometric structure and we shall explore this complementary pair of structures

in detail. In both cases, the underlying framework has important applications

in mathematical physics.

In the first instance, we will consider path geometries which fall into the projec-

tive branch of the theory. The invariants associated to this aspect are termed

Fels or Wilczynski invariants. This branch is so called for its relevance in the

theory of projective geometry, a subject which traces its origins back to the

fourth century when Pappus of Alexandria formulated his theorem concerning

triplets of collinear points in the plane [2]. The beauty of this theorem is that it

makes no reference to compass constructions, angles or lengths of any kind and

so is invariant under projection. The subject was later given more attention by

Desargues who introduced the notion of parallel lines meeting at a “point at
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infinity” [3] - a concept which allows for the modern construction of projective

space in terms of homogeneous coordinates. Using the ideas of projection, he

developed a number of theorems on the theory of conic sections and influenced

later work by Pascal in this area. Projective geometry then remained relatively

untouched until the 19th century when it was subjected to a more axiomatic

approach. During this period, much time was spent on the study of geometric

properties invariant under projective transformations, the simplest of which is

the cross-ratio. Any triple of points in RP1 can be taken to any other triple of

points via a projective transformation. The same is not true for a quadruple of

points. The cross-ratio is the unique projective numeric invariant defined on an

ordered quadruple of points in RP1. If we identify RP1 with R ∪ {∞} then it

can be written as

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)

for real numbers zi. In the latter part of the 19th century, attention was given to

the differential invariants of projective transformations by people such as Dar-

boux, Wilczynski and Halphen and the ideas from this time keep reappearing

in many areas of mathematics. Most working mathematicians will have encoun-

tered the Schwarzian derivative at some time in their research. This operator,

although unusual in appearance, occupies a very natural position in the frame-

work of projective differential geometry (a notion which will be discussed later).

A large amount of work at this time was due to Cartan who generalised the idea

of an affine connection and, in particular, introduced the notion of the projective

connection [4]. Much like the affine connection the projective connection also

defines geodesics. These geodesics are not, however, affinely parametrised and

so give us a purer notion of a path in Rn, independent of parametrisation.

Here, we will concern ourselves with a problem attributed to Roger Liouville [5]

which can be stated as follows:

Liouville’s Problem

Given an open set U ⊂ Rn and a family of curves on U such that there is ex-
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actly one curve passing through each point in any given direction, can one find

a metric on U whose unparametrised geodesics coincide with these curves?

It is here that we will use the structure endowed by the projective connection.

Beginning with Douglas’s prescription of path geometries in terms of systems

of second order ODEs we obtain the unparametrised form

d2yi

dx2
= F i

(
x, yj ,

dyj

dx

)
i, j = 2, . . . , n,

we outline necessary and sufficient conditions for a system of paths to arise as

the unparametrised geodesics of some symmetric affine connection. To this end,

we have the set of invariants, when n ≥ 3,

Siqrs = F iqrs −
6

2n+ 2
Fmm(qrδ

i
s).

which vanish if and only if the path geometry coincides with the set of geodesics

of a projective connection (lower indices here represent differentiation with re-

spect to the dyi

dx terms). This result is originally due to Fels [6] and, here, we

give a short description of how to approach it. We say that two connections are

projectively equivalent if they give rise to the same geodesics as unparametrised

curves. Liouville outlined an algorithm for constructing explicit local obstruc-

tions to a projective equivalence class containing the Levi-Civita connection of

some metric when n = 2 and, in this case, the necessary and sufficient condi-

tions were found in [7]. In what follows, we use a similar procedure to construct

local obstructions to metrisability for n ≥ 3.

Following the work of Eastwood and Matveev [8], we show that the question of

metrisability can be equated with the existence of solutions to a set of first-order

linear homogeneous PDEs of the form

(∇aσbc)0 = 0

where (. . .)0 denotes the trace-free part and ∇a is the projective connection.

Using the procedure of prolongation to produce a closed system of Cauchy-

Frobenius form, we can derive necessary conditions, algebraic in σab for our
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system of second order ODEs to be metrisable. We analyze some interesting

examples of systems of second order ODEs in dimension 3 and determine the

conditions for their integral curves to arise as the unparametrised geodesics of

a metric.

In 1865, Beltrami [9] discovered that two non-proportional metrics could give

rise to the same unparametrised geodesics. In particular, he proved that, if

g and g̃ are two Riemannian metrics on an n-dimensional manifold U then g

having constant sectional curvature implies that g̃ has constant sectional cur-

vature. The dimension of the space of metrics which give rise to the same

unparametrised geodesics as g is termed the degree of mobility of g. We define

a metric, g, to be geodesically rigid if its degree of mobility is 1. Essentially,

this means that the only projectively equivalent metrics to g are those of the

form cg where c is a constant. In particular, using the prolonged system, we

will show that

Proposition 1.1. The metrics Nil (3.24), Sol (3.27) and the generalised Berger

sphere (3.33) (a 6= 1) are all geodesically rigid.

Levi-Civita showed [10] that for all pairs of projectively equivalent non-

proportional Riemannian metrics g and g̃, there exists some local coordinates

such that g and g̃ take a specific form. Explicitly, he found a local normal form

for all Riemannian metrics of degree of mobility 2. We shall discuss geodesic

rigidity in terms of Levi-Civita’s characterisation and show that our algorithmic

procedure reproduces his result for a special case. The extensions of these

normal forms has been recently extended to the pseudo-Riemannian case in [11]

and [12]. These results allow us to address the following problem

Problem 1.2. Given two projectively equivalent metrics g and g̃ such that g is

conformally flat, under what circumstances is g̃ also conformally flat?

This question is an attempt to generalize Beltrami’s observation of the pro-

jective invariance of the condition that a metric has constant curvature. It has

been considered in dimension four in [13] in terms of the holonomy of the con-

nection. Here, we shall consider it in dimension three and place our answer in
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the framework of degree of mobility.

We shall also frame the metrisability problem in a more geometric context using

the technology of tractor bundles. The tractor technology is a useful framework

for any type of problem involved with the identification of an underlying Cartan

geometry as it concerns itself with an associated vector bundle of the Cartan

connection. The method is due to Thomas [14] who also developed the theory in

the conformal case [15] and a detailed modern exposition of this framework was

discussed in [16]. The work herein, for the projective case, will be based largely

on review material of the formalism used by Eastwood [17]. In particular, we

have the following:

Proposition 1.3. Covariantly constant sections of the tractor bundle with re-

spect to the connection defined by (3.17) are in one-to-one correspondence with

solutions of the equation (3.5).

This will allow us to comment on the dimension of the space of solutions

and the notion of geodesic rigidity.

The other set of path geometries which will be of interest in this work are those

in the conformal branch. These systems of second order ODEs are characterized

by the vanishing of the so called Grossman invariants which are complementary

to those of Fels in describing systems locally diffeomorphic to a trivial one. The

moduli space of solutions of path geometries in the conformal branch admit a

Segré structure, as detailed in [18]. In our description of the path geometry, we

will set up a correspondence between the domain U ⊂ Rn and the moduli space

of solutions M reminiscent of Penrose’s twistor correspondence. The case of par-

ticular interest will be systems in three dimensions. Here, the solution space M

has dimension four and admits a natural conformal structure, where points of U

correspond to totally isotropic two-dimensional surfaces in M , if and only if the

Grossman invariants vanish. Additionally, the conformal structure will be anti-

self-dual (ASD). We will often refer to such systems as torsion-free [18]. This

work will be reminiscent of Penrose’s non-linear graviton construction [19]. The
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idea here being that solutions to differential equations arising in mathematical

physics may be encoded as natural structures in complex analytical geometry.

In fact, the correspondence between a conformal structure of special type on M

and the normal bundles of the twistor lines on the associated twistor space is

just the complexified version of our picture and we will discuss the link in detail.

It is now well understood, from the viewpoint of complexified twistor theory,

how a conformal manifold (M, [g]) endowed with an additional structure such

as Ricci-flatness or an Einstein metric may give rise to additional properties of

the normal bundle on the associated twistor lines. However, if these curves are

described by a system of second order ODEs (a path geometry) it is generally

not known how this system may appear. In this respect, we have the following

important result, proved in [20]:

Proposition 1.4. If a given conformal structure [g] on M contains a metric

that is Ricci-flat then the corresponding torsion-free path geometry which de-

scribes the set of twistor lines is of the form

y′′ = 2
∂Λ

∂z′
, z′′ = −2

∂Λ

∂y′

where Λ is a special function determined by a solution of the heavenly equation

and the conformal structure.

Every point symmetry of a given torsion-free path geometry gives rise to

a symmetry of the conformal structure and vice versa. In Chapter 4, we will

exploit this correspondence to construct ODE systems and conformal structures

with a large number of symmetries (dimension 9 being the submaximal case).

We will describe how, given an ASD conformal structure of signature (2,2), to

construct a system of ODEs on the twistor space U whose integral curves are

the twistor lines. Using this framework, we present an alternative derivation for

the Grossman invariants assuming solely that the space of solutions be endowed

with a conformal structure. We shall show how this construction proceeds in

the Ricci-flat case and demonstrate that, in this case, the corresponding torsion-

free system can be read off directly from the solution of Plebanski’s heavenly
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equation. We shall explore the local isomorphism between groups of point sym-

metries of the path geometry and conformal symmetries of the corresponding

conformal structure and use this to construct examples of systems with symme-

try algebras of between dimension nine and two. A result of central importance

here is the following,

Proposition 1.5. Consider a torsion-free path geometry described by a system

of two second order ODEs of the form

y′′ = 0 , z′′ = B(y′) =

∞∑
k=0

ξk(y′)k.

If B is a quadratic function, then this system is also in the projective branch and

diffeomorphic to a trivial one. Otherwise, the symmetry algebra has dimension

six, seven or nine depending on the coefficients ξk.

At the end of Chapter 4, we shall explore the connection between systems

of ODEs with vanishing Grossman invariants and unparametrised geodesics of

Finsler structures of scalar flag curvature. This correspondence gives rise to yet

another class of examples of torion-free systems of ODEs on U and hence, ASD

conformal structures on the moduli space of solutions M . Some of these exam-

ples have gravitational analogues in the theory of plane-wave spacetimes, and

the whole construction sheds new light on variational aspects of the Nonlinear

Graviton Theorem.

The projective equivalence of metrics has seen many recent applications in the

field of General Relativity. Four dimensional Lorentzian metrics which satisfy

Einstein’s equations provide accurate depictions of black holes and the timelike

and null geodesics of such metrics correspond to the paths of freeling falling

particles. Hence, one might hope to be able to reconstruct some essence of

the local geometry of some patch of spacetime (perhaps the projective equiv-

alence class of the Levi-Civita connection) by using the paths of particles. A

suggestion of how this might be done experimentally was given in [11]. If, lo-

cally, the degree of mobility of a given spacetime metric is greater than one,

it may happen that the metric structure cannot be pinpointed exactly, given
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the equations governing the unparametrised geodesics. In [21], it was shown

that a Friedmann-Lemaitre-Robertson-Walker metric with pure dust without a

cosmological constant Λ was projectively equivalent to one with Λ, giving rise

to the suggestion that dark energy is just a manifestation of the “wrong” choice

of metric in a given projective equivalence class. However, it has been demon-

strated in [22] that non-projectively invariant quantities in cosmology are also

used to determine the local geometry, thereby making the cosmological constant

physically meaningful.

A less obvious application of the notion of projective equivalence arises in the

theory of static metrics. When trying to interpret the physical properties of

a spacetime, of fundamental importance is the behaviour of null geodesics as

these correspond to the trajectories of light rays. The majority of measure-

ments made of the universe consist of observations of electromagnetic waves

emitted in the distant past. The behaviour of light rays as they bend around

the sun gave the first observational evidence for General Relativity and such

gravitational lensing continues to be a significant branch of astronomy. For a

given n+ 1-dimensional static Lorentzian spacetime, there is an n-dimensional

Riemannian metric which can be constructed on the space of orbits of the time-

like static Killing vector K which is called the optical metric. Null geodesics of

the full spacetime g project down (along the time direction) to unparametrised

geodesics of the optical metric h and the geodesic structure of h can be used to

infer something about the conformal structure of g.

For example, the Schwarschild-deSitter solution, which describes an uncharged

non-rotating black hole of mass m with cosmological constant Λ, can be written

in local coordinates as

g = −
(

1− 2m

r
− Λr2

3

)
dt2 +

dr2

1− 2m
r −

Λr2

3

+ r2(dθ2 + sin2 θdφ2)

and admits static Killing vector K = ∂
∂t . The optical metric associated to K

on the space of orbits may be written as

h =
dr2(

1− 2m
r −

Λr2

3

)2 +
r2

1− 2m
r −

Λr2

3

(dθ2 + sin2 θdφ2).
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It was noted in [23] that the unparametrised geodesics of h are independent of

Λ i.e, for two different values of Λ, the metrics h are projectively equivalent.

It follows that the equations governing the dynamics of light rays in g are also

invariant of the cosmological constant.

The idea of the projective equivalence of optical metrics is central to the work

of Chapter 5. It is possible for a given metric to admit more than one time-

like static Killing vector. Clearly, in this case, the definition of the optical

metric is not unique - there will be different optical metrics associated to differ-

ent hypersurface-orthogonal (HSO) timelike Killing vectors. Such metrics are

termed multistatic and as to the general form of such metrics, we prove the

following

Proposition 1.6. Any generic multi-static metric is locally a warped product

metric on M = S0 × S1 given by

g = ewγ0 + γ1 (1.1)

where (S0, γ0) is a two-dimensional Lorentzian manifold of constant curvature,

(S1, γ1) is a two-dimensional Riemannian manifold and w : S1 → R is an

arbitrary function.

If two Riemannian metrics h and h̃ arise as the optical metrics associated to

different Killing vectors K and K̃ of a Lorentzian multistatic spacetime g, we say

that h and h̃ are optically equivalent. A more formal definition is given herein

and we will discuss the connection between optical equivalence and projective

equivalence in Chapter 5. In particular, we have the following

Proposition 1.7. If the curvature of γ0 in (1.1) is non-zero, then the optical

metrics associated with any two static Killing vectors are projectively equivalent.

However, if γ0 is flat then it is possible to construct examples where optically

equivalent metrics are not projectively equivalent.

So, optical equivalence does not imply projective equivalence, in general, but

only does so under certain special circumstances.
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The notion of the projective equivalence of optical metrics may also give rise

to a correspondence picture between the path structure of seemingly unrelated

geometries. This has seen some recent application in the theory of generalised

higher-dimensional black holes. In [24], the authors consider the properties

of null geodesics in Schwarzschild-Tangherlini spacetimes of n + 1 dimensions.

Here, the projection of any such curve to the space of orbits of the timelike

Killing vector lies in a plane and coincides with an unparametrised geodesic of

some two-dimensional optical metric. It is found that the cases n = 3 and n = 6

may be related by a conformal mapping as discussed by Bohlin [25] and Arnold

[26]. This begs the question as to whether optical 2-metrics describing projected

null geodesics are projectively related and, if not, how may this relationship be

described?

We will explore this Bohlin-Arnold duality in depth in this context and argue

that it does not give rise to the projective equivalence of metrics. Instead, we

find that

Proposition 1.8. The entire set of geodesics determined by the one-parameter

family of metrics

g3(m) =
dr2(

1− 2m
r

)2 +
r2

1− 2m
r

dφ2,

parametrised by mass m, (which correspond to the optical 2-metrics of the n = 3

case) can be mapped to those determined by the one-parameter family

g3(m) =
dr2(

1− 2m
r4

)2 +
r2

1− 2m
r4

dφ2,

associated to the n = 6 case.

Furthermore, this common system of paths is determined as the set of in-

tegral curves of some unique third order ODE for u(φ) with u = 1/r. We will

analyse the role of the cosmological constant for these spacetimes, and the opti-

cal metric construction, and show explicitly why it does not effect the equations

governing the dynamics of light rays. This result expands on the observation

in [23] and hints at a general dissociation of the cosmological constant from the
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conformal structure of a given static solution of Einstein’s equations.

For n = 3, the projection of a zero energy light ray to the space of orbits of the

static Killing vector is a cardioid and for the n = 6 case, it is a lemniscate of

Bernoulli. The Bohlin-Arnold mapping we formulate herein does not associate

these two curves but we shall discuss how the zero energy solutions fit into the

duality and note that a more general mapping allows a correspondence between

the set of zero energy curves for any two values of n.

A natural extension of this construction is to static black hole solutions which

are also charged i.e, the Reissner-Nordstrom analogue in n dimensions. We

consider the possibility of a similar notion of duality for such spacetimes and

find that the additional charge parameter provides a constraint too restrictive

to be applied for all values of n. An interesting correspondence does arise here

between the values n = 3
2 and n = −2 which, although does not have a clear

interpretation in terms of the dimensions of black hole spacetimes, can be inter-

preted as arising from the set of trajectories of free particles moving under the

influence of a central force of a particular restricted form.

The general overview given here gives us some idea of the use of the optical

metric structure for a given static spacetime when considering the properties of

its light rays. One may deduce several features about the conformal structure

of a Lorentzian static metric from those of the geodesic structure of the optical

metric which may be better understood. Recently, attempts have been made to

generalise this geometric structure to spacetimes which do not necessarily ad-

mit a vector field which is static but which has some other particular property

of interest. The null geodesics of the spacetime may then be projected to the

space of orbits of this distinguished vector field for analysis where one may try

to determine if the projected paths are then integral curves of some geometric

structure on the hypersurface.

For example, if a given Lorentzian metric g is stationary, i.e, admits a timelike

Killing vector field K, then there are two different structures on the space of

orbits of K whose paths coincide with the projection of light rays. On one

hand there is the set of unparametrised geodesics of a Finsler norm of Randers
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type which can be interpreted as the magnetic flow due to some one-form in

the background of a curved metric. This Randers structure can be obtained by

expressing the given stationary spacetime g in a particular set of coordinates.

On the other hand, if we express g in Painlevé-Gullstrand form then we find

that null geodesics also project down to the solutions of the Zermelo problem on

the space of orbits of K with a specified background metric γ and wind vector

W. This problem can be described as follows:

Zermelo’s Problem: Given a Riemannian metric γ on a manifold B, what is

the least time trajectory for a ship moving with constant speed in a wind W?

Hence, there is a triality of structures in this picture where geometric prop-

erties of one can be deduced from those of others. A clear exposition of this

picture is given in [23] and we shall also discuss some particular properties in

Chapter 6.

We may also generalise this idea of the optical structure to metrics which admit

a timelike conformal retraction Θ. In this case, the vector field has the property

that the conformal structure on the space of orbits of Θ is preserved along its

integral curves. In general, it is difficult to expose to what the projection of light

rays along the direction of Θ may correspond and there is no “good choice” of

local coordinates as in the static or stationary cases. In the Riemannian case,

such metrics have arisen as supersymmetric solutions of the minimal N = 2

gauged supergravity with anti-self-dual Maxwell field [27]. Moreover, when the

anti-self-duality condition is relaxed in the case of positive cosmological con-

stant, one obtains a solution, also admitting a conformal retraction, which is

the Riemannian analogue of the well-known Kastor-Traschen metric [28],

g = − dT 2

(V + cT )2
+ (V + cT )2h

where h is a Riemannian metric (which we take to be flat for simplicity), with

coordinates xa, V = V (xa) is a harmonic function and c is constant.

In Lorentzian signature, this metric is a time-dependent solution to the Einstein-
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Maxwell equations which can be seen to describe an arbitrary number of dy-

namical charged black holes in a deSitter background. Here, we will use it as

an analogue model in order to gain insight into the optical structure associated

to spacetimes which admit a timelike conformal retraction. We will focus on

the null geodesic structure and, in particular, it is found that light rays project

down to the integral curves of a set of third order ODEs on the space of obrits

of Θ. In particular, we find that the projected null geodesics form only a subset

of the set of integral curves and this yields a freedom in how this third order

system is defined.

We pay particular attention to the one-centre solution (a single black hole). In

the limit as the cosmological constant tends to zero, our system of ODEs be-

comes that describing conformal circles of the flat metric (as described in [29]).

We use this result to motivate the choice of ODE system to describe the projec-

tion of light rays and discuss the underlying numerology of the problem. The

advantage of this new system is that it will allow us to give a physical interpre-

tation to those integral curves which do not arise as projected null geodesics,

coinciding with motion in the background magnetic field. This formulation also

allows us to characterize those integral curves which are the projected light rays.

The central result of this work is the following

Proposition 1.9. If c 6= 0, the retraction projection of the set of null curves

satisfying (6.14) for some value of λ coincides with the set of integral curves of

...
x = −|ẍ|2ẋ− 3

2

ẍ.∇V
|ẋ×∇V |2

(ẋ.∇V )ẍ− 2c(ẋ× (∇V × ẋ))

+
ẍ.∇V
|ẋ×∇V |2

(
ẋ×

(
d∇V
ds
× ẋ

))
+

ẍ.(ẋ×∇V )

|ẋ×∇V |2
[( ẍ.∇V
|ẋ×∇V |2

)
(ẋ.∇V )ẍ×∇V

+ ((ẋ×∇V ).ẍ)ẋ +
d

ds
(ẋ×∇V )

]
. (1.2)

Furthermore, the projected null geodesics are precisely the integral curves of this

system for which ẍ.(ẋ×∇V ) = 0.

In the one centre case, there is a diffeomorphism which takes the Kastor-

Traschen metric to that of the Reissner-Nordstrom deSitter metric with charge
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equal mass in some local set of coordinates. Analytic descriptions of the null

geodesics for this spacetime are well documented, see for example [30]. This

allows us to determine the projected null geodesics for Kastor-Traschen analyt-

ically. We give plots of some of these curves and discuss the horizon structure

in both sets of coordinates.

Solutions of the Einstein-Maxwell equations of Kastor-Traschen correspond to

physical situations when the harmonic function V is a sum of potentials inversely

proportional to the distance from some fixed point i.e,

V =
N∑
α=1

mα

|x− aα|
.

The realisation of this solution is a set of N charge equal mass black holes with

fixed centres and dynamic event horizons. We shall expand our investigation to

the case when N = 2 where, for special initial conditions, the projection along

the conformal retraction of a null geodesic will lie in a plane. For one such

curve, we illustrate a connection between the null geodesics of the two-centre

Kastor-Traschen metric and a third order system that arises in the analysis of

the one-centre case. We also look at the perturbations away from this plane

and give a strict condition for stability, the kind of calculation relevant from a

physical point of view.

The work presented here gives some insight into the active area of path geome-

tries particularly in the context of projective and conformal structures and the

applications of such ideas to general relativity. There are many open problems

presented herein, some of which will be discussed at the end, which make it a

fruitful area for further research.
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Chapter 2

Path Geometry

2.1 Description of the Path Geometry

Let us begin with an open domain U in Rn for n ≥ 3. Henceforth, all results

quoted will be for n ≥ 3 and where appropriate, the corresponding results for

n = 2 will be mentioned. Let xa (a = 1, . . . , n) be local coordinates on U ,

with (xa, pa) the corresponding coordinates on the tangent bundle TU . Then

we define a path geometry on the domain U as a family of curves such that,

given any (xa, pa) ∈ TU , there is exactly one curve on U passing through xa in

the direction pa. A result of Douglas [1] tells us that a path geometry may be

represented by a system of second order differential equations on U of the form

d2xa

dt2
= fa

(
xb,

dxb

dt

)
a, b = 1, . . . , n (2.1)

where t is a parameter along each curve and the functions fa are homogeneous

of degree two in dxb

dt . By construction, such a family of curves defines a flow on

the tangent bundle TU which naturally gives rise to a spray

X = pa
∂

∂xa
+ fa

∂

∂pa

We will say that two such sprays are equivalent if they give rise to the same

family of unparametrised curves on U . Given that a curve in the path geometry

23
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passing through a point is fully described by the direction of the tangent vector

at that point, then flows on TU determined by equivalent sprays project to

the same foliation of the projective space P(TU). Hence, two sprays X, X̃

give rise to the same unparametrised curves on U if they differ by a multiple

of the Euler vector field (pa ∂
∂pa ). This projection induces a geodesic spray Θ,

the integral curves of which define a foliation by one-dimensional manifolds

of the projectivised tangent bundle. Hence, we can think of P(TU) as a fibre

bundle over some (2n-2)-dimensional space M with one-dimensional fibres given

by these integral curves. This manifold M can be thought of as the space of

solutions and, together with the canonical fibration of P(TU) over U , we obtain

the double fibration picture

U ←− P(TU) −→M (2.2)

which sets up a useful correspondence between M and U . In particular, points

in M correspond to paths in U and points in U correspond to (n-1)-dimensional

surfaces in M . We shall consider this correspondence in more detail later.

If we wish to discuss a purer notion of path geometry, independent of parametri-

sation, then Douglas’s description (2.1) is inadequate but, due to the homo-

geneity properties of the functions fa, we may eliminate the parameter t us-

ing the chain rule. To this end, let us rewrite the coordinates on U as xa =

(x, y2, . . . , yn) = (x, yi) [NB I will use the convention here that roman indices

from the start of the alphabet (e.g, a, b, c, . . .) take values 1, . . . , n whereas those

from the middle of the alphabet (e.g, i, j, k, . . .) take values 2, . . . , n]. Then, we

have
dyi

dt
=
dyi

dx

dx

dt
,

d2yi

dt2
=
d2yi

dx2

(
dx

dt

)2

+
dyi

dx

d2xi

dt2

and the system (2.1) becomes

d2yi

dx2
= F i

(
x, yj ,

dyj

dx

)
, i, j = 2, . . . , n (2.3)

for some functions F i. The system (2.3) is precisely what we need to give us

a complete description of a path geometry in n dimensions and will henceforth

be the main reference for establishing a geometric structure on U .
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One of the most natural problems that arises in this area of study, and one

which is of particular importance to how we proceed is the following

Problem Given a path geometry described by a system of second order ODEs

(2.3), under what conditions does there exist a diffeomorphism (x, yi)→ (x̃, ỹi)

such that we have
d2ỹi

dx̃2
= 0 , i = 2, . . . , n?

The answer to this question is well known and corresponds to the vanishing

of a set of invariants which can be divided into two distinct groups. In one

group, we have, what we shall name, the Fels invariants

Siqrs := F iqrs −
6

2n+ 2
Fmm(qrδ

i
s) (2.4)

where, here, the lower indices on F indicate differentiation with respect to pi =

dyi

dx .

Furthermore, if we define

T ij = −∂F
i

∂yj
− 1

4

∂F i

∂pk
∂F k

∂pj
+

1

2

d

dx

∂F i

∂pj
,

then the other group comprises the Grossman invariants defined as

τ ij := T ij −
1

n− 1
δijT

k
k , i, j, k = 2, . . . , n. (2.5)

A given path geometry (2.3) is then diffeomorphic to a trivial one if and only if

Siqrs ≡ 0 and τ ij ≡ 0.

The set of invariants are naturally and conspicuously divided into two groups

and vanishing of each of these groups separately selects a special subclass of

three-dimensional path geometries. Let us say that a given path geometry

belongs to the projective branch of the theory if the Fels invariants vanish. On

the other hand, path geometries with vanishing Grossman invariants are said
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to lie in the conformal branch. Clearly, the only systems of second order ODEs

(2.3) belonging to both branches are those diffeomorphic to the trivial system.

The path geometries in each branch are endowed with some extra geometric

structure which is important to mathematical physics and differential geometry

in general and which we shall discuss in detail here.

2.2 Path Geometries of a Projective Structure

One important instance of a path geometry which will form a core part of this

work is the subset of systems of parametrised differential equations of the form

d2xa

dt2
+ Γabc(x)

dxb

dt

dxc

dt
= ν

(
dxb

dt

)
dxa

dt
, (2.6)

where ν is a function homogeneous of degree 1 in its arguments and Γabc = Γa(bc).

The integral curves of this system coincide with the unparametrised geodesics

of a symmetric affine connection Γabc. Furthermore, this system satisfies the

homogeneity properties of (2.1) outlined by Douglas and hence, gives rise to a

path geometry on U . Thus, saying that two connections Γ, Γ̃ give rise to the

same unparametrised geodesics is equivalent to saying that the corresponding

sprays on TU differ by a multiple of the Euler field. This equivalence may be

reformulated, see [17], as

Γ̃abc = Γabc + δabΥc + δacΥb (2.7)

where Υ = Υadx
a is a 1-form on U . We say that two connections are projectively

equivalent if they give rise to the same unparametrised geodesics i.e, if (2.7)

holds for some 1-form Υ. This equivalence relation splits the set of connections

into equivalence classes which we term projective structures. Thus, an pertinent

problem to address is the following:

Problem 2.1. Given a path geometry described by the system of differential

equations (2.3), determine conditions on the functions F i such that the integral

curves of (2.3) coincide with the unparametrised geodesics of some torsion-free

connection on TU .
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This problem was solved by Fels [6] and here we give a brief outline of how to

derive these conditions. If we begin with equation for unparametrised geodesics

of a torsion-free connection Γabc (2.6) and eliminate the parameter t using the

chain rule, the system reduces to one of n − 1 second order ODEs of the form

(2.3) with

d2yi

dx2
= F i =

dyi

dx
Ajk

dyj

dx

dyk

dx
+Bijk

dyj

dx

dyk

dx
+ Cik

dyk

dx
+Di , i, j, k = 2, . . . , n

(2.8)

where

Ajk = Γ1
jk

Bijk = δijΓ
1
1k + δikΓ1

1j − Γijk

Cik = δikΓ1
11 − 2Γi1k

Di = −Γi11.

This gives a sufficient condition for the integral curves of (2.3) to be the un-

parametrised geodesics of some connection. This condition can be written more

succinctly as

F i = Ajkp
ipjpk +Bijkp

jpk + Cikp
k +Di (2.9)

where pi = dyi

dx , as before (we note here that A, B, C and D, defined by (2.9)

are invariant under (2.7) i.e, these quantities are uniquely defined by a given

projective structure). In fact, we can make an even stronger statement,

Theorem 2.1. Given a system of ODEs of the form (2.3), its integral curves

are the unparametrised geodesics of some connection if and only if there exist

Ajk, Bijk, Cik and Di such that (2.9) holds for all i = 2, . . . , n.

Proof. The “only if” case has already been shown.

To prove the “if” case, it suffices to show that there exists a connection Γ such

that the relations in (2.9) are satisfied. This is a convenient place to introduce

the projective connection, defined by Thomas [31] as

Πa
bc = Γabc −

1

n+ 1
δabΓddc −

1

n+ 1
δacΓddb. (2.10)
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It can easily be checked that this definition is invariant under the transformation

(2.7). Even more, the projective connection is uniquely defined by its projective

structure and so, we will often use [Π] to denote such an equivalence class.

Let us construct Π as follows,

Πi
jk =

1

n+ 1
Bmmkδ

i
j +

1

n+ 1
Bmmjδ

i
k −Bijk,

Πi
j1 = −1

2
Cij +

1

2n+ 2
δijC

m
m ,

Πi
11 = −Di,

Π1
jk = Ajk,

Π1
j1 =

1

n+ 1
Bmmj ,

Π1
11 =

1

n+ 1
Cmm . (2.11)

Then Π is a connection satisfying the relations (2.9). Hence, the unparametrised

geodesics of the connection Π can be written in the form (2.9).

We would prefer to reformulate this proposition in some coordinate invariant

manner and, to this end, we have the following

Theorem 2.2. A given path geometry on U ⊂ Rn corresponds to the set of

unparametrised geodesics of some symmetric affine connection if and only if

the Fels invariants (2.4) vanish that is, the path geometry lies in the projective

branch 1.

