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Abstract

This is an elementary and self-contained review of twistor theory as a geometric tool
for solving non-linear differential equations. Solutions to soliton equations like KdV,
Tgzitzeica, integrable chiral model, BPS monopole or Sine-Gordon arise from holomor-
phic vector bundles over TCP'. A different framework is provided for the dispersionless
analogues of soliton equations, like dispersionless KP or SU(o0) Toda system in 2+1 di-
mensions. Their solutions correspond to deformations of (parts of) TCP!, and ultimately
to Einstein—Weyl curved geometries generalising the flat Minkowski space.

A number of exercises is included and the necessary facts about vector bundles over
the Riemann sphere are summarised in the Appendix.
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1 Introduction

Twistor theory was created by Roger Penrose [19] in 1967. The original motivation was to unify
general relativity and quantum mechanics in a non—local theory based on complex numbers. The
application of twistor theory to differential equations and integrability has been an unexpected
spin off from the twistor programme. It has been developed over the last thirty years by the
Oxford school of Penrose and Atiyah with the crucial early input from Richard Ward [24, 25]
and Nigel Hitchin [10, 11] and further contributions from Lionel Mason, George Sparling, Paul
Tod, Nick Woodhouse and others.

The twistor approach to integrability is a subject of the monograph [18] as well as the
forthcoming book [6]. This short review is supposed to give a self-contained introduction to
the subject. The approach will be elementary - explicit calculations will be used in place of
(often very elegant) abstract geometric constructions. Filling in the gaps in these calculations
should be within a reach of a first year research student.

I thank Prim Plansangkate for carefully reading the manuscript and correcting several errors.

1.1 Motivation—integral geometry

Twistor theory is based on projective geometry and as such has its roots in the 19th century
Klein correspondence. It can also be traced back to other areas of mathematics. One such
area is a subject now known as integral geometry (a relationship between twistor theory and
integral geometry has been explored by Gindikin [8]).

Radon Transform

Integral geometry goes back to Radon [23] who considered the following problem: Let f :
R? — R be a smooth function with suitable decay conditions at co (for example a function
of compact support as shown below)

and let L C R? be an oriented line. Define a function on the space of oriented lines in R? by

H(L) = / . (L1)



Radon has demonstrated that there exists an inversion formula ¢ — f. Radon’s construction
can be generalised in many ways and it will become clear that Penrose’s twistor theory is its far
reaching generalisation. Before moving on, it is however worth remarking that an extension of
Radon’s work has lead to Nobel Prize awarded (in Medicine) for pure mathematical research!
It was given in 1979 to Cormack [2], who unaware of Radon’s results had rediscovered the
inversion formula for (1.1), and had explored the setup allowing the function f to be defined
on a non-simply connected region in R? with a convex boundary. If one only allows the lines
which do not pass through the black region

or are tangent to the boundary of this region, the original function f may still be reconstructed
from its integrals along such lines (this is called the support theorem. See [9] for details.). In
the application to computer tomography one takes a number of 2D planar section of 3D objects
and relates the function f to the (unknown) density of these objects. The input data given to
a radiologist consist of the intensity of the incoming and outgoing X-rays passing through the
object with intensities I, and Iy respectively

dI
o) = [ F=logh—togty—— [ 1
1 L
where dI /I = — f(s)ds is the relative infinitesimal intensity loss inside the body on an interval

of length ds.

The Radon transform then allows to recover f from this data, and the generalisation pro-
vided by the support theorem becomes important if not all regions in the object (for example
patient’s heart) can be X-rayed.

John Transform

The inversion formula for Radon transform (1.1) can exist because both R? and the space of
oriented lines in R? are two dimensional. Thus, at least naively, one function of two variables can
be constructed from another such function (albeit defined on a different space). This symmetry
does not hold in higher dimensions, and this underlines the following important result of John
[12]. Let f : R® — R be a function (again, subject to some decay conditions which makes the
integrals well defined) and let L C R? be an oriented line. Define ¢(L) = [, f, or

P(aq, g, b1, Ba2) = /OO flars + B1, a5 + Ba, 5)ds (1.2)
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where (o, 3) parametrise the four-dimensional space T of oriented lines in R? (Note that this
parametrisation misses out the lines parallel to the plane x3 = const. The whole construction
can be done invariantly without choosing any parametrisation, but here we choose the explicit
approach for clarity). The space of oriented lines is four dimensional, and 4 > 3 so expect one
condition on ¢. Differentiating under the integral sign yields the ultrahyperbolic wave equation

Po P
80&1852 8042851 -

and John has shown that all smooth solutions to this equation arise from some function on
R3. This is a feature of twistor theory: an unconstrained function on twistor space (which
in this case is identified with R3) yields a solution to a differential equation on space—time
(in this case locally R* with a metric of (2,2) signature). After the change of coordinates
o =x+y,as=t+2z 0 =t— 2z [J =x — y the equation becomes
0%¢ n Py o Po 0
ox2 922 Oy o2
which may be relevant to physics with two times! The integral formula given in the next section
corrects the ‘wrong’ signature to that of the Minkowski space and is a starting point of twistor
theory.

