
Appendix I: Rossby-wave propagation and shear instability

M. E. McIntyre

1. Introduction

This Appendix explores Rayleigh’s inviscid shear instability problem and its relation to the
Rossby-wave propagation mechanism, or ‘Rossby quasi-elasticity’. The instability problem is the
simplest of those solved by Rayleigh in his pioneering work last century on the undular instability
of jets and shear layers. It provides us with a robust paradigm for a very basic fluid-dynamical
process. It is robust in the sense that it gives essentially the same result as the U ∝ tanh(y/b)
case and practically all the other inviscid shear-layer profiles that you can explore for yourself in
computer demonstration 10. These include almost any moderately smooth shear-layer profile drawn
with the mouse, with y-scale b somewhat less than the computational domain size L.

The essential qualitative result, well documented in many places in a vast research literature,
is that almost any shear layer sandwiched between constant-velocity regions is unstable to small
sideways undular displacements, with a fastest exponential growth rate equal to a modest fraction,
often a fifth or so, of the typical shear. The fastest-growing instability has a radian wavelength of
the same order as the shear layer thickness 2b, where radian wavelength means full wavelength /2π.

As already remarked in the lectures, the same qualitative result applies also to the ‘KH insta-
bility’ (Kelvin–Helmholtz, sometimes called Taylor–Goldstein, instability) of a stratified shear layer
U(z), N2(z) at sufficiently small Richardson number Ri = (N/Uz)

2. This instability is sometimes
visible in the sky as groups of long-crested ‘billow clouds’ having lifetimes of order ten minutes.
The instability commonly occurs when larger-scale disturbances tilt a strongly stratified layer and
produce sufficient vertical shear Uz in the layer (via the horizontal gradient of the buoyancy acceler-
ation, in the vorticity equation, equivalently the term ∝ ∇ρ×∇p, cf. Dr Linden’s lectures) to bring
the local value of Ri well below 0.25. You can use the computer’s Movie Viewer (load KH.IMG).
to see the evolution to finite amplitude of a typical KH instability, produced in the laboratory by
tilting a thin stratified layer in a long tank (S.A. Thorpe 1973, J. Fluid Mech., 61, 731)†

It can be shown that, for laboratory-scale shear layers in which viscosity might be directly
significant, the fastest instabilities are not much affected until Reynolds numbers Ub/ν are down

† You might like to think about how it is that minimum Ri = (N/Uz)2 tends to occur in the most

strongly stratified layers, i.e., where N2 is largest. This is true both in the tilted-tank experiment and in
most naturally-occurring situations. The tilting envisaged is one in which some larger-scale disturbance
tilts a relatively thin but horizontally extensive layer of relatively strong stratification. Such a layer, by
definition, has a strong maximum in N considered as a function of z. The key point is that if the layer
tilts approximately as a plane, making a small time-dependent angle α(t) with the horizontal, then the

horizontal gradient ∇Hσ of the buoyancy acceleration σ has approximate magnitude αN2(z), a strong
function of z. This gives rise to horizontal vorticity, appearing mainly as vertical shear Uz (because of the

large ratio of horizontal to vertical scales in this situation), and having the z-dependence of N2, not N .

Specifically, Uz ' γ(t)N2(z) where, if Coriolis forces are negligible, as in the tilted-tank experiment, γ(t)

is simply the time integral of α(t). Then Ri = (N/Uz)2 = (γN)−2. So, when γ(t) increases, Ri becomes

smallest soonest at a maximum, not a minimum, of N(z). The same formula Ri = (γN)−2, hence the
same conclusion, can be shown to hold far more generally with suitably modified γ(t). For instance, in the

opposite-extreme case of geostrophic balance (see Haynes’ lectures), the formula Ri = (γN)−2 still holds

but with γ(t) = α(t)/f where f is the Coriolis parameter.
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to very modest values, of the order of 10 or less — another striking indication of the robustness of
the shear instability mechanism in these simplest cases.

Rayleigh’s problem is the case of small-amplitude disturbances to an exactly inviscid layer
with exactly constant shear, the ‘vorticity strip’ first mentioned in the lectures at transparency
MEM 35; see also computer demonstrations 6, 7. In this particular case the problem can be
explicitly solved in detail, with no more than exponential functions and a modicum of patience
— apart from just one tricky technicality, the derivation of equation (6) below. Section 4 gives
the full analysis, and shows how it illustrates the fundamental relation between shear instability
and the Rossby-wave propagation mechanism. An equivalent visual–verbal description is given in
section 5, following the review by Hoskins et al (1985, Q. J. Roy. Meteorol. Soc., 111, 877–946 and
113, 402–404). To prepare the way for sections 4 and 5, the appropriate case of simple Rossby
waves is analyzed first (sections 2 and 3). The qualitative understanding thus gained shows why the
instability mechanism is robust, particularly as regards its finite-amplitude consequences illustrated
in the lectures at transparency MEM 35.

