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In these examples, ‘BN’ refers to the background lecture notes for the course.

1. Rossby modes in an idealized ‘ocean basin’.

(i) Show that the boundary-value problem for the normal-mode solutions e−iωtf(x, y) of ∇2ψt +
βψx = 0 , with ψ = 0 on the boundary ∂R of an arbitrary region R in the x, y plane, is solved by

f = e−iβx/2ωg(x, y) , ω = ±β/2λ ,

where g(x, y) is an eigenfunction and λ an eigenvalue of the membrane problem ∇2g+λ2g = 0 with
g = 0 on ∂R. [Note that, in contrast with classical small-vibration problems, f(x, y) is necessarily
complex-valued, and that the Rossby modes involve westward-moving nodal lines, as well as the
(stationary) nodes, if any, of g(x, y).]

(ii) Solve the reflection problem for simple plane Rossby waves of the form ψ = sin ly eikx−iωt incident
on a straight ‘north–south’ boundary x = 0 [see BN p. 130].

(iii) Solve the basin problem in the case where R is a rectangular region 0 ≤ x ≤ a, 0 ≤ y ≤ b, and
show that the solution can be regarded as a case of (ii).

2. [From the 1997–8 examination] Starting from the full shallow-water equations, for uniform undis-
turbed depth h00 say, derive the quasi-geostrophic theory for a shallow-water system with constant
Coriolis parameter f . Explain carefully the scaling assumptions and scaling arguments used. Briefly

comment on the occurrence of only one time derivative ∂/∂t in the quasi-geostrophic theory, as
contrasted with three in the full shallow-water equations, referring to what types of motion are
described by the latter and not the former.

Uniform flow u = (U, 0) in a quasi-geostrophic shallow-water system with uniform potential vortic-
ity f/h00 encounters topography that generates a steady flow pattern with disturbance streamfunc-
tion ψ′(x, y), representing the topographically-induced departure from uniform flow. Show that a
disturbance streamfunction ψ′ ∝ exp{−(x2 + y2)/a2}, where a is a constant length scale, provides
a solution to this problem in the case where the topography b(x, y) has the circularly symmetric
shape

z = b(x, y) = ǫ

{

4(a2 − x2 − y2)

a2
+

a2

LD
2

}

exp

{

−(x2 + y2)

a2

}

,

where ǫ is a sufficiently small constant and LD the appropriate Rossby length. Discuss (a) how small
ǫ must be in order for the solution to represent a self-consistent use of quasi-geostrophic theory,
and (b) how small ǫ must be if the flow over the topography is to have no closed streamlines.

Discuss briefly the extent to which the appearance of closed streamlines in the solution might, or
might not, affect the validity of the solution as a model of physical reality.

3. The equatorial waveguide. Find the equatorially trapped solutions to the shallow-water equations
in the ‘equatorial β-plane’ model, i.e. flat-earth theory but with the Coriolis parameter f = βy (β =
constant; y = 0 is the equator). Linearize the equations about a state of rest relative to the earth
with constant layer depth h0, and look for waveguide modes in which the disturbance velocity,
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pressure and buoyancy fields take the form func(y) exp(ikx − iωt) , with different functions of y
for the different fields. You may find it convenient to begin by making the equations dimensionless
with respect to the length scale L = (c/β)

1

2 and the corresponding time scale L/c, where c is the
gravity-wave speed. Show first that there is an eastward–travelling equatorially trapped mode with
northward velocity component v′ = 0 everywhere and with u′ and ζ proportional to exp

(

− 1
2y2

)

, in
dimensionless variables, and with ω = ck.

[This is the equatorial Kelvin wave; note that its propagation is nondispersive. You might like to
ponder why this is so. Note that the x-momentum and mass-conservation equations form a closed
sub-system of equations not involving f .]