Penrose Transform

In 1969 Penrose gave a formula for solutions to wave equation in Minkowski space [20]
dapzt)=p  fEHD+@riph@-) - G- ANDA (1)
rccpt

Here I' ¢ CP! is a closed contour and the function f is holomorphic on CP' except some
number of poles. Differentiating the RHS verifies that

0?¢ _ 0?¢ _ 0?¢ B 0?¢ _0
o2 0x2  0y2 022
Despite the superficial similarities the Penrose formula is mathematically much more sophisti-
cated than John’s formula (1.2). One could modify a contour and add a holomorphic function

inside the contour to f without changing the solution ¢. The proper description uses sheaf
cohomology which considers equivalence classes of functions and contours (see e.g. [28]).

1.2 Twistor Programme

Penrose’s formula (1.3) gives real solutions to the wave equation in Minkowski space from
holomorphic functions of three arguments. According to the twistor philosophy this appearance
of complex numbers should be understood at a fundamental, rather than technical, level. In
quantum physics the complex numbers are regarded as fundamental: the complex wave function
is an element of a complex Hilbert space. In twistor theory Penrose aimed to bring the classical
physics at the equal footing, where the complex numbers play a role from the start. This
already takes place in special relativity, where the complex numbers appear on the celestial
sphere visible to an observer on a night sky.



(u)?® + (uy+ (uy=1

Stereographic projection from the
celestial sphere

The two—dimensional sphere is the simplest example of a non—trivial complex manifold (see
Appendix for more details). Stereographic projection from the north pole (0,0,1) gives a

complex coordinate

\ o e
1—U3

Projecting from the south pole (0,0, —1) gives another coordinate

X:u1—2u2'
1—|—U3

On the overlap A = 1 /A. Thus the transition function is holomorphic and this makes S? into

a complex manifold CP' (Riemann sphere). The double covering SL(2,C) 2L s O(3,1) can
be understood in this context. If worldlines of two observers travelling with relative constant
velocity intersect at a point in space-time, the celestial spheres these observers see are related
by a Mobius transformation

. a\+ [

YA+ 0

(‘;‘ g) € SL(2,C)

corresponds to the Lorentz transformation relating the two observers.

The celestial sphere is a past light cone of an observer O which consist of light rays through
an event O at a given moment. In the twistor approach the light rays are regarded as more
fundamental than events in space-time. The five dimensional space of light rays PN in the
Minkowski space is a hyper—surface in a three dimensional complex manifold P7 = CP? — CP!
called the projective twistor space. (Exercise: Why is PN five dimensional? Show that as a
real manifold PN = 5% x R3).

Let (Z° 7Y, 72, 73) ~ (cZ° cZ*, cZ?% cZ3),c € C* with (Z2%,73) # (0,0) be homogeneous
coordinates of a twistor (a point in P7"). The twistor space and the Minkowski space are linked
by the incidence relation

AR t+2z x+iy Z*
(Zl)_—g(:c—iy t—2z VA (1.4)

bt

where the unit-determinant matrix



where x# = (t,x,y, z) are coordinates of a point in Minkowski space. (Exercise: show that if
two points in Minkowski space are incident with the same twistor, then they are null separated).
Define the Hermitian inner product

Y(2,2) =272+ 7' 73 + 7*720 + 7371

on the non-projective twistor space 7 = C* — C2. The signature of ¥ is (+ + ——) so that
the orientation—preserving endomorphisms of 7 preserving > form a group SU(2,2). This
group has fifteen parameters and is locally isomorphic to the conformal group SO(4,2) of the
Minkowski space. We divide the twistor space into three parts depending on whether X is
positive, negative or zero. This partition descends to the projective twistor space. In particular
the hypersurface

PN ={[Z) € PT,X(Z,Z) =0} C PT

is preserved by the conformal transformations of the Minkowski space which can be verified
directly using (1.4).

Fixing the coordinates z* of a space—time point in (1.4) gives a plane in the non—projective
twistor space C* —C? or a projective line CP! in P7. If the coordinates z* are real this line lies
in the hypersurface PA. Conversely, fixing a twistor in PN gives a light-ray in the Minkowski
space.

So far only the null twistors (points in PA) have been relevant in this discussion. General
points in P7T can be interpreted in terms of the complexified Minkowski space C* where they
correspond to null two—dimensional planes with self-dual tangent bi-vector. This, again, is
a direct consequence of (1.4) where now the coordinates xz* are complex. There is also an
interpretation of non—null twistors in the real Minkowski space, but this is far less obvious [19]:
The Hermitian inner product ¥ defines a vector space 7* dual to the non—projective twistor
space. The elements of the corresponding projective space P7 " are called dual twistors. Now
take a non-null twistor Z € PT. Its dual Z € PT* corresponds to a projective two plane CP? in
PT. (Exercise: Use (1.4) to find an explicit equation for this plane). A holomorphic two—plane
intersects the hyper—surface PN in a real three-dimensional locus. This locus corresponds to
a three—parameter family of light-rays in the real Minkowski space. This family representing a
single twistor is called the Robinson congruence. A picture of this configuration which appears
on the front cover of [22] shows a system of twisted oriented circles in the Euclidean space
R3, the point being that any light-ray is represented by a point in R?® together with an arrow
indicating the direction of the ray’s motion. This configuration originally gave rise to a name
‘twistor’.