Moreover, that understanding can be extended immediately to the fastest — and likewise ro-
bust — three-dimensional ‘baroclinic instabilities’ on horizontal temperature gradients (Dr Haynes’
lectures), which are usually thought of as accounting for the existence of the mid-latitude cyclones
and anticyclones that are conspicuous features of atmospheric weather patterns. Mid-latitude cy-
clones and anticyclones have horizontal length scales L<∼ 103 km; their oceanic counterparts (scales

L<∼ 102 km) place severe requirements on numerical resolution for eddy-resolving ocean circulation
models. The extension to three-dimensional baroclinic problems is obtained simply by replacing

vorticity with potential vorticity and replacing ‘vorticity inversion’ (the inverse Laplacian operator)
with ‘potential vorticity inversion’; see also Appendix II. Rayleigh’s instability itself has direct
relevance to some atmospheric weather developments, and ocean-current instabilities, associated
with horizontal shear, and in this context is often referred to as a ‘barotropic shear instability’ or
a ‘Rayleigh-Kuo instability’. The description of the instability mechanism in section 5 is written
so as to apply, suitably interpreted, both to the barotropic and to the baroclinic cases. On first
reading, however, it can be viewed simply as a summary of what happens in Rayleigh’s problem,
underpinned by the detailed justification available, for those interested, in sections 3 and 4.†

Rayleigh’s problem, then, is to find the inviscid, exponentially-growing small disturbances, if
any, to the unidirectional basic or background velocity profile (u, v) = {U(y), 0} shown as ©C in
the following diagram:

† There is a vast and highly technical literature on the linearized theory of shear instabilities that are
more complicated, slower-growing, and less robust as regards their finite-amplitude consequences — hence
less likely to be practically important, albeit sometimes mathematically intriguing. Some of these more
complicated instabilities can be understood in terms of a phenomenon called ‘over-reflection’, as first, I
believe, clearly illustrated by A. E. Gill (1965, Phys. Fluids., 8, 1428–1430), who analyzed an instability

arising from the over-reflection of sound waves between two vortex sheets.
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The shear Uy = dU/dy is piecewise constant in each profile shown. The domain is unbounded.
The planetary vorticity gradient β = df/dy is taken to be zero since we are interested, at first, in
a paradigm that is equally relevant to large-scale and small-scale flow.

2. Rossby-wave propagation on a concentrated vorticity gradient

First consider profiles ©A and ©B , which are stable. They provide another illustration of the
Rossby wave propagation mechanism or ‘Rossby-wave quasi-elasticity’, which is basic to most prob-
lems in atmosphere–ocean dynamics and, for instance, has an important role in the approximate
chemical isolation of ‘Meddies’ (Atlantic Mediterranean Eddies) from their surroundings, and sim-
ilarly the chemical isolation of the stratospheric polar vortex and ozone hole (lecture transparency
MEM 7). (Epigrammatically, “Strong vortices have strongly Rossby-elastic edges.”)

Here the vorticity gradient to which the wave propagation owes its existence is concentrated
on a single material contour, namely that material contour whose undisturbed position is y = b.
(The distinction between these Rossby waves and those on a constant, or smoothly varying, basic
vorticity or potential-vorticity gradient may be compared to the distinction between surface gravity
waves and internal gravity waves. The propagation of surface gravity waves, or ordinary ‘water
waves’, can be described as owing its existence to a density or buoyancy gradient concentrated at
the water surface, as compared with internal gravity waves on a continuous buoyancy gradient.)
The following sketch reminds us of the basic Rossby-wave mechanism:

The encircled signs indicate the sense of the vorticity anomalies q′ caused by displacing the contour;
note that the basic-state vorticity is more positive, or less negative, on the positive-y or ‘northern’
side of the contour). The straight arrows indicate the sense of the induced disturbance velocity

field, i.e. the velocity field resulting from inversion of q′. The phase of the velocity pattern is im-
portant. The velocity pattern is a quarter wavelength out of phase with the material displacements,
marked by the undular shape of the material contour itself. What follows from this is a matter
of simple kinematics. If one makes a movie of the situation in one’s mind’s eye, as viewed from
a frame of reference moving with the basic flow U at y = b, one can see that the undulations
must be propagating relative to the basic flow. (The notion of vorticity inversion allows one to
say, epigrammatically, that the undulations are caused to propagate by the disturbance vorticity
anomalies ©+ ©− ....) The propagation is toward the left in this case; generally it is in whichever
direction has the most positive, or least negative, basic-flow vorticity or potential vorticity on the
right. This is sometimes called ‘pseudo-westward’ or, more aptly, ‘quasi-westward’.

The all-important quarter-wavelength phase shift is easily understandable from the properties
of vorticity inversion, for instance as visualized by the electrostatic and soap-film analogies described
in the lectures. For instance a soap film being pushed and pulled in an x-periodic pattern will show
a corresponding pattern of hills and valleys; this tells us that the streamfunction anomalies ψ ′

are 180◦ out of phase with the vorticity anomalies, and hence in phase with the material contour
displacements. You can also verify this picture from the computer demonstrations.∗

∗ Demonstration 7 (look at one colour only) is probably more convenient for this purpose than demon-

stration 6.
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The next section verifies the correctness of the foregoing picture in an independent way, by
using the traditional linearized mathematical theory for small displacements. This prepares the
way for a similar mathematical treatment of Rayleigh’s problem. If you are happy to take the
theory on trust on first reading, you can skip to section 5 at this point.