2.3 Segré Structure on the Space of Solutions

On the other hand, we may consider the path geometries which lie in the con-

formal branch of the theory, i.e, the Grossman invariants (2.5) vanish. In this

instance, we can exploit the double fibration picture (2.2). If a given path ge-

ometry on U is torsion-free then it endows the moduli space of solutions M with

a Segré structure. The details of this correspondence were discussed in detail in

1If n = 2, i.e, a single ODE of the form d2y
dx2 = F

(
x, y, dy

dx

)
, then the condition is ∂4F

∂(y′)4
= 0

where y′ = dy
dx

- this result was known to Liouville [5]
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[18] and we will only touch on the main features here.

Following from the work of Grossman, for positive integers k and m, let us de-

fine homogeneous coordinates Zaα (where 1 ≤ a ≤ m, 1 ≤ α ≤ k) on the real

projective space RPkm−1. A Segré variety S(k − 1,m− 1) is then a subvariety

of RPkm−1 defined by the quadratic polynomial equations ZaαZ
b
β = ZbαZ

a
β . It

is isomorphic to RPk × RPm and it carries a double ruling by subvarieties of

dimension k − 1 and m− 1. There is a corresponding cone in the vector space

over each point of RPkm−1 defined by these quadratic polynomials called the

Segré cone, S(k,m). Then we have (see [18])

Definition 2.3. A Segré structure of type (k,m) on a manifold Skm is a

smoothly varying field of varieties Sp(k,m) ⊂ TpS in the tangent spaces of

S, each linearly isomorphic to the Segré cone S(k,m).

Segré structures have been discussed in several different guises, with several

different names. For a brief overview of the literature on this subject and some

recent interesting work, see [32]. Given the canonical isomorphism above, we

may define a simple vector as one of the form κ⊗ π for κ ∈ RPk and π ∈ RPm.

Then, a plane spanned by simple vectors, tangent to a given point, with π

fixed is called an α-plane (alternatively, the corresponding plane with κ fixed

is termed a β-plane.) An immersed connected manifold Σ→M for which TpΣ

is an α-plane for every point p ∈ Σ is called a proto-α surface and is called an

α-surface if Σ is maximal in the sense of inclusion.

Returning to the double fibration picture (2.2), it was shown in [18] that if a

given path geometry on U ⊂ Rn has vanishing Grossman invariants then the

moduli space of solutions M is endowed with a Segré structure of type (n−1, 2)

where each point in U corresponds to an α-surface of M . From the point of

view of Twistor Theory, the most interesting case of this correspondence is when

n = 3. Here, the definition of a Segré cone coincides with that of a null cone in

the tangent space at a point and the Segré structure is a conformal structure.

Thus, if a three dimensional path geometry on U described by a pair of second

order ODEs is torsion-free then the space of solutions is endowed with a con-
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formal structure which is fully defined by the set of two-dimensional α-surfaces.

The torsion-free condition implies the existence of the maximal set of such α-

surfaces each of which corresponds to a point in U .

The complexified version of this picture is reminiscent of some noteworthy

twistor constructions of Penrose [19], Hitchin [33] and others. The idea of this

procedure is to set up a duality between complex analytic geometry on one vec-

tor space and normal bundles of the corresponding twistor lines. We will discuss

the twistorial point of view in more detail in Chapter 4 and we shall see how it

fits into our framework.

Hence, there is some interesting geometric structure associated to each branch

of the theory of path geometries and it is these structures that we use as the

starting point for the rest of the discussion.



Chapter 3

Metrisability of Systems of

Second Order ODEs

In the previous chapter, we determined a tensor Sijkl, the complete vanishing

of which is a necessary and sufficient condition for the integral curves of (2.3)

to be geodesics of some projective structure. We now pursue the problem of

determining conditions for the geodesics of a given projective structure [Π] to

be compatible with those of a metric connection. In other words, we wish to

determine necessary and sufficient conditions for the projective structure to

contain the Levi-Civita connection of some metric g i.e,

Γabc =
1

2
gad(gdc,b + gbd,c − gbc,d) (3.1)

for some Γ ∈ [Π]. It should be noted at this point that all our considerations

are local and we are trying to determine local obstructions to metrisability.

The problem of determining necessary and sufficient conditions for a given path

geometry to coincide with the unparametrised geodesics of some metric is at-

tributed to Roger Liouville [5] and was solved in dimension two in [7] - the

authors determined a set of invariants for a projective structure, the vanishing

of which coincide with the structure being metrisable.

So, let us assume that a given projective structure is metrisable. Then, using

31
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equations (3.1) and (2.10), we can write the projective connection in terms of

the metric and it’s first partial derivatives. This relationship is homogeneous

but non-linear in general. Hence, we have defined a first order non-linear differ-

ential operator from the first jet space of symmetric two-forms on the tangent

space of U to the space of projective structures on U which we write as follows:

Ω0 : J1(S2(T ∗U))→ J0(Pr(U)). (3.2)

In n dimensions the metric and its derivatives have a total of n(n+1)2

2 components

whereas the projective connection has (n−1)(n)(n+2)
2 components. This means

that the map Ω0 has kernel with rank n(n+3)
2 . Hence, at zeroth order in the

connection, it does not seem as though there should be an obstruction to a given

projective structure being metrisable at a point. Differentiating the relations

between the projective connection and the metric prolongs the operator Ω0 to

maps

Ωk : Jk+1(S2(T ∗U))→ Jk(Pr(U)).

By calculating the rank of each jet space we can work out where the obstruction

to metrisability occurs in dimension n. For k = 1 we calculate

rank(J2(S2(T ∗U))) =
n(n+ 1)

2

(
1 + n+

n(n+ 1)

2

)
and

rank(J1(Pr(U))) =
n(n− 1)(n+ 2)

2
(1 + n).

Therefore, we get an obstruction to metrisability at first order whenever

n(n+ 1)

2

(
1 + n+

n(n+ 1)

2

)
≤ n(n− 1)(n+ 2)

2
(1 + n)

⇒ n+ 1 +
n(n+ 1)

2
≤ (n− 1)(n+ 2)

⇒ n ≥ 3 (3.3)

since n + 2 ≥ 0. Thus, in dimension greater than two1, there is already an

obstruction to metrisability at first order in the connection which we may de-

termine.
1n = 2 is really different in this sense as there are no obstructions up to order 5.
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As stated previously, Ω0 is nonlinear. It is possible, however, to express this

map as a system of linear partial differential equations by choosing a new metric

tensor

σab = (det (g))
1

n+1 gab

or equivalently

gab = det (σ)σab. (3.4)

This system may be written in the following form

(∇aσbc)0 = 0 (3.5)

where (. . .)0 denotes the trace-free part. We could also write this as

∇aσbc −
1

n+ 1
δba∇dσcd −

1

n+ 1
δca∇dσbd = 0. (3.6)

The covariant derivative here is that associated to the projective connection

∇aσbc = ∂aσ
bc + Πb

taσ
tc + Πc

taσ
bt.

In [8] the authors show that if ∇a is a special torsion-free connection on the

tangent bundle of an n-dimensional manifold U and there exists a metric tensor

σbc satisfying (3.5) for this connection, then ∇a is projectively equivalent to

a metric connection - which turns out to be the Levi-Civita connection of the

metric given by (3.4). The term special here means that there is a volume

form on U , εbc...d (unique up to scale) for which ∇aεbc...d = 0. As was noted

in [17], the curvature tensor of any torsion-free connection ∇a can be uniquely

decomposed as

(∇a∇b −∇b∇a)Xc = R c
ab dX

d = (W c
ab d + 2δc[aPb]d + βabδ

c
d)X

d

where W c
[ab d] = 0, W c

ab d is totally trace-free and βab = −2P[ab]. W c
ab d is the

projective Weyl tensor. Under a change of connection in the projective structure,

we have

W̃ c
ab d = W c

ab d , P̃ab = Pab −∇aΥb + ΥaΥb , β̃ab = βab + 2∇[aΥb]
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so that the Weyl tensor is projectively invariant (as one would expect by anal-

ogy with conformal structures). Pab is called the Schouten tensor. Note that if

the given connection comes from a metric, then Pab is symmetric in its indices

and βab = 0. When considered as a 2-form, the tensor β changes by an exact

form under a change of connection in the projective class. Furthermore, the

Bianchi identity ∇[aR
d

bc] e = 0 implies that β is closed. Hence, there is a de

Rham cohomology class which is a global obstruction to a projective structure

containing a metric connection. Hence, we may restrict our attention to con-

nections in a given projective structure for which βab = 0. In fact, βab can be

interpreted as the curvature on volume forms so that restricting attention to the

special connections in the projective structure will suffice for this condition to

hold (and is the motivation for making such a restriction). There is a residual

freedom in the transformation (2.7) via Υa = ∇af for some arbitrary function

f .

We have reduced the problem of determining whether or not a given projective

structure is metrisable to a set of linear first-order partial differential equations

with coefficients determined by the projective connection. Thus, if we can find

a non-trivial solution of the system (3.5) then the projective structure is metris-

able and the metric can be written as (3.4). Ideally, we would like to have det(σ)

6= 0 at a point so we can then work in some open neighborhood.

3.1 Prolongation

The system of equations (3.5) is overdetermined as there are more equations

than unknowns. We can derive necessary conditions for the existence of a solu-

tion of this system via the procedure of prolongation (in this example, we mimic

the procedure of [8]). The idea here is to construct a closed system of Cauchy-

Frobenius form (where all derivatives of unknowns are expressed as functions of

unknowns) by repeatedly adding new unknowns for the unspecified derivatives

and differentiating. We can then use integrability to derive some algebraic con-

ditions that a solution to the system (3.5) must satisfy. As an example, for the
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case n = 3 we initially have 15 equations in our system but there are 18 first

derivatives ∂aσ
bc. Therefore, in order to specify all of the first derivatives at

each point, we must add three unknowns µa to the system, constituting some

vector field over U . In dimension n, we are required to add n unknowns and we

may do so as follows:

∇aσab = (n+ 1)µa. (3.7)

We consider this as the defining equation of the unknowns µa. When we take

the second derivative of the σab terms, all but one of the derivatives of the µa

terms can be specified. Adding the condition

∇aµa + Pbdσ
bd = nρ (3.8)

remedies this and gives us a closed system which may be written compactly as

∇aσbc = δbaµ
c + δcaµ

b

∇aµb = δbaρ− Pacσbc +
1

n
W b
ac dσ

cd

∇aρ = −2Pabµ
b +

4

n
Yabcσ

bc (3.9)

where Yabc = 1
2 (∇aPbc −∇bPac) is the Cotton-York tensor. The connection ∇a

enjoys the curvature decomposition

(∇a∇b −∇a∇b)Xc = W c
ab dX

d + δcaPbdX
d − δcbPadXd. (3.10)

Now, differentiating the first equation in (3.9), we find that

(∇a∇b −∇a∇b)σcd = 2∇aδ(c
b µ

d) − 2∇bδ(c
a µ

d)

= 4δ
(c
[aδ

d)
b] ρ− 4Pe[aδ

(c
b] σ

d)e − 4

n
δ

(c
[aW

d)
b]e fσ

ef .

Furthermore, the curvature condition (3.10) yields

(∇a∇b −∇a∇b)σcd = 2W
(c

ab eδ
d)
f σ

ef − 4Pe[aδ
(c
b] σ

d)e.

Combining these last two equations gives us an algebraic obstruction to metris-

ability at first order in the connection

Ξcdabefσ
ef ≡

(
W

(c
ab eδ

d)
f +

2

n
δ

(c
[aW

d)
b]e f

)
σef = 0. (3.11)
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Earlier counting led us to expect an obstruction to metrisability at this order.

The symmetries of Ξ tell us that this represents a system of n
4−5n2+4

4 equations

in n(n+1)
2 unknowns for which a solution must exist for the projective structure

to be metrisable.

Similarly, we can differentiate the second and third equations of (3.9) and equate

with the corresponding curvature conditions from (3.10) to obtain

(n+ 3)W c
ab dµ

d − S c
ab deσ

de = 0 (3.12)

where

S c
ab de = 2∇[aW

c
b]d e − 8δc[aYb]de − 2nYabdδ

c
e

and

(n+ 3)Yabcµ
c − Uabcdσcd = 0 (3.13)

where

Uabcd = Pe[aW
e

b]c d + 2∇[aYb]cd.

Conditions of this form were presented in [34] where the author also suggests

an algorithm for determining whether a given projective structure is metrisable.

We can extend this work and derive more necessary conditions at higher orders

by differentiation. For example, from equation (3.11), we obtain the condition(
∇jΞcdabef

)
σef + Ξcdabjfµ

f + Ξcdabfjµ
f = 0. (3.14)

Hence, we have generated a set of n
(
n4−5n2+4

4

)
obstructions to metrisability at

second order in the connection to add to the n(n+1)
2 we had before. These con-

ditions are not independent, however, and, in particular, we have the following

result:

Proposition 3.1. Any given set of unknowns (σab, µa) which satisfies the sys-

tem (3.14) necessarily satisfies (3.12)

Proof. Equation (3.14) may be written in full as(
∇jW (c

ab e

)
σd)e+W

(c
ab eδ

d)
j µ

e+W
(c

ab jµ
d)+

2

n

(
∇jδ(c

[aW
d)

b]e f

)
σef+

4

n
δ

(c
[aW

d)
b](j f)µ

f = 0.

(3.15)
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From the Bianchi identity, we derive the following conditions,

∇[aW
d

bc] e = 2δd[aYbc]e , ∇aW
a

bc e = (2n− 4)Ybce.

Then, by contracting the j and c indices in (3.15) and applying the above

identities, we find that

(n− 2)Yabeσ
de +

1

2

(
6δd[aYbj]eσ

je −∇aW d
bj eσ

je −∇bW d
ja eσ

je
)

+
n2 + 2n− 3

2n
W d
ab eµ

e +
1

n
∇[aW

d
b]e fσ

ef +
2n− 4

n
δd[aYb]efσ

ef = 0.

If we rearrange the terms and multiply across by a factor of 2n
n−1 we obtain

(n+ 3)W c
ab dµ

d + 2nYabeσ
de − 2∇[aW

d
b]j eσ

je + 8δd[aYb]efσ
ef = 0

which is precisely the system (3.12). Hence, all necessary conditions for metris-

ability at first and second order in the connection are given by the equations

(3.11) and (3.14).

In section 3.3, we begin by following Nurowski’s procedure and analyze the

consequences of the conditions (3.11), (3.12) and (3.13) in some specific exam-

ples for n = 3. Essentially, if, for a given projective structure, a solution exists

to these equations then we substitute that solution into (3.5) and determine

when the resulting differential equations are satisfied. In one such example,

we go further than [34] and construct an example for which there is a solu-

tion (σab, µa, ρ) which satisfies (3.11), (3.12) and (3.13) but is not a solution of

(3.14) illustrating the independence and necessity of these new conditions. We

will also look at the notion of a metric being geodesically rigid and discuss the

significance of this idea.

3.2 Tractor Bundles

The technology of tractor bundles has proven very useful in the areas of both

conformal and projective differential geometry. Developed by Tracey Thomas

[14] (the name tractor is a portmanteau of his name and the word vector) the
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approach is to construct a particular associated vector bundle of the Cartan

connection on which invariant differential operators can be constructed. An

overview of the ideas in this field can be found in [16]. For the projective case,

in particular, we also consider [17] and [8] which deals with the metrisability

problem (most of the material here can be found in one of these papers).

As before, let us begin with an open set U ⊂ Rn and recall the relation for pro-

jectively equivalent connections (2.7). We can, equally, phrase this equivalence

by the action of the covariant derivative on 1-forms,

∇̂aωb = ∇aωb −Υaωb −Υbωa

for some 1-form Υa or for Xa a vector field

∇̂aXb = ∇aXb + ΥaX
b + ΥcX

cδba.

This relationship can be generalised for arbitrary tensor fields (see [17]). In

particular, for a volume form σ,

∇̂aσ = ∇aσ − (n+ 1)Υaσ

Let us define the line bundle of projective densities of weight w by E(w) =

(Λn)−w/(n+1). Then, for any section of this line bundle σ we have

∇̂aσ = ∇aσ + wΥaσ.

This definition of “weight” has a clear analogy with that seen in the conformal

case [16], hence the terminology. Furthermore, let Ea represent the bundle of

1-forms and Ea(w) = Ea ⊗ E(w) and define other weighted tensor bundles

similarly. With these definitions, we may construct a series of projectively

invariant differential operators on weighted tensor bundles. For example, for

σa ∈ Ea(2), the symmetrised covariant derivative ∇(aσb) is invariant under a

change of connection in the projective structure. More importantly for us, if we

let σab ∈ E(ab)(−2) then the equation

(∇aσbc)0 = 0 (3.16)
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is projectively invariant. This is something we should almost expect to be true

as this system of equations arises from asking a question about the projective

structure. From before, we know that, if∇ is a special connection, this system of

equations can be prolonged to give us the closed system (3.9) with µb ∈ Eb(−2)

and ρ ∈ E(−2). These tensors taken together form a section of the bundle

E(BC) = E(bc)(−2)⊕ Eb(−2)⊕ E(−2)

over U which we call the tractor bundle. Guided by equations (3.7) and (3.8)

we decree that, under a change of connection in the projective class, sections of

E(BC) change accordingly,

̂
σbc

µb

ρ

 =


σbc

µb + Υcσ
bc

ρ+ 2Υbµ
b + ΥbΥcσ

bc

 .

There is a natural connection on this bundle whose definition is projectively

invariant known as the tractor connection i.e, ∇a satisfies

∇̂a

̂
σbc

µb

ρ

 =

̂

∇a


σbc

µb

ρ

.
For us, the tractor connection is

∇a


σbc

µb

ρ

 =


∇aσbc − δbaµc − δcaµb

∇aµb − δbaρ+ Pacσ
bc

∇aρ+ 2Pabµ
b


where the tensor Yabc is the Cotton-York tensor. Alternatively, if we endow this

bundle with the connection

Da


σbc

µb

ρ

 =


∇aσbc − δbaµc − δcaµb

∇aµb − δbaρ+ Pacσ
bc − 1

nW
b

ac dσ
cd

∇aρ+ 2Pabµ
b − 4

nYabcσ
bc

 (3.17)

then covariantly constant sections of E(BC), with respect to this connection,

are in one-to-one correspondence with solutions of (3.5). This geometric picture

immediately allows us to say the following:
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Proposition 3.2. The maximum degree of mobility of a metric in dimension n

is (n+1)(n+2)
2 . Furthermore, if we compute the curvature of this connection, this

upper bound is achieved if and only if the projective structure is flat (i.e, the

projective Weyl tensor vanishes or, in the case n = 2, the Cotton-York tensor

vanishes) which implies that we have a metric of constant curvature.

The second part of this proposition was shown in [8] using the tractor tech-

nology and is exactly the class of projectively equivalent metrics considered by

Beltrami [9].

Surprisingly, Da is not the tractor connection but solutions of the above equa-

tion correspond to solutions of

∇a


σbc

µb

ρ

− 1

n


0

W b
ac dσ

cd

4Yabcσ
bc

 = 0. (3.18)

The tractor connection is useful in this context as it simplifies the computation

for the curvature of the connection Da. More generally, the correspondence

between the solutions of (3.5) and those of (3.18) may help us establish ob-

structions to metrisability in a more natural geometric way. A more complete

overview on the topic and the underlying structure was given in [17].

Generalising Frobenius Theorem

We have reduced the problem of determining whether a given projective struc-

ture is metrisable to an overdetermined system of first-order homogeneous linear

partial differential equations (3.5), the solutions of which correspond to parallel

sections of the connection (3.17). Frobenius’ Theorem gives us necessary and

sufficient criteria for such a system to admit a maximal set of solutions (e.g,

see [35]) or, in geometric terms, for the corresponding connection to admit the

maximum number of parallel sections. Our work builds on this idea, asking the

question

“How many parallel sections does a connection on a vector bundle have?”
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This degree of mobility gives us some insight into the structure of the metris-

ability problem and some interesting results are already known. For example,

in [36] the authors show that, in dimension 3, only metrics of constant curva-

ture have degree of mobility ≥ 3 (i.e, the degree of mobility of a metric in 3

dimensions is either 1,2 or 10). We will use this property to our advantage in

the next section.

3.3 Examples in Dimension Three

Here we consider some examples for n = 3 and demonstrate how this procedure

works. Throughout we will use (x, y, z) in place of (x, y1, y2). We will also

require that solutions be non-degenerate at a point.

Example 1

Consider the system of second order differential equations

d2y

dx2
= F (x, y, z) ,

d2z

dx2
= G(x, y, z). (3.19)

Note here that this system is of the form (2.8) with D2 = F , D3 = G and

Ajk = Bijk = Cik = 0 and so, by Proposition 2.1, it’s integral curves are the

unparametrised geodesics of some projective structure. We would like to find

necessary conditions on F and G such that the projective class contains a metric

connection. By considering the equations (3.11) we obtain a non-degenerate

solution only if:

Fz = 0 , Gy = 0 , Fy = Gz. (3.20)

Thus, F and G must be of the form

F (x, y, z) = yf(x) + p(x),

G(x, y, z) = zf(x) + q(x) (3.21)

for the system to be metrisable. Here f , p and q are arbitrary functions of x.

We must now determine if these conditions are sufficient for metrisability. To
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answer this, let us consider the case when the system (3.19) is equivalent to a

pair of trivial ODEs i.e, there is a local coordinate transformation

(x, y, z)→ (x̃(x, y, z), ỹ(x, y, z), z̃(x, y, z))

such that
d2ỹ

dx̃2
= 0 ,

d2z̃

dx̃2
= 0.

As seen in Chapter 2, if a given system describes the unparametrised geodesics

of some connection, then it will be equivalent to a trivial system if and only

if the Grossman invariants vanish (2.5). In the case of the system (3.19) these

invariants are Fz, Gy and Fy − Gz i.e, if F and G are of the form (3.21), the

given system is diffeomorphic to a trivial one. This is useful for us as the integral

curves of trivial ODEs correspond to the unparametrised geodesics of metrics

of constant curvature. Hence, we have established the following:

Proposition 3.3. The integral curves of the system of second order ODEs

(3.19) are the unparametrised geodesics of some metric if and only if (3.20)

holds, in which case the system is diffeomorphic to a trivial one and hence, the

metric has constant curvature.

Example 2

Now let us consider the following system in three dimensions:

d2y

dx2
= F (x, y, z)

(
dy

dx

)2

,
d2z

dx2
= G(x, y, z)

(
dz

dx

)2

. (3.22)

We note that this is also of the form (2.8). In this case, equations (3.11) yield

three conditions. Firstly, we must have

Fx = 0 , Gx = 0.

The third condition is that some linear combination of Fz and Gy vanishes. If

we impose σ is invertible in some open set, then this condition must be

Fz = Gy.

We can further break this solution into two categories:
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1. Fx = Gx = Fz = Gy = 0,

2. Fx = Gx = 0, Fz = Gy 6= 0 and σ12 = σ13 = σ22 = σ33 = 0.

For the first solution we have F = F (y) and G = G(z). In this case, it is possible

to make a coordinate transformation at the point

y → ỹ = ỹ(y, x) , z → z̃ = z̃(z, x)

such that in the new coordinate system the ODEs become

d2ỹ

dx2
= 0 ,

d2z̃

dx2
= 0.

We can again use the invariants (2.5) to confirm this.

The more interesting case is the second category of solutions. From these con-

ditions we can rewrite F and G as

F =
∂H(y, z)

∂y
, G =

∂H(y, z)

∂z

for some arbitrary H = H(y, z). The second order conditions (3.12) in the

prolongation procedure give us

µ2 =
1

4
Gσ23 , µ3 =

1

4
Gσ23

which leads to the differential equations

∂yσ
23 =

1

2
Fσ23 , ∂zσ

23 =
1

2
Gσ23.

Solving these differential equations yields

σ23 = p(x)e
1
2H(y,z)

for p some arbitrary function of x. The third order conditions (3.13) are then

automatically satisfied. We could now revert to the extra second order condi-

tions (3.14) to derive extra constraints but it’s simpler in this case to revert to

the original metrisability equation (3.5). From this, we obtain the simplified

partial differential equations (PDEs),

∂xσ
11 = 0 , p′(x) = 0 , ∂yσ

11 = −1

2

∂H

∂y
σ11 , ∂zσ

11 = −1

2

∂H

∂z
σ11
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so that

σ11 = αe−
1
2H(y,z) , σ23 = βe

1
2H(y,z)

for α and β constants. The solution for the metric whose Levi-Civita connection

is in this projective structure is

g = − 1

α2β2
dx2 − 2

α3β
e−H(y,z)dydz.

Since the projective structure does not see a rescaling of the metric we can

equivalently write down any constant muliple of the metric g i.e,

g = dx2 + ce−H(y,z)dydz (3.23)

for some constant c. Hence, if the integral curves of the system (3.22) are the

unparametrised geodesics of a metric then either the system is equivalent to a

trivial one or the metric is related to (3.23) by diffeomorphism and rescaling by

a constant.

Remark: We saw that, in this example, the algebraic conditions (3.11), (3.12)

and (3.13) were not sufficient for metrisability but that additional obstructions

would appear at higher orders by differentiation. In this case, reverting to the

original differential system was the simplest option but we shall look at another

example where equation (3.14) will be useful.

Example 3 - Nil and Sol

In these next examples we discuss two of the eight Thurston geometries in the

context of our problem. These geometric structures are central to the classi-

fication of compact 3-manifolds and, in some sense, describe fundamental ge-

ometries in three dimensions. We will see that these metrics are geodesically

rigid. Starting with a Thurston metric, in locally defined coordinates, we can

construct it’s unparametrised geodesics. Then, using our prolongation proce-

dure, we can determine whether or not there exists another metric which gives

rise to the same geodesics as unparametrised curves.
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Nil metric

Lets begin with the metric

g = dx2 + dy2 + (dz − xdy)2. (3.24)

We also recognise this as being the Kaluza-Klein metric in three dimensions.

The motivation behind Kaluza-Klein theory is to try and obtain solutions to

both Einstein’s equations and Maxwell’s equations on an n-dimensional man-

ifold N by considering geodesic motion on a n + 1-dimensional manifold U -

the fibre bundle over N with U(1) fibres. This approach makes sense, as we

think of electromagnetism as a gauge theory with gauge group U(1). Now, if

we formulate this in the correct way, we can think of a gauge transformation as

a coordinate transformation on the n+ 1-dimensional manifold. The metrics g,

G on manifolds U , N , respectively, can be related as follows

g = G+ (dz +A)2

where A is the electromagnetic potential 1-form and z parametrises the extra

spatial dimension. If we consider electromagnetism on a 2-dimensional manifold,

endowed with the flat metric, such that the curvature 2-form F = −dx ∧ dy,

then we could pick A = −xdy (so that F = dA) and the three-dimensional

Kaluza-Klein metric can be written as (3.24).

In this coordinate system, the unparametrised geodesic equations for the metric

become

d2y

dx2
= −x

(
dy

dx

)3

+

(
dz

dx

)(
dy

dx

)2

− x
(
dy

dx

)
+

(
dz

dx

)
d2z

dx2
=

(
dz

dx

)2

− x
(
dz

dx

)(
dy

dx

)2

+ (1− x2)

(
dy

dx

)
+ x

(
dz

dx

)
. (3.25)

Now let’s say that we are given this system of differential equations and would

like to determine if it is metrisable. Using our procedure, we can obtain the

most general form of a metric whose unparametrised geodesics are the integral

curves of (3.25). From the integrability conditions (3.11), (3.12) and (3.13) we

derive the following

σ12 = 0 , σ11 = σ22 , xσ11 = σ23 , σ13 = 0
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µ1 = µ2 = µ3 = 0 , (1 + x2)σ11 = σ33

and using the derivative relationship between µa and σab we may write the

matrix associated to σ

σ = q


1 0 0

0 1 x

0 x 1 + x2


where q is a constant. Then, the metric whose Levi-Civita connection lies in

the projective class is

g =
1

q4
(dx2 + dy2 + (dz − xdy)2).

We see that this is just a constant rescaling of the metric we started with, which

we already know to be projectively equivalent.

In his paper [10], Levi-Civita characterises the normal forms of all Riemannian

metrics on an open subset U ⊂M which are not geodesically rigid. Specifically,

if g and g̃ are non-propotional geodesically equivalent Riemannian metrics then

for all x ∈ U there exist some coordinates x1, . . . , xn in a neighbourhood of x

such that

g = π1dx
2
1 + π2dx

2
2 + . . .+ πndx

2
n

g̃ = ρ1π1dx
2
1 + ρ2π2dx

2
2 + . . .+ ρnπndx

2
n (3.26)

where the functions πa and ρa are given by

πa = (λa − λ1)(λa − λ2) . . . (λa − λi−1)(λa − λi+1) . . . (λa − λn)

ρa =
1

λ1λ2 . . . λn

1

λa

and, for each a, λa is a function of xa. A more general form of this result can

be found in [37].

From what we have shown above, the Kaluza-Klein metric is geodesically rigid,

i.e, there are no non-proportional geodesically equivalent metrics so it will not

fall into a Levi-Civita class that can be written in the form above. Even though

Levi-Civita’s characterisation of projectively equivalent metrics is useful, it is
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not known, in general, how to recognise such a metric invariantly.

Sol metric

Another example in the Thurston class worth considering is that of the Sol

geometry. This geometry can be modelled, locally, by the metric (see e.g, [38])

g = dx2 + exdy2 + e−xdz2. (3.27)

Physically, this geometry is useful for studying holography, as described in [39]

it:- “ results from the dimensional reduction of the decoupling limit of the D3-

brane in a background B field.”

As with the Kaluza-Klein metric, we may ask if this Riemannian metric is

geodesically rigid. If not, then it should fall into the Levi-Civita class described

by (3.26). Let us begin, as before, by constructing the unparametrised geodesics

of this metric. They are the integral curves of

d2y

dx2
= −e

x

2

(
dy

dx

)3

+
e−x

2

(
dy

dx

)(
dz

dx

)2

− dy

dx

d2z

dx2
=

e−x

2

(
dz

dx

)3

− ex

2

(
dz

dx

)(
dy

dx

)2

+
dz

dx
.

As before we try to determine all the conditions for which the integral curves

of this system arise as the unparametrised geodesics of some metric i.e, all the

conditions for the existence of a solution to (3.5). In this case, (3.11), (3.12)

and (3.13) yield

σ12 = 0 , σ13 = 0 , exσ22 = e−xσ33 , σ23 = 0

∂yσ
22 = ∂zσ

33 = 0 (3.28)

where, again, we use the definition for µa to produce (3.28). We can also derive

extra conditions by combining the differential equations in (3.5) with (3.28).

From this we get

∂xσ
11 = ∂yσ

11 = ∂zσ
11 = 0

∂xσ
22 = −σ22 , σ11 = exσ22.
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These conditions allow us to write the tensor σab in matrix form as

σab = α


1 0 0

0 e−x 0

0 0 ex


where α is a constant. This tells us that there is a metric connection in our

projective class which is the Levi-Civita connection of the metric gab determined

by equation (3.4). This can be written as

g =
1

α4
(dx2 + exdy2 + e−xdz2). (3.29)

This metric is just a constant rescaling of (3.27). Hence, the Sol metric is

geodesically rigid and does not belong to the Levi-Civita class (3.26).

Example 4 - Levi-Civita Normal Form

In the previous two examples we found that both metrics were geodesically rigid.

Bearing this in mind, it would be a good idea to confirm that these results are

not just some artefact of a restriction in our procedure. To check that the

prolongation procedure is a good measure of geodesic rigidity we should begin

with a metric in the Levi-Civita class and analyze it to see if there is another

metric which is geodesically equivalent using the same methods as before. So,

let us consider the first expression for g in (3.26) with

λ1 = x , λ2 = 1 , λ3 = −1.