Finally we can give a twistor interpretation of the contour integral formula (1.3). Consider
a function f = f(Z°/Z% Z'/Z?, Z3/Z?) which is holomorphic on an intersection of two open
sets covering P7 (one of this sets is defined by Z? # 0 and the other by Z® # 0) and restrict
this function to a rational curve (1.4) in PA/. Now integrate f along a contour in this curve.
This gives (1.3) with A = Z3/Z% (Exercise: Explain why f, when viewed as a function on
the non—projective twistor space, must be homogeneous of degree —2 in Z*. Find a solution
¢ to the wave equation corresponding to f = (A,Z%)"1(BsZ?)~!, where a,3 = 0,...,3 and
(Aa, Bg) are constant complex numbers).

To sum up, the space-time points are derived objects in twistor theory. They become ‘fuzzy’
after quantisation. This may provide an attractive framework for quantum gravity, but it must

6



be said that despite 40 years of research the twistor theory is still waiting to have its major
impact on physics. It has however had surprisingly major impact on pure mathematics: ranging
from representation theory and differential geometry to solitons, instantons and integrable
systems.

This ends the ‘historical’ part of the review. The rest of the review is intended to give
a ‘down-to-earth’ introduction to the calculations done in twistor theory. Rather than using
the twistors of 3+1 dimensional Minkowski space, we shall focus on mini—twistors which arise
in 2+1 dimensional Minkowski space or in R3. This ‘mini-twistor theory’ is in many ways
simpler but still sufficient in applications to 241 and 3 dimensional integrable systems and
their reductions. The mini-twistor space T (from now on just called the twistor space) is the
holomorphic tangent bundle to the Riemann sphere. The difference between the Lorentzian
and Euclidean signature of the corresponding space—time is encoded in the anti-holomorphic
involution on T which, when restricted to rational curves, becomes the antipodal map in the
Euclidean case and the equator-fixing conjugation in the Lorentzian case. We shall study the
Euclidean theory in the next Section and the Lorentzian theory in Section 3.

2 Non—abelian monopoles and Euclidean mini—twistors

It is well known that the problem of finding harmonic functions in R? can be solved ‘in one
line’ by introducing complex numbers: Any solution of a two—dimensional Laplace equation
Gzz + ¢yy = 0 is a real part of a function holomorphic in = + 7y. This technique fails when
applied to the Laplace equation in three dimensions as R? can not be identified with C" for
any n.

Following Hitchin [10] we shall associate a two—dimensional complex manifold to the three—
dimensional Euclidean space. Define the twistor space T to be the space of oriented lines in R3.
Any oriented line is of the form v + su, s € R where u is a unit vector giving the direction
of the line, and v is orthogonal to u and joints the line with some chosen point (say the origin)
in R3.

lul=1, u.v=0

Thus
T={(u,v) € S* xR uv=0}

and the dimension of T is four. For each fixed u € S? this space restricts to a tangent plane
to S2. The twistor space is the union of all tangent planes — the tangent bundle T'S?. This
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is a topologically nontrivial manifold: Locally it is diffeomorphic to S? x R? but globally it is
twisted in a way analogous to Mobius strip.

Reversing the orientation of lines induces a map 7 : T — T given by
7(u,v) = (—u,v).
The points p = (2, v, z) in R3 correspond to two—spheres in T given by 7—invariant maps
u— (u,v(u)=p—(pu)u) €T (2.5)
which are sections of the projection T — S2.

Twistor space as a complex manifold

Introduce the local holomorphic coordinates on an open set U C T where u # (0,0, 1) by

A:meg[pﬂ:g?’
1 —us 1 —us (1 —ug)

U1 + in U + iUQ
= 5 U3,

and analogous complex coordinates (X,7) in an open set U containing u = (0,0,1). On the

overla
' A=1/\,  q=-n/)\

(Exercise: Work out the details of this). This endows T with a structure of complex manifold
TCP'. It is a holomorphic tangent bundle to the Riemann sphere (see Appendix).

/\ 1
R L \\\\\)////TCP

1
CP



In the holomorphic coordinates the line orientation reversing involution 7 is given by
L7
7—)\, :<—:,—_—> 2.6
(= (- 55 (2:6)

This is an antipodal map lifted from a two—sphere to the total space of the tangent bundle.
The formula (2.5) implies that the points in R? are 7-invariant holomorphic maps CP* — TCP*
given by

A= (A= (z+iy) + 22Xz — N(z — iy)). (2.7)

(Exercise: Verify that (2.7) follows from (2.5)).

Harmonic functions and abelian monopoles

Finally we can return to our original problem. To find a harmonic function at P = (x,y, 2)
1. Restrict a twistor function f(\,7) defined on U N T to a line (2.7) P = CP' = 52

2. Integrate along a closed contour

oz, y,2) = fO (4 iy) + 22Xz — Nz — iy))dA, (2.8)

I'cp

3. Differentiate under the integral to verify

Po P Ph
Ox? + Oy? + 022 0.

This formula was already known to Whittaker [29] in 1903, albeit Whittaker’s formulation
does not make any use of complex numbers and his formula is given in terms of a real
integral.

