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e Based on

— Reduced dynamics of Ward solitons.

MD), Nicholas S. Manton, hep-th/0411068, Nonlinear-
ity (2005)

— Topology and Energy of Time Dependent Unitons.

MD), Prim Plansangkate, hep-th/0605185.Proc. Royal.
Soc. A (2007)

— Moduli spaces with external fields
MD), Marcin Kazmierczak, hep-th/0610220.

e Integrable chiral model (Ward)
¢ R — G.

<¢_1¢t>t o <¢_1¢x)x - <¢_1¢y)y - [(/b_l(,bta ¢_1¢y] = 0.

e Comparison between exact solutions and approximate mod-
uli space dynamics.

e (Classical quantisation of total energy of moving solitons.



Energy and Topology

e Allowed energy levels of some physical systems can take
only discrete values.

e (Quantum Mechanics. Boundary conditions imposed on the
wave function imply discrete spectra of the Hamiltonians.
(hydrogen atom, harmonic oscillator, ...)

e Classical Field Theory. Smooth field configurations with
finite energy. The potential energy of static soliton solu-
tions is proportional to integer homotopy classes of smooth
maps. (BPS monopoles, instantons in gauge theory, ...)

e In both cases reasons are global - topology.

e Moving solitons. The total energy is the sum of kinetic
and potential terms, and the Bogomolny bound is not satu-
rated. One expects that the moving (non-periodic) solitons
will have continuous energy.



e ¢ :RPL — (N h)

1 1
L= [ (el = 5IVol - U(o) "
RD 2 2
Solitons = nonsingular, static, finite energy solutions of

the classical field equations.

e Scaling argument (Derrick)

E = /RD (%\vgbﬁ + U(¢))de = By + Ey.

dFE
d(r) = d(cx),  —|1=0.

Condition: (D — 2)Ey + DEy :dg
— D =1 Kinks with Fy = Ep.
— D = 2 Sigma models. Solitons possible with Ep = 0.
e Harmonic maps into Lie groups. ¢ : R? — G = U(N).
1
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E-L equations: (¢~ 1¢,), + (¢ 19,), = 0.



e Grassmanian embeddings. Gr(CY) = Grassmanian of
complex K-planes in CV. Grg(CY) c U(N).
K-plane V. — unitary transformation @(my — m,.).
eg. K =1, CP"' Cc UN)
. 2/ ®
f — (17f17 "'7fN—1) — 7/(]- — f‘f|2 f) c U(N)

‘Equatorial condition” ¢ = —¢* (on top of ¢ ¢* = 1).

e Finite energy solutions = unitons (Uhlenbeck)
o(x,y) = MiMs..M,, M, € Grg(C").

Uniton number is the smallest integer n for which this
factorisation is possible. n < V.

e Example. ¢ € SU(2). 1-uniton

0 fP—=1 —2f )
where f = f(z) is holomorphic in z = x + 1y.

Finite energy: f : CP! — CP! is rational

AR
E = /R? o ‘f|2>2)da:dy = 8 deg(f).



e Introduce dynamics. Chiral model (‘obvious choice’):

(f/b_lﬁbt)t - (gb_lqu)x — <¢_1¢y>y =0 (*).

e No (non-trivial) exact solutions. Use geodesic approxima-
tion (Manton).

Field theory — finite dimensional dynamical system on a
moduli space M of static finite energy solutions which are
energy minimisers.

Kinetic energy — Riemannian metric on M.

O = Os(T, Y5 V15 s Ydim aq)» Where v € M. Allow ~(t).

T = —5 [ (1070 dsdy
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e Fixact solution to (x) with small velocity oscillates around
a geodesic of (M, g).

e Problems: Solitons unstable, metric on M incomplete, ex-
act solutions unknown.



e Integrable chiral model (Ward), ¢ : R*! — G.
(¢_1¢t)t _ (Cb_l@s)a: _ (¢_1¢y)y o [¢_1¢t7 ¢_1¢y] = 0.

e SO(2,1) broken to SO(1,1) by V = dx.
Conserved energy

1

E = ) /R? TT((¢_1¢t)2 -+ (¢_1¢x)2 + (¢_1¢y)2> dxdy.