In this case,

g = (x2 − 1)dx2 + (2− 2x)dy2 + (2 + 2x)dz2 (3.30)

and the geodesic equations read

d2y

dx2
=

1

1− x2

(
−
(
dy

dx

)3

+

(
dy

dx

)(
dz

dx

)2

+
dy

dx

)
d2z

dx2
=

1

1− x2

((
dz

dx

)3

−
(
dz

dx

)(
dy

dx

)2

− dz

dx

)
. (3.31)
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Then, starting with this system, the first order conditions in the prolongation

procedure yield

σ23 = 0 , σ12 = 0 , σ13 = 0 , σ11 + σ22 + σ33 = 0

∂yσ
22 = ∂zσ

33 = 0 , (1− x2)∂xσ
11 + σ22 + σ33 = 0.

There are some extra conditions gained from the higher order conditions. In-

stead, it is more convenient to look at (3.5). From this, we obtain the following

∂xσ
22 =

1

1− x2
σ22 , ∂xσ

33 = − 1

1− x2
σ33

∂yσ
11 = ∂zσ

11 = ∂zσ
22 = ∂yσ

33 = 0.

A solution σ to these equations is of the form

σab =


−α

(
1+x
1−x

) 1
2 − β

(
1−x
1+x

) 1
2

0 0

0 α
(

1+x
1−x

) 1
2

0

0 0 β
(

1−x
1+x

) 1
2


where α and β are constants. The general metric whose Levi-Civita connection

lies in the projective class of (3.30) can then be written as

g =
1

αβ

( 1− x2

α2(1 + x)2 + β2(1− x)2 + 2αβ(1− x2)
dx2

− 1− x
(α2 + αβ) + (α2 − αβ)x

dy2 − 1 + x

(αβ + β2) + (αβ − β2)x
dz2
)
.(3.32)

This metric reproduces the geodesics equations (3.31) for any choice of the

constants α and β. Furthermore, we can see that it is more general than just a

rescaling of the metric by some constant. If we choose α = β = 1√
2
, we obtain

the negative of the original metric (3.30). Even more interestingly, if we take

α = −β = 1√
2
, we reproduce the geodesically equivalent metric in the normal

form given by the second equation of (3.26), as expected. This lack of geodesic

rigidity can be quite a useful structure to have. More recently, a relationship

has been noted between manifolds admitting projectively equivalent metrics and

Liouville integrability of the corresponding geodesic flows. For example, in [40]
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the authors show that if metrics g and g̃ are projectively equivalent metrics on

some n-dimensional manifold U which are non-proportional, then it is possible

to construct n functionally independent pairwise commuting integrals of motion

for the geodesic flow (of either metric).

Example 5 - Berger Sphere

The Berger sphere is a one-parameter family of metrics on S3 obtained by taking

the standard metric and deforming along fibres of the Hopf fibration. We can

identify S3 with the Lie group SU(2) on which we can define a metric. So, let

ω1, ω2, ω3 be the canonical basis of 1-forms on SU(2) satisfying

dωa = εabcωb ∧ ωk,

where εabc is completely antisymmetric with ε123 = 1. Then, the family of

Berger metrics is defined as

g = a2(σ1)2 + (σ2)2 + (σ3)2 (3.33)

parametrised by a 6= 0. Taking a = 1 returns us to the standard left-invariant

metric on SU(2). We may use our analysis to check for which values (if any)

of a is this metric geodesically rigid. For a = 1 this is not true.2 To tackle this

problem, we can use Euler angles to parametrise the 1-forms in SU(2) as follows

σ1 =
1

2
(dψ + cos θdφ)

σ2 =
1

2
(cosψdθ + sinψ sin θdφ)

σ3 =
1

2
(sinψdθ − cosψ sin θdφ). (3.34)

With this parametrisation, the Berger metric may be written in local coordinates

g =
1

4
(dθ2 + a2dψ2 + (a2 cos2 θ + sin2 θ)dφ2 + 2a2 cos θdψdφ)

2This result goes back to Beltrami [9] who was the first to observe that two non-proportional

metrics can have the same geodesics. In particular, all surfaces of constant curvature are

geodesically equivalent.
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or, relabelling coordinates as (x, y, z) and rescaling,

g = dx2 + a2dy2 + (a2 cos2 x+ sin2 x)dz2 + 2a2 cosxdydz.

The geodesic equations of this metric are

d2y

dx2
= a2 sinx

(
dy

dx

)2(
dz

dx

)
+ (a2 − 1) cosx sinx

(
dy

dx

)(
dz

dx

)2

−a2 cotx

(
dy

dx

)
+ (sinx− (a2 − 2) cosx cotx)

(
dz

dx

)
d2z

dx2
= a2 sinx

(
dy

dx

)(
dz

dx

)2

+ (a2 − 1) cosx sinx

(
dz

dx

)3

+a2 cscx

(
dy

dx

)
+ (a2 − 2) cotx

(
dz

dx

)
.

Beginning with this system and using the prolongation procedure we obtain the

following whenever a 6= 1,

σ13 = σ12 = 0 , σ11 − sin2 xσ33 = 0

cosxσ11 + sin2 xσ23 = 0 , ∂yσ
23 + ∂zσ

33 = 0 (3.35)

plus some other more complicated conditions. Combining these with the equa-

tions (3.5) yields the following form for σ,

σab = α(sinx)−
3
2


sin2 x 0 0

0 cos2 x+ 1
a2 sin2 x − cosx

0 − cosx 1


for α a constant. Then the metric becomes

g =
a2

α4
(dx2 + a2dy2 + (a2 cos2 x+ sin2 x)dz2 + 2a2 cosxdydz).

Of course, if a = 1 then the conditions in (3.35) don’t appear (as there is a

factor of (a2− 1) multiplying each vanishing condition which we have neglected

above). Hence, the metric is always geodesically rigid in the case a 6= 1.

Example 6 - Higher Order Obstructions

We will now construct an explicit example to illustrate how equation (3.14)

produces obstructions to metrisability beyond (3.11), (3.12) and (3.13) thus
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justifying the expansion of our system of necessary conditions.

Consider the system of ODEs

d2y

dx2
= αex + β

(
dy

dx

)
+ χ

(
dz

dx

)
+ ∆e−x

(
dy

dx

)2

+ φe−x
(
dy

dx

)(
dz

dx

)
+ γe−x

(
dz

dx

)2

+ ηe−2x

(
dy

dx

)3

+ ξe−2x

(
dy

dx

)2(
dz

dx

)
+ ϕe−2x

(
dy

dx

)(
dz

dx

)2

d2z

dx2
= κex + λ

(
dy

dx

)
+ µ

(
dz

dx

)
+ νe−x

(
dy

dx

)2

+ ωe−x
(
dy

dx

)(
dz

dx

)
+ θe−x

(
dz

dx

)2

+ ηe−2x

(
dy

dx

)2(
dz

dx

)
+ ξe−2x

(
dy

dx

)(
dz

dx

)2

+ ϕe−2x

(
dz

dx

)3

(3.36)

where all the unknown coefficients here are constant. We notice that this system

is of type (2.8) and, thus, its integral curves are the unparametrised geodesics

of some projective structure. There is a one-parameter group of point symme-

tries of the system of ODEs which we call projective symmetries (symmetries

which map unparametrised geodesics to unparametrised geodesics) given by the

transformation

x→ x+ α , y → yeα , z → zeα.

Thus, we have a flow on TU generated by the vector field

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
. (3.37)

This is termed a projective vector field since its flow preserves the geodesic

structure of U . We also have two more projective vector fields, namely ∂
∂y and

∂
∂z . Together they form a Lie algebra of Bianchi V type. To check that there are

no more such vector fields, it suffices (in this case) to consider the Lie derivative

of the Weyl tensor along a generic vector field and impose that it vanishes. This

must be so since the Weyl tensor is invariant under projective transformations.

In any case, this appears to be an appropriate system for which the conditions

derived at prolongation take a simple form. For general values of the coefficients
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the obstructions at each order are quite long and messy to write down. So let

us look at a special case of this system, namely

d2y

dx2
= αex + χ

(
dz

dx

)
− 4e−x

(
dy

dx

)(
dz

dx

)
+ e−x

(
dz

dx

)2

+ e−2x

(
dy

dx

)2(
dz

dx

)
d2z

dx2
= αex −

(
dy

dx

)
+ e−x

(
dy

dx

)2

− 4e−x
(
dy

dx

)(
dz

dx

)
+ e−2x

(
dy

dx

)(
dz

dx

)2

. (3.38)

For convenience we will say α 6= 0 or 8 (see later). If we want a non-singular

solution for the metric we quickly find that χ = −1 is required by the set

first order integrability conditions (3.11). To see this, we can compute the

determinant ∣∣Ξcd23ef

∣∣ =
2

243
e−12x(1 + χ)2

which is an obstruction to metrisability. Furthermore, assuming that χ = −1,

these conditions put the following restrictions on the tensor σab:

σ22 = σ33 = 2exσ12 = 2exσ13, σ23 = 4exσ12 − 1

2
e2xασ11 (3.39)

where we have implemented the assumption that α 6= 0. We see here that the

metric tensor σ is determined by two functions of (x, y, z) and that, under the

above assumptions, it is generally non-singular and the conditions (3.11) are sat-

isfied. Continuing this procedure we can compute the second order integrability

conditions in (3.12) to find

µ3 = µ2

µ2 =
1

4
exαµ1 − 21

48
exασ11 − 1

12
(α− 22)σ12

µ1 =
(α− 4)(α− 12)

3α(α− 8)
e−xσ12 +

5α+ 4

12(α− 8)
(3.40)

where we have taken α 6= 8. Assuming the solution set given by (3.39) and

(3.40), the conditions in (3.13) give

(α− 1)σ11 = 0
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Let us first consider the solution α = 1. Then, the general solution to our nec-

essary conditions depends on two arbitrary functions of x, y and z (see (3.39)).

The equations (3.14) then give the extra conditions that are only satisfied by

setting

σ12 = σ11 = 0.

On the other hand, let us assume that α is still arbitrary and that σ11 = 0. In

this case, we may still have a non-degenerate solution for the matrix σ which

now depends on a single arbitrary function of x, y and z. Here, equations (3.14)

yield σ12 = 0 i.e, a degenerate solution as before. Thus, the integral curves of

(3.38) are not the geodesics of some metric for the values of α specified and

this has been completely verified from the derived set of necessary algebraic

conditions.

Example 7 - Egorov Example

As a final example of this procedure, let us consider the following path geometry

y′′ = 2y(y′)2(z′) , z′′ = 2y(y′)(z′)2.

This system has vanishing Fels invariants and so, integral curves of this system

coincide with the unparametrised geodesics of some symmetric affine connec-

tion. Furthermore, as shown by Egorov [41], this system occupies an important

place in the projective branch of the theory as it admits the submaximal num-

ber of point symmetries, i.e, amongst all systems in this branch which are not

diffeomorphic to the trivial one, it admits the highest number of symmetries.

The symmetry algebra here is an 8-dimensional subalgebra of sl(4,R) spanned

by the vector fields

∂x , ∂z , y∂x , z∂x , 2x∂x + y∂y , x∂x + z∂z , yz∂x − ∂y , y3∂x − 3y∂z

Hence, there is a significant gap between the maximal and submaximal cases.

The theory of such “gaps” in the context of Cartan geometries has been studied

extensively, most recently in [42] and [43]. We will discuss the theory some
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more when we consider path geometries in the conformal branch and make a

comparison between the results.

For now, we may ask the question:

Does there exist a metric who unparametrised geodesics coincide with the in-

tegral curves of this path geometry?

From our theory, the first order conditions (3.11) for the corresponding pro-

jective structure are satisfied if and only if

σ12 = σ22 = σ23 = 0

which implies that the metric is degenerate. Hence, this system is not metris-

able.

3.3.1 Generating Sufficient Conditions

In this chapter, we have derived a set of necessary algebraic conditions for

a given path geometry to be metrisable using the curvature of the connection

(3.17). Furthermore, we have shown how to generate conditions at higher orders

by differentiation and, by means of an example, that the equations (3.14) are

indeed new to the system. In theory, we may produce obstructions in this way

ad infinitum but it is not clear, from the above work, at what point all sufficient

conditions will be generated. Solving this problem completely would involve an

aid from the theory of differential systems. For example, one thing that we do

know is that if we differentiate and no new obstructions are generated (as above)

then we may halt the procedure. The general case could then be considered in

light of developments on the theory of geodesic mobility. However, this topic is

subject to further reseacrh.
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3.4 Projective Equivalence and Conformal flat-

ness

In 1868, Beltrami [9] proved that, in a given number of dimensions, all metrics of

constant curvature are projectively equivalent. Moreover, given two projectively

equivalent metrics g and g̃, if g has constant curvature, then so does g̃. Upon

seeing this idea, one might speculate on other properties of a metric which are

invariant within a given projective class. The first question one may consider is

the following:

Given two projectively equivalent metrics g and g̃ such that g is conformally

flat, under what conditions is g̃ also conformally flat?

Given a metric g with Christoffel symbols Γabc, the corresponding connection

components for the conformally equivalent ḡ = e2Υg are

Γ̄abc = Γabc + δabΥc + δacΥb − gadgbcΥd

which is similar to (2.7) but with an extra term added so it immediately ap-

pears as though conformal flatness shouldn’t be an invariant within a projective

structure. On the other hand if a given conformally flat metric g is geodesically

rigid then all projectively equivalent metrics are just constant multiples of g

and therefore must be conformally flat. Furthermore, if g is projectively flat

(has vanishing projective Weyl tensor) then it is of constant curvature and so

conformally flat and any projectively equivalent metric has constant curvature

and also conformally flat. Hence, in the two extreme cases of geodesic mobility

at least, the evidence is that conformal flatness is a projectively invariant prop-

erty.

However, some recent work has been undertaken in [13] which shows that, in

four dimensions, the above assertion is not generally true but can be made

when the metric is not of general holonomy type. To my knowledge, no simi-

lar result has been postulated in three dimensions. To tackle this problem, we
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will use a different approach to [13] and consider the solution to a problem,

originally proposed by Beltrami, to determine local normal forms of any pair

of projectively equivalent metrics. In this area, there has been significant de-

velopment, especially recently. As we have seen, Levi-Civita gave a complete

characterisation of pairs of projectively equivalent Riemannian metrics [10]. In

the pseudo-Riemannian case, the problem was solved in three dimensions by

Petrov [44] and, in arbitrary dimensions, it was solved by Matveev and Bolsi-

nov, see [11] and [12]. Here, we will use this general theory to our advantage

and get to the heart of the problem, which are metrics g with degree of mo-

bility two (since, in three dimensions, the degree of mobility of a metric may

only be 1,2 or 10). We begin with a pair of projectively equivalent metrics g

and g̃ which are projectively related but non-proportional. Then, these metrics

may be represented in local coordinates in one of the normal forms given by

either Levi-Civita or Matveev and Bolsinov. Then, we impose the condition of

conformal flatness on g and determine necessary conditions for which g̃ is also

conformally flat.

Locally, in three dimensions, the condition for conformal flatness coincides with

the vanishing of the Cotton tensor

Cabc = ∇cRab −∇bRac +
1

4
(∇bRgac −∇cRgab)

where Rab is the Ricci tensor and R the Ricci scalar.

3.4.1 Riemannian Case

Let us assume that the degree of mobility of g is greater than 1 so that there

exists a non-proportional equivalent metric g̃ in its projective class. As we have

seen, for any pair of such metrics g and g̃, there exists a coordinate system
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(x, y, z) so that these metrics may be written as

g = (λ(x)− µ(y))(λ(x)− ν(z))dx2 + (µ(y)− λ(x))(µ(y)− ν(z))dy2

+ (ν(z)− λ(x))(ν(z)− µ(y))dz2

g̃ =
(λ(x)− µ(y))(λ(x)− ν(z))

λ(x)2µ(y)ν(z)
dx2 +

(µ(y)− λ(x))(µ(y)− ν(z))

λ(x)µ(y)2ν(z)
dy2

+
(ν(z)− λ(x))(ν(z)− µ(y))

λ(x)µ(y)ν(z)2
dz2

for some functions λ, µ, ν. Now the problem reduces to finding all metrics g for

which the Cotton tensors of g and g̃ both vanish completely, i.e, Cabc = C̃abc = 0.

To make this easier to tackle, we may break it into three cases:

1. None of the functions λ, µ or ν is constant.

2. Exactly one of the functions λ, µ or ν is constant.

3. Exactly two of the functions λ, µ, ν are constants not equal to each other.

Obviously, if they are all constant, then the metric g is of constant curvature

and has maximum degree of mobility.

Case 1

First consider the case where none of the functions λ(x), µ(y) or ν(z) is a con-

stant on U . Here, the Cotton tensor Cabc of the metric g has three independent

components, e.g, C112, C113 and C212 and if we require g to be conformally flat,

then there are three necessary conditions to be satisfied. It transpires that one

of these conditions (without loss of generality we choose C212) can be deduced

by taking a linear combination of one of the other conditions and its first deriva-

tive with respect to x. This means that for g to be conformally flat, there are

really only two conditions we need to satisfy

C112 = 0 , C113 = 0. (3.41)

The coefficient of λ′′(x) in C112 is non-vanishing by our starting assumption so

we may treat λ′′(x) as an independent variable and solve the first equation in
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(3.41) for it. Then, if we substitute this into the second equation of (3.41) we

obtain a condition which is purely first order in λ. Note here that this procedure

is undertaken in a very specific way as the Cotton tensor can contain third order

terms. However, in this example, only C212 has a third derivative of λ and this

is the one we have eliminated.

The resulting first order equation can be rewritten as

λ′(x)2 =

5∑
m=0

am(y, z)λ(x)m

where the functions am can be written in terms of µ, ν and their derivatives.

Since λ is non-constant on U , each of the coefficients am must be constant for

the right hand side to be a function of x only, i.e, we must have

λ′(x)2 = A5λ(x)5 +A4λ(x)4 +A3λ(x)3 +A2λ(x)2 +A1λ(x) +A0

for some constants Am. This conclusion leads to a system of six differential

equations in y and z,

am(y, z) = Am , m = 0, . . . , 5.

Each of these equations is third order in y and z and the coefficient of µ′′′(y) or

ν′′′(z) is necessarily non-vanishing in each so we can, for example, solve one of

these conditions for µ′′′(y) and use it to eliminate this term in the others leading

to five conditions of second order in µ. Similarly, we can repeat this process to

eliminate µ′′(y) and produce four conditions, first order in µ. Each of these new

equations is of the form

µ′(y)2 =

5∑
m=0

bk,m(z)µ(y)m

for k = 1, . . . , 4, where each bk,m(z) can be written in terms of ν(z) and its

derivatives and, using the same argument as before, we obtain a set of 24 equa-

tions

bk,m(z) = Bm = constant.
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Again, with the same reasoning, we can eliminate the derivatives ν′′′(z) and

ν′′(z) to obtain 22 equations of the form

(ν′(z))2 = ck,5ν(z)5 + ck,4ν(z)4 + ck,3ν(z)3 + ck,2ν(z)2 + ck,1ν(z) + ck,0.

For each k, we then require

ck,m = Cm = constant.

Solving these equations, we find that the metric g is conformally flat if and only

if λ, µ and ν satisfy differential equations of the form

(λ′(x))2 =

5∑
m=0

Amλ(x)m , (µ′(y))2 =

5∑
m=0

Amµ(y)m , (ν′(z))2 =

5∑
m=0

Amν(z)m

where A0, . . . , A5 are arbitrary constants.

Now let us compute the Cotton tensor C̃abc for the projectively equivalent metric

g̃ and impose that the constraints above hold for λ, µ and ν. In this instance,

we find that C̃abc vanishes completely only in the case A5 = 0, that is g and g̃

are both conformally flat if and only if

(λ′(x))2 =

4∑
m=0

Amλ(x)m , (µ′(y))2 =

4∑
m=0

Amµ(y)m , (ν′(z))2 =

4∑
m=0

Amν(z)m.

If we now calculate the projective Weyl tensor for the metric g under these

conditions and we find that it vanishes completely. Hence both g and g̃ are

conformally flat if and only if g is projectively flat i.e, of constant curvature (so

there are no examples here of degree of mobility two).

Cases 2 and 3

In the case, that at least one of the functions λ, µ or ν is a constant, the

procedure runs in a similar fashion so we will not detail it here. In both cases,

the overall result is the same as before. That is, we have the following theorem

Theorem 3.4. Let g and g̃ be two projectively equivalent Riemannian metrics

which are non-proportional. If g is conformally flat, then g̃ is also conformally

flat if and only if g has constant curvature.
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3.4.2 Pseudo-Riemannian Case

To investigate the pseudo-Riemannian version of this problem in the same way,

we need a local classification of such metrics in dimension three, similar to that

provided by Levi-Civita. This problem had been solved by Petrov [44] but for

our purposes, we will refer to some recent literature on how to construct the

local normal forms of these metrics by “gluing” constructions, see especially

[11] for more detail. The construction in general dimension was undertaken in

[12] this year. The idea here is that when given a pair of geodesically equivalent

metrics (h1, h̃1) of dimension n1 and another pair (h2, h̃2) of dimension n2, there

exists a geodesically equivalent pair of metrics (g, g̃) of dimension n1 +n2 which

is obtained by gluing together the lower-dimensional pairs in a certain way.

More importantly, any pair of geodesically equivalent metrics can, in general,

be “split” into component parts i.e, represented as a composition of metrics of

lower dimension under this gluing operation. Those metrics which cannot be

split into simpler parts are called “building blocks”.

For example, in dimension 1, there is only one building block

h = dx2 , h̃ = X(x)dx2

where X(x) is some arbitrary function. We can create a pair of two-dimensional

geodesically equivalent metrics g and g̃ by gluing together two 1-d building

blocks. In particular, we put

h1 = dx2 , h̃1 =
1

X(x)2
dx2 , h2 = dy2 , h̃2 =

1

Y (y)2
dy2

and, combining these under the rules of the gluing construction, we have the

pair of two-dimensional metrics

g = (X(x)− Y (y))dx2 + (Y (y)−X(x))dy2

g̃ =
X(x)− Y (y)

X(x)2Y (y)
dx2 +

Y (y)−X(x)

X(x)Y (y)2

which is the pair suggested by Dini [45]. We can generalise this construction to

obtain Levi-Civita’s normal form for a pair of projectively equivalent Rieman-

nian metrics in n dimensions.
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Higher Dimensional Building Blocks

In dimension 2, building blocks can be expressed in one of three normal forms.

Apart from the trivial case, g̃ = cg for constant c we also have the following:

Complex-Liouville Case

g = I(Φ)dxdy,

g̃ = −
(

I(Φ)

I(Φ)2 +R(Φ)2

)2

dx2+2
I(Φ)R(Φ)

(I(Φ)2 +R(Φ)2)
2 dxdy+

(
I(Φ)

I(Φ)2 +R(Φ)2

)2

dy2

where Φ is an arbitrary holomorphic function of the complex variable ζ = x+iy.

Jordan-block case

g = (1 + xY ′(y))dxdy

g̃ =
1 + xY ′(y)

Y (y)4

(
−2Y (y)dxdy + (1 + xY ′(y))dy2

)
where Y is an arbitrary function.

In 3 dimensions, building blocks may also take one of three normal forms. As

well as the trivial case, there is an example due to Petrov [44], which generalises

the Jordan block case:

Petrov case

g = (4yλ′(z) + 2) dxdz + dy2 + 2xλ′(z)dydz + x2(λ′(z))2dz2,

g̃ =
1

λ(z)6

[ (
4yλ(z)2λ′(z) + 2λ(z)2

)
dxdz + λ(z)2dy2

−
(
4yλzλ′(z) + 2λ(z)− 2xλ(z)2λ′(z)

)
dydz

+
(
4y2(λ′(z))2 + 4yλ′(z)− 4xyλ(z)(λ′(z))2

)
dz2

+
(
1 + x2λ(z)2(λ′(z))2 − 2xλ(z)λ′(z)

)
dz2
]

(3.42)

where the function λ is arbitrary.

The other normal form in three dimensions for such a projectively equivalent

metric pair was essentially described by Eisenhart [46]
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Eisenhart Case

g = 2dzdx+ h(y, z)11dy
2 + 2h(y, z)12dydz + h(y, z)22dz

2 (3.43)

g̃ = 2αdzdx+ αh(y, z)11dy
2 + 2αh(y, z)12dydz + (β + αh(y, z)22) dz2

where α and β are constants and h is an arbitrary two-dimensional metric.

Therefore, there are essentially (up to some sign changes) just seven different

normal forms for pseudo-Riemannian metrics in three dimensions:

• We may glue together three one-dimensional building blocks (=1),

• we may glue a one-dimensional building block to a two-dimensional one

(=3),

• we may consider a three-dimensional building block (=3).

With respect to the current problem of the projective invariance of conformal

flatness, the first case has been dealt with. Furthermore, we already know the

answer for the generic (with degree of mobility = 1) and trivial three-dimensional

building block and so there is no need to discuss it. This leaves us with five

cases (three of which are of the 1+2 form and two which are 3-d building blocks)

to consider and we will do this in separate parts. We will summarize here just

the main results.

Metrics in the 1+2 Category

We’ll refer to the different sections by the two-dimensional part.

Trivial Normal Form

By using the gluing construction we find that, in local coordinates, these metrics

take the form

g =
(
c−

1
3 − Z(z)

)
h+

(
c−

1
3 − Z(z)

)2

dz2

g̃ = − c

Z(z)

(
c−

1
3 − Z(z)

)
h+

c
2
3

Z(z)2

(
c−

1
3 − Z(z)

)2

dz2
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where c, Z(z) and h are an arbitrary constant, function and a two-dimensional

metric (with coordinates (x, y)), respectively.

In this case, we find that g is conformally flat if and only if h has constant

curvature. This result can be shown by using isothermal coordinates to write

h = ew(x,y)(dx2 + dy2)

where w(x, y) is some arbitrary function. Then, the Cotton tensor vanishes

identically if and only if(
∂2w

∂x2
+
∂2w

∂y2

)
e−w(x,y) = constant

which is precisely the scalar curvature of h. In this instance, the Cotton tensor

for g̃ also vanishes.

Interestingly, the projective Weyl tensor vanishes if and only if we additionally

have

Z ′′(z) =
Rh(1− c 1

3Z(z))3 + 2cZ ′(z)2

c(Z(z)− c− 1
3 )

where Rh is the curvature of h. Hence, in this case, we have many examples

of metrics g of degree of mobility 2 for which g and all metrics projectively

equivalent to g are conformally flat. On such example is

g = (1− z) (dx2 + dy2) + (1− z)2
dz2,

g̃ = −1

z
(1− z) (dx2 + dy2) +

1

z2
(1− z)2

dz2.

Complex-Liouville case

In local coordinates, these metrics take the form

g =
I(Φ)2

24/3
(dx2 − dy2) +

(
2−1/3I(Φ)R(Φ)− I(Φ)Z(z)

)
dxdy

+
(
Z(z)2 − 22/3R(Φ)Z(z) + 2−2/3

(
R(Φ)2 + I(Φ)2

))
dz2

g̃ = − I(Φ)2

(R(Φ)2 + I(Φ)2)2
(dx2 − dy2) +

(
2R(Φ)I(Φ)

(R(Φ)2 + I(Φ)2)2
− 22/3I(Φ)

Z(z)(R(Φ)2 + I(Φ)2)

)
dxdy

− 22/3

Z(z)2(R(Φ)2 + I(Φ)2)

(
Z(z)2 − 22/3R(Φ)Z(z) + 2−2/3(R(Φ)2 + I(Φ)2)

)
. (3.44)
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As in the Riemannian case, there are several branches to consider here depending

on the form of Φ and Z. In the generic case, for example, (where Z is not

constant and Φ(ξ) = u(x, y) + iv(x, y) does not have the property that u and v

are harmonic) g is conformally flat if and only if Φ and Z satisfy the differential

equations

(Z ′(z))
2

=

5∑
m=0

AmZ(z)m , (Φ′(ζ))
2

= υ + i

5∑
m=0

2−m/3

8
AmΦ(ζ)m

for some constants Am, υ. In this case, g̃ is also conformally flat if and only if

A5 = 0 but then g and g̃ are projectively flat. In the general case, this result

also holds true but the computations are quite complicated to quote here. That

is, we have the following

Proposition 3.5. The projectively equivalent metrics g and g̃ in the Complex-

Liouville class (3.44) are both conformally flat if and only if they are both pro-

jectively flat and hence, of constant curvature.

Jordan Block Case

In local coordinates, the metrics here take the form

g = −
(

2−
1
3Y (y) + Z(z)

)
(1 + xY ′(y)) dxdy − 2−

4
3 (1 + xY ′(y))

2
dy2

+
(
Z(z) + 2−

1
3Y (y)

)2

dz2,

g̃ = −
2
(

2−
1
3Y (y) + Z(z)

)
(1 + xY ′(y))

Y (y)3Z(z)
dxdy +

(1 + xY ′(y))
2

Y (y)4
dy2

− 2
2
3

Y (y)2

(
1 +

2−
1
3Y (y)

Z(z)

)2

dz2

for some arbitrary functions Y (y) and Z(z). By undertaking a similar procedure

to that in the Riemannian case, we find that g is conformally flat if and only if

one of the following holds:

Y (y) = χy + ψ , Z(z) = ζ
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where χ, ψ and ζ are constants or

Y (y) = ψ , Z ′′′(z) = −
2

5
3

(
5Z ′(z)32

5
3ψZ ′(z)Z ′′(z)− 4Z(z)Z ′(z)Z ′′(z)

)
(
ψ + 2

1
3Z(z)

)2

where ψ is constant.

In the first case, g is projectively flat and so, all projectively equivalent metrics

are projectively flat and hence, conformally flat. In the second case, g̃ is also

conformally flat if and only if Z(z) satisfies

Z ′′(z) =
2Z ′(z)2P1(Z(z))

P2(Z(z))

where

P1(Z(z)) = 2
2
3ψ6 + 12ψ5Z(z) + 30.2

1
3ψ4Z(z)2 + 40.2

2
3ψ3Z(z)3

+ 60ψ2Z(z)4 + 24.2
1
3ψZ(z)5 + 4.2

2
3Z(z)6,

P2(Z(z)) = 2
1
3ψ7 + 7.2

2
3ψ6Z(z) + 42ψ5Z(z)2 + 70.2

1
3ψ4Z(z)3

+ 70.2
2
3ψ3Z(z)4 + 84ψ2Z(z)5 + 282

1
3ψZ(z)6 + 4.2

2
3Z(z)7.

Under this condition, the projective Weyl tensor vanishes and g and g̃ are both

of constant curvature.

Three-Dimensional Building Blocks

Petrov Case

In this case, the metric g is conformally flat if and only if the function λ(z) in

(3.42) is constant and we have

g = dy2 + 2dxdz

which is projectively flat (constant curvature).

Eisenhart Case

In the Eisenhart case, the metrics g and g̃ (3.43) are affinely equivalent so

conformal flatness of one implies conformal flatness of the other. The Cotton
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tensor for g has just one non-vanishing component (in the coordinates given that

is C323) which is a third order PDE in the components of the two-dimensional

metric h. This may be written as

2h2
11,zh11,y + 2h2

11,yh22,y − 4h2
11,yh12,z − 2h2

11 (h11,yzz − 2h12,yyz + h22,yyy)

= h11 (2h11,zh11,yz + 2h11,yh11,zz − 2h12,zh11,yy + h22,yh11,yy − 6h12,yzh11,y + 3h22,yyh11,y)

where the y and z subscripts correspond to derivatives. On the other hand, we

find that projective flatness of g is determined by a single condition of second

order, namely

2h11 (h22,yy + h11,zz − 2h12,yz) = h2
11,z + h11,yh22,y − 2h11,yh12,z.