Small modification of this formula can be used to solve a 1st order linear equation for a function
¢ and a magnetic potential A = (A;, Ay, A3) of the form

Vo=V AA.

This is the abelian monopole equation. Geometrically, the one—form A = A;dx? is a connection
on a U(1) principal bundle over R?, and ¢ is a section of the adjoint bundle. Taking the curl
of both sides of this equation implies that ¢ is harmonic, and conversely given a harmonic
function ¢ locally one can always find a one—form A (defined up to addition of a gradient of
some function) such that the abelian monopole equation holds. (Exercise: Find an integral
formula for the one—form A analogous to (2.8). This question is best handled using the spinor
formalism introduced in Section 3.1).



2.1 Non—abelian monopoles and Hitchin correspondence

Replacing U(1) by a non—abelian Lie group generalises this picture to some equations on R? in

the following way: Let (A;, ¢) be anti-hermitian traceless n by n matrices on R®. Define the
non—abelian magnetic field

0A,  0A;

Fip = w— — =

oxrd Oz

The non—abelian monopole equation is a system of non—linear PDEs

+[A;, Al, j,k=1,2,3.

(0] 1
@ + [Aj, ¢] = §5jlekl- (29)
These are three equations for three unknowns as (A, ¢) are defined up to gauge transformations
A—gAg —dgg', ¢ gbg™,  g=g(z.y,t) € SU) (2.10)

and one component of A (say A;) can always be set to zero.
The twistor solution to the monopole equation consists of the following steps [10]

o Given (4;(x), ¢(x)) solve a matrix ODE along each oriented line x(s) = v + su

Cil—‘; + (WA + i)V = 0.

Space of solutions at p € R? is a complex vector space C".

e This assigns a complex vector space C" to each point of T, thus giving rise to a complex
vector bundle over T with patching matrix F'(\, \,7n,7) € GL(n,C).

Open covering

~ n
T=U_U C
. . 2
Patching matrix T=TS

F: U~ U~ GL(n, C)

e The monopole equation (2.9) on R3 holds if and only if this vector bundle is holomorphic,

i.e. the Cauchy-Riemann equations
or F
—_— = 07 a— = 0
O\ on

hold.

e Holomorphic vector bundles over TCP' are well understood. Take one and work back-
wards to construct a monopole. We shall work through the details of this reconstruction
(albeit in complexified settings) in the proof of Theorem 3.1.
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3 The Ward model and Lorentzian mini—twistors

In this Section we shall demonstrate how mini-twistor theory can be used to solve non-linear
equations in 2+ 1 dimensions. Let A = A,dz" and ¢ be a one-form and a function respectively
on the Minkowski space R?! with values in a Lie algebra of the general linear group. They are
defined up to gauge transformations (2.10) where g takes values in GL(n,R).

Let D, = 0, + A, be a covariant derivative, and define D¢ = d¢ + [A, ¢|. The Ward model
is a system of PDEs (2.9) where now the indices are raised using the metric on R*»!. If the
metric and the volume form are chosen to be

h = dz* — 4dudv, vol = du A dx A dv

where the coordinates (x,u,v) are real the equations become
1
D¢ = §Fm,, Dyp = Fuq, D,p = F,, (3.11)

where F), = [D,, D,]. These equations arise as the integrability conditions for an overdeter-
mined system of linear Lax equations
LoV =0, LV=0, where Ly=D,—AND,+¢), L =D, —¢—AD,, (3.12)

and U = U(z,u,v, \) takes values in GL(n,C). We shall follow [27] and ‘solve’ the system by
establishing one-to—one correspondence between its solutions and certain holomorphic vector
bundles over the twistor space T. This construction is of interest in soliton theory as many
known integrable models arise as symmetry reduction and/or choosing a gauge in (3.11). To

this end we note a few examples of such reductions. See [18] for a much more complete list.
e Choose the unitary gauge group G = U(n). The integrability conditions for (3.12) imply
the existence of a gauge A, = 0, and A, = —¢, and a matrix J : R*! — U(n) such that

1
A, = J 10, Ay = —¢ = §J_18xJ.
With this gauge choice the equations (3.11) become the integrable chiral model
0y(J 10, J) — 0,(J 10, J) = 0. (3.13)

This formulation breaks the Lorentz invariance of (3.11) but it allows an introduction of
a positive definite energy functional. See [26] where more details can be found.

e Solutions to equation (3.11) with the gauge group SL(2,R) which are invariant under a
null translation given by a Killing vector K such that the matrix K J A is nilpotent are
characterised by the KdV equation [17].

e The direct calculation shows that the Ward equations with the gauge group SL(3,R) are
solved by the ansatz

1 0 01
o = = 0O 0 0|, (3.14)
—e¥ 0 0
1 0 01 Yy 0 0 0 e 2 0
A = - 0 0 0 |de+ 1 ¢, 0 |dut+] 0 0 e¥ |dv
eV 0 0 0 1 0 0 0 0



iff ¥ (u,v) satisfies the Tzitzéica equation

I
Bugy € "€ (3.15)

This reduction can also be characterised in a gauge invariant manner using the Jordan
normal forms for the Higgs fields. See [4] for details. (Exercise: Show that (3.15) follows
from (3.11). What can you say about the gauge field corresponding to the trivial solution

W =07).

