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• Based on

– Reduced dynamics of Ward solitons.

MD, Nicholas S. Manton, hep-th/0411068, Nonlinear-
ity (2005)

– Topology and Energy of Time Dependent Unitons.

MD, Prim Plansangkate, hep-th/0605185.Proc. Royal.
Soc. A (2007)

– Moduli spaces with external fields

MD, Marcin Kaźmierczak, hep-th/0610220.

• Integrable chiral model (Ward)

φ : R2,1 −→ G.

(φ−1φt)t − (φ−1φx)x − (φ−1φy)y − [φ−1φt, φ
−1φy] = 0.

• Comparison between exact solutions and approximate mod-
uli space dynamics.

• Classical quantisation of total energy of moving solitons.



Energy and Topology

• Allowed energy levels of some physical systems can take
only discrete values.

• Quantum Mechanics. Boundary conditions imposed on the
wave function imply discrete spectra of the Hamiltonians.
(hydrogen atom, harmonic oscillator, ...)

• Classical Field Theory. Smooth field configurations with
finite energy. The potential energy of static soliton solu-
tions is proportional to integer homotopy classes of smooth
maps. (BPS monopoles, instantons in gauge theory, ...)

• In both cases reasons are global - topology.

• Moving solitons. The total energy is the sum of kinetic
and potential terms, and the Bogomolny bound is not satu-
rated. One expects that the moving (non-periodic) solitons
will have continuous energy.



• φ : RD,1 −→ (N,h)

L =

∫

RD

(1

2
|φt|

2 −
1

2
|∇φ|2 − U (φ)

)

dDx

Solitons = nonsingular, static, finite energy solutions of
the classical field equations.

• Scaling argument (Derrick)

E =

∫

RD

(1

2
|∇φ|2 + U (φ)

)

dDx = E∇ + EU .

φ(c)(x) = φ(cx),
dE

dc
|c=1 = 0.

Condition: (D − 2)E∇ +DEU = 0

– D = 1 Kinks with E∇ = EU .

– D = 2 Sigma models. Solitons possible with EU = 0.

• Harmonic maps into Lie groups. φ : R2 −→ G = U (N).

E(φ) = −
1

2

∫

R2
Tr

(

(φ−1φx)
2 + (φ−1φy)

2
)

dxdy.

E-L equations: (φ−1φx)x + (φ−1φy)y = 0.



• Grassmanian embeddings. GrK(CN) = Grassmanian of
complex K-planes in C

N . GrK(CN) ⊂ U (N).

K-plane V −→ unitary transformation i(πV − πV ⊥).

e.g. K = 1, CP
N−1 ⊂ U (N)

f = (1, f1, ..., fN−1) −→ i
(

1 −
2f∗ ⊗ f

|f |2

)

∈ U (N)

‘Equatorial condition’ φ = −φ∗ (on top of φ φ∗ = 1).

• Finite energy solutions = unitons (Uhlenbeck)

φ(x, y) = M1M2...Mn, Mk ∈ GrK(CN).

Uniton number is the smallest integer n for which this
factorisation is possible. n < N .

• Example. φ ∈ SU (2). 1-uniton

φ(x, y) =
i

1 + |f |2

(

|f |2 − 1 −2f

−2f 1 − |f |2

)

where f = f(z) is holomorphic in z = x + iy.

Finite energy: f : CP
1 −→ CP

1 is rational

E =

∫

R2

4|f ′|2

(1 + |f |2)2)
dxdy = 8π deg(f).



• Introduce dynamics. Chiral model (‘obvious choice’):

(φ−1φt)t − (φ−1φx)x − (φ−1φy)y = 0 (∗).

• No (non-trivial) exact solutions. Use geodesic approxima-
tion (Manton).

Field theory −→ finite dimensional dynamical system on a
moduli space M of static finite energy solutions which are
energy minimisers.

Kinetic energy −→ Riemannian metric on M.