Hence, in this class of examples there exist pairs of projectively equivalent met-

rics g and g̃ both of which are conformally flat but neither of which are projec-

tively flat. In fact, if we let

K(y, z) = 2h11 (h22,yy + h11,zz − 2h12,yz)− h2
11,z − h11,yh22,y + 2h11,yh12,z

then the two equations above are, respectively, equivalent to

∂K

∂y
= 3

h11,y

h11
K , K = 0.

Hence, we wish to find metrics for which

K(y, z) = κ(z)h3
11

for some arbitrary function κ(z) 6= 0. An example of a metric h which satisfies

this condition is

h11 = ezρ(y) , h12 = h22 = 0

for ρ(y) is an arbitrary function. The corresponding projectively equivalent

metrics are

g = 2dzdx+ ezρ(y)dy2

g̃ = 2αdzdx+ αezρ(y)dy2 + βdz2
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3.4.3 Main Result

Given the above analysis, we have the following result for the pseudo-Riemannian

case

Theorem 3.6. Let g and g̃ be two projectively equivalent three-dimensional

Riemannian or pseudo-Riemannian metrics which are non-proportional. If g is

conformally flat, then g̃ is also conformally flat if and only if g has constant

curvature or can be written in local coordinates in one of the following forms:

1.

g =
(
c−

1
3 − Z(z)

)
h+

(
c−

1
3 − Z(z)

)2

dz2

where c and Z(z) are an arbitrary constant and function, respectively, and

h is a two-dimensional metric of constant curvature.

2.

g = 2dzdx+ h11(y, z)dy2 + 2h12(y, z)dydz + h22(y, z)dz2

where the functions hab satisfy the condition

2h11 (h22,yy + h11,zz − 2h12,yz)−h2
11,z−h11,yh22,y +2h11,yh12,z = κ(z)h3

11

for some function κ(z).

3.5 Non-Metrisable Extremal Curves

In his paper [47], Douglas tackles the problem of determining whether a system

of paths defined by (2.3) can be identified with the totality of extremals of some

variational problem ∫
φ

(
x, yj ,

dyj

dx

)
dx = min.

He completely solves this problem in the three-dimensional case. Central to

his solution is a 3 × 3 matrix of functions whose entries are determined by the

F i and their partial derivatives. Different systems fall into different categories

determined by the rank of this matrix and subsequently various subcategories
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determined by relations the entries themselves must satisfy. An interesting ques-

tion to ask is:

Question Does there exist a system of differential equations of the form (2.3) in

some open set U ⊂ R3 such that its integral curves are the extremals of some

variational problem but are not the unparametrised geodesics of some metric?

Unsurprisingly, the answer is “Yes”. This is too be expected as not all so-

lutions dynamical problems involving energy minimisation may be reformulated

to a geodesic structure. We have all the information we need to show this and

we do so by means of an example.

Proof. Consider the system of differential equations

d2y

dx2
= F (x, y)

(
dy

dx

)2

,
d2z

dx2
= G(x, z)

(
dz

dx

)2

. (3.45)

We notice that this is just a special case of (3.22). In Douglas’s classification this

system is of type IIa1 and, in [47], he demonstrates that the integral curves of a

differential system which is more general than (3.45) are the extremal curves of

some variational problem. He sets up a system of partial differential equations

which controls this question and, in our case, we can solve to get

φ = A

(
dy

dx

)2

exp

(
−2

∫ y

0

F (x, ỹ)dỹ

)
+B

(
dz

dx

)2

exp

(
−2

∫ z

0

G(x, z̃)dz̃

)
where A and B are constants. However, these curves will not be the geodesics

of some metric if Fx 6= 0 or Gx 6= 0 as was shown in Example 2.
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Chapter 4

Torsion-free Path

Geometries

As discussed previously, for a given path geometry

d2yi

dx2
= F i

(
x, yj ,

dyj

dx

)
= F i(x, yj , pj) , i, j = 1, . . . , n

there is an associated tensor

T ij = −∂F
i

∂yj
− 1

4

∂F i

∂pk
∂F k

∂pj
+

1

2

d

dx

∂F i

∂pj
.

We gave the result that if the Grossman invariants

τ ij = T ij −
1

2
δijT

k
k (4.1)

vanish for a three-dimensional path geometry, then this is precisely the condition

for the four-dimensional space of solutions M to be endowed with a conformal

structure. As we also observed, these invariants form part of the conditions for

a given path geometry to be locally diffeomorphic to a trivial system (straight

lines). Where systems with vanishing Fels invariants are deemed to be in the

projective branch of the set of path geometries, we termed those with vanishing

Grossman invariants as being in the conformal branch. We also refer to such

systems as being torsion-free.

71
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In this chapter, we focus our attention on the conformal branch and, in partic-

ular, the double fibration picture (2.2). Here, the solution space M admits a

Segré structure such that the n−1-dimensional submanifolds in M correspond-

ing to points in U are α-surfaces. Of particular interest is the case n = 3,where

the Segré structure is a conformal structure and α-surfaces are totally isotropic

null two-dimensional surfaces. Systems of ODEs which lie both in the projective

and conformal branches are diffeomorphic to the trivial system which has Lie

point symmetry algebra sl(4,R). The corresponding Lie group PSL(4,R) acts

projectively on U ⊂ RP3 preserving the unparametrised geodesics of the flat

projective connection. An important group isomorphism underlying the double

fibration picture is

PSL(4,R) ∼ SO(3, 3)

where SO(3, 3) is the flat conformal structure on the solution space M . An

interesting result which exploits this isomorphism, which we shall examine in

this chapter, is that if the curvature of the conformal structure does not vanish,

then the conformal symmetry group is a proper subgroup of SO(3, 3) and con-

formal Killing vectors on M give rise to point symmetries of the corresponding

path geometry on U . This is a result that we will exploit to construct confor-

mal structures with a high number of symmetries using knowledge of the point

symmetries of path geometries and vice versa.

4.1 Twistor Correspondence

The correspondence between three-dimensional path geometries on U and con-

formal structures on the space of solutions M is reminiscent of the classical

twistor picture of Penrose [19]. In fact, we can make contact with this picture

if we assume that the conformal structure (M, [g]) is real analytic and continue

it to the complexified version. The motivation behind this mechanism is to re-

late natural structures in algebraic geometry with special systems of differential

equations in mathematical physics. To begin with, for a given four-dimensional
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conformal structure (M, [g]) of signature (2, 2) there is a canonical bundle iso-

morphism

TM ∼= S⊗ S′ (4.2)

where S and S′ are rank two vector bundles (called spin-bundles) over M with

parallel symplectic structures ε, ε′. Under this isomorphism, the metric decom-

poses as follows

g(v1 ⊗ w1, v2 ⊗ w2) = ε(v1, v2)ε′(w1, w2)

where v1, v2 ∈ Γ(S) and w1, w2 ∈ Γ(S′). Then, null vectors of the conformal

structure are those of the form V = κ ⊗ π and α-planes are those spanned by

null vectors with π fixed and, as in the generalised Segré case, α-surfaces are

defined as those two-dimensional surfaces with the tangent at each point being

an α-plane.

Furthermore, for a given oriented 4-dimensional manifold (M, g) of signature

(2, 2), the Hodge-star operator ∗ : Λ2 → Λ2 is an involution on two forms and

induces a decomposition into eigenspaces

Λ2 = Λ2
+ ⊕ Λ2

−

which we call self-dual and anti-self-dual, respectively. Then, the Riemann

curvature Rabcd = R[ab][cd] = Rcdab can be thought of as a section of symmetric

endomorphisms of Λ2, R : Λ2 → Λ2 which decomposes as follows:

R =

 C+ + R
12 φ

φ C− + R
12


where C+ and C− are the self-dual (SD) and anti-self-dual (ASD) parts of the

conformal Weyl tensor, respectively, φ is the tracefree Ricci curvature and R is

the scalar curvature. We say that the metric g is anti-self-dual if C+ = 0 and,

since the Weyl tensor is conformally invariant, this is actually a property of the

conformal structure [g].

These types of conformal structures are important to the theory of mathemat-

ical physics. In [19], a procedure was developed to describe a finite number
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of physical gravitons (spin-2 massless Poincaré-covariant fields), which are so-

lutions to the Einstein equations, without resorting to perturbative methods.

In particular, a given ASD conformal structure describes a single graviton in a

pure helicity state and so, is the fundamental example of this theory.

We may, similarly, consider the decomposition of the Riemann tensor under

the canonical bundle isomorphism (4.2). Using indices A,B, . . . = 0, 1 for the

bundle S and A′, B′, . . . = 0, 1 for S′ we have

Rabcd = ψABCDεA′B′εC′D′ + ψA′B′C′D′εABεCD

+φABC′D′εA′B′εCD + φA′B′CDεABεC′D′

+
R

12
(εACεBDεA′C′εB′D′ − εADεBCεA′D′εB′C′)

where ψABCD and ψA′B′C′D′ are ASD and SD Weyl spinors which are symmetric

in their indices and φA′B′CD = φ(A′B′)(CD) is the traceless Ricci spinor. Then,

a given conformal structure is anti-self-dual (or self-dual) if the SD (or ASD)

Weyl spinor vanishes (again these objects are conformally invariant and hence

well-defined for the conformal structure (M, [g])).

A seminal result of Penrose [19] in this area is the following:

Proposition 4.1. A maximal three-dimensional family of α-surfaces exists in

M if and only if the conformal structure (M, [g]) is anti-self-dual.

Motivated by this result, let us the define the twistor space T as the space

of α-surfaces in M i.e, each point in T corresponds to an α-surface. In the

complexified version, T is a complex manifold and points in M corresponds to

rational curves (copies of CP1). These are known as twistor lines. The embed-

ding of a rational curve in T is described by its normal bundle, a holomorphic

vector bundle of rank 2. The structure of such bundles is well understood. There

is one such bundle or rank one denoted O(−1) and defined by

O(−1) = {(x, y) ∈ C2 × CP1 : x ∈ y}.

Other vector bundles can be constructed by taking duals, tensor products and
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sums. In particular,

O(−1)∗ = O(1) , O(m) = O(1)⊗ . . .⊗O(1).

Any holomorphic vector bundle over CP1 may then be written as

E = O(m1)⊕O(m2)⊕ . . .⊕O(mk) , ma ∈ Z.

A result of Hitchin [33] is that if a given conformal structure (M, [g]) is ASD

then the rational curves in T corresponding to points in M have normal bundle

O(1)⊕O(1). On the other hand, a theorem of Kodaira [48] implies that, given

a family of rational curves in some three-dimensional complex manifold T with

normal bundle Y = O(1) ⊕ O(1), there exists a four-dimensional manifold M

such that Y belongs to a locally complete family {Yx : x ∈ M} with TxM ∼=

H0(Yx,O(1)⊕O(1)) ∼= C4. Then, there is a null cone at each point of M defined

by set of sections of H0(Yx,O(1)⊕O(1)) which vanish somewhere on Yx.

Hence, in the twistor picture, there is a correspondence between ASD conformal

structures (M, [g]) of signature (2,2) and path geometries on the twistor space

T where points in T correspond to isotropic null 2-surfaces in M (α-surfaces)

and points in M correspond to rational curves in T with normal bundle ∼=

O(1) ⊕ O(1). This allows us to relate an object in mathematical physics (the

single graviton) to a well understood structure in complex analytical geometry.

From our point of view, the aim is to describe these twistor lines by systems

of second order ODEs in the form (2.3) which correspond to desired geometric

structures on the correspondence space M . In this case, the twistor lines with

specified normal bundle are precisely the integral curves of a path geometry

with vanishing Grossman invariants.

Thus, we have the following result [18]:

Theorem 4.1. There is a one-to-one correspondence between path geometries

on U with

τ ij = T ij −
1

2
δijT

k
k = 0 (4.3)

and anti-self-dual conformal structures of signature (2,2) on the moduli space of

solutions M with points in U corresponding to isotropic null 2-surfaces in M .
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For the remainder of the discussion we will refer to U as the twistor space.

A point p ∈ M corresponds to an integral curve Lp of the corresponding path

geometry (2.3) (a twistor line). Two points p1 and p2 in M are null separated

(lie on the same α-surface) if and only if the curves Lp1 and Lp2 intersect at

some point. The double fibration picture looks as follows:

U ← F →M

where, before, we had F = P(TU) but also F ∼= M × RP1. Then U arises as a

quotient of F by a two-dimensional Frobenius integrable distribution described

by vector fields L0, L1, called the Lax pair, which are horizontal lifts of vectors

spanning an α-plane. The existence of such an integrable distribution is guar-

anteed by the ant-self-duality of (M, [g]). Then, if the conformal structure is

given by

g = e1 � e2 − e3 � e4

for some one-forms e1, . . . , e4 with dual vector fields E1, . . . , E4,

L0 = E1 − λE3 + f0
∂

∂λ
, L1 = E4 − λE2 + f1

∂

∂λ

where f0 and f1 are functions on F = M ×RP1 making the Lax pair Frobenius

integrable and λ parametrises the RP1.

4.2 From ASD Conformal Structures to Systems

of ODEs

The twistorial picture allows us to link torsion-free systems of ODEs in three

dimensions to ASD conformal structures of signature (2, 2) in dimension four.

Here, we show explicitly how, given a manifold with such a conformal structure

(M, [g]), one might construct the corresponding system of ODEs. The idea here

is to construct the real projective line parametrised by λ ∈ RP1 of real α-surfaces

through a point p ∈ M , thereby utilising the underlying correspondence. Each

curve depends on the coordinates in M of the point p and their union coincides



4.2. FROM ASD CONFORMAL STRUCTURES TO SYSTEMS OF ODES77

with the integral curves of some second order system in three dimensions. The

procedure involved to reproduce this system here is fully described in [20].

First, consider the Lax pair L0 and L1 on the ambient space F = M ×RP1, as

described above, and find three functions on F which satisfy

L0f = 0 , L1f = 0.

We name these functions (x̃, ỹ, z̃) as they descend to the twistor space U where

they provide a local coordinate system (x, y, z). A point in M then corresponds

to a curve in U as desired. The pull back of the four-parameter family of curves

to F can be parametrised as

λ→ (x̃(λ, p), ỹ(λ, p), z̃(λ, p)

where p = (α, β, γ, η) is a point in M . Then, we use the implicit function

theorem to solve the equation x = x̃(λ, p) for λ and the relations

y = ỹ , z = z̃ , y′ =
∂ỹ

∂x
, z′ =

∂z̃

∂x

to express (α, β, γ, η) as functions of (y, z, y′, z′). Differentiating once more and

substituting (α, β, γ, η) gives a pair of second order ODEs (2.3) corresponding

to a path geometry on U .

4.2.1 Ricci-flat case

As an example of this construction, consider an ASD conformal structure (M, [g])

of signature (2,2) which contains a Ricci-flat metric and let (α, β, γ, η) be local

coordinates on M . A result of Plebański [49] is that any such metric g may be

written locally as

g = dαdβ + dγdη −Θββdη
2 −Θγγdα

2 + 2Θβγdαdη (4.4)

where subscripts indicate differentiation and Θ = Θ(α, β, γ, η) is a function

satisfying the second heavenly equation

Θαβ + Θγη + ΘββΘγγ −Θ2
βγ = 0. (4.5)
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In this case, the only non-vanishing part of the curvature is given by the ASD

Weyl spinor

ψABCD =
∂4Θ

∂αA∂αB∂αC∂αD
, A,B,C,D = 0, 1

where (α0, α1) = (γ,−β). In the complexified version of the theory, the Ricci-

flatness condition gives rise to additional structures on the twistor space U

namely

1. A projection µ : U → CP1, such that the four parameter family of curves

above are sections of µ.

2. A symplectic structure with values in O(2) on the fibers of µ.

We would like to represent this as some invariant condition on the pair of ODEs

describing the path geometry. Firstly, the Lax pair for this system may be

written as

L0 = ∂γ − λ (∂α −Θβγ∂γ + Θγγ∂β) ,

L1 = ∂β + λ (∂η + Θββ∂γ −Θβγ∂β) .

A curve Lp ⊂ U corresponding to a point p ∈M is parametrised by choosing a

two-dimensional fiber µ : U → RP1 and defining (α, η) to be the coordinates of

the initial point of the curve and (γ,−β) to be the tangent vector to the curve.

In this way, the pull back of the curve is λ → (x = λ, y = ỹ(λ, p), z = z̃(λ, p))

where the functions (ỹ, z̃) admit the following expansion which can be found in

[50],

ỹ = α+ λγ −Θβλ
2 + Θηλ

3 + . . .

z̃ = η − λβ −Θγλ
2 −Θαλ

3 + . . . .

The terms of higher order in λ can be obtained by recursion of LA(ỹ) = LA(z̃) =

0. In the next section, we will show how to derive the Grossman invariants from

the ASD condition on the conformal structure and here, we may write the path

geometry corresponding to a Ricci-flat conformal structure explicitly. Now, we

investigate some specific examples which are of special note.
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Example 1

Perhaps one of the simplest solutions to the second heavenly equation (4.5) is

when Θ is a function of only one of its arguments, say γ. In this case, the

non-vanishing part of the curvature is

ψ0000 =
∂4Θ

∂γ4
,

so let us consider the example

Θ =
1

4
γ4.

The Lax pair here is

L0 = ∂γ − λ
(
∂α + 3γ2∂β

)
,

L1 = ∂β + λ∂η

and thus

ỹ = α+ λγ,

z̃ = η − λβ − γ3λ2.

The second order system describing the pull back of this curve is easy to com-

pute. Since

y′ = γ , y′′ = 0 , z′′ = −2γ3

then

y′′ = 0 , z′′ = −2(y′)3. (4.6)

This system has a nine-dimensional point symmetry algebra which is also the

largest symmetry algebra of a non-trivial ASD conformal structure. We look at

this in more detail later.

Example 2

This example, when analytically continued to Riemannian signature, is rele-

vant in the theory of gravitational instantons. If we choose Θ = Θ(α, β, γ)

then the second heavenly equation (4.5) reduces to a wave equation on a flat
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(2 + 1)-dimensional background. If we let τ = Θβ and perform a Legendre

transformation

H(τ, γ, α) := τβ(α, γ, τ)−Θ (α, β(α, γ, τ), γ)

then with β = Hτ and Θγ = −Hγ , the heavenly equation becomes

Hτα +Hγγ = 0. (4.7)

The metric, in this case, is

g = Hττ

(
1

4
dγ2 + dαdτ

)
− 1

Hττ

(
dη − Hττ

2
dγ +Hτγdα

)2

(4.8)

= V

(
1

4
dγ2 + dαdτ

)
− V −1(dη +A)2, (4.9)

where V = Hττ and A = Hτγdα − (Hττ/2) satisfy the monopole equation

?dV = dA and ? is the Hodge operator on R2,1 with its flat metric. Thus,

this is an analytic continuation of the Gibbons-Hawking metric [51]. Since Θη

vanishes, the whole series for ỹ truncates at second order. In particular,

ỹ = α+ λγ − λ2τ

z̃ = η − λHτ + λ2Hγ + λ3Hα + . . .

where H = H(α, γ, τ) from which we can obtain the corresponding path geom-

etry. An example, with H(α, γ, τ) = γτ2, is

y′′ =
y′

x
−

√(
y′

x

)2

− 2z′

x
, (4.10)

z′′ =
1

2

y′
x
−

√(
y′

x

)2

− 2z′

x

2

. (4.11)

The potential in the Gibbons-Hawking metric is linear in the flat coordinates

on R2,1.

4.3 Grossman Invariants

Now let us describe how to derive the Grossman invariants (4.1) from the dou-

ble fibration picture. This reverses the construction in the previous section
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and yields the technology required to construct the path geometry of integral

curves on the twistor space of an ASD Ricci-flat conformal structure. The idea

is to begin with an arbitrary ASD conformal structure and see the vanishing of

the Grossman invariants of the corresponding path geometry arise as a neces-

sary condition. Our procedure is analogous to the recursive construction of the

Wilczynski invariants of a single nth order ODE [52].

Each point in U corresponds to an α-plane in M and the functions (p2, p3) =(
dy
dx ,

dz
dx

)
are null coordinates which are mutually orthogonal and so a2p

2+a3p
3 is

null for arbitrary constants a0, a1. Furthermore, by differentiation, the one-form

a2dy+a3dz, which for the sake of current convenience, I’ll write as a2dy
2+a3dy

3

is orthogonal to a2p
2 + a3p

3.

In the derivation below, we shall regard (yi, pi, x) = (y2, y3, p2, p3, x) as co-

ordinates on the five-dimensional correspondence space F = P(TU) from the

double fibration picture (2.2), and define the degenerate metric g on this five-

dimensional space. We then demand this quadratic form Lie derives up to scale

along the total derivative d/dx and so gives a conformal structure on M . The

metric g necessarily takes the form

g = εijdy
idpj + φijdy

idyj (4.12)

where εij is antisymmetric with ε23 = 1 and φij = φ(ij). The conformal structure

of M is invariant along the fibres F →M and therefore

dg

dx
= Ω2g

for some function Ω. Plugging in the expression (4.12) and comparing coeffi-

cients on both sides we obtain the equations

2φij +
∂F k

∂pj
εik = Ω2εij (4.13)

dφij
dx

+
∂F k

∂y(j
εi)k = Ω2εij . (4.14)

Taking the trace of (4.13) (using ε to raise and lower indices),

∂F k

∂pk
= 2Ω2
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and substituting back into (4.13) for Ω,

φij = −1

2
εik
∂F k

∂pj
+

1

4
εij
∂F k

∂pk
.

Then, from equation (4.14), we obtain the Grossman invariants

−1

2

∂F i

∂pj
+
∂F i

∂yj
+

1

4

∂F i

∂pk
∂F k

∂pj
∼ δij

where here we’ve used the fact that

∂F k

∂pj
∂F i

∂pk
− ∂F k

∂pk
∂F i

∂pj
∼ δij

to rewrite the third term. Note here that the expression for the conformal

structure (4.12) actually gives a metric if Ω = 0 i.e, ∂Fk

∂pk
= 0 which implies

F i = 2εij
∂Λ

∂pj
(4.15)

for some function Λ. The metric (4.12) then resembles the heavenly form of the

Ricci-flat metric given by (4.4). The exact equivalence arises from evaluating

(4.12) at x = 0 with coordinates yi = (α, η), pi = (−γ, β) and Λ(yj , pj) =

−Θ(α, β, γ, η).

Example 3

One more example is given by

y′′ = 0 , z′′ = B(y′) (4.16)

for some arbitrary function B. The ASD conformal structure on the solution

space M is type-N and Ricci flat. Notice here, that the system with submaximal

point symmetry is a particular example.

This last example is Ricci flat. One may seek conditions on the functions F i

for this to be true more generally. We skip the details here but the following

proposition was given in [20]:

Proposition 4.2. Let Θ = Θ(α, η, β, γ) be a solution to the heavenly equation

(4.5) which gives the Ricci-flat ASD metric (4.4). The corresponding system of
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ODEs with vanishing Grossman invariants is

y′′ = 2
∂Λ

∂z′
, z′′ = −2

∂Λ

∂y′

where Λ|x=x0
= −Θ (y(x0), z(x0), z′(x0),−y′(x0)) and the x-dependence of Λ is

determined by (4.14).

4.4 Symmetries of Torsion-Free Path Geometries

In the twistor approach, we observed that if two points p1 and p2 in M are null

separated then the corresponding twistor lines Lp1 and Lp2 intersect at a point.

Then, null vectors in M can be obtained by considering two neighbouring curves

in U and requiring that they intersect at exactly one point. It can be shown

that any transformation which preserves points in U gives rise to one which

preserves the conformal structure of M and vice versa.

Lemma 4.3. There is a one-to-one correspondence between the conformal Killing

vectors of a (2,2) ASD conformal structure (M, [g]) and point symmetries of the

torsion-free system of ODEs whose integral curves are the corresponding twistor

lines of (M, [g]).

Proof. To show this, we again exploit the double fibration picture (2.2). Given

a conformal Killing vector K of (M, [g]), we can lift it to a vector K̃ on the

correspondence space F , so that [L0, K̃] = 0 and [L1, K̃] = 0 where L0 and L1

are the Lax pair forming the twistor distribution and the commutators vanish

modulo a linear combination of L0 and L1. This lift is given explicitly by

K̃ = K+Q∂λ where Q is a quadratic polynomial in λ with coefficients depending

on coordinates in M . The space U is a quotient of F spanned by L0 and L1

and so K̃ pulls back to a vector field K on U . Therefore, it generates a one-

parameter group of transformations on U which take α-surfaces to α-surfaces in

M . As K generates diffeomorphisms of M and integral curves of the associated

path geometry in U correspond to points in M , then the action generated by K

preserves the integral curves of the path geometry. Thus, it is a point symmetry.
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Conversely, a point symmetry of the path geometry in U e.g, (2.3), corresponds

to a transformation in M which maps α-surfaces to α-surfaces. and therefore,

it gives rise to a conformal Killing vector on M .

In the trivial case, (y′′ = 0, z′′ = 0) the path geometry has point symmetry

group PSL(4,R) which is isomorphic to the symmetry group of the flat confor-

mal structure SO(3, 3). The sub-maximal case of a torsion free system of ODEs

with nine-dimensional point symmetry algebra is (4.6) which corresponds to a

Ricci-flat ASD conformal structure with only one non-vanishing component of

the ASD Weyl tensor. Therefore, the ’gap’ in (2,2) conformal geometry (the

difference in dimension between the maximal and sub-maximal symmetry al-

gebras) equals 6 = 15 - 9. We saw in Example 7 of Chapter 3 that, in the

projective branch, following from Egorov’s work [41], the submaximal case has

8-dimensional point symmetry algebra. Hence, by Lemma 4.3, the ’gap’ in path

geometries in three dimensions is also 6, and the submaximal case lies in the

conformal branch. An account of the general theory of such ’gaps may be found

in [43] and more recently in [42].

The system (4.6) is the unique (up to diffeomorphism) torsion-free path geom-

etry with point symmetry algebra of sub-maximal size and we expect systems

with 6,7 or 8 point symmetries to be also comparatively rare. To see explicitly

why this occurs, consider the lift of an arbitrary path geometry

y′′ = F (x, y, z, y′, z′) , z′′ = G(x, y, z, y′, z′)

to the second jet bundle J2(U,R) which is a seven-dimensional manifold with

local coordinates given by (x, y, z, y′, z′, y′′, z′′). Any point symmetry of the

path geometry can locally be described by some vector field χ on U which we

can prolong to a vector field pr(2)χ over some open set in J2(U,R). Then the

functions

∆2 = y′′ − F (x, y, z, y′, z′) , ∆3 = z′′ −G(x, y, z, y′, z′)

are constant along pr(2)χ.

Now suppose, such a path geometry admits a Lie point symmetry algebra of



4.4. SYMMETRIES OF TORSION-FREE PATH GEOMETRIES 85

dimension five, generated by five vector fields which prolong to an integral dis-

tribution L̃ of J2(U,R). In the generic case, the rank of L̃ is five and these

vector fields will span the tangent bundle of some five-dimensional submanifold

Ũ ⊂ J2(U,R). Given that the codimension of Ũ is 2, we can construct two

functions ∆2, ∆3 which are invariant with respect to the action of L̃, i.e, given

a five-dimensional Lie algebra of vector fields L over U , there is no obvious

obstruction to the existence of a path geometry with point symmetry algebra.

Of course, the existence of such a path geometry depends on certain further

regularity conditions. For example, there is no path geometry which has all the

point symmetries ∂y, x∂y, x
2∂y, x

3∂y, x
4∂y, so caution is needed. It is sufficient

to demand that the first prolongation of the vector fields to the first jet bundle

J1(U,R) must not be contained within some four-dimensional submanifold of

the tangent bundle T (J1(U,R)).

Lie algebras L of dimension six or greater will generically not give rise to in-

variant functions ∆2, ∆3, and there will be a constraint on finding non-trivial

path geometries with point symmetry algebras of this size. In particular, we

must require that the prolonged algebra forms a distribution of rank lower than

six. If additionally, we impose that the path geometry be torsion-free (i.e, the

Grossman invariants vanish) then this sudden decline of examples will be ob-

served sooner, at dimension four rather than six. In the next section, we outline

the prolongation procedure and present some examples of path geometries with

dimensions 4,5,6,7,8,9 point symmetries together with some details of the Lie

algebraic structure. Where possible we take advantage of the double fibration

picture (2.2) to say something about the corresponding ASD conformal struc-

ture on the space of solutions.

4.4.1 Path geometries with large Symmetry Algebras

For a given path geometry in three dimensions

y′′ = F (x, y, z, y′, z′) , z′′ = G(x, y, z, y′, z′),

the point symmetries may be found by the following well known procedure:
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1. Let the generator of a point symmetry be

χ = χ1∂x + χ2∂y + χ3∂z

where χa are functions of (x, y, z) for which we must solve.

2. Determine the first and second prolongations by

η
(1)
i =

dχi
dx
− pi dχ1

dx
, η

(2)
i =

dη
(1)
i

dx
− qi dχ1

dx
,

where i = 2, 3 and qi = d2yi

dx2 .

3. The prolongation of the vector field χ to the second jet bundle J2(U,R)

is given by

pr(2)(χ) = χ+

3∑
j=2

η
(1)
j

∂

∂pj
+

3∑
j=2

η
(2)
j

∂

∂qj
.

4. Then we determine the point symmetries by finding functions χi from

pr(2)(χ)
(
∆2
)
|∆2=∆3=0 = pr(2)(χ)

(
∆3
)
|∆2=∆3=0 = 0.

Special Ricci-Flat Case

Consider the system (4.16) with B real analytic. The submaximal torsion-free

system (4.6) lies in this class so we might expect it to yield more examples

of systems with a high number of point symmetries. The corresponding ASD

conformal structure on the moduli space of solutions is given by

g = dαdβ + dηdγ − 1

2
B′(γ)dα2

and is Ricci-flat as it corresponds to (4.4) with Θ = (1/2)
∫
B(γ)dγ.

Under these conditions, it is not difficult to show that the point symmetry

algebra contains a six dimensional subalgebra L6 ⊂ sl(4,R). It transpires that

L6 is solvable and, in terms of point symmetries, we may write it down explicitly

L6 = span{e1 = ∂x, e2 = ∂y, e3 = ∂z, e4 = x∂y, e5 = z∂y, e6 = x∂x+2y∂y+z∂z}

However, as we have seen already, there will be some special cases of (4.16) for

which the point symmetry algebra is larger but contains L6 as a subalgebra.
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Proposition 4.4. Consider a system of two second order ODEs of the form

(4.16) for some function B of the form

B(y′) =

∞∑
k=0

ξk(y′)k.

If B is a quadratic function, then the system (4.16) is diffeomorphic to a trivial

one (and the symmetry group is 15-dimensional). Otherwise, the symmetry

algebra has dimension

12− Rank(M1)− Rank(M2)

where M1 is a matrix with rows

(ξk, ξk+1) , k ≥ 3

and M2 is a matrix with rows

(ξk (k − 2)ξk (k − 3)ξk−1 − (k + 1)ξk+1) , k ≥ 3.

Proof. Without loss of generality, let us simplify the problem by making the

diffeomorphism

z → z +
1

2
ξ0x

2 + ξ1xy +
1

2
ξ2y

2

so that we obtain the system

y′′ = 0 , z′′ =

∞∑
k=3

ξk(y′)k (4.17)

which has the same number of point symmetries as the original.

