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Author’s preface
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0.

Preliminaries

§0.1 Basic equations
—0.1—

We summarise basic equations etc. (mainly for occasional reference). See

also Appendix A. We almost always use Eulerian forms:
∂

∂t
is ‘at a point

fixed in space’; the derivative following a fluid particle is then

D
Dt

=
∂

∂t
+ u · ∇

where u = velocity of fluid.

Conservation of mass: [and definition of u]

∂ρ

∂t
+ ∇ · (ρu) = 0 (0.1)

where ρ(x, t) is density. (Or Dρ/Dt + ρ∇ · u = 0.)

Equation of motion: The equation of motion relative to frame of reference
rotating with constant angular velocity Ω, under a conservative, steady body
force −∇χ per unit mass is

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Du

Dt

or
∂u

∂t
+ u · ∇u

or
∂u

∂t
+ ∇(1

2
|u|2) + ζ × u







+

− Coriolis ‘force’
︷ ︸︸ ︷

2Ω × u =

= − 1

ρ
∇P −∇ (χ −

centrifugal ‘potential’
︷ ︸︸ ︷

1
2
̟2|Ω|2 )

︸ ︷︷ ︸

= χ̃ say, ‘effective gravitational potential’

+ F (0.2 a)

(ζ = ∇× u, ̟ distance from rotation axis). F could be a viscous force per
unit mass Fvisc = ν ∇2u — will usually be neglected — or occasionally a
hypothetical, given, non-conservative body force introduced for the purposes
of a ‘thought-experiment’ on the fluid.

10/6/2008
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4 Part 0, §0.1

Conservation of momentum: if Ω, ∇χ, and F all zero, (0.1) and (0.2 a)
⇒

∂(ρu)

∂t
+ ∇ · (ρuu + P I) = 0 (I = identity tensor) (0.3)

Vorticity equation: ∇× (0.2 a); ∇× (ζ × u) ≡ u · ∇ζ − ζ · ∇u + ζ∇ ·u,
etc., noting ∇ · ζ = 0:

Dζ

Dt

∂ζ

∂t
+ u · ∇ζ







= (2Ω + ζ) · ∇u − (2Ω + ζ)∇ · u

+
1

ρ2
∇ρ ×∇P

︸ ︷︷ ︸

(∗)

+ ∇× F (0.4)

Note: The term marked (∗) is identically zero if ρ = func(P ) everywhere
(‘barotropic fluid’). Otherwise we say that the fluid system is ‘baroclinic’:
∇ρ × ∇P is generically nonzero, making stratification (buoyancy) effects
dynamically significant.
Note: the effect of the conservative body forces seems not to be present—0.2—

in (0.4); but since they affect ∇P (indeed, often dominate it) via (0.2 a),
they really are present, in the ∇ρ×∇P term. E.g., with fluid at rest, Ω = 0,
u = 0 at some instant:

In this situation, ∂ζ/∂t is non-zero and has the sense — an example
of ‘baroclinic generation of vorticity’.

Ertel’s potential-vorticity theorem: Let α be such that Dα/Dt = 0.
Suppose also that ρ = func(P, α) (α usually specific entropy, i.e. entropy
per unit mass). (Includes barotropic case ρ = func(P ), and incompressible,

0.2 10/6/2008
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Part 0, §0.1 5

heterogeneous case, where we can take α = ρ.) Then performing the opera-
tions (∇α) · (0.4) + (2Ω + ζ) · ∇{Dα/Dt = 0} gives a conservation relation

∂

∂t

{
(2Ω + ζ) · ∇α

}
+ ∇ ·

{
u (2Ω + ζ) · ∇α

}
= 0 , (0.5 a)

provided F = 0. [It is noteworthy that the conservation form
∂

∂t
( ) + ∇ · { }

= 0 persists even if F 6= 0 and Dα/Dt 6= 0; consequences are discussed in
P. H. Haynes and M. E. McIntyre J. Atmos. Sci. 44, 828–84, 47, 2021–31.]