φ = φS(x, y; γ1, ..., γdim M
), where γ ∈ M. Allow γ(t).

T = −
1

2

∫

R2
Tr

(

(φ−1φt)
2
)

dxdy

= −
1

2

∫

R2
Tr

(

φ−1 ∂φ

∂γα
φ−1 ∂φ

∂γβ

)

γ̇αγ̇βdxdy

=
1

2
gαβ(γ)γ̇αγ̇β.

• Exact solution to (∗) with small velocity oscillates around
a geodesic of (M, g).

• Problems: Solitons unstable, metric on M incomplete, ex-
act solutions unknown.



• Integrable chiral model (Ward), φ : R2,1 −→ G.

(φ−1φt)t − (φ−1φx)x − (φ−1φy)y − [φ−1φt, φ
−1φy] = 0.

• SO(2, 1) broken to SO(1, 1) by V = dx.

Conserved energy

E = −
1

2

∫

R2
Tr

(

(φ−1φt)
2 + (φ−1φx)

2 + (φ−1φy)
2
)

dxdy.

Boundary conditions

φ(t, r, θ) = φ0 + r−1φ1(θ) +O(r−2).

• Completely integrable system: Exact time–dependent solu-
tions, Lax pair, twistor theory, ∞-many conservation laws,
so solitons may be stable (?).

• Static solutions = harmonic maps. (M, g) as before, but
there could exist a magnetic field on M due to the first
order term V ∧ φ−1dφ ∧ φ−1dφ = [φ−1φt, φ

−1φy] .

• Modification not as arbitrary as it seems (chiral model with
torsion, symmetry reduction of self–dual Yang–Mills equa-
tion in (2, 2) signature by a translation).



• SU (2) static solution, dim M = 4Q

f(z) =
(z − p1)...(z − pQ)

(z − pQ+1)...(z − p2Q)
, γ = (p, p).

• Moduli space dynamics (M.D - Nick Manton, M.D - Marcin
Kaźmierczak ). Reduced dynamics on the space of based
rational maps: Kähler metric g, and flat U (1) connection
A

gαβ = 8

∫

R2

|∂αf∂βf |

(1 + |f |2)2
dxdy,

Aα = 4π

∫

R2

Re(∂zf∂αf )

(1 + |f |2)2
dxdy.

The WZW action S = SC + SM .

φ̂ : R
2+1 × [0, 1] −→ U (N),

φ̂(xµ, 0) = 1, φ̂(xµ, 1) = φ(xµ).

SC = −

∫

[t1,t2]×R2
Tr(φ−1dφ ∧ ∗φ−1dφ)

SM =

∫

[t1,t2]×R2×[0,1]

φ̂∗(Torsion) ∧ V

=
1

3

∫

[t1,t2]×R2×[0,1]

Tr(φ̂−1dφ̂ ∧ φ̂−1dφ̂ ∧ φ̂−1dφ̂ ∧ V ).



• δSM = 0 so dA = 0. Flat connection is still interesting

– Space of rational maps is not simply connected.

– Pull back magnetic form. f : CP
1 ×M −→ CP

N−1

fp := f(p, ...) : M −→ CP
N−1,

fγ := f(..., γ) : CP
1 −→ CP

N−1

g(X,X) =

∫

R2
h((fp∗X, (fp)∗X)dxdy, X ∈ TγM,

A(X) =

∫

R2
h((fγ)∗(∂/∂x), (fp)∗X)dxdy,

where h is the Fubini–Study metric on CP
N−1.



• In the moduli space approximation the total energy is close
to 8πQ, where Q ∈ Z. Are there exact solutions with
quantised total energy? [Usually potential energy of static
solitons ∼ integer homotopy classes of smooth maps, but
time depencence implies continuous energies].

• Lax pair

L = ∂t + ∂y + φ−1(φt + φy) − λ∂x,

M = ∂x + φ−1φx − λ(∂t − ∂y).