For a given vector field,

χ = χ1
∂

∂x
+ χ2

∂

∂y
+ χ3

∂

∂z

the expressions

pr(2)(χ)
(
∆2
)
|∆2=∆3=0 = 0 and pr(2)(χ)

(
∆3
)
|∆2=∆3=0 = 0.

are real analytic in p2 and p3 with coefficients which are functions of x, y and

z. For χ to be a symmetry of the system (4.17), each of these coefficients must
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vanish separately. This leads to the following system of differential equations

for χ1, χ2 and χ3:

∂2χ2

∂x2
=
∂2χ3

∂x2
=

∂χ2

∂x∂z
=
∂2χ3

∂x∂y
=

∂χ1

∂y∂z
=
∂2χ1

∂z2
=
∂2χ1

∂z2
= 0,

2
∂2χ2

∂x∂y
=
∂2χ1

∂x2
,
∂2χ2

∂y2
= 2

∂2χ1

∂x∂y
,
∂2χ2

∂y∂z
=
∂2χ1

∂x∂z
,

2
∂2χ3

∂x∂z
=
∂2χ0

∂x2
,
∂2χ3

∂y∂z
=
∂2χ1

∂x∂y
,
∂2χ3

∂z2
= 2

∂2χ1

∂x∂z
,

∂2χ3

∂y2
= 3ξ3

∂χ2

∂x
, ξ3

∂χ2

∂z
=
∂2χ1

∂y2
,
∂2χ1

∂y2
+ 3ξ3

∂χ2

∂z
= 0,

and for k ≥ 3,

(k − 3)ξk
∂χ1

∂z
− (k + 1)ξk+1

∂χ2

∂z
, ξk+1

∂χ2

∂z
= ξk

∂χ2

∂z
,

(k − 2)ξk
∂χ1

∂x
+ ξk

∂χ3

∂z
+ (k − 3)ξk−1

∂χ1

∂y
− (k + 1)ξk+1

∂χ2

∂x
− kξk

∂χ2

∂y
= 0.

Enforcing the system to be non-trivial (i.e, not all ξk = 0) we obtain

∂χ1

∂z
=
∂χ2

∂z
=
∂2χ1

∂y2
= 0.

Then, the most general solution for χ is

χ1 = a1x
2 + a2xy + (a3 + a4)x+ a5y + a6

χ2 = a1xy + a7x+ a2y
2 + 2a3y + a8

χ3 = a1xz + a9x+ a2yz + (a3 + a10)z +
ξ3
2
a1y

2 +

(
3ξ3
2
a7 + a11

)
y + a12

where the am here are constants and, for all k ≥ 3,

ξka2 + ξk+1a1 = 0

and

ξka10 + (k − 2)ξka4 + (k − 3)ξk−1a5 − (k + 1)ξk+1a7 − (k + 1)ξka3 = 0

and the result follows.

Thus, in the non-trivial case, the point symmetry algebra of (4.16) has at most

dimension 9. A little more work shows us that systems of dimension 8 are not

attainable for this example (if the rank of M2 is 1, then the rank of M2 is 2 and

if the rank of M1 is 2 then the rank of M2 is at least 3.).
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Dimension 9

A system with point symmetry algebra of dimension 9 is given by (4.6)

y′′ = 0 , z′′ = −2(y′)2.

A quick check of the expressions for M1 and M2 shows that the system

y′′ = 0 , z′′ =
(y′)3

1− y′

also admits a nine-dimensional point symmetry algebra but these systems can

be shown to be diffeomorphic. The associated Lie algebra in the first case can

be written as

L9 = L6 ⊕ span{e7, e8, e9}

with

e7 = 3y∂y + z∂z , e8 =
3

2
z2∂y +x∂z , e9 =

1

2
x2∂x+

(
1

2
xy +

1

4
z3

)
∂y +

1

2
xz∂z.

This has Levi-decomposition

L9 = L̃6 n sl(2,R) = span{e2, e3, e4, e5, e7, e8}n span{e1, e6 −
1

2
e7, e9}.

Dimension 7

A path geometry with point symmetry algebra of dimension 7 is given by

y′′ = 0 , z′′ = (y′)k

for k ≥ 4. This will be a solvable Lie algebra for any value of k and is obtained

by adding the vector field e7 = ky∂y + z∂z to L6.

ASD Einstein - dimension 8

Consider the system

y′′ = 0 , z′′ =
2(z′)2y′

zy′ − 1
. (4.18)
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This system has made an appearance in the theory of chains in the homogeneous

contact geometry [53]. The Grossman invariants vanish for (4.18) so it is in the

conformal branch.

The corresponding conformal structure is found by demanding that two neigh-

bouring intgeral curves in U intersect at one point - the condition which selects

null vectors in M . In the complexified setting, this reduces the normal bundle

of the integral curve Lp to O(1)⊕O(1). To perform this calculation explicitly,

solve (4.18) for (y, z) and demand that the equations δy = 0 and δz = 0 have a

common solution. We apply this procedure to the integral curves

ỹ = α+ γx , z̃ =
1

γ
+

1

γ2(η − βx)

where δy =
∑
a ∂aỹδα

a , δz =
∑
a ∂az̃δα

a, and αa = (α, β, γ, η). Then the

discriminant condition for the two curves to intersect yields the metric

g = dαdβ + dγdη + β2dα2 +

(
η2 +

2η

γ

)
dγ2 + 2

(
ηβ +

β

γ

)
dαdγ

which is ASD and Einstein, with scalar curvature equal to -24. Both the system

of ODEs and the metric have eight-dimensional symmetry group SL(3,R) which

acts isometrically on M . The homogeneous model for the space of solutions is

SL(3,R)/GL(2,R), which is a (2, 2) real form of the Fubini-study metric on

CP2 = SU(3)/U(2).

Symmetry Algebra of Dimension 5

The example discussed in the Gibbons-Hawking context (4.11) has five-dimensional

point symmetry algebra which we can write as

L5 = span{∂y, ∂z, x∂x + y∂y,−
1

2
x∂x + z∂z, x

2∂y + 2y∂z}.

The algebra L5 is solvable and contains both Bianchi II and Bianchi V as three-

dimensional subalgebras.

Sparling-Tod Solution

Another way to construct a torsion-free path geometry with a given point sym-

metry algebra is to determine an ASD metric with that conformal symmetry
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algebra and derive the corresponding system of ODEs governing twistor lines

via the method provided in this chapter. The metric of [54] given by

g = dαdβ + dηdγ − 2

(βα+ γη)3
(αdη − ηdα)2

is an ASD Ricci-flat metric (4.4) with Θ = 1
αβ+γη and has five-dimensional

conformal symmetry algebra. The conformal Killing vectors are

k1 = η∂α−β∂γ ,k2 = −2α∂α+β∂β−γ∂γ ,k3 = α∂α+η∂η,k4 = −γ∂β+α∂η,k5 = η∂β−α∂γ .

We should note here that the resulting system of ODEs does not coincide with

the previous example as the conformal symmetry algebra of the Sparling-Tod

solution is not solvable. It has an sl(2,R) subalgebra generated by (k1,k2 +

k3,k4). Its Levi decomposition can be expressed as the semi-direct product of

an sl(2,R) with the 2-dimensional non-Abelian Lie algebra.

The system of ODEs can be read off directly using Theorem 4.2 and setting

Λ = −Θ(y, z, z′,−y′). This yields Λ = (y′z − yz′)−1 and (4.15) gives

y′′ =
2y

(y′z − yz′)2
, z′′ =

2z

(y′z − yz′)2
.

The integral curves are

ỹ = Aekx +Be−kx , z̃ = Cekx +De−kx ,

where (A,B,C,D) are constants of integration and k2 = (AD − BC)−1
√

2
−1

.

The original metric can be recovered from the twistor lines by setting

α = A+B , η = C +D , γ = k(B −A) , β = k(C −D).

Symmetry Algebra of dimension 4

. Consider the system

y′′ = 0 , z′′ = −
(
z′ +

√
(y′)2 − 1

)2

. (4.19)

This example was found by constructing the most general system of ODEs with

Lie point symmetry algebra

L4 = span{∂x, ∂y, ∂z, y∂x + x∂y}
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and imposing the torsion-free conditions. The algebra L4 above is a particular

realisation of the abstract algebra1 A4,1 as give by the authors in [55]. The

integral curves of the system (4.19) are given by

ỹ = α+ xγ , z̃ = log(x− β)− x
√
γ2 − 1 + η.

Following the procedure applied in the case with 8-dimensional point symmetry

algebra, we find the ASD conformal structure

g = dβdγ + (dα+ βdγ)

(
dη +

γ√
γ2 − 1

dα

)
.

This admits a null Killing vector ∂/∂η and thus fits into the classification of

[56].

Symmetry algebra of dimension three or less

If the symmetry algebra has dimension 3, then it necessarily belongs to the

Bianchi classification of three-dimensional Lie algebras. There are many exam-

ples in this case which are analytic continuations of Riemannian metrics. See

[57] for a discussion of these examples. ASD conformal metrics with one or two

symmetries can be found in the Gibbons-Hawking class (4.9). An axisymmetric

solution H to the wave equation (4.7) gives a metric with two Killing vectors.

Another example with two-dimensional symmetry will be discussed in the next

section. A general solution of (4.7) with no symmetries gives a metric which

only admits one Killing vector ∂/∂η. Gravitational instantons of class Dk are

examples of ASD conformal structures with no symmetries.

1There are two other nonequivalent representations of this algebra as noted in [20]:

L4a = span{∂y ,−x∂y , ∂z , ∂x − xz∂y}

and

L4b = span{2∂x, ∂z ,−y2∂x − y∂z , 2z∂x + ∂y}.

There is no torsion-free system with symmetry algebra L4b, and L4a appears as a subalgebra

of a torsion-free system with seven-dimensional point symmetry algebra.
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4.5 Finsler Structures with Scalar Flag Curva-

ture

For a given n-dimensional domain U ⊂ Rn with coordinates xa (a = 1, . . . , n),

a Finsler metric is a positive continuous function F : U → [0,∞) such that

• F is smooth on TU\0 = {(xa, pa) ∈ TU |p 6= 0},

• F(xa, cpa) = cF(xa, pa) for c > 0,

• The tensor fab = 1
2
∂2F2

∂pa∂pb
is positive definite for all (xa, pa) ∈ TU\0.

We shall consider the case n = 3 and set xa = (x, y, z) and pa = ẋa = dxa

dt

for some parameter t. Finsler geometry generalizes the notion of Riemannian

geometry in that the norm on each tangent space F(xa, ·) is not necessarily

induced by a metric tensor. This makes these metrics useful in the study of

problems involving paths of least time. The metric tensor fab allows us to

define Finslerian geodesics, which are integral curves of the system

ẍa + γabcẋ
bẋc = 0 , a, b, c = 1, . . . , n

where

γabc =
1

2
fad(fdc,xb + fbd,xc − fbc,xd).

It was argued in [58] that, for n ≥ 2, given any system of ODEs with vanish-

ing Grossman invariants its integral curves arise as the set of unparametrised

geodesics of a Finsler function of scalar flag curvature. In this context, the

torsion-free path geometries are viewed as projective equivalence classes of

isotropic sprays on TU . Given a spray

S = pa
∂

∂pa
, a = 1, . . . , n

we can define its Riemann curvature by

Rdcab = Ha

(
Γdbc
)
−Hb

(
Γdac
)

+ ΓdaeΓ
e
bc − ΓdbeΓ

e
ac
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where Γabc = ∂2Γa

∂pb∂pc
, etc and the Ha form a horizontal distribution determined

by S:

Ha =
∂

∂xa
− Γba

∂

∂pb
.

Then the spray is said to be isotropic if its Jacobi endomorphism is given by

Rab = Racbdp
cpd = ρδab + τbp

a

for some function ρ and covector τa. It was shown in [59], that for n > 2, a

spray is isotropic if and only if it is projectively equivalent to one whose Riemann

curvature vanishes (so-called R-flat) and in [60], that any R-flat spray arises as

the geodesic spray of some Finsler function. More importantly, in [61] it is

shown that the geodesic sprays of a Finsler function are isotropic if and only

if the Finsler function has scalar flag curvature. Here, the flag curvature of a

Finsler metric is defined in terms of its Riemann curvature by

K(xa, pa, va) =
va(pbRbacdp

d)vc

f(p, p)f(v, v)− (f(p, v))2

where v is a section of the tangent bundle transverse to p and the indices are

raised/lowered with the tensor fab. The flag curvature is scalar if

K(xa, pa, va) = K(xa, pa).

Thus, we could construct all systems of ODEs with vanishing Grossman invari-

ants if we know how to characterize the Finsler functions of scalar flag curvature.

Although a lot of work has been undertaken in this area, a complete characteri-

zation of such functions has not yet been achieved. Most success has come with

a special type of Finsler function

F =
√
αab(xc)papb + βa(xc)pa , a, b, c = 1, . . . , n.

This is known as a Randers metric. One important aspect of Randers metrics

which will be central to some of the work presented in Chapter 6 is that its set of

unparametrised geodesics coincide with solutions of Zermelo’s problem for some

background metric h and wind vector W. On the space of orbits of a stationary
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Killing vector of some Lorentzian spacetime, we shall see that this duality is,

in fact, one leg of a triality of geometric structures. For now, if we restrict our

attention to Randers metrics of constant flag curvature, then we can use the

following:

Theorem 4.5. (Bao-Robles-Shen [62]) A Randers metric F has constant flag

curvature if and only if the corresponding Zermelo data (h,W ) satisfy the fol-

lowing:

• h is a Riemannian metric with with constant sectional curvature.

• W is a Killing vector or homothety of h.

Here, the Randers data can be expressed in terms of the Zermelo data as

follows [63]:

αab =
λhab +WaWb

λ2
, βa = −Wa

λ

where λ = 1 − habW aW b and Wa = habW
b. This gives rise to a procedure for

constructing torsion-free systems of ODEs from a three-dimensional Rieman-

nian metric of constant sectional and a homothety of this metric. The geodesic

spray coefficients of such systems was worked out in [63].

Example 4. Consider the Zermelo data

h = dx2 + dy2 + y2dz2 , W =
∂

∂z
.

The geodesics of the Randers metric associated to this Zermelo data are the

integral curves of the systems of ODEs with vanishing Grossman invariants

y′′ =
2yz′

√
1 + (y′)2 + y2((z′)2 − (y′)2 − 1)

y(y2 − 1)

+
y
(
1 + (y′)2 + (z′)2y2((z′)2 − (y′)2 − 1)

)
(y2 − 1)2

,

z′′ =
2y′
(
z′ +

√
1 + (y′)2 + y2((z′)2 − (y′)2 − 1)

)
y(y2 − 1)

.

This system has two symmetries ∂
∂x and ∂

∂z .

We can also view this correspondence in the other direction i.e, given a system
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of ODEs with vanishing Grossman invariants, we can construct a Finsler metric

of scalar flag curvature.

Example 5. To illustrate this point, let us consider the submaximal system

(4.6) corresponding to ASD Ricci-flat pp waves with constant Weyl curvature.

Then, using the procedure in [64], this system describes the unparametrised

geodesics of the Finsler function

F = ẋG
(
ẏ

ẋ
, 2
ż

ẋ
− 2

xẏ3

ẋ3
+

6yẏ2

ẋ2

)
in some open domain of U where fab is positive definite, where G is any function

of two variables. In particular, let G(x, y) =
√
xy and consider the Lagrangian

L = 1
2F

2 in unparametrised form where ẋ = 1

L = 2y′z′ − 2x(y′)4 + 6y(y′)3.

The Euler-Lagrange equations give (4.6). For this example, the flag curvature

of F vanishes.

Similarly, other systems with vanishing Grossman invariants arise from a vari-

ational principle induced by the Finsler structure. Thus, all these systems fit

into the formalism of [65].



Chapter 5

Optical Metrics and

Projective Equivalence

Recently, the notion of projectively equivalent metrics has featured more promi-

nently in the realm of relativistic physics. The paths of freely falling particles

determine a projective structure in some open domain on a Lorentzian manifold

and so, knowledge on the degree of mobility of a locally defined metric can tell

us to what extent we can determine the metric structure from geodesic informa-

tion. The problem of determining a spacetime metric from local geodesic data

was discussed in [66] and [11]. Moreover, the geodesic mobility of Einstein met-

rics has been considered in [67] and [68]. Nurowski questioned the meaning of

dark energy in [21] where he showed that different Robertson-Walker spacetimes

can admit the same unparametrised geodesics and that experimental evidence

of freely falling particles could not enable one to determine the existence of a

energy momentum tensor with cosmological constant. From a physical point

of view, the notion of determining the cosmological constant was cleared up in

[22].

More importantly for the current discussion, the dynamics of light rays in

Schwarzschild-deSitter spacetimes has been found to be independent of the cos-

97
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mological constant, Λ. This property has been inferred as a consequence of

projective equivalence of the corresponding optical metrics, see [23]. The op-

tical metric is a useful geometric structure for studying the properties of light

rays in a static spacetime. It may be thought of as the natural Riemannian

geometry experienced by light rays and has also recently been used to give an

alternative interpretation of black hole no-hair theorems [69].

Let (M, g) be a pseudo-Riemannian manifold with a metric of signature (n, 1),

where n > 0. The metric is called static if it admits a hypersurfaceorthogonal

(HSO) timelike Killing vector K, i.e,

g(K,K) < 0 , K ∧ dK = 0 , LKg = 0

where L is the Lie derivative. Any such metric is locally of the form

g = V 2(−dt2 + h) (5.1)

where h = hijdx
idxj is a Riemannian metric on the space of orbits Σ of K =

∂/∂t and V = V (xi) is a function on Σ. The metric h is called the optical metric

of g and the motivation behind this terminology [70], [23], [69] comes from the

fact that null geodesics of g project to unparametrised geodesics of h. This

can be readily verified as null geodesics of g coincide with the null geodesics of

V −2g. The idea here is that properties of the conformal structure of g can be

inferred from those of the geodesic structure of h. On immediate consequence,

for example, is that g is conformally flat if and only if h has constant curvature.

In the four-dimensional Schwarzschild-deSitter case, we have

g = −
(

1− 2M

r
− Λr2

)
dt2 +

dr2

1− 2M
r − Λr2

+ r2
(
dθ2 + r2dφ2

)
for mass parameter M and cosmological constant Λ. The optical metric is

h =
dr2(

1− 2M
r − Λr2

)2 +
r2

1− 2M
r − Λr2

(
dθ2 + r2dφ2

)
whose unparametrised geodesics are independent of Λ. Consequently, equations

governing the dynamics of light rays of g are observed to be independent of the

cosmological constant.
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5.1 Projective Equivalence vs Optical Equiva-

lence and Multi-static metrics

It is clear from the above discussion that an optical metric depends on the

choice of a static timelike Killing vector. In the current context, three different

equivalence classes of Riemannian metrics will play a role here. Let (Σ, h) and

(Σ̄, h̄) be two n-dimensional Riemannian manifolds, and let ρ : Σ → Σ̄ be a

diffeomorphism. The metrics h and h̄ are

• Equivalent, if there exists ρ such that ρ ∗ h̄ = h.

• Projectively equivalent, if there exists a ρ such that ρ ∗ h̄ and h share the

unparametrised geodesics.

• Optically equivalent, if there exists a pseudo-Riemannian (n+1)-dimensional

manifold M with two HSO Killing vectors K and K̄ such that Σ and Σ̄ are

hyper-surfaces orthogonal to K and K̄ respectively and (h, h̄) are optical

metrics of K and K̄ respectively.

All equivalences we shall discuss are in fact local equivalences as ρ is only re-

quired to be a smooth map between some open sets. If two metrics are equiva-

lent, they are also projectively equivalent, but the converse is not true in general.

A less clear connection, which we shall consider in this chapter, is that between

projective equivalence and optical equivalence. It turns out that the latter al-

most always implies the former. To enable the study of this connection we need

to construct a spacetime which admits two non-equivalent optical metrics and

thus, we have the following definition:

Definition 5.1. A Lorentzian metric is called multi-static if it admits at least

two non-proportional HSO timelike Killing vectors.

We shall now classify local forms of pseudo-Riemannian multi-static struc-

tures (M, g) and for this purpose, let us assume that the dimension of M is

four. Let (K, ξ) be two HSO timelike Killing vectors on M . We can choose
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a local coordinate system (Note: We shall use Greek indices (µ, ν, . . .) to run

over 0,1,2,3 and Roman indices (i, j, k, . . .) to run over 1,2,3) xµ = (t, xi), such

that the metric is given by (5.1) and K = ∂/∂t. In this coordinate system

ξ = ξ0 ∂

∂t
+ ξi

∂

∂xi

where ξ0, . . . , ξ3 are functions of (x, t). From our assumptions it follows that

not all ξi are identically zero (if they where, then the Killing equations ∇0ξ0 =

∇(iξ0) = 0 would imply ξ0 = constant thus contradicting our assumptions about

the independence of K and ξ). Therefore there exists t0 such that the projection

of the restriction of ξ at the surface Σ given by t = t0

ξ̃ = ξ|t=t0 (5.2)

is a non-zero vector field. Furthermore, we can make the coordinate transforma-

tion t→ t− t0 while preserving the form of the metric (5.1) so that ξ̃i = ξi|t=0.

The HSO Killing equations for ξ imply that ξ̃ is a HSO Killing vector for V 2h

and so there exists a function r : Σ→ R such that

V 2h = ewdr2 + γ,

where ξ̃ = ∂/∂r, and (w, γ) are a function and a metric on a two-dimensional

surface S1 (the space of orbits of ξ̃ in Σ) which do not depend on r. We can

use the isothermal coordinates (x, y) so that γ = eu(dx2 + dy2) and u, w are

functions of (x, y). Thus the most general Lorentzian metric which admits more

than one optical metric is locally of the form

g = −V 2dt2 + ewdr2 + eu(dx2 + dy2), (5.3)

where V = V (r, x, y), u = u(x, y) and w = w(x, y). We note that the function

V is not arbitrary - its form is restricted by the Killing equation for ξ.

Our next step is to classify the normal forms of ξ and thus read off the canonical

forms of its optical metric h̄ on some three-manifold Σ̄ where K̄ = ∂/∂t̄ giving

rise to h̄ is the push forward of ξ under some local diffeomorphism between Σ̄

and Σ. We shall make the additional genericity assumption
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Definition 5.2. A multistatic metric is called generic if the isometry group

generated by any pair of HSO timelike Killing vectors (and their commutators)

has two-dimensional orbits in M.

The genericity assumption implies that for any t0, the HSO Killing vector

ξ restricted to the surface t = t0 defined by K is proportional to a fixed vector

field.

Proposition 5.3. Any generic multistatic metric is locally a warped product

metric on M = S0 × S1 given by

g = ewγ0 + γ1 (5.4)

where (S0, γ0) is a two-dimensional Lorentzian manifold whose curvature is con-

stant, (S1, γ1) is a two-dimensional Riemannian manifold and w : S1 → R is

an arbitrary function.

Proof. First we shall show that given a pair of HSO timelike Killing vectors

(K, ξ), the genericity assumption implies existence of two functions (r, t) such

that the metric takes the form (5.3), and

K =
∂

∂t
, ξ = ξ0(t, r, x, y) + a(t)

∂

∂r
(5.5)

where (x, y) are coordinates on the surface S1 parametrising the 2D orbits in

M, and a is a function which depends only on t. To prove this statement, note

that the group generated by the Killing vectors and their commutators acts on

M with twodimensional orbits so

[K, ξ] = pK + qξ,

where p, q are functions on M . We need to show that there exists functions α,

β such that

[β−1(ξ − αK),K] = 0, (5.6)

as then the local existence of r, t will follow from the Frobenius theorem. Ex-

panding the Lie bracket (5.6) and using (5.1) gives a pair of ODEs

K(β−1) = β−1q , K(αβ−1) = β−1p
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The existence of α, β is a consequence of the Picard existence theorem applied

to these ODEs and

K =
∂

∂t
, ξ = αK + β

∂

∂r
.

Now consider the HSO Killing vector ξ̄ given by (5.2) on the surface Σ of con-

stant t. The Killing equations on Σ imply that β = β(r, t) and that for any

value of t0 the resulting vector is proportional to the same Killing vector. Thus

β(r, t) = a(t)b(r). We now redefine the r coordinate to set b(r) = 1. This

establishes (5.5). Therefore for any value of t0,

ξi
∂

∂xi
|t=t0 ∝

∂

∂r
.

The Killing equations ∇(2ξ0) = 0 = ∇(2ξ0) give ξ0 = ξ0(t, r). Using this and

equation (5.5) above, the hypersurface orthogonality conditions ξ[0∇1ξ2] = 0

and ξ[0∇1ξ3] = 0 yield

V 2(r, x, y) = v2(r)ew(x,y)

for some function v(r). Hence the metric g may already be written as (5.4)

where the two-dimensional metric γ0 is given by

γ0 = −v2(r)dt2 + dr2.

The scalar curvature of this metric is

κ = −2v′′(r)

v(r)
. (5.7)

This will be important later. The only remaining equations that need to be

satisfied are the Killing conditions ∇(0ξ0) = 0 and ∇(1ξ0) = 0. These equations

give

−v2(r)∂tξ
0 = v(r)

dv(r)

dr
a(t) , −v2(r)∂rξ

0 = −da(t)

dt
.

Differentiating the first condition with respect to r and the second condition

with respect to t and equating the mixed partial derivatives of ξ0 yields

1

a(t)

d2a(t)

dt2
=

(
dv(r)

dr

)2

− v(r)
d2v(r)

dr2
.
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The left hand side of the equation is a function of t only. Hence(
dv(r)

dr

)2

− v(r)
d2v(r)

dr2
= Ω = constant.

Differentiating with respect to r, we find that

0 = v′(r)v′′(r)− v(r)v′′′(r) =
v2(r)

2

∂

∂r

(
−2v′′(r)

v(r)

)
.

Hence, by (5.7), the curvature of γ1 is constant. Furthermore, if the curvature

is κ 6= 0 then we can set its absolute value to one by adding a constant to the

function w.

5.1.1 Calculating the Optical Metrics

To determine the optical metrics resulting from (5.4) we need to consider three

cases depending on the curvature of γ0.

Zero Curvature Case

We can find local coordinates such that γ0 = −dt2 + dr2, and the general HSO

Killing vector of g becomes

ξ = (Ar +B)
∂

∂t
+ (At+ C)

∂

∂r

for some constants A, B and C. If A 6= 0 we translate (r, t) by adding constants

and rescale the Killing vector so that

ξ = r
∂

∂t
+ t

∂

∂r
.

Setting t = r̄ sinh(t̄), r = r̄ cosh(t̄) gives the optical metric of ∂/∂t̄

h̄ = r̄−2(dr̄2 + e−wγ1). (5.8)

If A = 0, then a constant rescaling of t can be used to set ξ = cos θ∂t + sin θ∂r,

where θ is a constant in a range which makes ξ timelike. The pseudoorthogonal

transformation of (r, t) can now be used to set ξ = ∂/∂t, so the optical metric

in this case is

h = dr2 + e−wγ1. (5.9)



104CHAPTER 5. OPTICAL METRICS AND PROJECTIVE EQUIVALENCE

Anti deSitter Case

Now, let us consider the case where the metric has the form (5.4), where the

constant curvature of γ0 is negative. In the AdS2 case we can choose local

coordinates so that

γ0 =
−dt2 + dr2

r2
.

Both γ0 and the resulting Lorentzian metric g have three Killing vectors gener-

ating SL(2,R). In the chosen coordinates these vectors are

K1 =
∂

∂t
, K2 = t

∂

∂t
+ r

∂

∂r
, K3 =

(
t2 + r2

2

)
∂

∂t
+ tr

∂

∂r
,

and

[K1,K2] = K1 , [K2,K3] = K3 , [K1,K3] = K2.

Furthermore, it is easy to show that any linear combination

ξ = AK1 +BK2 + CK3

is an HSO Killing vector for the metric g, which is timelike in some open set to

which we restrict our attention from now on.

Proposition 5.4. For any timelike HSO Killing vector, ξ, of the metric (5.4),

where γ0 has negative constant curvature, the optical metric associated to ξ is

diffeomorphic to

h̄ =
1

(φ+ r̄2)2
dr̄2 +

e−w

φ+ r̄2
γ1 (5.10)

for some constant φ.

Proof. Let us first consider the HSO Killing vectors for which C 6= 0. Then,

adding a constant to t we can set B = 0 without changing the metric. If A = 0

then divide ξ by C/2 to set C = 2. Otherwise, rescale (t, r) by the same constant

factor to set A = ±C/2 and then divide ξ by C/2. Thus, the resulting Killing

vector can take one of three possible forms

ξ = (c+ t2 + r2)
∂

∂t
+ 2tr

∂

∂r
, where c = 0,−1, 1.

We look for a coordinate transformation (t, r)→ (t̄, r̄) such that ξ = ∂/∂t̄.
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• If c = 1, set

t =

√
r̄2 + 4 cos(2t̄)

r̄ −
√
r̄2 + 4 sin(2t̄)

, r =
2

r̄ −
√
r̄2 + 4 sin(2t̄)

.

• If c = −1, set

t =

√
r̄2 − 4(1− e4t̄)√

r̄2 − 4(1 + e4t̄)− 2r̄e2t̄
, r =

4e2t̄

√
r̄2 − 4(1 + e4t̄)− 2r̄e2t̄

.

• If c = 0, set

t =
r̄2t̄

1− r̄2t̄2
, r =

r̄

r̄2t̄2 − 1
.

This gives, in all three cases, γ0 = −(r̄2 +4c)dt̄2 +(r̄2 +4c)−1dr̄2 and the optical

metric (5.10) with φ = 4c.

Now consider the case C = 0. Adding an appropriate constant to t sets B = 0

so that

ξ = t
∂

∂t
+ r

∂

∂r
.

Setting

t =
r̄√

r̄2 − 1
et̄ , r =

1√
r̄2 − 1

et̄

yields ξ = ∂/∂t̄ and γ0 = −(r̄2 − 1)dt̄2 + (r̄2 − 1)−1dr̄2. The optical metric in

this case is (5.10) with φ = −1.

Finally, suppose C = B = 0 so that ξ = ∂
∂t . This gives the optical metric

h̄ = dr2 + r2e−w(x,y)γ1.

A coordinate transformation r = r̄−1 puts it in the form (5.10) with φ = 0.

Thus, we have covered all cases.

deSitter Case

In this case, γ0 can be written in local coordinates as

γ0 =
−dt2 + dr2

t2
.

This switches the role of r and t in the previous section. The general HSO

timelike Killing vector on g is of the form

ξ = AK1 +BK2 + CK3
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where

K1 =
∂

∂r
, K2 = r

∂

∂r
+ t

∂

∂t
, K3 =

(
t2 + r2

2

)
∂

∂r
+ tr

∂

∂t
.

If C 6= 0, then adding a constant to r can be used to set B = 0. The resulting

vector will be time-like (in a certain open set in M) only if AC < 0. In this

case, we can rescale (r, t) by the same constant factor to set A = −C/2, so that

ξ = (−1 + t2 + r2)
∂

∂r
+ 2tr

∂

∂t
.

A coordinate transformation

t =

√
4− r̄2(1 + e4t̄)√

4− r̄2(1− e4t̄) + 2r̄e2t̄
, r = − 4e2t̄

√
4− r̄2(1− e4t̄) + 2r̄e2t̄

gives ξ = ∂/∂t̄ and

γ0 = −(4− r̄2)dt̄2 +
1

4− r̄2
dr̄2

which is defined for |r̄| < 2. The optical metric is

h̄ =
1

(4− r̄2)2
dr̄2 +

e−w

4− r̄2
γ1.

If C = 0 then adding an appropriate constant to r gives ξ = K2. The transfor-

mation

t =
r̄√

1− r̄2
et̄ , r =

1√
1− r̄2

et̄

yields ξ = ∂/∂t̄ and γ0 = −(1 − r̄2)dt̄2 + (1 − r̄2)−1dr̄2. The optical metric in

this case is

h̄ =
1

(1− r̄2)2
dr̄2 +

e−w

1− r̄2
γ1.