3. Mathematical verification of the Rossby propagation mechanism

We regard all the basic velocity profiles as limiting cases of smooth profiles with continuous
derivatives. This is one way of being sure to get the correct jump conditions across the discontinu-
ities in Uy — the only tricky point, equation (6) below, in an otherwise straightforward analysis. For
smooth profiles U(y), with viscosity neglected, the linearized disturbance equation can be written

(

∂

∂t
+ U

∂

∂x

)

q′ − Uyy

∂ψ′

∂x
= 0 , (1)

where −Uyy = −d2U/dy2, the basic or background vorticity gradient giving rise to the Rossby-
wave mechanism, and q′ and ψ′ are respectively the disturbance contributions to the vorticity and
streamfunction, with the convention

(u′, v′) = (−∂ψ′/∂y , ∂ψ′/∂x) . (2)

for the disturbance velocity. The relation between ψ′ and q′ appears in this notation as

∇2ψ′ =
∂2ψ′

∂x2
+
∂2ψ′

∂y2
= q′ (3a)

(

ψ′ periodic in x; ψ′ and ψ
′

y → 0 as |y| → ∞
)

, (3b)

ψ
′

y being shorthand for ∂ψ′/∂y as usual. We may summarize the content of (3) more succinctly as

ψ′ = ∇−2q′ , (4)

making explicit the idea of vorticity inversion as used just now in section 2, in the lectures, and
in Appendix III equation (14b), with boundary conditions of evanescence in y and periodicity in x
understood here.

In the limit of piecewise constant shear dU/dy, we have Uyy = 0 for y 6= ±b. Hence (1) implies
that

(

∂

∂t
+ U

∂

∂x

)

q′ = 0 (y 6= ±b) . (5)

By a careful consideration of the limit near y = ±b it can also be shown∗ that (1) implies

(

∂

∂t
+ U

∂

∂x

)[

∂ψ′

∂y

]+

−

−

[

dU

dy

]+

−

∂ψ′

∂x
= 0 at y = ±b , (6)

∗ One way of deriving (6) from (1) is to use the concept of Dirac delta or ‘point-charge’ functions. When

we take the limit in (1), Uyy will tend to a delta function of strength [Uy]+− centred on y = b. In the case

of profile ©C one must add a similar contribution centred on y = −b. Equation (1) can be satisfied in the

limit only if the ψ
′

yy contribution to ∇2ψ′ [see (3a)] likewise tends to a delta function, with ψ′ continuous

and ψ
′

y piecewise continuous.
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where the square brackets denote jumps or differences across y = ±b. That is, [F (y)]+− at y = b
means F (y+) − F (y−) where F (y+) = limy↓b F (y) and F (y−) = limy↑b F (y), for any function
F (y) such that the limits exist. The condition (6) says, in a rather inscrutable way, that the initial
vorticity distribution moves with the undulating material contour. The inscrutability arises from
using the linearized Eulerian description — for reasons of mathematical convenience — to describe
something that appears simple only in the exact Lagrangian description.†

Both for profile ©A and for profile ©B we have solutions of the form

ψ′ = ψ̂(y)eik(x−ct) (7)

where

ψ̂(y) ∝ e−|k(y−b|) , (8)

making q′ vanish for y 6= b and hence satisfying (5). Then (6) gives

ik(U − c)(−2|k|) = [Uy]+−ik at y = b ,

so that the intrinsic phase speed is

c− U(b) = − 1
2G|k|

−1 (G > 0) (9)

where G = −[Uy]+− at y = b (G > 0 for profiles ©A and ©B ). Thus a disturbance of x-wavelength
2π/k centred on y = b propagates to the left with phase speed (9), relative to U(b), as anticipated in
the lectures. (This agreement between equations and pictures is a good check that we have the sign
right in (9). Note also that the intrinsic frequency − 1

2G sgnk is independent of |k| — inevitable on
dimensional grounds, as with internal gravity waves, since profiles ©A and ©B have no length scale,
and the only relevant property of the basic flow, G = −[Uy]+−, is a constant having the dimensions
of frequency. It follows incidentally that the intrinsic group velocity is zero.)

[Exercise: Verify that, in this case, Rossby waves that have less ‘room’ to propagate will
propagate more slowly, in the sense of having smaller intrinsic phase speeds. Take for instance the
case in which rigid boundaries are introduced at y = b± a for some positive constant a; it is easy
to show that this always replaces the 1

2 |k|
−1 in (9) by a smaller quantity.]