3.1 Null planes and Ward correspondence

The geometric interpretation of the Lax representation (3.12) is the following. For any fixed
pair of real numbers (1, \) the plane

n=v+ 1A+ u)’ (3.16)

is null with respect to the Minkowski metric on R*!, and conversely all null planes can be put
in this form if one allows A = co. The two vector fields

So =0y — A0y, 61 =3y — A, (3.17)

span this null plane. Thus the Lax equations (3.12) imply that the generalised connection
(A, ¢) is flat on null planes. This underlies the twistor approach [27], where one works in a
complexified Minkowski space M = C3, and interprets (1, \) as coordinates in a patch of the
twistor space T = TCP', with 1 € C being a coordinate on the fibers and A € CP' being an
affine coordinate on the base. We shall adopt this complexified point of view from now on.

It is convenient to make use of the spinor formalism based on the isomorphism

TM=S06S

where S is rank two complex vector bundle (spin bundle) over M and © is the symmetrised
tensor product. The fibre coordinates of this bundle are denoted by (7, 7!) and the sections
M — S are called spinors. We shall regard S as a symplectic bundle with anti-symmetric
product

k-p=rp —k'p’ =e(k,p)

on its sections. The constant symplectic form ¢ is represented by a matrix

0 1
EAB = 10 .

This gives an isomorphism between S and its dual bundle, and thus can be used to ‘rise and lower

the indices’ according to k4 = kPepa, k4 = e4Pkp, where € 43e? is an identity endomorphism.

Rearrange the space time coordinates (u,z,v) of a displacement vector as a symmetric
two-spinor
AB ( u /2 )
xt7 = ,
x/2 v
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such that the space-time metric is
h = —2dx A pdxB.

The twistor space of M is the two-dimensional complex manifold T = TCP'. Points of T
correspond to null 2-planes in M via the incidence relation

A8 amp = w. (3.18)
Here (w, m, 1) are homogeneous coordinates on T as (w,74) ~ (c’w,cmy), where ¢ € C*. In
the affine coordinates \ := my/m,n := w/(m)? equation (3.18) gives (3.16).
The projective spin space P(S) is the complex projective line CP'. The homogeneous
coordinates are denoted by 74 = (7, 71), and the two set covering of CP' lifts to a covering of
the twistor space T

U={(w,ma),m # 0}, U= {(w,m4),m #0}. (3.19)

The functions A = my /7, A=1 /X are the inhomogeneous coordinates in U and U respectively.
It then follows that A = —7! /7.

Fixing (w,m4) gives a null plane in M. An alternative interpretation of (3.18) is to fix
4B, This determines w as a function of w4 i.e. a section of T — CP' when factored out by
the relation (w,74) ~ (c®w,cms). These are embedded rational curves with self-intersection
number 2, as infinitesimally perturbed curve n + dn with én = dv + Adx + A25u generically
intersects (3.16) at two points. Two curves intersect at one point if the corresponding points
in M are null separated. This defines a conformal structure on M.

M T

w‘U

cp!

The space of holomorphic sections of T — CP' is M = C? (see Appendix). The real space-
time R?*! arises as the moduli space of those sections that are invariant under the conjugation

T(w,ma) = (@, Ta), (3.20)

which corresponds to real 2. The points in T fixed by 7 correspond to real null planes in
R?!. (Exercise: Show that as a complex manifold T is biholomorphic with a cone in CP? with
its vertex removed, where the points in M correspond to the conic sections omitting the vertex.
Demonstrate that allowing the conic sections passing through the vertex of the cone results in
a compactification of the complexified Minkowski space M = M 4 CP? = CP?).

The following result makes the mini-twistors worthwhile
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Theorem 3.1 (Ward [27]) There is a one-to—one correspondence between:

1. The gauge equivalence classes of complex solutions to (3.11) in complexified Minkowski
space M with the gauge group GL(n,C).

2. Holomorphic rank n vector bundles E over the tunstor space T which are trivial on the
holomorphic sections of TCP' — CP*

Proof. Let (A, ¢) be a solution to (3.11) . Therefore we can integrate a pair of linear PDEs
LoV = L1V =0, where Ly, L; are given by (3.12). This assigns an n-dimensional vector space
to each null plane Z in complexified Minkowski space , and so to each point Z € T. It is a
fibre of a holomorphic vector bundle y : £ — T. The bundle E is trivial on each section, since
we can identify fibres of E| at Z;, Z, because covariantly constant vector fields at null planes
Z1, Zy coincide at a common point p € M.