Finally if C = B = 0 then ξ is always spacelike and does not lead to an optical

structure. Therefore, we have

Proposition 5.5. For any timelike HSO Killing vector, ξ, of the metric (5.4),

where the curvature of γ0 is positive, the optical metric associated to ξ is diffeo-

morphic to

h̄ =
1

(φ− r̄2)2
dr̄2 +

e−w

φ− r̄2
γ1 (5.11)

for some constant φ > 0.



5.1. PROJECTIVE EQUIVALENCE VS OPTICAL EQUIVALENCE AND MULTI-STATIC METRICS107

5.1.2 Projective Equivalence

Zero Curvature

We claim that h̄ and h given by (5.8) and (5.9) respectively are not projec-

tively equivalent even up to diffeomorphisms: The metric (5.9) admits a non-

trivial affine equivalence, i. e. there exists a covariantly constant symmetric

(0, 2)tensor h1 that is not proportional to (5.9) (in our case h1 = dr2). A result

of Levi Civita1 [10] implies that (5.8) admits a non-affine geodesic equivalence

i.e. there exists a geodesically equivalent metric that is not covariantly constant

in the LeviCivita connection of (5.8). It is given by

h2 =
1

r̄2 + 1

(
r̄2

r̄2 + 1
dr̄2 + e−wγ1

)
.

Thus, if (5.8) and (5.9) were equivalent, there would exist at least three non-

proportional metrics sharing the same geodesics. This in dimension three implies

[67] that h has constant curvature and so it is flat.

Non-zero curvature

Let us first consider the case where γ0 has negative curvature.

Proposition 5.6. Let ξ1 and ξ2 be two time-like HSO Killing vectors for the

metric g defined by (5.4) where γ0 is AdS2. Then, the optical metric associated

to ξ1 is projectively equivalent to the optical metric associated to ξ2 after some

diffeomorphism. Thus all optical metrics are equivalent to (5.10) with φ = 1.

Proof. Let us first consider (5.10). By Proposition 5.4, the optical metric as-

sociated to any time-like HSO Killing vector ξ is given, after diffeomorphism,

by (5.10) for some constant φ. For Killing vectors ξ1 an ξ2, let h1, h2 be the

1The result of Levi-Civita is that the metrics

h = dr2 + h(r)γ , and h̃ =
1

(κf(r) + 1)2
dr2 +

f(r)

κf(r) + 1
γ

are projectively equivalent for any constant κ. Here f is an arbitrary function of r and γ is

an arbitrary rindependent metric. The result holds in any dimension.
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associated optical metrics written in the form (5.10) with corresponding con-

stants φ1 and φ2, respectively. Let Γijk, Γ̄ijk be the connection components of

the metric connection of h1, h2 respectively. Then, we know from the previous

chapter that these metrics are projectively equivalent if and only if there exists

a one-form Υ = Υjdx
j such that

Γ̄ijk = Γijk + δijΥk + δikΥj .

Working this out explicitly, we find that the one-form

Υ =
r̄(φ2 − φ1)

(r̄2 + φ1)(r̄2 + φ2)
dr̄

satisfies this criteria.

The same argument with

Υ =
r̄(φ1 − φ2)

(r̄2 − φ1)(r̄2 − φ2)
dr̄,

can be used in the dS2 case, to show that any two optical metrics of the form

(5.11) are projectively equivalent.

5.1.3 Ultra-Static Metrics

It transpires that, in the ultra-static case, (i.e, when V = 1), we can inte-

grate the Killing equations directly without making the additional assumption

of genericity. In this case, we find that the assumption that the given metric

admits at least two non-proportional timelike HSO Killing vectors implies that

it may locally be written in the form (5.4) with w = constant and γ0 flat. This is

essentially the case considered by Sonego [71]. We shall take our analysis further

than this by considering the optical metrics resulting from this construction.

In the adapted coordinate system, the Killing vector ξ̃ on Σ satisfies

(ξ1, ξ2, ξ3)|t=0 = (1, 0, 0). (5.12)

Now consider the Killing equations for ξ. Using Γ0
ij = 0, we find that ∇(0ξ0) = 0

and ∇(0ξi) = 0 imply

∂tξ
0 = 0 , ew(x,y)∂tξ

1 = ∂rξ
0 , eu(x,y)∂tξ

2 = ∂xξ
0 , eu(x,y)∂tξ

3 = ∂yξ
0.
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Integrating and using the initial conditions (5.12) gives

ξ1 = e−w(x,y)(∂rξ
0)t+ 1 , ξ2 = e−u(x,y)(∂xξ

0)t , ξ3 = e−u(x,y)(∂yξ
0)t.

Now, let us consider the hypersurface orthogonality condition ξ ∧ dξ = 0. We

find

0 = ξ[0∇1ξ2]

= −ξ0

(
(∂r∂xξ

0)t− (∂x∂rξ
0)t− ∂w

∂x
ew
)

+
(
(∂rξ

0)t+ ew
)

(−2∂xξ
0) + (∂xξ

0)t(2∂rξ
0).

This, together with a similar condition resulting from ξ[0∇1ξ3] = 0 implies, after

some algebra,

ξ0 = ρ(r)e
1
2w(x,y). (5.13)

The rest of the hypersurface orthogonality conditions are then satisfied automat-

ically. The remaining Killing equations will yield conditions for ρ(r) as follows:

Equation (5.13) and ∇(2ξ3) = 0 give

∂2w

∂x∂y
+

1

2

(
∂w

∂x

)(
∂w

∂y

)
=

1

2

[(
∂u

∂x

)(
∂w

∂y

)
+

(
∂u

∂y

)(
∂w

∂x

)]
. (5.14)

Similarly, the Killing conditions ∇(2ξ2) = 0 = ∇(3ξ3) give

∂2w

∂x2
+

1

2

(
∂w

∂x

)2

=
1

2

[(
∂u

∂x

)(
∂w

∂x

)
−
(
∂u

∂y

)(
∂w

∂y

)]
,

∂2w

∂y2
+

1

2

(
∂w

∂y

)2

=
1

2

[(
∂u

∂y

)(
∂w

∂y

)
−
(
∂u

∂x

)(
∂w

∂x

)]
. (5.15)

The Killing equations ∇(1ξ2) = 0 = ∇(1ξ3) are now satisfied and the condition

∇(1ξ1) = 0 gives

∂2ρ(r)

∂r2
= −1

4
ew−u

[(
∂w

∂x

)2

+

(
∂w

∂y

)2
]
ρ(r).

The left hand side of this equation depends only on r so the quantity

µ2 ≡ 1

4
ew−u

[(
∂w

∂x

)2

+

(
∂w

∂y

)2
]

(5.16)
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is a constant. The theory then splits into two cases depending on whether or

not this constant µ vanishes.

Case 1: µ 6= 0

Solving (5.16) for u and substituting the partial derivatives of u into (5.14)

and (5.15) gives, after some algebra,

∂2w

∂x2
+
∂2w

∂y2
+

1

2

((
∂w

∂x

)2

+

(
∂w

∂y

)2
)

= 0.

This means that the function ew/2 is harmonic, thus ew(x,y)/2 = G(ζ) + ¯G(ζ),

where G is holomorphic in ζ = x+ iy. A coordinate transformation

X =
2

µ
R(G) cos(µr) , Y =

2

µ
R(G) cos(µr) , Z =

2

µ
I(G) , T = t

yields the Minkowski metric g = −dT 2 + dX2 + dY 2 + dZ2.

Case 2: µ = 0

In this case, the condition (5.16) implies that w(x, y) is a constant so that

the metric (5.3), after rescaling r, becomes

g = −dt2 + dr2 + γ1,

where γ1 = eu(dx2 + dy2). We also have ρ = Ar + B and given the initial

conditions, the Killing vector ξ may be written as

ξ = (Ar +Be
1
2w)

∂

∂t
+ (At+ e

1
2w)

∂

∂r
.

If A 6= 0, we translate (r, t) by adding constants and rescale the Killing vector

so that

ξ = r
∂

∂t
+ t

∂

∂r
.

Setting t = r̄ sinh(t̄), r = r̄ cosh(t̄) gives

g = r̄2(−dt̄2 + h̄),
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where

h̄ = r̄−2(dr̄2 + γ1)

is the optical metric associated to the Killing vector ∂/∂t̄.

If A = 0 then a constant rescaling of t can be used to set ξ = cos θ∂t + sin θ∂r,

where θ is a constant angle in a range which makes ξ timelike. The pseudo-

orthogonal transformation of (r, t) may now be used to set ξ = ∂/∂t, so the

optical metric in this case is

h = dr2 + γ1.

5.2 Optical 2-metric of the Schwarzschild-Tangherlini

Spacetimes

We can use the notion of the optical metric to further analyze the remarkable

properties of the null geodesic structure of any static Lorentzian spacetime.

In [24], the authors consider the properties of null geodesics in Schwarzschild-

Tangherlini spacetimes of n + 1 dimensions. Here, the projection of any such

curve to the space of orbits of the timelike Killing vector lies in a plane and

coincides with an unparametrised geodesic of a two-dimensional optical metric.

It is seen that the cases n = 3 and n = 6 may be related by a conformal mapping

due to Bohlin [25] and Arnold [26]. This begs the question as to whether the

optical 2-metrics in these cases are projectively related and, if not, how can the

relationship described?

Here, we explore the Bohlin-Arnold duality in this context. We analyse the

role of the cosmological constant for these spacetimes and discuss how the zero

energy solutions fit in to the duality. We also consider the possibility of a similar

notion of duality for Reissner-Nordstrom spacetimes in n+ 1 dimensions.
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5.2.1 Null Geodesics and Optical Metrics

Ricci-flat black holes in n+1 dimensions can be described by the Schwarzschild-

Tangherlini (ST) metric [72]

gST = −∆dt2 +
dr2

∆
+ r2dΩ2

n−1, (5.17)

where dΩ2
n is the round metric on the unit (n− 1)-sphere and

∆ = 1− 2Mn

rn−2
.

If we project a null geodesic of this metric to the space of orbits of the Killing

vector ∂
∂t , we find that it lies entirely in a plane through the origin. Endow-

ing this plane with polar coordinates (r, φ) and setting u = 1
r this motion is

described by the differential equation(
du

dφ

)2

+ u2 = 2Mnu
n +

1

b2
(5.18)

where b is a constant impact parameter. Null geodesics of gST may then be

mapped into the motion of a non-relativistic particle moving in an attractive

central force

F ∝ 1

rn+1
⇔ V ∝ 1

rn
.

Thus, one may use results from dynamics to discuss the optics of black holes

(see [73] for a recent application of this idea). Alternatively, equation (5.18)

describes unparametrised geodesics of the optical 2-metric:

ds2
on =

dr2

∆2
+
r2

∆
dφ2 (5.19)

with 0 ≤ φ ≤ 2π, and projected null geodesics of the metric gST precisely

coincide with the totality of unparametrised geodesics described by (5.19) on

each plane through the origin.

Remark: According to [74] and [75], the cases n = 3, 4, 6 are integrable and

may be solved in terms of elliptic functions. For a recent discussion, see [76].

The case n = 3 admits a special solution in the form of a cardioid. The case

n = 6 admits a special solution of the form of a Lemniscate of Bernoulli with

node at the singularity and which touches the horizon.
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5.2.2 Bohlin-Arnold Duality

The following equivalence between dynamical systems in the plane is due to

Arnold [26] but it has its origin in a paper due to Bohlin [25]. He introduces

the complex coordinate ζ = x + iy and uses the Jacobi Principle, according to

which, at fixed energy per unit mass E , the paths described by (5.18) will be

unparametrised geodesics of the metric

ds2
Jacobi = (2E − V (x, y)) dζdζ̄. (5.20)

Now consider a similar system in the complex w = u + iv plane with Jacobi

metric

ds2
Jacobi =

(
2Ẽ − Ṽ (x, y)

)
dwdw̄.

The two systems will coincide under pullback by the conformal map

w = f(ζ)

if

V = −|f ′(ζ)|2Ẽ , E = −|f ′(w)|2Ṽ .

Let us consider only conformal maps of the form w = ζp for now. For these

maps, one finds that V ∝ r2p−2 and Ṽ ∝ r
2−2p

p will work (setting p → 1
p

merely interchanges the role of V and Ṽ ). Furthermore, such expressions for

the potential are physically interesting from the perspective of the classical orbit.

p = 1 gives a trivial case, but some other cases are of special note

• p = −1, i.e, inversion which is the self-dual case with

V ∝ Ṽ ∝ 1

r4
.

• p = 2 takes the simple harmonic oscillator to the Kepler problem

V ∝ r2 , Ṽ ∝ 1

r
.

• p = − 1
2 , this example will be at the core of our discussion and gives

V ∝ 1

r3
, Ṽ ∝ 1

r6
.
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Another useful way to look at things is to note that if(
du

dφ

)2

+ u2 = Auα +B,

for some constants A, B and α, then(
dr

dφ

)2

+ r2 = Ar4−α +Br4.

This seems as though it would be particularly relevant for α = 4. We will come

back to the interpretation of this formulation later.

The duality between black holes in 3+1 and 6+1 dimensions is interesting. One

example of this is the two pairs of special solutions

au =
coshφ− 2

coshφ+ 1
or

coshφ+ 2

coshφ− 1
⇒ F ∝ 1

r4
.

a2u2 =
cosh 2φ− 1

cosh 2φ+ 2
or

cosh 2φ+ 1

cosh 2φ− 2
⇒ F ∝ 1

r7
.

The first goes to the second under the replacement

(au, φ)→ (a2u2, 2φ),

which is precisely Bohlin-Arnold duality.

The special zero energy solutions are not related in the same way. However, we

will see why this is the case in what follows.

5.2.3 Duality and Projective Equivalence

Now that we have demonstrated the Bohlin-Arnold duality, we may probe it

a bit further. The results of the previous section seem to hint at the notion

of projective equivalence. In particular, it appears that the metrics (5.19) for

n = 3 and n = 6 may give rise to the same geodesics as unparametrised curves.

Here, we present an argument for why that is not the case and explore the true

consequences of the duality.

The family of metrics projectively equivalent to (5.19) can be completely deter-

mined for arbitrary n ≥ 3, using the results of Chapter 3 (obviously for n = 2,
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the metric (5.19) is flat):

gn =
dr2

a
(
a− 2aMn

rn−2 + cr2
)2 +

r2

a2
(
a− 2aMn

rn−2 + cr2
)dφ2 (5.21)

for constants a and c (i.e, degree of mobility 2).

This more general metric (5.21) is also familiar from a physical point of view.

It is the optical metric of an ST black hole with cosmological constant Λ =

−n(n−1)
2 c. It is clear from (5.21) that, in the given set of coordinates, the

metrics for n = 3 and n = 6 are not projectively equivalent but, of course,

may be after a coordinate transformation. In general, determining if such a

diffeomorphism exists is a difficult problem. However, we can consider the case

where just the r-coordinate is transformed - this is the type of transformation

suggested by the Bohlin-Arnold duality. If we consider such a coordinate change

for the n = 3 metric (5.21) which results in the n = 6 case, given by r = F (r̃),

then we find that it is impossible to transform both the dr2 and dφ2 terms

simultaneously in the appropriate way.

Hence, it seems that these metrics are not projectively equivalent even after a

diffeomorphism.

5.2.4 Probing the Duality

The equation for unparametrised geodesics of (5.19) is

r′′ − 2(r′)2

r
+
nMn

rn−3
− r = 0

where ’ represents differentiation with respect to φ. Alternatively, we can express

everything in terms of u = 1
r :

u′′ + u = nMnu
n−1 (5.22)

or integrating once

(u′)2 + u2 = 2Mnu
n +

1

b2
, (5.23)

where b is a constant impact parameter, as before. In this form, we can expose

the correspondence between the n = 3 and n = 6 cases. Specifically, let n = 3
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in (5.23) and make the transformation

u = ũp = ũ−2 , φ = pφ̃ = −2φ̃. (5.24)

Then (5.23) becomes

(ũ′)2 + ũ2 = 2M3 +
1

b2
ũ6

whose integral curves coincide with geodesics of the n = 6 metric (5.19) with

mass parameter 2M6 = 1
b2 and impact parameter 1

b̃2
= 2M3. From this analysis,

we get a clearer picture of what is happening. The effect of the transformation

is to switch the roles of the mass (fixed) and the impact parameter (constant

of integration). There do not exist two mass values M3 and M6 so that the

totality of the geodesics from one metric will be mapped into those of the other.

However, if we consider the mass term as a variable integration parameter,

putting it on the same footing as b, then we see how the duality works.

In particular, the entire set of geodesics determined by the one-parameter family

of metrics

g3(m) =
dr2(

1− 2m
r

)2 +
r2

1− 2m
r

dφ2

can be mapped into those determined by the one-parameter family

g6(m) =
dr2(

1− 2m
r4

)2 +
r2

1− 2m
r4

dφ2.

To make this idea more clear for a general n, we can recognize this collection

of geodesics as the integral curves of a 3rd order differential equation (thus

turning the mass term into a constant of integration) which can be constructed

as follows:

From (5.22)

u1−nu′′ + u2−n = nMn

and by differentiating, we obtain

u′′′ + (1− n)
1

u
(u′)(u′′) + (2− n)u′ = 0.

Again, this equation for n = 3 can be mapped into the n = 6 equation via the

change of coordinates

u = ũ−2 , φ = −2φ̃.
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Remark: This procedure will work for any value of n as long as we pick p =

− 2
n−2 which is the transformation implied by the Bohlin-Arnold duality.

5.2.5 Zero Energy Solutions

As said before, the zero energy solution for n = 3 is a cardioid and for the

n = 6 case it is a Lemniscate of Bernoulli. These solutions do not get directly

mapped onto each other but we can try to determine the dual curves. To obtain

them, first note that the zero energy geodesic coincides with the solution of

(5.23) for which 1
b2 → 0. Clearly, for any value of n, this gives rise to a dual

curve with vanishing mass parameter which is just a projected light ray in the

Minkowski case (a straight line). Thus, the zero energy solutions in the n = 3

and n = 6 cases with equal mass can be mapped onto each other but not directly

via Bohlin-Arnold. Indeed, the zero energy curves of the equal mass black holes

for any two values of n can be mapped to each other in this way.

5.2.6 Special Conformal Transformation

In [77], the Bohlin-Arnold duality of forces is also uncovered as a diffeomorphism

of the complex plane which corresponds to a conformal transformation in real

coordinates. In 2 dimensions, all real metrics are conformally flat so, from this

point of view, it does not seem that this transformation is particularly special.

However, by viewing it as a function on the complex plane we restrict our

attention to special types of conformal transformation, which takes account of

the underlying geometry.

Furthermore, if we wish to retain the Jacobi form of the metric, as in (5.20)

such that the roles of the energy E and the potential V (x, y) are switched, then

we must have the transformation in the form f(z) = zp and this provides a map

between geometries with potentials of the form V ∝ rp. Hence, the duality map

lies in a special category of conformal transformations.
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5.3 Reissner-Nordstrom metrics and Duality

One question that arises from the above work is whether a similar notion of

duality exists in the case of charged black holes. To answer this, first note that

the projection of a null geodesic of the metric (5.17) for an arbitrary function

∆ = ∆(r) will lie in a plane, due to the inherent spherical symmetry of (5.17),

and will coincide with an unparametrised geodesic of the optical metric (5.23)

on that plane. The differential equation describing unparametrised geodesics of

(5.23) for general ∆ = ∆(r) is

(u′)2 = −u2∆ +
1

b2
(5.25)

where we have chosen the constant of integration to match up with the definition

of the impact parameter from before.

It is clear from this equation that if we modify ∆ by adding an r2 term then

the set of unparametrised geodesics will be unchanged. This highlights the fact

that the dynamics of light rays in such static space-times will be invariant with

respect to the addition of a cosmological constant.

For the Reissner-Nordstrom metric in n dimensions

∆ = 1− 2Mn

rn−2
+

Q2
n

r2n−4

so that the equation for unparametrised geodesics of the optical metric becomes

(u′)2 + u2 = 2Mnu
n −Q2

nu
2n−2 +

1

b2
. (5.26)

Now let us produce a new equation by making the change of coordinates

u = ũp , φ = pφ̃

Then (5.26) becomes

(ũ′)2 + ũ2 = 2Mnũ
(n−2)p+2 −Q2

nũ
(2n−4)p+2 +

1

b2
ũ2−2p. (5.27)

If there is a duality as in the ST case, then we must be able to put this equation

in the form of (5.26) for some value of n.
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Two of the exponents in (5.27) will be equal only for n = 0, 1 or 2. Otherwise,

we require that one of the new terms takes the place of the impact parameter

i.e, one of the exponents vanishes. Since p = 1 is trivial, this means that we

have two cases to consider

p =
2

2− n
or p =

2

4− 2n
.

In the first case, (5.27) becomes

(ũ′)2 + ũ2 = 2Mn −Q2
nũ
−2 +

1

b2
ũ

2n
n−2

This equation resembles (5.26) only when n = 0 (where the duality is trivial) or

when 2n
n−2 = −6. Hence, there is a non-trivial duality between the cases n = −2

and n = 3
2 .

When p = 2
4−2n , (5.27) becomes

(ũ′)2 + ũ2 = 2Mnũ−Q2
n +

1

b2
ũ

2n−2
n−2

which in the form of (5.26) only for n = 1 (trivial) and n = −2 (the duality

from before).

In summary, we’ve obtained the following dual solutions:

• n = 0

There is a duality between the n = 0 case and the zero energy Reissner-

Nordstrom solution for any value of p where M0 + 1
2b2 is the new mass

parameter and Qn is the charge. Furthermore, this reduces to the ST

solution for n = 1 where M0 + 1
2b2 becomes the mass parameter and −Q2

n

is the integration constant/impact parameter.

• n = 1

Similarly, for n = 1, we obtain a duality with the zero energy R-N solution

for any value of p where M1 is the new mass parameter and
√
Q2
n − 1

b2 is

the charge. This reduces to the ST for n = −2.

• n = 2

This is the flat case with ∆ = constant and the solutions can be mapped
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into the zero energy solution of any ST projected null geodesic by an

appropriate choice of p.

• Finally, there is a duality between the cases n = 3
2 and n = −2 where

the roles of the mass, charge and impact parameters of the former are

interchanged with the charge, impact parameter and mass, respectively,

of the latter. However, this does not correspond to the dynamics of light

rays in some optical 2-metric.

Even though none of these cases gives rise to a duality that is interesting from

the optical metric point of view, we can still view the trajectories as describing

particles moving in a central force of the form

F =
α

rn+1
+

β

r2n−1

for constants α and β making them still physically relevant.

Yet again, it is clear from the expressions (5.26) and (5.27) that the zero energy

solutions can be mapped into each other for any two values of n by appropriate

choice of p.



Chapter 6

Conformal Retraction and

the Kastor-Traschen metric

In the previous chapter, we demonstrated how the light rays of any static

Lorentzian spacetime project to the unparametrised geodesics of the optical

metric associated to the timelike static Killing vector. This structure allows

us to draw conclusions about the null geodesic structure of static metrics, in-

variantly. As stated previously, this formalism has important applications in

general relativity, e.g, [23] and [69]. A recent idea has been to generalise this

notion in order to study of the behaviour of null geodesics of different classes of

spacetimes which admit a particular type of timelike vector field.

Significant progress has been made in the case of stationary metrics [78], where

there are two distinguished geometric structures on the space of orbits B of

the timelike Killing vector field. To obtain these pictures, we must broaden our

scope from the Riemannian geometry of the optical metric discussed in the static

case to Finslerian geometry as introduced previously. Any stationary metric is

locally form

g = −V 2(xi)(dt+ ωj(x
i)dxj)2 + hjkdx

jdxk , i, j, k = 1, . . . , n

121
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where V and ω are some arbitrary function and one-form, respectively, h is an n-

dimensional Riemannian metric and the stationary Killing vector is K = ∂/∂t.

On one hand, the light rays of the stationary metric project down to solutions

of the Zermelo navigation problem on B which can be stated as follows:

Zermelo’s problem: Given a Riemannian metric γij on B, what is the least

time trajectory for a ship moving with constant speed in a wind W?

To see this explicitly, we can rewrite the metric g in Painlevé-Gullstrand form

[79], [80] by choosing

γij =
1

1 + V 2grsωrωs
, W i = V 2gijωj .

Then we have

g =
V 2

1− γijW iW j

[
−dt2 + γij(dx

i −W idt)(dxj −W jdt)
]

The conformal properties of g are encoded in the metric in square brackets and

it can be shown that light rays of this metric project down to solutions of the

Zermelo problem with background metric γij and wind vector W. Moreover,

metrics of this form (is the square brackets) have applications in theoretical

physics, in particular being used as analogue models of black holes and also to

describe electromagnetic waves propagating in moving media.

Alternatively, from the work in Chapter 4, we know there is a duality between

solutions of the Zermelo problem and unparametrised geodesics of a Finsler

metric of Randers form. Indeed, if we choose

αij = V −2hij , α
ij = V 2hij , βi = −ωi,

then our static metric becomes

g = V 2
[
−(dt− βjdxj)2 + αjkdx

jdxk
]
.

From this perspective, it is clear that null geodesics of g will project down to

unparametrised geodesics of the Randers metric

F =
√
αij(x)dxidxj + βi(x)dxi , i, j = 1, . . . , n.
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If βi = −ωi = 0 we make contact with the static case and the Randers norm is

just the norm of a metric. Physically, the integral curves of this system corre-

spond to the magnetic flow due to dβ on the curved manifold {B, αij}.

Hence, overall we have a triality of structures between the integral curves of

Randers structures and Zermelo structures of dimension n and the null curves

of stationary Lorentzian metrics of one dimension higher. As before, conformal

properties of the metric g may be inferred from properties of the correspond-

ing structures on the space of orbits. For example, it is shown in [23] that the

stationary metric g is conformally flat if and only if the corresponding Randers

metric has constant flag curvature.

In this chapter, we generalise this work to another class of metrics - those which

admit a timelike conformal retraction, i.e, there exists a hypersurface-orthogonal

timelike vector field, Θ, for which the conformal structure on its space of orbits

is preserved along the integral curves of Θ. In general, it is not straightforward

to obtain a similar structure on the space of orbits of Θ which mimics the pro-

jection of the null geodesics of g. In the Riemannian case, such metrics have

arisen as supersymmetric solutions of minimal N = 2 gauged supergravity with

anti-self-dual Maxwell field [27]. Moreover, when the anti-self-duality condition

is relaxed in the case of positive cosmological constant, one obtains a solution,

also admitting a conformal retraction, which is the Riemannian analogue of the

well-known Kastor-Traschen metric [28].

In Lorentzian signature, this metric is a time-dependent solution to the Einstein-

Maxwell equations which can be seen to describe an arbitrary number of dy-

namical charged black holes in a deSitter background. Here, we focus on the

null geodesic structure of these metrics to gain some relevant insight into the

general case and in particular, we will see that light rays project down to inte-

gral curves of a system of third order ordinary differential equations (ODEs) on

the space of orbits of Θ.

We will pay particular attention to the one-centre solution (single black hole).

We show that, in the limit as the cosmological constant tends to zero, our sys-

tem of ODEs becomes that describing conformal circles of the flat metric (as
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described in [29]). We use this result to motivate the discussion on the numerol-

ogy of the problem and construct a new third order system in three dimensions.

This formulation also allows us to characterize the projected light rays.

There is a well understood diffeomorphism between the extreme Reissner-Nordstrom

deSitter metric and the Kastor-Traschen metric which we shall make us of to

derive analytic expressions for the projection of null geodesics. We give plots of

some of these curves and discuss the horizon structure in both sets of coordi-

nates.

Included near the end is a discussion of the Kastor-Traschen solution with two

centres. For one such curve, we will illustrate a connection between the null

geodesics of the two-centre Kastor-Traschen metric and a third order system

that arises in the analysis of the one-centre case. We also look at the perturba-

tions away from this plane and give a strict condition for stability.

Throughout, we refer to the projection of geodesics onto the space of orbits of

the conformal retraction Θ as the retraction projection in order to avoid ambi-

guity.

6.1 Conformal Retraction in the Kastor-Traschen

metric

The Kastor-Traschen metrics are a class of time dependent solutions to the

Einstein-Maxwell equations with positive cosmological constant Λ [28]. In local

coordinates, these metrics may be written as

g = − dT 2

(V + cT )2
+ (V + cT )2h (6.1)

with Maxwell 1-form

A =
dT

V + cT
,

where V = V (x) is a harmonic function on the spatial coordinates, c = ±
√

Λ
3

is a constant and

h = hijdx
idxj , i, j = 1, 2, 3
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is the flat 3-dimensional Riemannian metric (which we express in Cartesian

coordinates for now).

Notice here that since V is a harmonic function there is a freedom in defining

the electromagnetic field tensor F = dA so that the Einstein-Maxwell equations

are still satisfied i.e, we can write

F =
1√

1 + ν2

(
dA− νεijkhil

∂V

∂xl
dxj ∧ dxk

)
, i, j, k = 1, 2, 3 (6.2)

where ν is a constant and εijk is totally anti-symmetric in its indices with

ε123 = 1. This allows us to introduce a magnetic field B ∝ ∇V into our defini-

tion of the Kastor-Traschen solution, a notion which will be useful later.

In the limit as c → 0, these metrics reduce to the well-known Majumdar-

Papapetrou solutions [81], [82]. For the M-P metrics, it can be shown that

solutions with

V =

N∑
α=1

mα

|x−wα|
,

where |x−wα| = (hjk(xj −wjα)(xk −wkα))1/2 and wα is a fixed vector for each

α, can be analytically extended to be interpreted as a system of charge equal

mass black holes [83]. In this system, the gravitational forces on each black hole

are balanced by the electrostatic forces. However, when c 6= 0, the black holes

are dynamic and can be observed to coalesce [28].

As noted in the introduction, an interesting property of the K-T metrics is that

they admit a timelike conformal retraction Θ. In other words,

LΘHµν = fHµν + Θ(µCν)

where

Hµν = gµν −
ΘµΘν

Θ2
, Θ2 := gµνΘµΘν

and f and C are an arbitrary function and one-form, respectively. Greek indices

here run over the values 0,1,2,3 and we raise and lower indices using the metric

gµν . In general, am (n+ 1)-dimensional metric g which admits such a timelike

conformal retraction can be written in local coordinates in the form

g = −V 2(T, x)dT 2+2Bi(T, x)dTdxi+

(
γij(x)eφ(T,x) − BiBj

V 2

)
dxidxj , i, j = 1, . . . , n



126CHAPTER 6. CONFORMAL RETRACTION AND THE KASTOR-TRASCHEN METRIC

for time coordinate T , where V and φ are arbitrary functions, Bi is an arbitrary

one-form and γ is a metric of dimension n. The conformal retraction is Θ = ∂
∂T

as it is in (6.1). Furthermore, in the Kastor-Traschen case, the tensor H is given

by

H0µ = 0 , Hµν = gµν otherwise.

The Lie derivative of this tensor is easy to compute

(LΘH)µν = ΘλHµν,λ +HλνΘλ
,µ +HµλΘλ

,ν =
∂

∂T
Hµν = 2c(V + cT )Hµν .

Hence, in this case, our function f and one-form C are given by

f = 2c(V + cT ) , C = 0.

Now, let us decree that under a change of metric g̃ = Ω2g, the choice of con-

formal retraction remains unchanged i.e, Θ̃ = Θ = ∂
∂T . Then, H̃µν = Ω2Hµν

and

(LΘ̃H̃)µν = (LΘΩ2H)µν = (LΘΩ2)Hµν+Ω2(LΘH)µν = (f+2LΘ log Ω)H̃µν+Ω2Θ(µCν).

Hence,

f̃ = f + 2LΘ log Ω , C̃ = Ω2C.

and, for our example, C = 0 for any choice of metric in the conformal class of

g.