Show further that modes with v 6= 0 have v = V (y) exp(ikx − iωt) where the real-valued function
V (y) satisfies the harmonic-oscillator case of Schrödinger’s equation, namely

d2V

dy2
+

(

ω2 − k2 −
k

ω
− y2

)

V = 0

in dimensionless variables. Deduce that all such equatorially trapped modes have the structure
V ∝ Hn(y)e−

1

2
y2

and satisfy the dispersion relation

ω2 − k2 −
k

ω
= 2n + 1 (n = 0, 1, 2, 3, ...) ,

where the Hermite polynomials H0 = 1, H1 = 2y, H2 = 4y2 − 2, H3 = 8y3 − 12y etc. You may
use the fact that the Hermite polynomials are defined such that H ′′

n − 2yH ′

n + 2nHn = 0.

Show that the dispersion relation factorizes when n = 0, and that only the root for which

ω − k −
1

ω
= 0

corresponds to an equatorially trapped solution. [This is known as the Rossby–gravity wave.]

[This theory can also be applied (and more strongly justified) in the case of a continuously stratified,
quasi-hydrostatic fluid with buoyancy frequency N , by separation of variables. The same horizontal
structure is found; the only change is that c is replaced by the internal gravity horizontal phase
speed, e.g. N/m in the Boussinesq, quasi-hydrostatic, constant-N case with vertical structure eimz.
Note that, like simple internal gravity waves, all such waves have vertical phase velocities ω/m that
are downward whenever the group velocity is upward, and vice versa; this follows simply from the
nondimensionalization. These waves, especially the Kelvin wave, make a significant contribution
to the quasi-biennial oscillation (QBO) in the real atmosphere.]

4. Consider the two-dimensional vortex-dynamical system

Dq/Dt = 0 ,

ψ = ∇−2(q − q0) = ∇−2(∆q) , say ,

}

(1)

with u = −ψy, v = ψx, D/Dt = ∂/∂t + u∂/∂x + v∂/∂y, representing homogeneous (unstratified)
fluid flow in an unbounded domain, the xy-plane. State the superposition principle for the inversion
operator ∇−2, by which one can deduce the velocity field due to a complicated pattern ∆q of
vorticity anomalies from a knowledge of the velocity fields due to simpler ∆q patterns.
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Find the velocity fields that correspond, via inversion, to the vorticity anomalies

∆q =

{

C ,

0 ,

r2 = x2 + y2 < a2

r2 > a2 (2)

and

∆q =

{

C ,

0 ,

|y| < b

|y| > b ,
(3)

where C is a positive constant, and explain why both cases represent steady solutions of (1) in the
case q0 = constant. (You may remove any ambiguities in the inversions by making distant values
of (u2 + v2) minimal on average, i.e. zero as r → ∞ for (2), and equal as y → ±∞ for (3).)

Now assume that small disturbances to the steady flow corresponding to (3) grow to finite amplitude
in the manner illustrated by the numerical simulation on BN p. 97, the early stages being dominated
by an undular disturbance whose x-wavenumber k has the value corresponding to the maximum
growth rate predicted by small-amplitude instability theory. This value is k = 0.797/2b and you
may take it as given. Assume further that the whole process leads to a final state that can be
idealized, ignoring the small-scale detail, as a row of discrete circular vortices containing all the
fluid with nonzero ∆q. Thus the final state is assumed to have a vorticity distribution given by the
periodic extension of (2) in the x direction, with spatial period 2π/k and a suitably chosen value
of a. Show by equating areas that this value is given by

0.797a2 = 8b2 (so that 2a = 6.3b < 2π/k = 15.8b) .

Write down an expression for the associated velocity field.

5. In the last problem, explain how the superposition principle implies the existence of two different
methods of calculating the mean velocity field ū(y), under the foregoing assumptions, where ‘mean’
signifies an average with respect to x at fixed y.

(a) Use whichever you think is the easiest of the two methods to deduce that ū = constant for |y| > a,
that ū is continuous across |y| = a, and that

ū(y) = −2bπ−1C
{

a−2y(a2 − y2)
1

2 + arcsin(y/a)
}

for |y| < a .

Show (either by direct calculation or by reasoning from the superposition principle) that the deriva-
tive dū/dy is also continuous across |y| = a. Sketch the function ū(y).

