Geophysical and Environmental Fluid Dynamics: Some useful numbers (mainly from Gill's book):

Solar 'constant' $S = (1.36_8 \pm 0.00_1) \times 10^3 \text{W m}^{-2}$, where '±' indicates the order of magnitude of the 11-year variability associated with the solar activity (Schwabe) cycle. This knowledge depends crucially on space-based measurements. Not known is whether larger fluctuations, of more obvious climatological significance, say $\sim \pm 0.5\%$ or more, occurred during earlier decades and centuries; nor is it known to what extent the climate system can nonlinearly amplify solar fluctuations.

Molecular mass of dry air, $m_{\rm a} = 28.966$, of water, $m_{\rm w} = 18.016$, of ozone, $m_{\rm o_3} = 48.01$ Universal gas constant, $R_* = 8.3145$ J mole⁻¹ K⁻¹ (Nature **331**, p.477; Amer. Inst. Phys. 1993); 1 mole is 10^{-3} kg times the molecular mass

Gas constant for dry air, $R = R_*/m_a = 287.04 \text{ J kg}^{-1} \text{ K}^{-1}$; $c_p = 1004$, $c_v = 717$, same units Pressure scale height in hydrostatic atmosphere (\simeq density scale height) = RT/g = 7 km when T = 239K, 8 km when T = 273K, 9 km when T = 307K; recall J kg⁻¹ K⁻¹ = m²s⁻² K⁻¹ Gas constant for water vapor, $R_{\rm w} = R_*/m_{\rm w} = 461.50 \text{ J kg}^{-1} \text{ K}^{-1}$

Molecular weight ratio $m_{\rm a}/m_{\rm w} = R_{\rm w}/R_{\rm a} = 1.6078 = 0.62\overline{1}97^{-1}; \gamma \equiv c_p/c_v = 1.40; \ \kappa \equiv R/c_p = \frac{2}{7};$ Stefan–Boltzmann constant $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{K}^{-4}$

Gravitational force per unit mass g (in ms⁻²) as a function of latitude φ and height z (in m)

$$g = (9.78032 + 0.005172\sin^2\varphi - 0.00006\sin^2 2\varphi)(1 + z/a)^{-2}$$

Mean surface value, $\bar{g} = \int_0^{\pi/2} g \cos \varphi d\varphi = 9.7976$ Radius of sphere having the same volume as the earth, a = 6371 km (equatorial radius = 6378 km, polar radius = 6357 km)

Rotation rate of earth, $\Omega = 7.292 \times 10^{-5} \text{ s}^{-1}$; Coriolis parameter $f = 2\Omega \sin \phi = 1 \times 10^{-4} \text{s}^{-1}$ at latitude $\phi = 43.29^{\circ}$ N

Mass of earth 5.977×10^{24} kg

Mass of atmosphere $= 5.3 \times 10^{18}$ kg

Mass of ocean 1.4×10^{21} kg

Mass of water in sediments and rocks $= 2 \times 10^{20}$ kg

Mass of ice on earth $= 2.2 \times 10^{19}$ kg

Mass of water in lakes and rivers $=5\times 10^{17}~{\rm kg}$

Mass of water vapor in atmosphere = 1.3×10^{16} kg $\simeq \frac{1}{4}\%$ of mass of atmosphere Mass of ozone in atmosphere = 3×10^{12} kg $\simeq 0.00006\%$ of mass of atmosphere $\simeq 3$ mm layer at surface (Ozone replenishment rate, if 3 year circulation timescale, $\simeq 3$ million tonnes per day) Area of earth = $5.10 \times 10^{14} \text{m}^2$; Area of ocean = $3.61 \times 10^{14} \text{m}^2$; Area of land = $1.49 \times 10^{14} \text{m}^2$ Area of ice sheets and glaciers $= 1.62 \times 10^{13} \text{m}^2$

Area of sea ice $= 1.75 \times 10^{13} \text{m}^2$ in March and $2.84 \times 10^{13} \text{m}^2$ in September

Area of Antarctica $1.41 \times 10^{13} \text{m}^2$; Area of USA $0.93 \times 10^{13} \text{m}^2$

Dry adiabatic lapse rate $\Gamma = g/c_p = 9.76 \text{K km}^{-1}$

Moist adiabatic lapse rate Γ_s depends on temperature T and pressure p:

e.g.	at
------	---------------------

$30^{\circ}\mathrm{C}$	(303K)	and 1000 mbar (10^5 Pa) ,	$\Gamma_s = 3.5 \text{ K km}^{-1}$
25	298	22	3.8
20	293	22	4.2
0	273	"	5.2
-30	243	"	8.4

[Gill (p 607) gives an empirical formula for $\Gamma_s(T, p)$]

Typical values of buoyancy (Brunt–Väisälä) frequency N: most of stratosphere, $\sim 2 \times 10^{-2} \mathrm{s}^{-1}$ (period 5 min); most of troposphere, $\sim 1 \times 10^{-2} \mathrm{s}^{-1}$ (period 10 min); main ocean thermocline, $\lesssim 0.2 \times 10^{-2} \mathrm{s}^{-1} \text{ (period } \gtrsim 1 \text{ hour)}$