† More precisely, the inscrutibility of (6) is connected with the noninterchangeability of the two limits
involved in deriving it, the first being the limit of small disturbance amplitude, already taken in (1) through
the omission of terms like q′yψ

′
x, and the second being the limit of infinitely steep vorticity gradients at the

material contour! One way to make sense of (6), independently of its derivation from (1), is to recognize
that although (for reasons of mathematical convenience) (6) refers to values exactly at y = +b, for instance,
it actually represents physical conditions at the displaced position, y = b+ η, say, of the material contour.
The total velocity field on each side of the contour has been, in effect, extrapolated back to y = b using

one-term Taylor expansions, again neglecting products of small quantities like ηu
′

y and ignoring the fact
that y = b may be on the wrong side of the contour. Now if the simple vorticity discontinuity of profile
©A or ©B moves with the undulating material contour y = b + η, then the velocity jump ∆ηu across the
contour y = b + η must vanish, ∆ηu = 0, for otherwise a sheet of infinite vorticity would have appeared
from nowhere (see also section 7 below). The small-amplitude approximation to ∆ηu, expressed in terms

of the fields extrapolated back to y = b, is [u′ + ηUy]+−; so we must have [u′ + ηUy]+− = 0. Therefore we

must also have (∂/∂t+ U∂/∂x)[u′ + ηUy]+− = 0. This is (6), because η is a continuous function of y (and

a differentiable function of x) such that (∂/∂t+ U∂/∂x)η = v′ = ∂ψ′/∂x.
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4. Mathematical analysis of the instability mechanism

What happens if we add another region of concentrated vorticity gradient, with the opposite
sign, as in profile ©C ? The Rayleigh–Kuo and Fjørtoft theorems (see computer demonstration
notes, page 10–3) now suggest that instability is possible: G changes sign between regions, evading
the Rayleigh stability condition, and U also changes sign, in the sense required to evade the Fjørtoft
stability condition. This still does not guarantee instability; see section 6 below. But we now show
directly, following Rayleigh, that profile ©C does, in fact, have unstable modes provided |kb| is not
too large. (One can see from the decaying exponential structure in (8) that instability will certainly

not be found for |kb| À 1. For if |kb| À 1, then (8) and a similar solution ψ̂ ∝ e−|k(y+b)| will apply
with exponentially small error; the neighbourhoods of y = ±b are too far away from each other
(bÀ |k|−1) to interact significantly, and will behave independently.)

For general |kb|, we have (taking k > 0 to save having to write |k| all the time):

ψ̂ =











A sinh(2kb).e−k(y−b) (y > b)

A sinh k(y + b) +B sinh k(b− y) (−b < y < b)

B sinh(2kb).ek(y+b) (y < −b)

(10)

for some pair of constant coefficients A and B. The form of (10) has again been chosen to make q ′

vanish for y 6= b and hence to satisfy (5), and also to make ψ̂ continuous at y = ±b. The ratio A/B,
and the constant c, are still available to satisfy (6) at each interface. Writing Uy = Λ (positive
constant) for |y| < b, dividing (6) by ik, and writing sh for sinh 2kb and chfor cosh 2kb, we have

{

At y = b : (Λb− c)[ψ̂y]+− + Λψ̂ = 0; also ψ̂ = A sh, [ψ̂y]+− = −Ak sh − (Ak ch −Bk)

At y = −b : (−Λb− c)[ψ̂y]+− − Λψ̂ = 0; also ψ̂ = B sh, [ψ̂y]+− = (Ak −Bk ch) −Bk sh .

The first line gives

−Ak sh −Ak ch +Bk +
Λ

Λb− c
A sh = 0 . (11a)

The second gives

Ak −Bk ch −Bk sh +
Λ

Λb+ c
B sh = 0 (11b)

A nontrivial solution for A : B exists if and only if the determinant vanishes; write sh + ch =
exp = exp 2kb (since ch = 1

2{exp +(1/ exp)} and sh = 1
2{exp−(1/ exp)}:

(

−k exp +
Λ sh

Λb− c

)(

−k exp+
Λ sh

Λb+ c

)

− k2 = 0 . (12)

This will give c (for real, prescribed k); it also gives a quick check that we have done our sums
correctly so far, since in the large-k limit both k exp and sh are overwhelmingly greater than k2,
so that in (12) we have ( )( ) = 0 to an excellent approximation, so that one or other factor must
vanish, again to an excellent approximation. The vanishing of the first factor gives Λb−c ' 1

2Λk−1,
equivalent to (9) (isolated Rossby wave on interface y = +b). The second factor similarly gives the
wave on y = −b.

Multiplying-out the product ( )( ) in (12) and noting that ( exp)2 − 1 = 2 sh. exp, we have

2k2 sh. exp − kΛ sh. exp .

(

1

Λb− c
+

1

Λb+ c

)

+
Λ2 sh2

Λ2b2 − c2
= 0 .
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The quantity in parentheses is equal to 2Λb/(Λ2b2 − c2). Therefore

Λ2b2 − c2 =
2kbΛ2 sh. exp − Λ2 sh2

2k2 sh. exp

(

=
Λ2b2

kb
−

Λ2b2 sh

2k2b2 exp

)

or

c2 = Λ2b2
(

1 −
1

kb
+

sh

2k2b2 exp

)

. (13)

If we make c dimensionless with respect to the total velocity difference ∆U = 2bΛ, and k with
respect to the shear layer width 2b, say C = c/2bΛ , K = 2kb, then (13) becomes

C2 =
( c

2bΛ

)2

= 1
4 − 1

2K
−1 +

sinh(K)