Boundary conditions

o(t,r,0) = do +rp1(0) + O(r2).

e Completely integrable system: Exact time-dependent solu-
tions, Lax pair, twistor theory, oo-many conservation laws,
so solitons may be stable (7).

e Static solutions = harmonic maps. (M, g) as before, but
there could exist a magnetic field on M due to the first

order term VA ¢ tdp A ¢ rdop = [0 oy, o719,

e Modification not as arbitrary as it seems (chiral model with
torsion, symmetry reduction of self—dual Yang—Mills equa-
tion in (2, 2) signature by a translation).



e SU(2) static solution, dim M = 4Q

f(z) = (2 —p1)...(2 — po)

C—por)c-pg) | PP

e Moduli space dynamics (M.D - Nick Manton, M.D - Marcin
Kazmierczak ). Reduced dynamics on the space of based
rational maps: Kéhler metric g, and flat U(1) connection
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The WZW action S = S¢ + Syy.
¢ R* x [0,1] — U(N),
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e 0S5y = 0sodA = 0. Flat connection is still interesting

— Space of rational maps is not simply connected.
— Pull back magnetic form. f: CP!' x M — CP" !

f = flp,..): M — CP" 1,
fro= f(..,7): CP' — CP"!

9X.X) = [ B(X (). X)dady, X €T,M,

AX) = [ W(£,).(0/02). () X)dody.

where A is the Fubini-Study metric on CP" 1.



e In the moduli space approximation the total energy is close
to 8m(), where () € Z. Are there exact solutions with
quantised total energy? [Usually potential energy of static
solitons ~ integer homotopy classes of smooth maps, but
time depencence implies continuous energies|.

e Lax pair

L =0,+0,+¢ (¢ +¢,) — Ny,
M = 0, + ¢ "¢, — N0y — 9,).

Modified chiral model is equivalent to [L, M| = 0.

Can solve an overdetermined system LV = MWV = 0 for
U(z,y,t,\). Given U, recover ¢(x#) = U 1{xH X = 0).

e Restrict the spectral parameter \ to an equator S* C CP*.
U — H(x,y,0), A = —cot (0/2).

Take the spatial part of the Lax pair on the space-like
plane £ = AL + M.

e The ODE
LH =0

describes a propagation of H along a line in R?.

H = (xg— scosb,yy — ssinb, ), s € R.

e Gauge choices: H(x,y,0) =1, limg, H =1.



e Impose the ‘trivial monodromy’ boundary condition

lim H = 1.

S§— 00

This is stronger than the requirement £/ < oo, and picks
a finite dimensional family of finite energy solutions.

e H extends to an element of Map(S?, G).

SX[0, 1] 0 S

N

{1}

e Topological charge
1
N 241 2 S3

[s it related to the total energy?

H] Tr((H_ldH)?’) e m3(Q) = Z.



e Extended solution (Ward, Dai & Terng)
v = GG ... Gy, where

L — Gy @ g
G = (1-— € GL(N,C),
' ( A—qukHQ) (€

QkZQk(W)ECN,kzl,...,n, ,u:mewe(C/]R.

e Topology (or an explicit calculation of Skyrme). Pointwise
group multiplication — addition in m3(G).

91,92 : S* — U(N), 19192) = |g1] + |ga].
H=g,9n-1 ... 01

H] = — / ST (R0, By, O, Ri])dady, Ry = L2
2T R2 —1

P

e Uniton solutions from first order Backlund relations

oz, y,t) = MyM,... M,, M, :¢(1— (1—%)&).

Theorem.[M.D., Prim Plansangkate.] The total energy of

the time dependent ‘trivial scattering’ solitons with p = me’®

is classically quantised

1 +m?
m

E= zm( )|sm<¢)\ H].



Twistor theory for R**',  ds? = dt? — da? — dy?.
o

w=(t+y)+2 x + Nt —y)

Null planes < Real points in Z = TCP*
Points p € R*! «» Real holomorphic sections L, of Z

Solutions to ICM <« Holomorphic vector bundles over Z
trivial on sections.

e Riemann-Hilbert factorisation of a patching matrix

F((,d, >\>le — é @_17 ¢<£If,y,t) — @‘)\:O-

e Compactified twistor space Z = P(O(2) ® O).
P(O(2)+0)

Blow up LD()

Lp

CcP!

Coneinside CP

e Holomorphic bundles over compact complex surfaces have
finite moduli.

Unitons « Bundles over Z



Conclusions

e 2+1 modified chiral model. Not fully Lorentz invariant,
but integrable. There exists a magnetic field on the full
space of solutions, but it vanishes on the moduli space of
static finite energy solutions.

e Comparison of exact solutions with moduli space dynamics.
The moduli space approach to the ordinary CPY ! model
in 241 dimensions does not approximate the true dynamics
of the model. Rodnianski and Sterbenz math.AP/0605023
have demonstrated that any solution must blow up in finite
time.]

e (Classical quantisation of energy of moving solitons.
Questions

e Integrability of geodesic motion on the space of based ra-
tional maps (?)

e Stability (7).