Notice the pattern in (0.5 a)! It means that we can combine it with mass
conservation, (0.1), to give the alternative form

D
Dt

[
(2Ω + ζ) · ∇α

ρ

]

= 0; (0.5 b)

[ ] is called the (Rossby–Ertel) potential vorticity, and (0.5 b) ‘Ertel’s the-
orem’. For barotropic motion α can be chosen to be any function of space at
an initial time — think of it as a distribution of ‘dye’ (non-diffusing, Dα/Dt =
0). The statement that (0.5 b) is true for all such dye distributions is then a
restatement of the Helmholz law of constancy of vortex tube strengths. (For

more history see www.atm.damtp.cam.ac.uk/people/mem/papers/ENCYC/)

Incompressibility: From here on we restrict attention to incompressible
(but inhomogeneous) flow — a good approximation for many purposes in the
ocean [O. M. Phillips, The dynamics of the upper ocean, 1966 (2nd edition e.g. pp. 25, 16, 75

1977), Cambridge University Press, eq. (2.4.5)] and in laboratory experi-
ments. Less obviously, it is often valid, at least qualitatively, for the atmo-
sphere, provided that density is replaced by ‘potential density’ or specific
entropy [O. M. Phillips, p.13; E. A. Spiegel & G. Veronis 1960, Astrophys.
J. 131, 442].

We also neglect diffusion of density anomalies. Thus

Dρ

Dt
≡ ∂ρ

∂t
+ u · ∇ρ = 0. (0.2 b)

(0.1) Conservation of mass then implies

∇ · u = 0. (0.2 c)

Equations (0.2) are taken as the five basic equations for the five dependent -N1-

—0.3—

-N2-
variables u(x, t), ρ(x, t), P (x, t). Note, can now take α ≡ ρ in (0.5); also
note the disappearance of a term ∝ ∇ · u from (0.4).

10/6/2008
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6 Part 0, §0.2

Conservation of energy: The ‘incompressible’ idealization allows evasion
of thermodynamical questions (internal energy plays no role).

Take ρu·(0.2 a)+ 1
2
|u|2·(0.1); use incompressibility (0.2 c), p.5 (∇·u = 0);

write, as before, χ̃(x) ≡ χ − 1
2
̟2 |Ω|2; we get

∂

∂t
(1

2
ρ |u|2) + ∇ · {1

2
ρ |u|2 u + P u} = −ρu · ∇χ̃ + ρu · F. (0.6)

-N3-

Take χ̃ × (0.2 b):

∂

∂t
(ρ χ̃) + ∇ · {ρ χ̃u} = ρu · ∇χ̃. (0.7)

Add, and set F = 0, to get the conservation relation for energy; write T =
1
2
ρ |u|2, V = ρ χ̃:

∂

∂t
(T + V ) + ∇ · {(T + V )u + P u} = 0. (F = 0). (0.8)

T is kinetic energy/unit volume, relative to rotating frame; V is the potential
energy/volume associated with the ‘effective gravitational potential’ χ̃, i.e.
taking account of the centrifugal potential; ∇ · (P u) represents the rate
of working by pressure forces across an infinitesimal fluid volume, per unit
volume. Use of (0.2 c) was essential in order that none of this work appear
as internal energy.

Bernoulli’s theorem: Bernoulli’s theorem for steady motion (relative to
rotating frame). Equation (0.2 b) ⇒ ρ const. along streamlines; then with
F = 0, (0.2 a) integrates (note vanishing of triple scalar products) to

1
2
|u|2 +

P

ρ
+ χ̃ = const. along streamline. (0.9)

§0.2 Available potential energy

Again, this concept is simplest under restriction (0.2 c), p.5. Many motions of
interest involve only small vertical displacements of a stably-stratified fluid.