2K2 exp(K)
=

1

4K2

[

(K − 1)2 − exp(−2K)
]

. (14)

Note that C2 = − 1
4 + 1

3K +O(K2) as K → 0 (by Taylor-expanding exp(−2K) = 1− 2K + 2K2 −
4
3K

3 +O(K4); note that the first two orders cancel), so that

C = ± 1
2 i(1 − 2

3K +O(K2)) as K → 0 . (15)

This demonstrates the existence of instability for some range of K: there exists a mode with
Im c > 0, at least for sufficiently small K. At this point we get another check that the algebra
is correct; the limiting values C ' ± 1

2 i, or c ' ± 1
2∆Ui, agree with those implied by the theory

of waves on a single vortex sheet (e.g. Batchelor’s textbook, eq. (7.1.20)). The fact that small K
means radian wavelength k−1 À 2b suggests that the disturbance should see the whole shear layer
as being thin; i.e. as a vortex sheet. Similarly, any other U(y) profile that goes monotonically
between two constant values should give the same long-wave behaviour in an infinite domain. For
instance the tanh profile also checks out in this respect (c ∼ 1

2 i× total change in U). You could try
some mouse-drawn profiles as well, with small-ish but finite k, but it will be necessary to make the
domain size L somewhat larger than k−1.

Next we note the phase relations implied by (10), (11) and (14) — crucial to a full understand-
ing of what is going on! From (11a, b) respectively we get

B

A
=

(

exp−
Λ sh

k(Λb− c)

)

=

(

exp−
Λ sh

k(Λb+ c)

)−1

. (16)

We are interested only in cases where k and K are real and c is pure imaginary, i.e. (14) is negative-
valued. The two expressions in large parentheses are then complex conjugates of each other, since
they differ only in the sign of ±c. It follows that

∣

∣

∣

∣

B

A

∣

∣

∣

∣

= 1 , (17)

the simplest result consistent with the symmetry of the problem. The relative phases of ψ ′ and
therefore of v′ = ψ

′

x are (when c = ici, pure imaginary):

arg

(

B

A

)

= arcsin Im

(

B

A

)

= arcsin Im

(

−
Λ sh

k(Λb− ici)

)

= arcsin

(

−Λci sh

k(Λ2b2 + c2i )

)

, (18a)

or in dimensionless form, dividing numerator and denominator by 2bΛ2,

arg

(

B

A

)

= arcsin

(

−Ci sinh(K)

K( 1
4 + C2

i )

)

, (18b)
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This gives the phase angle, or fraction-of-a-wavelength times 2π, by which the pattern in v ′ at y = b
leads that at y = −b. It is negative for the growing mode, Ci > 0, so in our picture, with x pointing
to the right, the v′ pattern at y = b is shifted to the left of that at y = −b. The constant-phase
lines ‘tilt oppositely to the shear’:

The phase shift (18b) across the shear tends∗ to arcsin(−1) = −π/2, corresponding to a quarter of

a wavelength, as K ↓ 0 and Ci ↑
1
2 . Since the complex displacement amplitude η̂ = ψ̂/(U −c), from

(∂/∂t+U∂/∂x)η = v′ and v′ = ψ
′

x, and since the q′ pattern at each interface ∝ ∓η at y = ±b, the
phase shift in the q′ pattern is given by

arg

(

B/(−Λb− c)

−A/(Λb− c)

)

= arg

(

B

A

(Λb− c)

(Λb+ c)

)

= arg

(

B

A

)

+ arg

(

1 − 2C

1 + 2C

)

= arg

(

B

A

)

+ 2 arctan(−2Ci) if C = iCi , pure imaginary (19)

Thus the q′ pattern has a phase shift in the same sense, but bigger. On the next page are some
numerical values showing how the quantities of interest vary as function of dimensionless wavenum-
ber K. From left to right: dimensionless wavenumber K, imaginary part Ci of dimensionless phase
speed (real part being zero), dimensionless growth rate KCi, phase shift for v′ or ψ′, phase shift
for q′, the last two being expressed as fractions of a wavelength.

Note from (15) (18b), and (19) that the phase shift for the q′ pattern → −π, corresponding
to half a wavelength, as K ↓ 0. This again is consistent with expectation (and with well known
results) for effectively thin shear layers, or vortex sheets. It says that, in the long-wave limit, the
displacements η (∝ ∓q′) are almost exactly in phase across the shear layer; that is, the layer does
undulate almost as a single entity.

∗ Note that Ci is real, and → 1
2 as K → 0, and that sinh(K)/K → 1 as K → 0.
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The following picture, taken from Gill’s book, gives ψ′ = ψ̂(y)eik(x−ct) for the fastest growing mode,
as a function of x and y when the arbitrary constant A is taken such that AB is pure imaginary:
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The next section gives a verbal description that serves to summarize the key points about the
picture that has emerged. It also tries to make the qualitative robustness of the whole picture more
evident, including the pattern of phase shifts and how they are related to the exponential growth
with time. As mentioned earlier it can be understood as applying to more than one type of large
and small-scale shear instability occurring in the atmosphere and oceans; but on first reading it
can be understood simply as a summary of the picture just derived for Rayleigh’s problem.