6.2 Projection of Null geodesics with arc-length

parametrisation

Since we are considering only the null geodesic structure of the Kastor-Traschen

metrics, we may as well begin with a conformally rescaled version of (6.1) - this

will ease the computation a little. So, let us take a new definition of g

g → 1

(V + cT )2
g = − dT 2

(V + cT )4
+ hjkdx

jdxk.
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For this metric, we can calculate the Christoffel symbols

Γi00 = − 2

(V + cT )5
hij

∂V

∂xj
, Γi0j = 0 = Γijk.

Hence, the geodesic equations for the spatial components may be written as

ẍi − 2

(V + cT )5
hil

∂V

∂xl
Ṫ 2 = F (s)ẋi ; ˙ =

d

ds

where F (s) is some function of the curve parameter s. If we assume that our

geodesics are null, then we can rewrite this equation as

ẍi − 2

V + cT
hil

∂V

∂xl
hjkẋ

j ẋk = F (s)ẋi. (6.3)

Now let us impose the condition that s be the arc-length parameter for the

metric h, i.e, hjkẋ
j ẋk = 1.

⇒ 0 = hjkẋ
j ẍk =

2

V + cT

∂V

∂xk
ẋk + F (s)

⇒ F (s) = − 2

V + cT

∂V

∂xk
ẋk.

Hence, given that we use the arc-length parametrisation, the equation for null

geodesics (6.3) may be written as

ẍi =
2

V + cT

(
hil

∂V

∂xl
− ∂V

∂xk
ẋkẋi

)
. (6.4)

In the case when h in (6.1) is non-flat, we can derive an analogous expression

ẍi + Γ̂ijkẋ
j ẋk =

2

V + cT

(
hil

∂V

∂xl
− ∂V

∂xk
ẋkẋi

)
(6.5)

where Γ̂ijk are the connection components of the metric h. Two properties that

we get from equation (6.4) are

hjkẍ
j ẍk =

2

V + cT

∂V

∂xk
ẍk (6.6)

ẍk
∂V

∂xk
=

2

V + cT

((
∂V

∂xk

)(
∂V

∂xk

)
−
(
∂V

∂xk
ẋk
)2
)

(6.7)

Now, if we differentiate (6.4), we get the following

...
x i = − 2

(V + cT )2

(
∂V

∂xk
ẋk + cṪ

)(
hil

∂V

∂xl
− ∂V

∂xk
ẋkẋi

)
+

2

V + cT

(
hil

∂2V

∂xl∂xm
ẋm − ∂2V

∂xk∂xl
ẋkẋlẋi − ∂V

∂xk
ẍkẋi − ∂V

∂xk
ẋkẍi

)
.
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Then, using the null condition to eliminate Ṫ and equations (6.4), (6.6) and

(6.7) to eliminate the T parameter, we can rewrite this in the form:

...
x i = −hjkẍj ẍkẋi −

3ẍk ∂V
∂xk

2
(
∂V
∂xk

∂V
∂xk
−
(
∂V
∂xk ẋk

)2) ∂V∂xl ẋlẍi − 2c

(
hil

∂V

∂xl
− ∂V

∂xk
ẋkẋi

)

+
2

V + cT

(
hil

∂2V

∂xl∂xm
ẋm − ∂2V

∂xk∂xl
ẋkẋlẋi

)
. (6.8)

Here, we can also eliminate the factor of 2
V+cT by using (6.7) so that we re-

ally have a system of third order ODEs completely dependent on the spatial

coordinates of g only. However, it is useful to keep it in the form above for the

computation in the next section.

6.3 One-Centre Case

As was described in [28], a spacetime containing N charged black holes with

masses mα (α = 1, . . . , N) and charges qα = mα in a deSitter background can

be represented by equation (6.1) with

V =

N∑
α=1

mα

|x−wα|

where wα is a fixed vector for each α. It is easily verified that V is a harmonic

function.

In this section, we look at the case N = 1 where the black hole is situated at

the origin. So, put V = m
|x| . With this definition, we can obtain the following

identities:

∂V

∂xj
= − m

|x|3
hjlx

l ,
∂2V

∂xj∂xk
=

3m

|x|5
hjlx

jhkmx
m − m

|x|3
hjk.

In particular, equation (6.4) becomes

ẍi =
2

V + cT

(
− m

|x|3
xi +

m

|x|3
(x.ẋ)ẋi

)
, (6.9)

where x.ẋ ≡ hjkxj ẋk and all subsequent dot products are taken with respect to

the metric h unless otherwise stated. This allows us to reduce the last term of
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(6.8), that is

2

V + cT

(
hil

∂2V

∂xl∂xm
ẋm − ∂2V

∂xk∂xl
ẋkẋlẋi

)
=

2

V + cT

(
3m

|x|5
(x.ẋ)xi − 3m

|x|5
(x.ẋ)2ẋi

)
= − 3

|x|2
(x.ẋ)ẍi.

With this simplification in mind, we can rewrite our system of third order ODEs

(6.8) as

...
x i = −|ẍ|2ẋi +

2mc

|x|3
(
xi − (x.ẋ)ẋi

)
− 3(x.ẋ)

(
1

|x|2
+

x.ẍ

2(|x|2 − (x.ẋ)2)

)
ẍi.

(6.10)

Any null geodesic of the Kastor-Traschen metric g will project down to an

integral curve of this system of third-order ODEs.

6.3.1 Conformal Circles

As c → 0, it’s obvious that the second term on the right-hand side of (6.10)

vanishes. However, using the second equation in (6.7) with c = 0 and V = m
|x| ,

we also find that

x.ẍ = 2

(
(x.ẋ)2

|x|2
− 1

)
and the third term vanishes. To see the vanishing of the third term explicitly

occuring with the vanishing of c, it seems we need to reintroduce the time

coordinate T , in some way. For example, using (6.7) we can write (6.10) as

...
x i = −|ẍ|2ẋi +

2mc

|x|3
(
xi − (x.ẋ)ẋi

)
+ 3(x.ẋ)

(
cT |x|(x.ẍ)

2m(|x|2 − (x.ẋ)2)

)
ẍi.

Hence, as c→ 0, null geodesics satisfy

...
x i = −|ẍ|2ẋi. (6.11)

We shall see that this system (6.11) occupies a central role in the theory of

conformally flat manifolds.

In general, given a conformal structure [h̃] on an n-dimensional manifold, there

is a distinguished family of curves, known as the conformal circles. These curves



130CHAPTER 6. CONFORMAL RETRACTION AND THE KASTOR-TRASCHEN METRIC

arise as the integral curves of a system of third order ODEs, see [84]. To write

this system down, let us choose a metric h̃ in the conformal class with torsion-

free connection Γ̃ijk = Γ̃i(jk), Ricci tensor Rjk and scalar curvature R. Then, the

Schouten tensor Pjk is defined as

Pjk = − 1

n− 2

(
Rjk −

R

2(n− 1)
h̃jk

)
.

Furthermore, define the vector components U i = ẋi and Ai = ẍi + Γ̃ijkẋ
j ẋk

so that U.A = h̃jkU
jAk, etc, and scalar products coincide with our previous

definitions when h̃ is flat. Then, a curve is a conformal circle of [h̃] if it satisfies

dAi

ds
+ Γ̃ijkA

jUk =
3U.A

|U|2
Ai − 3|A|2

2|U|2
U i + |U|2U jP ij − 2PjkU

jUkU i (6.12)

where there is no restriction on the parameter s. Equation (6.12) is invariant

with respect to conformal transformations, h̃ → Ω2h̃, and so, conformal circles

are defined invariantly by any metric in the conformal class. These curves have

arisen in a physical context in [85] where the authors have used them to discuss

the asymptotics of Einstein’s equations. Furthermore, properties of “conformal

geodesics” (lifts of conformal circles to the bundle of second order frames over

the manifold endowed with the conformal Cartan connection) in vacuum and

warped-product spacetimes have been studied in [86].

It is shown in [84] that the conformal circles of a given conformal manifold can

be equally defined as the set of integral curves of the system of ODEs

dAi

ds
+ Γ̃ijkA

jUk = −|A|2U i + U jP ij − PjkU jUkU i (6.13)

where, here, s is required to be the arc-length parameter of the metric h̃. This

formulation was originally given by Yano in [29] and is more useful for our

purposes. If we now let h̃ be the flat Riemannian metric, equation (6.13) reduces

to (6.11).

Hence, as c→ 0 in the one-centre Kastor-Traschen metric, null geodesics project

down to conformal circles of the flat metric in three dimensions. It is easily

verified, that the set of integral curves of (6.11) in three dimensions is precisely

the set of all circles in R3.
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We should note here that we get the same result when we let m → 0. Again,

the second term on the right-hand side of (6.10) obviously vanishes and (6.9)

reduces to

ẍi = 0,

so the third term also vanishes.

6.4 Characterisation of Null geodesics

In the preceding sections, we have determined a system of third-order ODEs

which the projected null geodesics of g along the conformal retraction Θ must

satisfy. However, it is not clear that, given an integral curve of (6.8), it will

necessarily be the projection of some light ray of g. In fact, we can show this

not to be the case and it transpires that the third order ODE system (6.8) is

not uniquely defined. In this section, we discuss this point and construct a new

third order system in three dimensions for which the integral curves constitute

a retraction projection of a special set of null curves of the Kastor-Traschen

metric, which have a physical interpretation. The projected null geodesics form

a subset of these curves which we can characterize.

For example, let us consider the case c→ 0 for the one-centre metric. Here, we

found that the integral curves of (6.11) will be the set of circles in R3.

However, as c→ 0, the metric g becomes static with static Killing vector Θ = ∂
∂T

and it is well known that the null geodesics of this metric project down to the

unparametrised geodesics of the associated optical metric

hopt =

(
m

|x|

)4

hjkdx
jdxk.

One can check that the unparametrised geodesics of this metric will be precisely

the set of circles in R3 which pass through the origin. Hence, only a subset of

the integral curves of (6.11) will coincide with the projected null geodesics of

g. Note that this is also the case for m→ 0 where projected null geodesics are

described by ẍi = 0 - straight lines. We can check the general numerology here
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to see what happens.

Firstly, we note that the set of unparametrised geodesics of an arbitrary metric

ĝ on some open set U ⊂ Rn will lift to a foliation, by the geodesic spray, of the

projectivised tangent bundle P(TU) which we can think of as a 1-dimensional

fibration over some (2n − 2)-dimensional space, Z, with each point in Z coin-

ciding with a unique geodesic in U . Hence, the set of unparametrised geodesics

of an n-dimensional manifold constitute a (2n− 2)-parameter family of curves.

Taking the specific example of the Kastor-Traschen metric g, we have n = 4 and

so the number of parameters describing unparametrised geodesics is 6. Invoking

the null condition, we see that the retraction projection of unparametrised null

geodesics will, in general, constitute a 5-parameter family of curves in R3 - in

the special case where the conformal retraction is a static Killing vector, this is

a 4-parameter family.

On the other hand, let us consider a set of curves on some open set U ⊂ Rn de-

scribed by a system of third order ODEs. If we write this in an unparametrised

way - as a set of (n− 1) third-order ODEs in terms of one of the coordinates -

then we see that the integral curves of this system will lift to a foliation of the

jet bundle J2(U,R) which is (3n− 2)-dimensional.

Hence the unparametrised integral curves of a system of third-order ODEs in n

dimensions constitutes a (3n − 3)-parameter family of paths. When n = 3, for

example, we will have a 6-parameter family of such curves which is consistent

with our results above.

Hence, the set of projected null geodesics of the Kastor-Traschen metric, g, will

constitute a 5-dimensional subset of the 6-dimensional family of unparametrised

integral curves of (6.8) (except in the static case).

So, a natural question arises: Given that we construct a third order system

(such as (6.8)) for which the projected null geodesics form a proper subset of

the set of integral curves then to what do the other integral curves correspond?
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The system (6.8) does not help us to answer this question but we can de-

rive a different third order system which will. For convenience and clarity on

this point, let us write our system of equations describing null geodesics of the

Kastor-Traschen metric (6.4) in three-dimensional vector notation i.e,

ẍ =
2

V (x) + cT
(∇V − (∇V.ẋ)ẋ) =

2

V + cT
(ẋ× (∇V × ẋ)) .

Now let us consider a modification of this equation by adding an orthogonal

term on the right-hand side, that is

ẍ =
2

V + cT
(ẋ× (∇V × ẋ)) + λ(ẋ×∇V ) (6.14)

where λ is a constant. Clearly, null geodesics satisfy this equation for λ =

0. More interestingly, there is a six-parameter family of curves which satisfy

this equation for some value of λ. Hence, we might expect these curves to be

the integral curves of some third order system in three dimensions which is

independent of λ.

First from (6.14), we can derive the following equations by taking specific scalar

products:

|ẍ|2 =
2

V + cT
∇V.ẍ + λ(ẋ×∇V ).ẍ

ẍ.∇V =
2

V + cT
|∇V × ẋ|2

λ =
ẍ.(ẋ×∇V )

|ẋ×∇V |2
. (6.15)

Differentiating (6.14) and simplifying using the first two equations of (6.15), we

derive the system of third order ODEs

...
x = −|ẍ|2ẋ− 3

2

ẍ.∇V
|ẋ×∇V |2

(ẋ.∇V )ẍ− 2c(ẋ× (∇V × ẋ)) +
ẍ.∇V
|ẋ×∇V |2

(
ẋ×

(
d∇V
ds
× ẋ

))
+ λ

[(
ẍ.∇V
|ẋ×∇V |2

)
(ẋ.∇V )ẍ×∇V + ((ẋ×∇V ).ẍ)ẋ + ẍ×∇V + ẋ× d∇V

ds

]
.

For λ = 0, this system of equations reduces to (6.8) with the 2
V+cT term re-

placed using (6.7) as expected. We can eliminate λ from this equation using

the third equation of (6.15). Notice then that the vanishing of λ coincides with
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ẍ.(ẋ×∇V ) = 0 i.e, the vectors ẍ, ẋ and ∇V lie in the same plane. In particular,

for the one centre case, the projections of null geodesics lie in a plane through

the origin (centre). Overall, we have the following result

Proposition 6.1 If c 6= 0, the retraction projection of the set of null curves

satisfying (6.14) for some value of λ coincides with the set of integral curves of

...
x = −|ẍ|2ẋ− 3

2

ẍ.∇V
|ẋ×∇V |2

(ẋ.∇V )ẍ− 2c(ẋ× (∇V × ẋ))

+
ẍ.∇V
|ẋ×∇V |2

(
ẋ×

(
d∇V
ds
× ẋ

))
+

ẍ.(ẋ×∇V )

|ẋ×∇V |2
[( ẍ.∇V
|ẋ×∇V |2

)
(ẋ.∇V )ẍ×∇V

+ ((ẋ×∇V ).ẍ)ẋ +
d

ds
(ẋ×∇V )

]
. (6.16)

Furthermore, the projected null geodesics are precisely the integral curves of this

system for which ẍ.(ẋ×∇V ) = 0.

Proof. As we have shown, any integral curve of (6.14) satisfies (6.16). To ver-

ify the reverse inclusion, we just need to consider the initial data unique to

one integral curve γ of (6.16) which will be given by seven parameters - three

for initial position, two for initial unit velocity and two for initial acceleration

(perpendicular to the velocity vector). By varying the values of T and λ, it is

clear that there is an integral curve of (6.14) with the same initial data and its

projection necessarily coincides with γ.

The proposition doesn’t work for c = 0 as we cannot use T as a parameter

for the initial acceleration data in the above proof.

Magnetic Flow

The addition of this extra λ term may seem a little ad hoc here but is actually

a sensible choice when we see the proof of this proposition i.e, we need to add

a term orthogonal to ẋ but not in the direction of ẋ× (∇V × ẋ). Furthermore,

this system of equations (6.14) can be interpreted as describing a magnetic flow

in the background of the Kastor-Traschen metric with magnetic field B ∝ ∇V .
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This is precisely the magnetic field we saw in (6.2) when discussing the freedom

in the 2-form F and so these additional integral curves occupy a significant role

in the geometry of the Kastor-Traschen metric.

6.4.1 A Solution in the One-Centre Case

Let ϕ = 4mc and define a curve in the plane x3 = 0 by

xi(s) =

(
ϕs cos

(√
1− ϕ2

ϕ
log(ϕs)

)
, ϕs sin

(√
1− ϕ2

ϕ
log(ϕs)

)
, 0

)
. (6.17)

Then this curve satisfies hjkẋ
j ẋk = 1 and is an integral curve of the system

of ODEs (6.16) for V = m
|x| . Furthermore, since it lies on a plane through the

origin, we know, by Proposition 6.1, that it must be the retraction projection

of a null geodesic of g.

We can plot this curve in the plane and realise that it is just a reparametrised

logarithmic spiral. This example is motivated by work in section (WHAT?)

-1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

Figure 6.1: Logarithmic Spiral with ϕ = 0.1

where we will show how to derive analytic expressions for the projected null

geodesics of the one-centre K-T metric and thus, the integral curves of (6.10)

which lie on a plane through the origin. We should note here, that the limit

c→ 0, for this example, is ill-defined. By L’Hopital’s Rule, both expressions in

(6.17) tend to zero, in this limit, for any value of s.
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6.5 Geodesics obtained from Extremal RNdS

In this section, we will make use of a diffeomorphism between the one-centre

Kastor-Traschen and the extremal Reissner-Nordstrom deSitter metrics. The

advantage of this is that analytic solutions for the null geodesic equations of the

RNdS metrics are well known [30]. We will show how to derive these solutions

which will enable us to obtain analytic solutions in the Kastor-Traschen coor-

dinates and plot the retraction projection of the null geodesics in some cases.

6.5.1 RNdS Transformation

We begin with the special Kastor-Traschen metric with potential V = m
|x| and

now use spherical polar coordinates (|x| = R) to represent the flat metric h i.e,

g = − 1(
m
R + cT

)2 dT 2 +
(m
R

+ cT
)2

(dR2 +R2(dθ2 + sin2 θdφ2)). (6.18)

Assuming that c 6= 0 we can make the coordinate transformation

R = e−cS , T =
r −m
c

ecS . (6.19)

If we choose t such that dt = dS + r−m
c∆r

dr, where ∆r = (r −m)2 − c2r4, then

the metric becomes

g = −∆r

r2
dt2 +

r2

∆r
dr2 + r2(dθ2 + sin2 θdφ2). (6.20)

The analogous coordinate transformation in the Riemannian case was given in

[27]. Here, the resulting metric is the Reissner-Nordstrom deSitter spacetime in

the extremal case with charge Q = m and c = ±
√

Λ
3 where Λ is the cosmological

constant. From now on, we will refer to t as static time in order to distinguish

it from the time T . We also take c > 0 as the definition of (6.20) is invariant

with respect to c → −c and we can compensate for it in the Kastor-Traschen

case by sending T → −T .

Null and timelike geodesics of black hole spacetimes with cosmological constant

were studied extensively in [30]. In particular, the author discussed the different



6.5. GEODESICS OBTAINED FROM EXTREMAL RNDS 137

types of orbits possible for Reissner-Nordstrom metrics and showed how to de-

rive analytic formulae for the geodesics. The RNdS metric admits the timelike

static Killing vector ∂
∂t and we can plot the projection of the null geodesics to

the space of orbits of ∂
∂t , analogous to what was done in [30], which we call the

static projection. We then use this information to plot the null geodesics in the

Kastor-Traschen metric projected along the conformal retraction Θ, which, by

Proposition 6.1, will be solutions of the system (6.16) and lie on a plane through

the origin.

Null geodesics of the RNdS metric (6.20) satisfy

−∆r

r2
ṫ2 +

r2

∆r
ṙ2 + r2(θ̇2 + sin2 θ φ̇2) = 0. (6.21)

The Euler-Lagrange equation for θ gives

d

ds
(2r2θ̇) = 2r2 sin θ cos θφ̇2,

where s parameterizes the curves. By a choice of axes, we can set the initial

conditions to be θ̇ = 0, θ = π
2 , which results in motion in the equatorial plane

- this coincides with the results of Proposition 6.1. Similarly, from the Euler-

Lagrange equation for φ and t we find that

r2φ̇ = Φ

−2∆r

r2
ṫ = −2E

where Φ and E are constants. Let us focus our attention on non-radial geodesics

and assume that Φ > 0 so that the geodesics are traced out in the direction of

increasing φ. The null equation (6.21) implies that

− r2

∆r
E2 +

r2

∆r
ṙ2 +

Φ2

r2
= 0

or

ṙ2 = E2 − ∆r

r4
Φ2 ≡ E2 − Veff . (6.22)

Here Veff is the effective potential of the system which we can plot as a function

of r.
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Figure 6.2: Plot of Veff as a function of r

We note here that physically acceptable regions for null geodesics are those for

which E2 ≥ Veff . From the diagram, it is clear that we have two kinds of orbits

- bound orbits (where r oscillates between two boundary values) and unbound

flyby orbits (where r starts at ∞, then approaches a periapsis and goes back to

∞). This is consistent with the results of [30] and we use the same terminology.

6.5.2 Circular Orbits

As was observed in [87], the extremum values of Veff occur at r = m and

r = 2m, independent of the cosmological constant (in this case, independent of

c), resulting in circular orbits. The minimum of this function will not always

be non-negative and, since E2 ≥ 0, it will not be attained for some values of

c. Indeed, unless c = 0, we will not get a circular orbit at r = m. However,

the transformation for R and T does not behave well in this limit and therefore

does not allow us to see what this circular orbit corresponds to in the Kastor-

Traschen coordinates.

On the other hand, we will observe a circular orbit at r = 2m as long as

4mc ≤ 1 (beyond this, the local maximum drops below the axis in Figure 6.2).

For this solution, there will be some factors of c in the static time variable t and

hence, when we make the coordinate transformation to R and T , the orbit in

the retraction projection will be dependent on c. In fact, when we do this, the

resulting orbit is just essentially a constant multiple of that given section 6.4.1

- a logarithmic spiral in some hyperplane of the space of orbits of the conformal

retraction Θ, which passes through the origin.
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6.5.3 Horizon Structure and Nature of Orbits

Clearly, for E2 > Vmax, all orbits are unbound in the RNdS coordinates whereas

for E2 < Vmax, we can get both bound and unbound orbits. If m = 0 then this

graph becomes Veff = 1
r2 + const, and there are no bound orbits.

Using the chain rule and the E-L equation for φ, we can rewrite equation (6.22)

as (
dr

dφ

)2

= (κ2 + c2)r4 − (r −m)2 (6.23)

where κ = E
Φ . Also,

dt

dφ
= κ

r4

∆r
.

Note here that roots of ∆r (which we inevitably cross for some orbits) will cause

infinities in dt
dφ and in t itself - this will lead to a null geodesic tracing out a

finite path in an infinite amount of static time (see analysis). Radii at which

Veff = 0, or equally ∆r = 0, correspond to horizons. In particular, if:

• 4mc < 1; there are three horizons (two black hole horizons and one cos-

mological horizon) with rbh− < rbh+ < rch. The geometry is static for

r < rbh−, rbh+ < r < rch and corresponds to a black hole in a de-Sitter

universe.

• 4mc > 1; there is only one cosmological horizon. The geometry is static

for r < rch and corresponds to a naked singularity in a de-Sitter universe.

The metric (6.20) has a singularity at r = 0 which is covered by the Cauchy

horizon r = rbh− in the case 4mc < 1. The surface gravity at this inner horizon

is larger than that at the cosmological horizon, in particular,

κ2
bh− − κ2

ch = 8mc3 > 0

and so, by a result in [88], the Cauchy horizon is unstable. Hence, some of the

trajectories in the Reissner-Nordstrom-deSitter metric will be unphysical (in

particular when r < rbh−). Furthermore the case 4mc > 1 presents a possible

violation of Penrose’s cosmic censorship conjecture [89] and may therefore also
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be unphysical.

It was noted in [90] that, for the Reissner-Nordstrom deSitter metric in the

extreme charge equal mass case, the Hawking temperature of the outer black

hole horizon is the same, in magnitude, as that of the cosmological horizon

endowing a notion of thermodynamic stability among all RNdS solutions.

The plots of projected null geodesics can be obtained in the Kastor-Traschen

framework by solving equation (6.23) and making a coordinate transformation

(t, r) → (T,R). As an example, we will perform this calculation for bound

orbits in the three-horizon case (when 4mc < 1). The other curves can be

similarly obtained by the reader but do not add much to the discussion. In

the following example, we highlight when a trajectory is physical or when it is

purely of mathematical interest.

Bound Orbits in Kastor-Traschen with Three Horizons

This case corresponds to the inequalities

4mλ < 1 ,
−1 +

√
1 + 4mλ

2λ
≤ r ≤ 1−

√
1− 4mλ

2λ
.

For bound orbits, any solution of (6.23) will oscillate between the two extremal

values for r given above. Beginning with this equation, we can rearrange to get

±
∫

dr√
λ2
(
r4 −

(
r−m
λ

)) = φ+ γ, (6.24)

where γ is a constant of integration. With the given bounds on r, we can

integrate the left hand side of this equation and obtain

∓
2F

(
arcsin

(√
2
√

1−4mλ(−1−2rλ+
√

1+4mλ)

(1−2rλ+
√

1−4mλ)(−2+
√

1+4mλ+
√

1−4mλ)

)
, 1

2 −
1

2
√

1−16m2λ2

)
(1− 16m2λ2)1/4

= φ+γ

where F is the elliptic integral of the first kind. We can solve this equation for

r = r(φ) to get

r(φ) =
sin2(J∓(φ))(1 +

√
1− 4mλ)(

√
1 + 4mλ+

√
1− 4mλ− 2) + 2

√
1− 4mλ(1−

√
1 + 4mλ)

2λ(sin2(J∓(φ))(
√

1 + 4mλ+
√

1− 4mλ− 2)− 2
√

1− 4mλ)
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where

J∓(φ) = Jac

(
∓ (1− 16m2λ2)1/4

2
(φ+ γ),

1

2
− 1

2
√

1− 16m2λ2

)
and Jac is the Jacobi Amplitude for the elliptic integral (i.e, F (a, b) = c⇒ a =

Jac(c, b)). To obtain the oscillatory solution we use J(−1)n(φ) whenever

−
2F
(
n−1

2 π, 1
2 −

1
2
√

1−16m2λ2

)
(1− 16m2λ2)1/4

> φ+ γ ≥ −
2F
(
n
2π,

1
2 −

1
2
√

1−16m2λ2

)
(1− 16m2λ2)1/4

.

We can now plot the static projection of the null geodesics of the RNdS metric.

For this purpose, we take the values m = 1, κ = 1
6 , c = 1

8 and γ = 0.
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Figure 6.3: Static projection of null

geodesic, 0 ≤ φ ≤ 2π
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Figure 6.4: 0 ≤ φ ≤ 10π

As we mentioned before, it is important that we be careful here with respect to

the range of the static time coordinate. In the above plots, the function r will,

at several stages, cross a value for which ∆r = 0 and satisfy r < rbh−, where the

trajectory is unphysical. This is reflected by the fact that each horizon crossing

leads to an infinity in the static time t. For example, if we take a segment of

this orbit which passes from the rbh− to rbh+, we obtain the following plots for

the geodesic itself and t as a function of φ on this range. Using the transforma-

tion (6.19) together with the subsequent one for S, we can plot the retraction

projection of this null geodesic in the Kastor-Traschen coordinates. Similarly,

we can determine the time T as a function of φ and we get the following plots:

As R → 0, the time T → ∞. However, we see that as R approaches the finite
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Figure 6.5: Null geodesic traversing

between black hole horizons rbh− and

rbh+.
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Figure 6.6: Static time t as a function

of φ on this interval.
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Figure 6.7: Retraction projection of null

geodesic of the K-T metric
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Figure 6.8: Time T as a function of φ

on this interval.

positive value, T also approaches a finite value. This suggests that we can ex-

tend our geodesic in the direction of decreasing T and continue the curve in the

retraction projection. As one would expect, this can be done and the extension

can be constructed by considering the part of the geodesic in the RNdS coor-

dinates which begins at rbh−, decreases to the minimum value of r and then

increases to rbh− again. Of course, this curve lies completely within the Cauchy

horizon and so, it is an unphysical extension but we can discuss it mathemati-

cally nonetheless.
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(Note: For this construction to provide the correct extension of the null geodesic,

we must set the static time t to be decreasing on this interval).

Hence, we can plot the full retraction projection of this null geodesic in the

Kastor-Traschen coordinates. We include a plot of the time T here as a func-

tion of φ to demonstrate that it is, indeed, the projection of the whole geodesic

- here the null geodesic begins at the spatial origin R = 0 at T → −∞, traces

the curve in the direction of increasing φ and returns to the origin as T → +∞:
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R cos Φ

0.005

0.010

R sin Φ

Figure 6.9: Retraction projection of null

geodesic in K-T coordinates.
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Figure 6.10: Time T as a function of φ

on this interval.

Conformal Diagram

To gain a better understanding of the geometry here, let us plot the trajectory of

this null geodesic in the Penrose-Carter diagram of the spacetime. The authors

in [91] have constructed this diagram and have highlighted the region covered

by the “cosmological” (Kastor-Traschen) coordinates. We give a copy of this

diagram and include a null geodesic which runs from a point at r < rbh− to the

outer black hole horizon rbh+.

The authors of [91] make the point that the cosmological coordinates “smoothly

cover the entire region from r = 0 to r = ∞.” From the diagram, we see that

a single (T,R) chart (bounded by the dotted red line) covers four (t, r) charts

encompassing all three horizons. As the light ray crosses the unstable Cauchy
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Figure 6.11: Penrose-Carter diagram of extremal Reissner-Nordstrom deSitter

spacetime. The region bounded by the red dotted line represents a single (T,R)

chart.

horizon, the static time t → ∞. However in the Kastor-Traschen coordinates,

we only have T → ∞ as R → 0 and so, mathematically, the Kastor-Traschen

metric does not see a time singularity at the inner Cauchy horizon.

6.6 Two-Centre Case

Here, we make some remarks about the Kastor-Traschen metric with two black

holes (N = 2). Analytic expressions for null geodesics are much more difficult

to obtain but we can make some remarks about the general theory. First of all,

let us write our Kastor-Traschen metric g in cylindrical polar coordinates.

− 1

(V + cT )2
dT 2 + (V + cT )2(dρ2 + ρ2dφ2 + dz2)

so that, without loss of generality, the singularities are placed on the z-axis,

equidistant from the origin. That is

V =
m1

(ρ2 + (z − w)2)1/2
+

m2

(ρ2 + (z + w)2)1/2
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where m1 and m2 are the black hole masses and 2w is the distance between the

centres. For this metric, we have the following result regarding the retraction

projection of null geodesics.

Proposition 6.1. If the retraction projection of a null geodesic has the property

that its initial position and velocity lie in a plane passing through the two centres,

then the entire projected null geodesic lies in that plane.

Proof. Planes which pass through both centres are characterised by the condi-

tion φ = constant. Then, the retraction projection of a null geodesic lies in such

a plane if and only if φ̇ = 0 at all points on the curve. Therefore, we can verify

the proposition by showing that, at any point where φ̇ = 0, we have φ̈ = 0. But,

from equation (6.5), null geodesics of Kastor-Traschen satisfy

φ̈+
2

ρ
ρ̇φ̇ = − 2

V + cT

(
∂V

∂ρ
ρ̇+

∂V

∂z
ż

)
φ̇

and the result follows.

Now let us impose the additional condition m1 = m2 = M . Then, we

discover another fixed plane of null geodesics.

Proposition 6.2. If the retraction projection of a null geodesic has the property

that its initial position and velocity lie in the plane passing orthogonally through

the midpoint of the line segment joining the two centres, then the entire projected

null geodesic lies in that plane.