(b) Deduce from your sketch that the kinetic energy of the final mean flow ū(y), in the chosen frame
of reference, must have been reduced in comparison with the initial kinetic energy.

(c) Consider the x-averaged fields in a problem that is similar except for having a constant background
vorticity gradient β initially. Assume that a breaking Rossby wave perfectly mixes the vorticity
in a zone |y| < b, so that the x-averaged vorticity gradient is still β for |y| > b but is zero for
|y| < b. Invert the x-averaged vorticity change ∆q̄(y) to obtain the the corresponding x-averaged
velocity change ∆ū(y). Sketch the shapes of the profiles of ∆q̄(y) and ∆ū(y). Show that the total
(y-integrated) momentum change is proportional to

∫

∞

−∞
∆ū(y) dy =

∫

∞

−∞
y∆q̄(y) dy = − 2

3 β b3 .

[*The minus sign signals a chirality or handedness (one-way-ness) in the transport of momen-
tum and angular momentum by Rossby waves. This is fundamental to the ratchet-like way
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in which breaking Rossby waves drive the stratospheric mean circulation by “gyroscopic pump-
ing”. In a longitudinally-averaged description, the wave-breaking systematically pushes air west-
ward, and Coriolis forces systematically turn it poleward. (This results in a systematic me-
chanical pumping action. It is why man-made chlorofluorocarbons, for instance, are pulled up
into the tropical stratosphere, then photolyzed by solar ultraviolet, and then pushed poleward
and back downward — a process with a timescale of several years. For further discussion see
www.atm.damtp.cam.ac.uk/people/mem/papers/ECMWF/ecmwf05.html.)*]

6. [This is a shallow-water counterpart of question 5(c), from the 2006 examination.] Write down
the shallow-water momentum and mass-conservation equations for a layer of homogeneous fluid of
depth h(x, y, t) in a frame of reference rotating with constant angular velocity (0, 0, 1

2f). Allow for
a sloping bottom boundary z = b(x, y), taking care to distinguish between the layer depth h and
the free-surface elevation ζ(x, y, t).

Derive the equation for the vertical component of absolute vorticity, qa(x, y, t). Deduce Rossby’s
exact potential-vorticity conservation theorem, explaining why it is h and not ζ that enters into
the expression for the potential vorticity. Why is there no term in w∂/∂z ?

Assume now that q ≪ f where q is the relative vorticity, q = qa − f , and that ζ ≪ h00 and
b ≪ h00 where h = h00 + ζ − b with h00 constant. Derive an approximate expression for the
potential vorticity, correct to the first order of small quantities, in which the leading term is f/h00.

For small Rossby numbers show that the horizontal velocity field can be represented by a stream-
function ψ(x, y, t), to be specified. Show that the approximate potential vorticity just derived is
then proportional to

f +
f

h00
b + ∇ 2

Hψ −
ψ

L 2
D

(∗)

where LD is a constant to be specified. Specify also the meaning of the symbol ∇ 2
H .

Consider a thought-experiment in which the initial state is one of relative rest, with ζ = 0 every-
where, and with a lower boundary specified by

b = b(y) =

{

ǫa, y > a
ǫy, |y| < a

−ǫa, y < − a

where a and ǫ are positive constants with aǫ/h00 ≪ 1. Assume that a breaking Rossby wave
perfectly mixes the potential vorticity in the zone |y| < a, so that the x-averaged potential vorticity
is unaffected outside |y| < a but now has the constant value f/h00 within |y| < a. Sketch the
change in (∗) as a function of y. Deduce that within |y| < a the resulting velocity profile u(y) is
given by

u =
ǫfL 2

D

h00

{

−1 +

(

1 +
a

LD

)

exp

(

−a

LD

)

cosh

(

y

LD

)}

.

In the case LD ≫ a, show further that

u =
ǫfL 2

D

h00

{

y2 − a2

2L 2
D

+ O

(

a

LD

)3
}

(

|y| < a
)

.

In the case LD ≪ a, sketch the profiles of u(y) and ζ(y), for |y| < 2a.

Please email any corrections/comments to mem@damtp.cam.ac.uk
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