Conversely, assume that we are given a holomorphic vector bundle E over T which is trivial
on each section. Since E|;, is trivial, and L, = CP', the Birkhoff-Grothendieck theorem
(Appendix) gives

El,=0808...60

and the space of sections of E restricted to L, is C". This gives us a holomorphic rank n vector

bundle E over the complexified three—dimensional Minkowski space. We shall give a concrete
method of constructing a pair (4, #) on this bundle which satisfies (3.11).
Let us cover the twistor space with two open sets U and U as in (3.19). Let

x:p ' (U) —UxC", X:p N (U) - UxCr

be local trivialisations of E, and let F' = yox™!: C" — C" be a holomorphic patching matrix
for a vector bundle E over TCP' defined on U N U. Restrict F to a section (3.18) where the

bundle is trivial, and therefore F' can be split (compare (A1) in the Appendix)

F=HH", (3.21)

where the matrices H and H are defined on M x CP' and are holomorphic in 74 around

74 =04 = (1,0) and 7 = 1 = (0, 1) respectively. As a consequence of J4F = 0 the splitting
matrices satisfy B B
H™'6,H = H'6,H = m5® 4, (3.22)

for some ® 4p(x#) which does not depend on A. This is because the RHS and LHS are homoge-
neous of degree one in 7 and holomorphic around A = 0 and A = oo respectively. (Exercise:
Prove it starting from the Liouville theorem which says that any function holomorphic on CP*
must be constant). Decomposing

Qap = Pap) +EaBP
gives a one-form A = ®,pdz?? and a scalar field ¢ = (1/2)eP®,p on the complexified

Minkowski space, i. e.
Do — Ay, A+ ¢
T\ A4-e A '
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The Lax pair (3.12) becomes
Ly=064+H'64H

where 64 = 72045, so that
La(HY=-HYS.H)H '+ H ' (0,H)H " =0

and ¥ = H~!is a solution to the Lax equations regular around A = 0. Let us show explicitly
that (3.11) holds. Differentiating both sides to (3.22) yields

SMH 6 H) = —(H Y60 H)(H'5,H)
which holds for all 74 if
Dc®'p) =0 (3.23)
where Dac = dac + Pac. This is the spinor form of the Yang—Mills-Higgs system (3.11).

O

e To single out the Euclidean reality conditions leading to non—abelian monopoles (2.9)
on R3 with the gauge group SU(n) the vector bundle £ must be compatible with the
involution (2.6). This comes down to detF' =1 and

where Z € T and * denotes the Hermitian conjugation.

e To single out the Lorentzian reality conditions the bundle must be invariant under the
involution (3.20). Below we shall demonstrate how the gauge choices leading to the
integrable chiral model (3.13) can be made at the twistor level.

Let

h:= H(z", 7" = o), h=H(z", 7 =)

so that . .
D9 = h ™ 'Da0h, ®ay = h '0uh.

The splitting matrices are defined up to a multiple by an inverse of a non—singular matrix
g = g(x*) independent on 74

H— Hg™, ﬁ[—>ﬁ[g_1.

(Exercise.: Show that this corresponds to the gauge transformation (2.10) of ®45).

We choose ¢ such that h=1so0
Dy =110 5 =0

and
bup = —LBOCh_laAch,

Ay +¢=A, = 0.

15



This is the Ward gauge with J(z*) = h. In this gauge the system (3.23) reduces to
01 ®40 =0
which is (3.13). The solution is given by
J(x") = U (2", X =0)
where ¥ = H~! is a solution to the Lax pair.

e In the abelian case n = 1 the patching matrix becomes a function defined on the in-
tersection of two open sets and we can set F' = exp (f) for some f. The non-linear
splitting (A1) reduces to the additive splitting of f which can be carried out explicitly
using the Cauchy integral formula. The Higgs field is now a function that satisfies the
wave equation and is given by formula

¢=ﬁ% - dp.

where I' is a real contour in a rational curve w = x4Pm 7. If the Euclidean reality
conditions are chosen we recover the Whittaker formula (2.8).

A

e Exercise: Find the patching matrix for the holomorphic rank 3 budle £ — T corre-
sponding to the one—soliton solution to the Tzitzeica equation (3.15). (Note: the solution
to this exercise remains unknown to the author).

4 Dispersionless systems and deformed mini—twistors

There is a class of integrable systems in 2+1 and three dimensions which do not fit into the
framework described in the last section. They do not arise from (3.11) and there is no finite-
dimensional Riemann—Hilbert problem analogous to (3.21) which leads to their solutions. These
dispersionless integrable systems admit Lax representations which do not involve matrices, like
(3.12), but instead consist of vector fields. This leads to curved geometries in the following
way. Consider a Lax pair

9 — 9
Ly=W = AV + foze, Li=V =AW + fiz, (4.24)

where (W, /V[7, V') are vector fields on a complex three-manifold M (which generalises the com-
plexified Minkowski space), and (fy, fi) are cubic polynomials in A € CP'. Assume that the
distribution spanned by the Lax pair is integrable in the sense of Frobenius i.e.

(Lo, L1] = aLo+ 8Ly

for some «, 3. The twistor space T is defined to be the quotient of the total space of the
projective spin bundle P(S) — M by this distribution, i. e.

T = M x CP"/(Lg, Ly).
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This is a deformation of TCP' (or its region as in general the construction is local in M so T is
taken to be a tubular neighbourhood of a rational curve corresponding to p € M) which arises
if Lo, Ly are given by (3.17).

The twistor space is a complex surface containing a three-parameter family of rational
curves CP! with self intersection number 2. In general T does not fiber holomorphically over
CP' which is a consequence of the presence of 9/0\ terms in the Lax pair (4.24).