0.4 10/6/2008
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Part 0, §0.2 7

—0.4—

Intuitively, V1 > V0 but by an amount that could be ≪ V0. [Tacit assump-
tion: the fluid is ‘contained’ in some way that prevents it from moving up or
down as a whole. True of the atmosphere and oceans!] Only the difference

A = V1 − V0

is available for conversion into kinetic energy, hence relevant to the dynamics
of motion internal to the fluid. This is the difference between two large terms,
a difference that is usually far smaller than the individual terms. We want
an exact formula for A not involving such a small difference. Here we give
only the simplest form of the theory.1

We assume that the fluid is incompressible, restriction (0.2 c), p.5, and
contained within a fixed volume D of simple shape in the following sense. The
container shape must be such that those level surfaces χ̃(x) = const. that
intersect D divide it into just two parts, the ‘upper’, where χ̃ is greater, and
the ‘lower’, where χ̃ is less. We assume also that ρ and ∇ρ are continuous
functions of x with |∇ρ| 6= 0 almost everywhere.2 More precisely, we assume
that no finite volume of the fluid is homogeneous in density ρ, i.e. that no
finite volume of the fluid has ∇ρ = 0.

(1) Under the foregoing assumptions, it’s easy to show that there is a
unique, stably-stratified ‘reference’ state of equilibrium, or ‘basic state’, with
F ≡ 0, to which the fluid could be brought via a hypothetical motion satisfy-
ing eqs (0.2 b) and (0.2 c). Proof : ‘Equilibrium’ means that all the equations,
including the equation of motion (0.2 a), are satisfied with u ≡ 0 as well as
F ≡ 0; there is no motion relative to the rotating frame. It follows that
ρ = func(χ̃) alone, in order to satisfy (0.2 a). ‘Stably-stratified’ means that
ρ is a monotonically decreasing function of χ̃. Let Q(ρ) be the volume of
fluid having density between ρ and max(ρ); Q(ρ) is constant under (0.2 b)
and (0.2 c). ‘Stably stratified’ ⇒ all this fluid lies below the (unique) level
surface of χ̃ that cuts off a lower part of D with volume Q; and moreover
that the fluid of density ρ is at this level surface. This assigns a unique, 1−1
correspondence between values of ρ and values of χ̃ (since no finite volume
of the fluid is homogeneous in density).

1It is related to the notions of ‘Casimir invariants’ and ‘phase-space reduction’ in ab-
stract Hamiltonian dynamics, in which A would be recognized as an ‘energy–Casimir’
invariant; but that need not concern us here.

2One is sometimes interested in cases where ρ has jump discontinuities, such as the
ocean below together with the air above. The extension to such cases is not difficult, but
will be omitted here.

10/6/2008
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8 Part 0, §0.2

(2) Write
ρ = ρ0 + ρ′

where ρ0 corresponds to the reference or basic state and can therefore be
expressed as a monotonically decreasing function of χ̃ alone:—0.5—

Represent this by the inverse function,-N4-

χ̃ = X(ρ0),

also monotonically decreasing — a function known entirely in terms of the
basic distribution of fluid density, Q(ρ), and independent of motion un-
der (0.2 b), (0.2 c).

(3) Now define

A(ξ, η) ≡ −
∫ η

0

{X (ξ + η′) − X(ξ)} dη′, (0.10)

another function known entirely in terms of of Q(ρ). Because X(·) is a
monotonically decreasing function, A(ξ, η) is a positive definite function of
η, for any given ξ, except that η = 0 ⇒ A = 0.

Alternative
derivation in
Holliday &
McIntyre, J. Fluid

Mech. 107, 221
(1981), also referred
to below.

Then if V0 is the potential energy of the basic or reference state, we can show
that the available potential energy A (t) in the domain D at time t is given
by

A(t) ≡ V1 − V0 =

∫∫∫

D

A
(
ρ0(x), ρ′(x, t)

)
dx dy dz. (0.11)

Note that (0.11) is positive definite for any ρ′ 6≡ 0, and zero for ρ′ ≡ 0 every-
where, (showing, incidentally, that under (0.2 b), (0.2 c) the potential energy

0.5 10/6/2008
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Part 0, §0.2 9

of the basic or reference state is an absolute minimum). This formula exhibits
the intuitively-expected fact that the part of V that matters dynamically is
somehow associated with the departure ρ′ from the reference state ρ0.