Modified chiral model is equivalent to [L,M ] = 0.

Can solve an overdetermined system LΨ = MΨ = 0 for
Ψ(x, y, t, λ). Given Ψ, recover φ(xµ) = Ψ−1(xµ, λ = 0).

• Restrict the spectral parameter λ to an equator S1 ⊂ CP
1.

Ψ −→ H(x, y, θ), λ = − cot (θ/2).

Take the spatial part of the Lax pair on the space-like
plane L = λL +M .

• The ODE
LH = 0

describes a propagation of H along a line in R
2.

H = ψ(x0 − s cos θ, y0 − s sin θ, θ), s ∈ R.

• Gauge choices: H(x, y, 0) = 1, lims→−∞H = 1.



• Impose the ‘trivial monodromy’ boundary condition

lim
s→∞

H = 1.

This is stronger than the requirement E < ∞, and picks
a finite dimensional family of finite energy solutions.

• H extends to an element of Map(S3, G).

S

S

{1}

{0}S x [0, 1]
2 3

2

  

• Topological charge

[H ] =
1

24π2

∫

S3
Tr

(

(H−1dH)3
)

∈ π3(G) = Z.

Is it related to the total energy?



• Extended solution (Ward, Dai & Terng)

Ψ = GnGn−1 . . . G1, where

Gk =
(

1 −
µ− µ

λ− µ

q∗k ⊗ qk
||qk||2

)

∈ GL(N,C),

qk = qk(x
µ) ∈ CN , k = 1, . . . , n, µ = meiφ ∈ C/R.

• Topology (or an explicit calculation of Skyrme). Pointwise
group multiplication −→ addition in π3(G).

g1, g2 : S3 −→ U (N), [g1g2] = [g1] + [g2].

H = gngn−1 . . . g1

[H ] =
i

2π

∫

R2

n
∑

k=1

Tr(Rk[∂xRk, ∂yRk])dxdy, Rk ≡
q∗k ⊗ qk
||qk||2

.

• Uniton solutions from first order Bäcklund relations

φ(x, y, t) = M1M2 . . .Mn, Mk = i
(

1−
(

1−
µ

µ̄

)

Rk

)

.

Theorem.[M.D., Prim Plansangkate.] The total energy of
the time dependent ‘trivial scattering’ solitons with µ = meiφ

is classically quantised

E = 4π
(1 +m2

m

)

| sin(φ)| [H ].



Twistor theory for R2+1, ds2 = dt2 − dx2 − dy2.

•
ω = (t + y) + 2λx + λ2(t− y)

Null planes ↔ Real points in Z = TCP
1

Points p ∈ R
2,1 ↔ Real holomorphic sections Lp of Z

Solutions to ICM ↔ Holomorphic vector bundles over Z
trivial on sections.

• Riemann–Hilbert factorisation of a patching matrix

F (ω, λ)|Lp = Θ̃ Θ−1, φ(x, y, t) = Θ|λ=0.

• Compactified twistor space Z̄ = P(O(2) ⊕O).

Cone inside CP

CP

P(O(2)+O)

3

1

Blow up

Lp

L

• Holomorphic bundles over compact complex surfaces have
finite moduli.

Unitons ↔ Bundles over Z̄



Conclusions

• 2+1 modified chiral model. Not fully Lorentz invariant,
but integrable. There exists a magnetic field on the full
space of solutions, but it vanishes on the moduli space of
static finite energy solutions.

• Comparison of exact solutions with moduli space dynamics.
[The moduli space approach to the ordinary CP

N−1 model
in 2+1 dimensions does not approximate the true dynamics
of the model. Rodnianski and Sterbenz math.AP/0605023
have demonstrated that any solution must blow up in finite
time.]

• Classical quantisation of energy of moving solitons.

Questions

• Integrability of geodesic motion on the space of based ra-
tional maps (?)

• Stability (?).