5. The essentials of the instability mechanism

This follows section 6d of the review article by Hoskins et al. cited in section 1. Those of you
with a particular interest in large-scale atmospheric and oceanic eddies might be interested not only
in the wider meaning of what is to follow, but also in other parts of the review such as the description
of what happens, in certain cases, when large amplitudes are attained, and the relationship to
cyclogenesis in the real atmosphere (as hinted at in my last lecture). In this connection you should
note one point about terminology. Phrases like ‘IPV maps’, ‘IPV distributions’, ‘IPV anomalies’,
etc., are used in the review article as a handy abbreviation to signify isentropic or isopycnic maps,
distributions, anomalies, etc, of PV, where ‘PV’ means the quantity Q = ρ−1ζabs·∇θ defined in the
lectures and in equation (12) of Appendix III, i.e., the Rossby–Ertel potential vorticity. (The full
name follows the historical precedents dating from a paper by Rossby published in 1936, ref. [99] in
Appendix III.) As will be explained in the lectures, it is isentropic or isopycnic distributions of PV
— and, for Rossby waves and shear instabilities, isentropic or isopycnic gradients, and anomalies,
of PV — that are dynamically significant. They play the role of vorticity gradients and anomalies
in two-dimensional vortex dynamics. In the diagram below, taken from the review article, ‘IPVG’
means (northward) isentropic gradient of PV (and ‘N’ or ‘northward’ corresponds to +y above).
Since the review was published it has become apparent, however, that phrases like ‘IPV gradient’
can be too easily misread as signifying a gradient of something called ‘IPV’. Therefore in these
notes I shall use phrases like ‘PV gradients’, leaving tacit the important fact that, in the case of
layerwise-two-dimensional stratified flow, this must be understood to mean isentropic or isopycnic

gradients.

On first reading, as suggested, references to baroclinic phenomena can be ignored, and, as
appropriate for the case of the strictly two-dimensional flow that is our immediate concern, ‘PV
gradient’ can be read as meaning vorticity gradient (absolute vorticity gradient if in a rotating
frame), ‘PV anomaly’ as meaning q′, and so on.

As already suggested, the simplest instabilities — by which we mean those with the simplest
spatial structures — are also, in many cases, those with the fastest growth rates. These simplest
instabilities, including that arising in Rayleigh’s problem, are all characterized by a pattern of PV
anomalies (q′ anomalies) of the general sort shown schematically by the plus and minus signs in
the following diagram:
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The pattern can be thought of as a pair of Rossby waves propagating side by side, or one above the
other, depending on whether a barotropic (Rayleigh-like) or a baroclinic instability is in question.

Viewed in a reference frame moving with the zonal phase speed c of the disturbance, each
Rossby wave propagates against, and is held stationary by, the local basic flow. From the nature of
the Rossby propagation mechanism (recall diagram on page 3), this is dynamically possible if the
sign of the basic PV gradient is positively correlated with that of the relative zonal flow (U − c),
i.e. both signs positive, as in the top half of the diagram, or both signs negative, as in the bottom
half. This is evidently the simplest configuration consistent with the Rayleigh–Kuo and Fjørtoft
necessary conditions for instability. It will be noticed that if the basic zonal flow U has a continuous
profile then a ‘steering level’ or ‘critical line’ will be present, where by definition U−c = 0. We shall
assume that the basic PV gradient is small or negligible in some region containing the critical line
(as in Rayleigh’s problem); the more general case is discussed in the review article. Moreover, for
expository purposes we shall restrict attention at first to patterns whose spatial scale is such that,
if the induced velocity field associated with each Rossby wave in the diagram did not affect the
other, then their phase propagation would be somewhat too slow to hold them stationary against
the basic zonal flow.

The essence of the instability mechanism is that the induced velocity fields do, however, overlap
significantly. That is why the width 2b in Rayleigh’s problem, if instability is to occur at a given
wavelength 2π/k, has to be of order k−1 or less. Similarly, in order to get a baroclinic instability
of horizontal scale L, say, and simple spatial structure, the vertical separation between the two
rows of PV anomalies has to be of the order of one Rossby height fL/N or less, as illustrated in
Dr Haynes’ lectures by the Eady baroclinic instability problem. The overlapping of the induced
velocity fields has the following consequences, under the assumed conditions:

(i) Inasmuch as the PV anomaly patterns are less than a quarter wavelength out of phase with
each other, the case shown in the diagram, each half helps the other to propagate against
the basic zonal flow. That is, the contributions to the northward velocity induced by each
PV pattern partially reinforce each other, making the phase of each pattern propagate
upstream faster than it would in isolation. This is how the patterns hold themselves
stationary against the basic flow, under the assumed conditions.

(ii) Because of this interdependence between the two counterpropagating Rossby waves, their
relative phase tends to lock on to a configuration like that shown. For if the PV patterns
were each to shift slightly downstream, i.e. the upper pattern towards the right and the
lower towards the left, so as to be more nearly in phase, then each half would help the
other to propagate still more strongly, moving the patterns back upstream towards their
original relative positions. Conversely, if the patterns were shifted upstream, so as to be
more out of phase, then propagation would be weakened, and advection by the basic zonal
flow would tend to restore the original phase relation.