Conversely, given such complex manifold T one defines M to be the moduli space of rational
curves in T (Kodaira theorems [13] guarantee that M exists and is three complex dimensional).
One can show [11] that M comes equipped with the geometric structure consisting of a confor-
mal structure [h], and a compatible torsion—free connection V. The details are as follows: The
points of M correspond to rational curves with self-intersection two in the complex surface T
and points in T correspond to null surfaces in M . Recall that the normal bundle N(L) — L
to a submanifold L C T is defined by

N(L) = UzerNz(L),

where N, = (T;T)/(T4L) is a quotient vector space. If L, C T is the curve corresponding
to p € M then the elements of 7,M correspond to sections of the normal bundle N(L,) and
as a holomorphic line bundle N(L,) = O(2) (see Appendix). The conformal structure on M
arises as we define the null vectors at p in M to be the sections of the normal bundle N(L,)
which vanish at some point to the second order. A section of O(2) has a form VABr mp (see
Appendix), thus the vanishing condition (V)% — VOV is quadratic and defines [h]. If py, ps
are two points in M which are not null separated, then the corresponding curves in T intersect
at two points. If p; and ps are infinitesimally close, and thus are joined by a vector starting

from py, then the corresponding section of N(L;) will vanish at two points.

T M
P>
L vV
5%
L 1 p 1
rational curve P point
normal vector field —————— tangent vector

To define the connection V we define a direction at p € M to be a one-dimensional space of
sections of O(2) which vanish at two points Z; and Z, in L,. The one-dimensional family of
O(2) curves in T passing through Z; and Z5 gives a geodesic curve in M in a given direction
and defines V. In the limiting case Z; = Z5 these geodesics are null with respect to [h]. This
compatibility means that for any choice of h € [h]

Vh=w®h,
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for some one—form w on M. This condition is invariant under the conformal rescalings of h if
h — c*h, w— w+ 2d (In(c)),

where ¢ is a non—zero function on M. Therefore the null geodesics for [h] are also geodesic of
V and thus the pair ([h], V) gives a Weyl structure on M. The Weyl structures coming from
a twistor space satisfy a set of equations generalising Einstein equations. This is because the
special surfaces in M corresponding to points in T are totally geodesic with respect to V (if a
geodesic is tangent to a surface at some point then it lies in that surface). The integrability
conditions for the existence of totally geodesic surfaces is equivalent to the conformally invariant
Einstein—Weyl equations
Ry = Mhgry
where Rz is the symmetrised Ricci tensor of the connection V, and A is some function on M.
The Einstein-Weyl equations admit a Lax formulation with the Lax pair given by (4.24):
If the distribution spanned by (4.24) is integrable then there exists a one—form w such that the
metric h given by o
h=VeV-2WeaW4+WeW) (4.25)

and w satisfy the Einstein—Weyl equations. Any Einstein—Weyl structure arises from such a
Lax pair [3].

An example of a dispersionless system which fits into this construction is the interpolating
integrable system [5]

uy +w, =0, w+w, —cluvw, — wuy) + buu, =0, (4.26)
where u = u(z,y,t),w = w(zx,y,t) and (b, c) are constants. It admits a Lax pair
0 0 0 0 0 0
Lo=2 “eu— N~ )2 =2 Ay
0= 75, + (cw + bu — Acu — A )8:17 + b(w, )\ux)ﬁ)\’ 1= 3, (cu+ )\)&E buxa)\

A linear combination of Ly, Ly is of the form (4.24). The Einstein—Weyl structure associated
to (4.26) is

h = (dy— cudt)? —4(dx — (cw + bu) dt) dt,
= —cu, dy + (4bu, + Fuu, — 2cu,) dt.

(Exercise: Verify that (4.26) arises as [Lg, L;] = 0 from the given Lax pair. Use (4.25)
to construct the given metric h from (u,w)). Setting ¢ = 0,b = 1 gives the dispersionless
Kadomtsev—Petviashvili equation. On the twistor level this limit is characterised [3] by the
existence of a preferred section of x~/* where & is the canonical bundle of holomorphic two—
forms on T. Another interesting limit is (b = 0,c = —1), where the corresponding twistor space
fibers holomorphically over CP'.

There are several approaches to dispersionless integrable systems in 241 dimensions: the
Krichever algebro—geometric approach, the hydrodynamic reductions developed by Ferapon-
tov and his collaborators, The Cauchy problem of Manakov-Santini and the d-formulation of
Konopelchenko and Martinez Alonso to name a few (see [15, 14, 1, 7, 16]). The Einstein-Weyl
geometry and the associated deformed mini-twistor theory provide another framework which is
coordinate independent, and geometric as the solutions are parametrised by complex manifolds
with embedded rational curves.
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5 Summary and outlook

Twistor theory arose as a non—local attempt to unify general relativity and quantum mechan-
ics. In this theory a space time point is a derived object corresponding to rational curve in
some complex manifold. The mathematics behind twistor theory has its roots in 19th century
projective geometry of Pliicker and Klein, but it can also be traced back to integral geometry
of Radon and John developed in the first half of the 20th century. While the twistor pro-
gramme is yet to have its big impact on physics (however see [30]), it has lead to methods of
solving linear and non-linear differential equations. In the linear case one gets nice geometrical
interpretations of integral formulae of Whittaker and John. The twistor methods of solving
nonlinear integrable PDEs are genuinely new and lead to parametrising ‘all’ solutions by un-
constrained holomorphic data. In the case of the Ward model and its reductions (as well as the
anti-self-dual Yang—Mills equations [24] not discussed in this review) the solutions correspond
to holomorphic vector bundles trivial on twistor lines. The solutions of dispersionless integrable
models (as well as anti—self-dual conformal equations [21] and heavenly equations) correspond
to holomorphic deformations of the complex structure underlying the twistor space.