To establish (0.11) it is sufficient to show that

dA
dt

=
dV1

dt

for all hypothetical motions satisfying (0.2 b), (0.2 c). Since these also sat-
isfy (0.7), we have (using the divergence theorem with u · n = 0 on the fixed
boundary at D)

dV1

dt
=

∫∫∫

D

ρu · ∇χ̃ dx dy dz . (0.12)

From (0.11), —0.6—

dA
dt

=

∫∫∫

D

∂A(ξ, η)

∂η

∣
∣
∣
∣ ξ = ρ0(x)

η = ρ′(x, t)

× ∂ρ′

∂t
dx dy dz . (0.13)

The first factor can be replaced by −
{
X

(
ρ(x, t)

)
− X

(
ρ0(x)

)}
, in virtue

of the definition (0.10). The second factor can be replaced by ∂ρ/∂t and
therefore by −∇· (ρu), in virtue of mass conservation (0.1). Therefore, now
using incompressibility ∇ · u = 0 to move the factor u to the left or right of
the ∇ operator as necessary, we have

dA
dt

=

∫∫∫

D

X
(
ρ(x, t)

)
∇ · (ρu)

︸ ︷︷ ︸

=∇·{u
R ρ X(ρ̃) dρ̃}

dx dy dz

−
∫∫∫

D

X
(
ρ0(x)

)
∇ · (ρu) dx dy dz

so that the first integral vanishes (again using the divergence theorem with -N5-

u · n = 0 on the fixed boundary at D). The second integral is -N6-

+

∫∫∫

D

ρu · ∇
[
X

(
ρ0(u)

)]
dx dy dz

=

∫∫∫

D

ρu · ∇[χ̃(x)] dx dy dz = (0.12) above,

which completes the proof.

10/6/2008
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10 Part 0, §0.2

(4) It follows also from (0.6) that when F ≡ 0

A + T = constant

(

T ≡
∫∫∫

D

T dx dy dz

)

.

To summarize the most important aspects: A has a useful physical meaning
when the fluid is contained within a fixed volume D; then, if no external
work is done (F = 0), A+T is a constant of the motion (always assuming it
satisfies (0.2 a)–(0.2 c)); A is the available potential energy in the sense that
A ≥ 0 with A = 0 only when the distribution of fluid mass within D has the
lowest possible potential energy V0.-N7-

—0.7— Remark: If the fluid is in its reference state and we cool a small portion
of it locally (removing thermal energy and increasing ρ) then we diminish
V0. But ρ′ 6= 0 and so (0.11), being positive definite, shows that we have
increased A. Thus consideration of V1 rather than A could be qualitatively
misleading.

Approximate formula for A when ρ′ ≪ ρ0

Unlike the exact formula (0.11), the following depends on Taylor expansion
and so cannot be extended beyond cases in which reference profile X(ρ0)
is a smooth, well-behaved function. Taylor-expanding A for small η, i.e.
approximating A by the parabola, we have-N8-

A(ξ, η) = −dX(ξ)

dξ
× 1

2
η2 + O(η3) as η → 0 . (0.14)

Then (0.11) becomes

A = −
∫∫∫

D

dX

dξ

∣
∣
∣
∣
ξ=ρ0

× 1
2
{ρ′(x, t)}2 dx + O(ρ′ 3) as ρ′ → 0. (0.15)

In terms of the local gravity acceleration g ≡ |∇χ̃|, and ‘buoyancy frequency’
(to be discussed in next section) of the reference state, defined as

N2(x) ≡ −{g(x)}2

ρ0 (∂X/∂ξ)ξ=ρ0

,

(0.15) can be rewritten

A = +

∫∫∫

D

1
2
g2ρ′ 2

ρ0 N2
dx + O(ρ′ 3) as ρ′ → 0. (0.16)

0.7 10/6/2008
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Part 0, §0.3 11

This equation is exact if (0.14) is exact — i.e. if the stratification of the
reference state is linear in the sense that ρ0 ∝ χ̃.