(iii) Just as in the diagram on page 3, the northward velocity induced by the upper PV pattern
alone is a quarter wavelength out of phase with that pattern. The large black dot in the
diagram marks the position of the northward velocity maximum induced by the upper PV
pattern alone, for the right-hand-most wave period. This is less than a quarter wavelength

out of phase with the bottom PV pattern, and therefore with the bottom displacement
pattern, as indicated by the position of the small black dot directly below. If we add the
velocities induced by the bottom PV pattern (open dots) to get the total velocity field, we
see at once that the total velocity is also less than a quarter wavelength out of phase with
the displacement pattern. This is true on the top level as well as on the bottom level.

(iv) It follows that the total northward velocity field in each half of the disturbance can be
regarded as a sum of sinusoidal contributions in phase with, and a quarter-wavelength
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out of phase with, the northward displacement field. Moreover, the in-phase contribu-
tion has the same sign as the displacement. A velocity in phase with the corresponding
displacement implies, by simple kinematics, that both must be growing.

The instability mechanism just described can be summarized in one sentence, by saying that

‘The induced velocity field of each Rossby wave
keeps the other in step, and makes the other grow.’

These two effects of the induced velocity field are associated respectively with its in-quadrature and
in-phase contributions. The pure, exponentially-growing normal mode of linear instability theory
describes a situation in which the two PV anomaly patterns have locked on to each other and
settled down to a common phase speed c, such that the rates of growth which each induces in the
other are precisely equal, allowing the shape of the pattern as a whole to become precisely fixed,
and the growth of all disturbance quantities precisely exponential.

Cases in which the spatial scale is sufficiently large that each wave in isolation would propagate
faster than the basic zonal flow can be understood in the essentially same way. The main changes
needed are in statement (i) of the foregoing, where ‘help’ is replaced by ‘hinder’, ‘faster’ by ‘slower’,
and so on. Whereas in the ‘helping’ case the phase shift between the two PV patterns is less
than 0.25 of a wavelength, as shown in the diagram, in the ‘hindering’ case the phase shift lies
between 0.25 and 0.5 of a wavelength. The relative phase tends to lock on just as before, and the
summarizing statement (69) remains true.

In fact this latter case is usually the one which exhibits the largest growth rates, as would
generally be expected from the fact that a larger phase shift between the two PV anomaly patterns
enables the total induced velocity to be more nearly in phase with the displacement, tending to
give a larger growth rate. This is exemplified both by the Rayleigh and by the Eady problem.
It can also be checked, as already done for the Rayleigh problem above, that the phase shifts in
the northward velocity and geopotential height anomaly patterns are indeed substantially less than
those in the corresponding PV anomaly patterns (respectively 0.18 and 0.25 of a wavelength at
maximum growth rate, in the two examples), as suggested by the diagram. This can be looked
upon as another consequence of the smoothing property of the inversion operator.

6. Suppression of shear instabilities by boundary constraints

Arnol’d’s second stability theorem (discovered in the 1960s, but not widely known until the
1980s) proves that there are cases where neither the Rayleigh–Kuo theorem nor the Fjørtoft theorem
rules out instability, yet where the flow is stable (indeed, stable in a certain finite-amplitude sense).
These are cases with side boundaries so close to the shear layer that the Rossby-wave propagation
mechanism does not have room to operate sufficiently strongly to hold a phase-locked configuration.
(This is again a manifestation of the scale effect in the vorticity inversion operator. It shows up
also in the simple plane-wave dispersion relation c − U = −β/(k2 + `2); when y-wavenumbers `
become large, as would be necessary to fit the waves into a narrow channel, intrinsic phase speeds
c− U become small. See also the Exercise at the end of section 3.)

A relevant case is where β = 0 and U(y) is of the form sin(ay), in which case the critical
channel width 2L = π/a. So for instance if |a| = 0.25π — note that you can type sin(.25*pi*y)

when inputting the U profile — then Arnol’d’s second theorem implies that making the half channel
width L less than its default value 2 stabilizes the flow (e.g. McIntyre and Shepherd 1987, J. Fluid
Mech. 181, pp. 542, 543). (The result is well known to specialists in instability theory, albeit missed
by at least one of the standard monographs on hydrodynamic instability theory!) When L just
exceeds 2, only the longest wavelengths (smallest k values) are unstable, and only weakly. Try for
instance k values between 0.01 and 0.1, and L = 2.01, 2.02, 2.05. You may need a relatively fine
grid value, say 38. This is quite a delicate check on the correctness of the computer program!
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7. The continuous spectrum of singular neutral modes

You may be wondering about the origin of the large number of neutral modes that are always
found in the computer demonstration (modes with real c and therefore neither growing nor decay-
ing). A few of these may be ordinary Rossby waves, especially for the larger values of β; but the
majority are likely to correspond, within numerical discretization error, to what is referred to in the
literature as the ‘continuous spectrum’ of singular neutral modes. Being singular, these cannot be
properly represented by a general-purpose numerical method; but their presence in the continuous
problem is likely to be the main reason for the appearance of many neutral modes in the discretized
problem.