It is unlikely that all integrable equations fit into one of the (rather rigid) frameworks (3.12)
or (4.24) presented in this review. It should however be possible to extend these frameworks,
while keeping their essential features, to incorporate those integrable systems which so far have
resisted the twistor approach.

Appendix

Riemann sphere

Two—dimensional sphere S? C R? is a one-dimensional complex manifold with local coordinates
defined by stereographic projection. Let (uy,us,u3) € S%. Define two open subsets covering S?

U:S2_{(O>0a1)}> 0252_{(0>0a_1)}
and introduce complex coordinates A and A on U and U respectively by
U1 + s

N ul—iu2
A= 2 X=2
1—U3’ 1—|—U3

The domain of A is the whole sphere less the North pole; the domain of ) is the whole sphere less
the South pole. On the overlap Uy N U; we have A = 1/A which is a holomorphic function. The
resulting complex manifold is called CP'. It also arises as the quotient of C? by the equivalence
relation

(7o, m1) ~ (emo, cmy) for some ¢ e C*.

The homogeneous coordinates w4 label the points uniquely, up to an overall non—zero complex
scaling factor. In this approach complex manifold structure on CP' is introduced by using the
inhomogeneous coordinates. On the open set U in which 7 # 0, we define A = mg/m and on
the open set U with my # 0 we set A = m; /7 so that A = 1/\ on the overlap.
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Holomorphic vector bundles

A holomorphic vector bundle of rank n over a complex manifold T is a complex manifold F,
and a holomorphic projection 7 : E — T such that

e For each z € T, 7~!(z) is an n-dimensional complex vector space.

e FEach point z € T has a neighbourhood U, and a homeomorphism Yy, such that the
diagram

R

7 (U,) U, xC"

\ /

=

1s commutative.

e The patching matrix F,5 := x50 Xa * : Uy N Uz — GL(n,C) is a holomorphic map to
the space of invertible n x n matrices.

The product £ = T x C" is called a trivial vector bundle. The bundle is trivial, iff there
exist holomorphic splitting matrices H, : U, — GL(n,C) such that

F.s=HzH". (A1)

We shall give examples of holomorphic line bundles (i.e. vector bundles with n = 1) over
CP'. First define a tautological line bundle

O(—l) = {()\, (7T0,7T1)) S C]P)l X C2|)\ = 71'0/71'1}.

Representing the Riemann sphere as the projective line gives the projection C?> — CP'. The
fibre above the point with coordinate [r] is the one-dimensional line cr through the origin in C?
containing the the point (7, ;). The transition function for this bundle is F' = A. (Exercise:
Show it). Other line bundles can be obtained by algebraic operations:

O(—m) = O(—1)®™,  O(m) = O(—m)*, O=0(-1)20(1), meN.

The transition function for O(m) is F = A\~ on U N U = C*.

The line bundles O(m) for any m € Z are building blocks for all other vector bundles over
the Riemann sphere. This is a consequence of the Birkhoff-Grothendieck theorem which states
that a rank n holomorphic vector bundle £ — CP' is isomorphic to a direct sum of line bundles
O(my) @ - -- @& O(my,) for some integers m;.

Holomorphic sections

A holomorphic section of a vector bundle E over T is a holomorphic map s : T — E such that
7o s =1idy. The local description is given by a collection of holomorphic maps s, : U, — C"

2 — (2, 84(2)), for z € U,.

with the transition rule sg(z) = Fog(2)sa(2).

20



A global holomorphic section of the line bundle O(m) is given by functions s and § on C
holomorphic in A and A respectively and related by

s(\) = A"3(A)

on the overlap C*. Expanding these functions as power series in their respective local coordi-
nates, and using the fact that A = A~! and hence the space of holomorphic sections of O(m)
is C™*1 if m > 0. There are no global holomorphic sections if m < 0. A global holomorphic
section of O(m),m > 0 is the same as a global function on C? homogeneous of degree m (a
polynomial). If m > 0 such function is of the form

f(lr]) = VAB"'CWAWB c T

for some symmetric object VAB+C,
Holomorphic vector fields on CP' are sections of the holomorphic tangent bundle TCP'.
Using
DN
and absorbing the minus signs into the local trivialisations, we deduce that TCP' = O(2).
(Exercise: Consider a general section of O(2) — CP' given by the local form (3.16) where

(v,z,u) and (n,\) are complex. Show that this section is invariant under (2.6) if z € R and
u = —v. Thus deduce (2.7)).

0 _ 0
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