Proof. Clearly, the plane in question is given, in cylindrical polar coordinates,

by z = 0 and any null geodesic which lies completely in this plane will satisfy

the condition ż = 0 at all points on the curve. Therefore, if the initial conditions

z = 0, ż = 0 imply that z̈ = 0 initially, then the proposition is proved. Again,

by equation (6.5), null geodesics of g satisfy

z̈ =
2

V + cT

(
∂V

∂z
−
(
∂V

∂ρ
ρ̇+

∂V

∂z
ż

)
ż

)
and the result follows because

∂V

∂z

∣∣∣∣
z=0

=
Ma

(ρ2 + w2)3/2
− Ma

(ρ2 + w2)3/2
= 0.



146CHAPTER 6. CONFORMAL RETRACTION AND THE KASTOR-TRASCHEN METRIC

6.6.1 Third Order System describing Null geodesics

In section 6.4, we discovered that the third order system used to describe the

retraction projection of null geodesics of the Kastor-Traschen metric was not

uniquely defined and by considering a new formulation we could obtain an in-

terpretation of the entire set of integral curves. Here, let us take yet another

system of third order ODEs, the integral curves of which contain the projected

null geodesics of the one-centre Kastor-Traschen metric by eliminating the xi

term from the system (6.10), using (6.9) and (6.7) to obtain

...
x i = −|ẍ|2ẋi +

[
2mc

|x|3

(
x.ẍ

|ẍ|2

)
− 3(x.ẋ)

(
1

|x|2
+

x.ẍ

2(|x|2 − (x.ẋ)2)

)]
ẍi. (6.25)

Then, we have the following result

Proposition 6.3. Any integral curve of the system of ODEs (6.25), lies in

a plane. Furthermore, if c 6= 0, such an integral curve will coincide with a

projected null geodesic of the Kastor-Traschen metric g if and only if this plane

passes through the origin.

Proof. We construct the Frenet-Serret frame for a given integral curve of (6.25)

T = ẋ , N =
ẍ

|ẍ|
, B = T×N.

Then, the Frenet-Serret formulas give

Ṫ = κN,

Ṅ = −κT + τB,

where κ and τ are the curvature and torsion of the curve, respectively. The first

of these equations gives us κ = |ẍ|. Then, if we rewrite our system (6.25) in

this frame, we obtain

Ṅ = −κT

and τ = 0, necessarily. Hence, a given integral curve of this system must lie in

a plane.

We have already established that the projected null geodesics in the one-centre
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case will lie in a plane passing through the origin. To prove the “if” part of the

proposition, we note that the initial data of an integral curve of (6.25) which

lies on a plane through the origin is specified by six parameters - three for initial

position, two for initial velocity (since it is unit in the arclength parametrisation)

and one for the acceleration (in the plane of the position and velocity vectors,

perpendicular to the velocity). Then, this curve is a projected null geodesic of

the Kastor-Traschen metric if there exists a null geodesic with the same initial

data. But, we can see that this is the case by analysing equation (6.9). Clearly,

we can specify initial position and unit velocity vectors as we please. Then, the

initial acceleration vector lies in the same plane perpendicular to the velocity

and we can specify its magnitude by choosing the appropriate value of T .

So, each integral curve of (6.25) lies in some plane but unlike the case of

(6.16), these integral curves have no obvious interpretation in terms of the

Kastor-Traschen metric unless this plane passes through the origin. However, as

we observe, they do arise as the projections of null geodesics for the two-centre

case - in particular, those outlined by Proposition 6.3.

To see this, let us consider the original expression for the Kastor-Traschen met-

ric (6.1) with h as the flat metric in Cartesian coordinates with the potential

written as follows

V =
m1

|x−w|
+

m2

|x + w|

where w = (wi) is a fixed vector. For ease of notation, let us define the vectors

Xi
1 =

m1

|x−w|3
(xi − wi) , Xi

2 =
m2

|x + w|3
(xi + wi).

Then, null geodesics of the Kastor-Traschen metric are integral curves of the
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following system of third order ODEs

...
x i = −|ẍ|2ẋi − 3(X1 + X2).ẍ(X1 + X2).ẋ

2 (X1 + X2) . (X1 + X2 − ẋ)
ẍi + 2c

(
Xi

1 +Xi
2 − ((X1 + X2).ẋ)ẋi

)
− (X1 + X2).ẍ

(X1 + X2) . (X1 + X2 − ẋ)

(
3|x−w|
m1

(X1.ẋ)
(
Xi

1 − (X1.ẋ)ẋi
)

+
3|x + w|
m2

(X2.ẋ)
(
Xi

2 − (X2.ẋ)ẋi
))
.

This system is difficult to analyze, in general, but now let us assume that m1 =

m2 = M and restrict attention to null geodesics which lie on the plane passing

through the origin, orthogonal to the line between the two centres.

Then |x + w| = |x − w| and since the acceleration and velocity vectors are

perpendicular to w, we have w.ẋ = w.ẍ = 0. By making some simplifications

using the geodesic equation (6.4), as in the one-centre case, we can replace the

system above by

...
x i = −|ẍ|2ẋi+

[
4Mc

|x−w|3

(
x.ẍ

|ẍ|2

)
− 3(x.ẋ)

(
1

|x−w|2
+

x.ẍ

2(|x−w|2 − (x.ẋ)2)

)]
ẍi.

(6.26)

Now we notice that this is precisely the system of third order ODEs (6.25) for

the single centre case with black hole mass m = 2M , where |x−w| represents

the distance from the centre.

Hence, we have proved the following proposition:

Proposition 6.4. Every null geodesic of the two-centre Kastor-Traschen metric

which lies completely in the plane passing orthogonally through the midpoint of

the line segment joining the centres coincides with an integral curve of the system

(6.25), with mass m = 2M , which lies in the plane a distance w from the origin,

where 2w is the distance between the centres.

Remark: This means that every integral curve of (6.25) can be realised as

the retraction projection of a null geodesic in either the one-centre or two-centre

Kastor-Traschen metric, making all solutions physically relevant.
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6.6.2 Perturbation Analysis

Now let us look at the stability of null geodesics in the z = 0 plane by applying

a small perturbation ε � a in the z-direction about the origin so that ε̇ and ε̈

are also small. Then substituting x3 = z + ε into (6.26) gives us the differential

equation

...
ε = − |ẍ|2

∣∣
(z,ż,z̈)=0

ε̇

+

[
4Mc

|x−w|3

(
x.ẍ

|ẍ|2

)
− 3(x.ẋ)

(
1

|x−w|2
+

x.ẍ

2(|x−w|2 − (x.ẋ)2)

)]∣∣∣∣
(z,ż,z̈)=0

ε̈.

We can rewrite this as a coupled system of differential equations by choosing

η = ε̇ and µ = ε̈ so that

d

ds

 µ

η

 =

 4Mc
|x−w|3

(
x.ẍ
|ẍ|2

)
− 3(x.ẋ)

(
1

|x−w|2 + x.ẍ
2(|x−w|2−(x.ẋ)2)

)
−|ẍ|2

1 0

∣∣∣∣∣∣
(z,ż,z̈)=0

 µ

η


≡ B

 µ

η

 .

The stability of the system under small perturbations is determined by the

eigenvalues of B. Given that the determinant of B is positive, (= |ẍ|2) we know

that both eigenvalues have the same sign. If they are both positive then the

system is unstable and if they are both negative then the system is stable. The

mutual sign can be obtained from the trace of B and thus, we get the following

result,

Proposition 6.5: For the two-centre equal mass Kastor-Traschen metric, any

geodesic which lies in the plane passing orthogonally through the midpoint of the

line segment joining the two centres is stable under small perturbations normal

to the plane at a point with given initial position, velocity and acceleration data

if and only if

4Mc

|x−w|3

(
x.ẍ

|ẍ|2

)
− 3(x.ẋ)

(
1

|x−w|2
+

x.ẍ

2(|x−w|2 − (x.ẋ)2)

)
< 0

at that point. Otherwise, it is unstable.
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6.7 Unparametrised Projection of Null Geodesics

in the One-Centre Kastor-Traschen Solution

As final note, we will rewrite the system of third-order ODEs (6.25) in un-

parametrised form. By doing so, we get a purer notion of the set of projected

null geodesics (free of parametrisation) and can make contact with the work in

[92] where the author has explicitly derived differential invariants for systems of

third order ODEs.

To start with, let us relabel our coordinates xi = (z, xβ) with β = 2, 3. If we let

’ denote differentiation with respect to z then we have

ẋβ = (xβ)′ż , ẍβ = (xβ)′′ż2 + (xβ)′z̈ ,

...
xβ = (xβ)′′′ż3 + 3(xβ)′′żz̈ + (xβ)′

...
z .

From the system (6.25), we can eliminate the
...
z term to obtain a pair of third

order expressions

(xβ)′′′ż3+3(xβ)′′żz̈ =

[
2mc

|x|3

(
x.ẍ

|ẍ|2

)
− 3(x.ẋ)

(
1

|x|2
+

x.ẍ

2(|x|2 − (x.ẋ)2)

)]
(xβ)′′ż2.

(6.27)

This system can be simplified even further to eliminate the factors of ż and z̈.

First, let us use the following convention

x =

 z

xβ

 , u =

 1

(xβ)′

 , a =

 0

(xβ)′′


Then, using the arc-length parametrization condition hjkẋ

j ẋk = 1, one can

show that

|u|2ż2 = 1 , z̈ = −u.a

|u|2
ż2, (6.28)

Using this, it can also be shown that

|ẍ|2 =

(
|a|2 − (u.a)2

|u|2

)
ż4 , x.ẍ =

(
x.a− (x.u)(u.a)

|u|2

)
ż2.

Then, we can use the expressions in (6.28) to eliminate z̈ terms and subsequently

powers of ż in (6.27) (This can be done by multiplying each term by the appro-

priate power of u2ż2 to give every term the same “weight” in terms of powers
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of ż). The resulting expression will give us a pair of third order ODEs whose

integral curves are the unparametrized curves of the system (6.25):

(xβ)′′′ =

[
3

u.a

|u|2
+

2mc|u|3

|x|3

(
|u|2(x.a)− (x.u)(u.a)

|u|2|a|2 − (u.a)2

)
− 3(x.u)

(
1

|x|2
+
|u|2(x.a)− (x.u)(u.a)

2(|u|4|x|2 − |u|2(x.u)2)

)]
(xβ)′′.

(6.29)

In the limit c→ 0, the second and third terms on the right-hand side of (6.29)

vanish coinciding with the unparametrised equation for conformal circles. The

Medvedev invariants [92] can be calculated for the system (6.29) and for con-

formal circles in Mathematica but the results are too long to include here.
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Chapter 7

Conclusions and Outlook

Since the important work of T.Y.Thomas [31], [14] the notion of a path geometry

has played an important role in both differential geometry and mathematical

physics. The ideas of the tractor bundle and tractor connection have allowed

authors to approach particular problems in these areas with the aid of invariants

from the associated underlying geometry. In [16] the authors develop the tractor

technology in the conformal, paraconformal and projective cases with particular

focus on the common themes between the three. They also illustrate how to

approach some fundamental geometric problems that arise in each area. For

example, building on this work, the authors in [93] have constructed conformal

invariants the vanishing of which are necessary and sufficient for the existence

of an Einstein metric in the conformal class of a given Riemannian metric.

We have seen here how to construct a set of invariants for a given path geometry,

the vanishing of which coincide with our set of integral curves being locally

diffeomorphic to the set of straight lines in n dimensions. These invariants can

be broken into two sets, which we have termed the Fels and Grossman invariants.

The vanishing of either set independently leads to a separate branch of the path

geometry theory - the “projective” branch and the “conformal” branch - each

with a rich contribution in the theory of differential geometry.

On one hand, the vanishing of the Fels invariants implies the existence of a

153
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torsion-free affine connection, the unparametrised geodesics of which coincide

with the integral curves of the given path geometry. This connection, with

components Γabc is only defined up to a change in the projective equivalence

class

Γ̃abc = Γabc + δabΥc + δacΥb

and so, it’s more effective, in this instance, to deal with this class as a single

entity - the projective connection. This allows us to deal with the pertinent

questions of the unparametrised geodesics of affine connections using the invari-

ant objects of tractor calculus.

Central to the development of the theory of projective connections and the asso-

ciated tractor geometry has been the search for the solution to the metrisability

problem as discussed here. Building on the work of Fels [6], Eastwood and

Matveev [8] [17], we have constructed a set of necessary local conditions for a

given family of curves on an open set U ⊂ Rn to arise as the unparametrised

geodesics of some metric on U . By means of several examples in dimension

3, we have shown that this construction enables us to tackle the problem of

metrisability more effectively than if one were to try and solve the equations

(3.5) directly. We have also shown how this procedure can be used to determine

the degree of mobility of a metric g. We have seen that the Thurston metrics Nil

and Sol fall into the category of being geodesically rigid whereas as the degree

of mobility of a metric in the Levi-Civita class is apparent from the number of

constants of integration.

Rather surprisingly, the relevant connection at play here is not the associated

tractor connection of the theory but, instead, there is a one-to-one correspon-

dence between metrics in a given projective equivalence class [Γ] and parallel

sections of the connection (3.17) from which natural invariant obstructions may

be determined. Algebraic obstructions to metrisability are obtained by consid-

ering the curvature of this connection, as we have demonstrated here. By means

of an example, we have seen that new conditions may be derived, algebraic in

the unknowns of the system (3.9), at higher orders in the projective connec-
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tion, by differentiating and referring to the original system. In this way, one

could generate all sufficient conditions for a system of paths to be metrisable

in dimension n. This algorithm was fulfilled in dimension two [7] but remains

open in higher dimensions. Although it has not been carried out to completion

here, we suggest that the procedure of repeatedly differentiating to produce new

obstructions, algebraic in σab will halt quickly due to the apparent gaps in the

degree of mobility as noted by [36] in dimension three and [94], more generally,

amongst others. Particularly, in dimension three, the degree of mobility of a

metric may only take the values 1,2 or 10. Hence, if the Weyl tensor of a given

projective structure does not vanish then the co-rank of the associated matrix

determined by the conditions (3.11), (3.12) and (3.13) is at most two. Differen-

tiating these conditions we obtain new ones at higher order and if the co-rank

of the corresponding matrix for this system does not decrease, we know we have

a system with that degree of mobility. In this instance, sufficient conditions

should then arise after taking two derivatives but we have not proved that in

detail here and the general problem of metrisability remains open.

The tractor approach has also produced some recent additional results in the

projective geometry realm. In [95], the authors constructed a set of invariants,

the vanishing of which is necessary and sufficient for the existence of an Ein-

stein metric in the projective equivalence class of a given metric g. Furthermore,

the authors have produced extra obstructions to the existence of a Levi-Civita

connection in the projective class. Specifically, they define a set off Chern-type

invariants

(pk)a1a2...a2k = W c1
a1a2 c2W

c2
a3a4 c3 . . .W

ck
a2k−1a2k c1

.

Then, for a given projective structure to be metrisable, we must have pk = 0

for k odd. This provides a significant improvement to the existing theory de-

veloped here. We can obtain similar objects from our theory (i.e, powers of the

Weyl tensor with some contractions) by considering the determinants of square

submatrices of the matrix Ξ associated to the linear system of equations (3.11).

For example, in dimension three, we would consider the six by six determinants,
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e.g, |Ξcd23ef |. In this case, there are
((

10
6

))
= 210 such determinants and it would

be useful to know if the complete vanishing of these determinants coincided

with the vanishing of a tensor similar to the above but for k = 6 and contrac-

tions taken differently. We attempted to achieve this, unsuccessfully, but it was

discovered, by exhaustive calculation, that no one of the 210 determinants as-

sociated to the matrix Ξ may be written as a linear combination of the others,

in general. Formally, this means that any such tensor which solves our problem

necessarily has 210 components.

Another interesting notion which arises from the study of the metrisability prob-

lem is that of the degree of mobility of a metric. Early work by Beltrami [9] gave

us insight into the maximum possible degree of mobility of a metric and when

it is obtained (by constant curvature metrics). He proposed the problem of

determining all normal forms of a pair of geodesically equivalent metrics which

are non-proportional. This problem was solved in the Riemannian case by Levi-

Civita [10], and is given here as equation (3.26). In the pseudo-Riemannian

case, the problem is not so simple. Petrov solved it in dimension three [44] but

recent developments in the theory have allowed the authors in [11] and [12] to

solve this problem in any dimension. As for the possible values that this num-

ber may be in dimension n there has also been significant progress. For n > 2,

the submaximal degree of mobility, (n−2)(n−1)
2 + 1 was determined by Sinjukov

[96] and Mikes [94] and results concerning the precise range of values that this

number can take were then found in [97].

Further work in this area should involve determining the normal forms of met-

rics with a given degree of geodesic mobility (not just at least 2). These kinds of

constructions may give us insight into metrics which are physically interesting

and within which the local geometry cannot be determined by the paths of free

particles, e.g, Schwarzschild-deSitter. Also, presently, given an arbitrary metric

g in n dimensions, it is not always immediately clear if g falls into one of the

normal forms given by Levi-Civita or Matveev and Bolsinov, that is, we are

not able to determine the degree of mobility of a given metric invariantly, or

even, whether or not g is geodesically rigid. This is a relevant problem and an
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advantageous approach is given by the work here on the metrisability problem.

For example, whether or not a metric has maximum mobility is governed by

the vanishing of the Weyl tensor. Also, the rank of the matrices determined by

the linear algebraic equations (3.11), (3.12) and (3.13) allows us to compute an

upper bound for this value so development in both areas is linked.

The second branch of the theory associated with the invariants of a path geom-

etry is the conformal branch, that is, when the Grossman invariants vanish. An

n-dimensional path geometry on some open domain U has a (2n−2)-dimensional

solution space M as demonstrated by the double fibration picture (2.2). If the

Grossman invariants vanish, then this gives rise to a Segré structure on M . In

particular, for n = 3, the moduli space of solutions is endowed with an anti-

self-dual conformal structure of signature (2,2) and the integral curves of the

path geometry arise as twistor curves corresponding to points in M . Here, we

have constructed several examples of systems of two second order ODEs with

vanishing Grossman invariants along with the corresponding ASD conformal

structure. The maximally symmetric, non-trivial example is a Ricci-flat ASD

pp-wave with 9-dimensional group of conformal symmetries, and we have given

examples of systems with symmetry groups of dimensions between 9 and 4.

Some of these examples have a special form

y′′ = 0 , z′′ = G(x, y, z, y′, z′).

This is what Grossman calls ’a weaker form of integrability for the second ruling’

[18]. This family gives a surface in the twistor space U , and it is known [56]

any ASD (2,2) conformal structure with a conformal null Killing vector admits

such structure.

We have seen how to derive the Grossman invariants directly by simply imposing

the conformal structure on the moduli space of solutions M . Furthermore, the

authors in [20] gave conditions on the path geometry for the corresponding

conformal structure to be a Ricci-flat. Further work in this area would involve

determining conditions on the path geometry for the corresponding conformal

structure to possess a particular geometric property. For example, we may
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demand that it be Einstein or Kahler. In the complexified case, it is already

known that a given ASD conformal structure contains an Einstein metric if and

only if the twistor lines have normal bundle O(1) ⊕ O(1) with the following

additional structure [33]:

1. A projection µ : U → CP1, such that the four parameter family of curves

above are sections of µ.

2. An isomorphism KM
∼= µ∗O(−4), where K is the line bundle of holomor-

phic three-forms over M .

Also, we may develop this theory in higher dimensions where the twistor cor-

respondence is between a path geometry and a Segré structure on the moduli

space of solutions. Imposing some differential constraints on the path geometry

may give rise to some new geometry on the space of solutions. This kind of

work would not only give us insight into the geometry of such structures but

would be important for understanding correspondences in twistor theory and

mathematical physics.

We have seen how the twistor curves can also be viewed as unparametrised

geodesics of Finsler structures with scalar flag curvature. In fact, there is a one-

to-one correspondence between such structures and torsion-free path geometries.

This means that a classification of Finsler metrics with scalar flag curvature

could lead to a complete description of path geometries with vanishing Gross-

man invariants and vice versa and, in turn, we could classify four-dimensional

ASD conformal structures of signature (2,2). Seemingly, this is a difficult prob-

lem, however and, despite progress for Randers metrics of constant curvature

and in some more general case, a general result has yet to be achieved.

The case of a trivial ODE with integral curves being straight lines in U is a

starting point for John’s integral transform [98]. Given a function φ : U → R

with appropriate decay conditions at infinity and a straight line L ⊂ U , define

a function φ̂ on the space M of straight lines

φ̂(L) =

∫
L

φ.
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The result of John is that the range of this transform is characterised by an

ultra-hyperbolic wave equation on M , where the wave operator is induced by a

flat (2,2) metric on M . If the line L is parametrised by x→ (x, y = α+xγ, z =

η − xβ), then

φ̂(α, η, β, γ) =

∫
R
φ(x, α+ xγ, η − xβ)dx and φ̂αβ + φ̂ηγ = 0.

As stated in [20], it would be interesting to develop a non-linear version of John’s

transform, applicable to path geometries with vanishing Grossman invariants.

Integral curves of the system

y′′ = 0 , z′′ = −2(y′)3

would be a good starting point for this construction.

The significance of the metrisability problem and the theory of projective dif-

ferential geometry, in general, can be seen in its applications to General Rela-

tivity. Since gravity is described in terms of a four-dimensional manifold with

Lorentzian metric, we find that an equivalence class of unparametrised geodesics

can be used to describe the geometry of freely falling particles, an idea that goes

back to Weyl. In [11], it is suggested how one might infer the metric on some

local patch of spacetime experimentally and in [66], the authors explore, to

what extent to which this theory can be applied successfully, yielding a unique

picture. In [21], it is suggested that the idea of having a non-trivial degree of

mobility for a given set of observed unparametrised geodesics allows a certain

freedom in the description of the geometry but, as later emphasised in [22],

there is more to GR than projective geometry. Some cosmological observables

- for example cosmic jerk, snap and higher order generalisations [99] - are not

projectively invariant and thus, depend on the choice of metric in a projective

equivalence class.

In Chapter 5, we pushed this theory further by exploring a novel aspect of

projective equivalence. Light rays in static spacetimes project down to the un-

parametrised geodesics of the optical metric on the space of orbits of the timelike

Killing vector. The importance of this structure was highlighted in [23] and [69]
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where properties of the conformal structure of the spacetime can be inferred

by properties of the optical metric. This leads to ambiguity if a spacetime is

static in more than one way, as non-proportional timelike Killing vectors lead

to different optical metrics. We have characterized these multi-static metrics

in the generic case here, i.e, when the isometry group generated by any pair

of HSO timelike Killing vectors (and their commutators) has two-dimensional

orbits in M and found that, in this case, the metric is locally a warped product

metric on M = S0 × S1 of the form

g = ewγ0 + γ1

where (S0, γ0) is a two-dimensional Lorentzian manifold of constant curvature,

(S1, γ1) is a two-dimensional Riemannian manifold and w : S1 → R is an ar-

bitrary function. Then optical metrics corresponding to different static Killing

vectors are guaranteed to be projectively equivalent only when γ0 has non-zero

curvature. This is the generic case as it admits the smallest number of isome-

tries with the most generic commutation relations. One possible extension of

this work would be to use the general form of multistatic metrics and general-

ize the results about optical equivalence to metrics which are non-generic and

admit more than two static Killing vectors. It may also be interesting to regard

the same problem in higher dimensions.

The theory of optical metrics has further interesting applications. We have found

that the static projection of light rays of a Schwarzschild-Tangherlini metric in

n dimensions lie in a plane and coincide with unparametrised geodesics of an op-

tical 2-metric. Physically, these curves also arise as non-relativistic trajectories

in a central force. There is a duality due to Bohlin and Arnold between pairs

of values of n and we have shown that this duality implies a mapping between

the totality of projected null geodesics determined by a 1-parameter family of

such metrics.

This idea does not extend cleanly to the charged case - the interpretation of the

duality is lost in the spacetime (as n is not an integer ≥ 3) but still remains

for the classical particle moving in a central force. It would be interesting to
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see if such a notion of duality exists for other solutions of Einstein’s equations.

the role of the cosmological constant in spherically symmetric spacetimes of the

form (5.25) is illuminating. Analysis of the dynamics of light rays in such met-

rics does not shed light on the value of Λ so we require other ways to measure

it, as discussed above and in [22]. This again, highlights the importance of the

projective equivalence of optical metrics in understanding the properties of light

rays in static spacetimes.

The study of optical metrics has demonstrated that physical phenomena ob-

served in Lorentzian metrics which admit a timelike vector field with a certain

mathematical property can often be better understood by looking at the pro-

jection of null geodesics to the space of orbits of this vector field. The idea

of associating a geometric structure on the space of orbits with the conformal

structure of the full Lorentzian spacetime had already been succesfully extended

to the stationary case in [78]. Here, we pushed this idea to the next step and dis-

cussed a specific example of a metric admitting a timelike conformal retraction

which is also a solution of the Einstein-Maxwell equations and so, an important

GR example. This allowed us to gain significant insight into the structures of a

spacetime which admits a timelike conformal retraction.

The third order system (6.8) arises naturally to describe the retraction pro-

jection of null geodesics of the Kastor-Traschen metric. We have, however,

demonstrated that there is a freedom in the definition of this ODE system and

that a more useful analysis is obtained by considering instead the system (6.16)

where the totality of integral curves can be interpreted as the projection of null

curves in the Kastor-Traschen metric describing a magnetic flow in the back-

ground magnetic field. This endows a physical relevance to this system and

it would be interesting to probe its relevance further. Using this formulation,

we’ve characterised those integral curves of (6.16) which coincide with the re-

traction projection of null geodesics.

It is interesting to note here, that unlike the static and stationary cases, the pro-

jection of null geodesics could not be identified with the set of integral curves of

some second order system of ODEs but required a description via a third order
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system. This is almost to be expected when we consider the underlying struc-

ture. The timelike conformal retraction Θ is endowed with the property that

the conformal structure on the space of orbits is preserved when flowed along its

integral curves. This hints at the idea that conformal geodesics and not metric

geodesics are the objects involved. It would be interesting to determine if such

systems do play a more significant role in the theory and whether or not the

choice of third order system can be made to coincide with one describing some

set of conformal circles.

For the one-centre K-T solution, the projected null geodesics are identified as

those which lie on a plane through the origin. However, in this case, there is

another third order system (6.25) whose integral curves arise as a distinguished

subset of the projected null geodesics of the two-centre metric for some value of

the distance between the centres, 2w, with masses m1 = m2 = M . This analysis

of null geodesics appears to be a step further than has been seen thus far but

extracting more analytic solutions is far from easy.

There is a consistent physical intuition here if we consider what happens when

w → 0. We should expect to reproduce the retraction projection of some subset

of the null geodesics for the one-centre Kastor-Traschen metric with black hole

mass m = 2M and this is precisely what happens. In fact, we obtain all of

the projected null geodesics because of the inherent spherical symmetry that

accompanies this limit.

One final point that we should stress here is that some of the physical prop-

erties of null geodesics obvious in the projection along one type of vector field

can be obscured in the projection along another. A clear example of this point

can be seen in the one-centre Kastor-Traschen metric which we know, via the

transformation to extremal RNdS coordinates, admits both a timelike confor-

mal retraction and a timelike static Killing vector field. Light rays project

down to unparametrised geodesics of the optical metric associated to the static

Killing vector field and it can be shown that for different values of the cosmolog-

ical constant Λ, the resulting optical metrics are projectively equivalent. One

consequence of this is the fact that the differential equations governing light
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rays in these spacetimes are also independent of Λ. This phenomenon is not

evident, however, when we consider the retraction projection of light rays in

Kastor-Traschen coordinates. There is a clear c (or Λ) dependence in the sys-

tem of ODEs (6.25) and this even carries over to the equations governing the

unparamterised curves (6.29).

Nonetheless, this is an interesting and physically relevant area of study and our

work encourages several open questions. It would be interesting to find analytic

solutions to (6.16) in a more general case and to say something more concrete

about the Kastor-Traschen metric with arbitrary V . Furthermore, it is an open

problem to make an invariant statement on the properties of the null geodesic

structure of an arbitrary metric which admits a timelike conformal retraction.
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par M. Pudra, Paris, pages 104,105,205, 1864.

[4] E.Cartan. Sur les varits connexion projective. Bulletin de la Socit Math-

matique de France, 52:205–241, 1924.

[5] R.Liouville. Sur les invariants des certaines equations differentielles et sur

leurs applications. Jour. de l’Ecole Politechnique, 59:7–76, 1889.

[6] M.E.Fels. The equivalence problem for systems of second-order ordinary

differential equations. Proc. Lon. Math. Soc., 71:221–240, 1995.

[7] R.Bryant, M.Dunajski, and M.Eastwood. Metrisability of two-dimensional

projective structures. Journal of Differential Geometry, 83(3):465–500,

2009.

[8] M.Eastwood and V.Matveev. Metric connections in projective differential

geometry. Symmetries and Overdetermined Systems of Partial Differential

Equations, IMA Volumes in Mathematics and its Applications, 144:339–

350, Springer Verlag 2007.

165



166 BIBLIOGRAPHY

[9] E.Beltrami. Resoluzione del problema: riportari i punti di una superficie

sopra un piano in modo che le linee geodetische vengano rappresentante da

linee rette. Ann. Mat., 1(7):185–204, 1865.

[10] T.Levi-Civita. Sulle tansformazioni delle equazioni dinamiche. Ann. di

Mat., 2a, 24:255–300, 1896.

[11] V.S. Matveev. Geodesically Equivalent Metrics in General Relativity.

arXiv1101.2069v2, 2011.

[12] A.V. Bolsinov and V.S. Matveev. Local Normal Forms for Geodesically

Equivalent Pseudo-Riemannian Metrics. arXiv:1301.2492, 2013.

[13] G.S. Hall. Projective Relatedness and Conformal Flatness. Central Euro-

pean Journal of Mathematics, 10(5):1763–1770, 2012.

[14] T.Y. Thomas. Announcement of a Projective Theory of Affinely Connected

Manifolds. Proc. Nat. Acad. Sci, (11):588–589, 1925.

[15] T.Y. Thomas. On Conformal Geometry. Proc. Nat. Acad. Sci., 12:352–359,

1869.

[16] T.N. Bailey, M.G. Eastwood, and A.R. Gover. Thomas’s Structure Bundle

for Conformal, Projective and Related Structures. Rocky Mountain Jour.

Math., 24(4), 1994.

[17] M.Eastwood. Notes on projective differential geometry. Symmetries and

Overdetermined Systems of Partial Differential Equations, IMA Volumes

in Mathematics and its Applications, 144:41–60, Springer Verlag 2007.

[18] D.A.Grossman. Torsion-free path geometries and integrable second order

ode systems. Selecta Mathematica, New Series, 6:399–442, 2000.

[19] R. Penrose. Non-linear Gravitons and Curved Twistor Theory. Gen. Rel-

ativ. Grav., 7:31–52, 1976.



BIBLIOGRAPHY 167

[20] S.Casey, M. Dunajski, and P. Tod. Twistor Geometry of a Pair of Second

Order ODEs. Communications in Mathematical Physics, 2012.

[21] P. Nurowski. Is Dark Energy Meaningless? arXiv:1003.1503, 2010.

[22] G.W.Gibbons and C.M.Warnick. Dark energy and projective symmetry.

arXiv:1003.3845v1, 2010.

[23] G.W.Gibbons, C.M.Warnick, and M.C.Werner. Light-bending in

Schwarzschild-de-Sitter: projective geometry of the optical metric. Class.

Quant. Grav., 25(245009), 2008.

[24] G.W. Gibbons and M. Vyska. The Application of Weierstrass Elliptic Func-

tions to Schwarzschild Null Geodesics. Class. Quant. Grav., 29(065016),

2012.
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