Quite unlike the instability in which we are interested (which begins as an undulation of
the pre-existing vorticity distribution), the continuous spectrum modes, and their superpositions
including what are called ‘sheared disturbances’, correspond to artificially changing the initial

vorticity distribution — more precisely, artificially changing the vorticities of fluid elements by
small amounts that have an oscillatory x-dependence — and then letting the system evolve freely.
Such (weak) vorticity distributions tend to be sheared over, and thus tend to develop increasingly
fine scales in the y direction, as one might expect of a quantity advected by a total velocity field that
is close to pure shear. A consideration of such disturbances is necessary for a full mathematical
understanding of the instability problem with arbitrary initial conditions, but is not of primary
interest here.

However, it is easy to say simply but precisely what the continuous-spectrum neutral modes
are, which may be useful since, despite the clear explanation in Rayleigh’s Theory of Sound, p. 391,
the subsequent literature contains a certain amount of confusion over what is fundamentally a
simple technical point. A singular neutral mode of the continuous spectrum, for given wavenumber
k, is a disturbance with a non-zero velocity jump ∆ηu on a single material contour y = y0 +η, with
∆ηu varying like sin{kx−kU(y0)t+constant} along the contour. In other words, it corresponds to
a frozen, sinusoidally varying sheet of vorticity inserted as an initial disturbance on exactly the one
material contour. Here η is the displacement in the y direction as before. (In order to be a normal
mode, i.e. to have constant spatial shape as time goes on, the whole disturbance generally has to
involve undulations of the remaining material contours and hence, in general, a smoothly-varying
distribution of disturbance vorticity at any other y 6= y0.) Such modes are said to belong to a
‘continuous spectrum’ because they have frequencies kU(y0) that vary continuously as y0 varies.
Of course it takes at least two such modes, with vorticity sheets located at two values y1 6= y0 of
y and advected at different speeds U(y1) 6= U(y0), to begin to describe the ‘shearing-over’ effect;
more usually, one has a continuous superposition expressed by an integral.

8. Other basic instabilities, especially a 3D one recently discovered

It is arguable that the inviscid shear instability described and analyzed in §§1–6 above is repre-
sentative of one of the most basic, quintessentially fluid-dynamical classes of instabilities, underlying
much high-Reynolds-number fluid-dynamical behaviour both large and small scale, stratified and
unstratified, layerwise-two-dimensional (moderate to large Richardson number) and fully three-
dimensional (small to zero Richardson number). That is why I have concentrated on it. There are
of course many other kinds of fluid instabilities, some of an obvious kind, such as the convective
or Rayleigh-Taylor instability associated with negative stratification (N 2 < 0), and others less so,
such as the ‘elliptic instability’ recently discovered by Pierrehumbert and Bayly∗ which, although

∗ A Soviet colleague, Dr V.A. Vladimirov, has pointed out that the instability is essentially the same as
that discovered by Tsai and Widnall (JFM 73, no 4, 1976) and by Gledzer et al (Izv. Akad. Nauk SSSR,

FAO, 11, no 10, 1975). See also Gledzer, E. B., Ponomarev, V. M., 1992, J. Fluid Mech. 240, 1–30.
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its significance is still being assessed, seems likely to be another robust paradigm and very basic to
an understanding of many fully three-dimensional flows, such as small-scale turbulent mixing (but
not layerwise-two-dimensional flows).

A discussion of the elliptic and related instabilities is beyond the scope of the present lectures,
although it might be brought in on future occasions, especially if we can develop some suitable
computer demonstrations. The physical mechanism is entirely different from the above — it appears
to be more closely akin to the Mathieu parametric instability of a pendulum whose point of support
is oscillated, and to the ‘resonant triad’ wave–wave interactions that have been extensively studied
in connection with oceanic surface and internal gravity waves. In the meantime the interested
reader may consult the review by Bayly et al, 1988, Ann. Rev. Fluid Mech., 20, especially pages
381–384.

9. Suppression of shear instabilities by a large-scale strain field

An important paper analyzing this effect is

Dritschel, D. G., Haynes, P. H., Juckes, M. N., Shepherd, T. G., 1991, J. Fluid Mech., 230, 647–665.

Such a suppression of shear instabilities is essential to understand the existence of thin filaments
of vorticity that appear in simulations such as that shown in my lecture notes, transparencies
MEM 35–6, 57, etc. (Meticulous checks were done in these cases to make sure that any small-scale
shear instability would be resolved numerically if it occurred.)

This implies an important qualification to the earlier remarks about robustness. Shear insta-
bility is robust to finiteness of disturbance amplitude, but not to large-scale strain fields that are
stretching the filaments. Stabilization by such stretching can occur for strain rates only a modest
fraction, often a sixth or so, of the vorticity contrast in the shear flow. This fact, and its general-
ization to baroclinic cases, is often critical to the ‘mesoscale developments’, or lack thereof, that in
turn can be critical to weather forecasting.
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