The concept of ‘available potential energy’ is due to Margules and was
given its modern form by E. N. Lorenz, Tellus 7, 157 (1955) — or see chap.
V of his monograph),3 who develops approximate formulae of the type (0.16)
for the case of a perfect gas. Exact formulae of the type (0.11) are given by
Holliday & McIntyre, J. Fluid Mech. 107, 221 (1981) and D. G. Andrews,
J. Fluid Mech. 107, 227 (1981). Andrews shows how (0.11) generalizes to
compressible fluids. Note incidentally that an assertion of applicability to
mixing processes in the Holliday & McIntyre paper is wrong and should be
ignored. —0.8—

§0.3 Wavecrest kinematics

The stationary phase approximation (the standard theory for waves in ho-
mogeneous media, plural)4 shows that, for t large enough, a dispersing wave
disturbance can usually be represented as a sum of terms of the form

f(x, t) ei θ(x,t) (0.17)

where f(x, t) is slowly varying (‘SV’ for short) over distances and times of the
order of one wavelength or period. That is, for t large enough, ∂f/∂x ≪ k0f
and ∂f/∂t ≪ ω0f where the local wavenumber k0 and frequency ω0 are given
by

k0 = k0(x, t) = ∂θ/∂x , (0.18)

ω0 = ω0(x, t) = −∂θ/∂t . (0.19)

Similarly, ∂2f/∂x2 ≪ k2
0f , etc. Also, k0, ω0 satisfy the relevant branch of -N9-

the dispersion relation,
ω0 = Ω(k0) , (0.20)

and k0, ω0 are themselves SV functions of x and t. Ω(·) may be called the
‘dispersion function’.

(1) Note that we need only the statements (0.18)–(0.19) to deduce that

∂k0/∂t + ∂ω0/∂x = 0 (0.21)

3E. N. Lorenz (1967), The Nature and Theory of the General Circulation, Geneva,
World Met. Organization.

4See e.g. Lighthill’s Waves in Fluids, 1978, Cambridge University Press
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12 Part 0, §0.3

and hence, by (0.20), that [writing cg(k0) ≡ Ω′(k0)]

(
∂

∂t
+ cg(k0)

∂

∂x

)

k0 = 0 (0.22 a)

(
∂

∂t
+ cg(k0)

∂

∂x

)

ω0 = 0, (0.22 b)

which rederives the result already found from the stationary-phase approx-
imation, that an observer moving with velocity cg(k0) will continue to ob-
serve waves of length 2π/k0 and period 2π/ω0. We may say that “values of
wavenumber and frequency propagate with the group velocity”.-N10-

(2) The above restatement of the stationary-phase results suggests a very
important generalization to inhomogeneous media, plural, in 1, 2 or 3D. Sup-
pose (0.20) replaced by (dropping subscript 0’s)

ω = Ω(k,x, t). (0.23)

[It is plausible that this gives a good approximation describing locally almost-
sinusoidal waves f(x, t) ei θ(x,t), provided that Ω(k,x, t) is SV w.r.t. x, t.]
Then (0.21) and (0.22) are evidently replaced by

∂k/∂t + ∇ω = 0 [also ∇× k = 0] (0.24)

so by the chain rule

(
∂

∂t
+ cg(k) · ∇

)

k = (−∇xΩ)k,t const. (0.25 a)

(
∂

∂t
+ cg(k) · ∇

)

ω = (+∂Ω/∂t)k,x const. (0.25 b)

where k(x, t) ≡ ∇θ, ω(x, t) ≡ −∂θ/∂t, cg(k) = (∇kΩ)x,t const..—0.9—

The ray-tracing equations
(or, “how to use equations (0.25) in practice”.)

Let x(t) represent the path of an observer moving with the group velocity,
and write ẋi(t) ≡ dxi(t)/dt. Then since (cg)i = ∂Ω/∂ki,

ẋi(t) = ∂Ω(k,x, t)/∂ki (0.26 a)

0.9 10/6/2008
prel
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and if k(t), ω(t) represents the values of k, ω seen by this observer at time t
[i.e. k(t) is shorthand for k{x(t), t}, ω(t) for ω{x(t), t}] then (0.25) is equiv-
alent (again by the chain rule) to

k̇i(t) = −∂Ω(k,x, t)/∂xi (0.26 b)

ω̇(t) = ∂Ω(k,x, t)/∂t. (0.26 c)

These are the same results (0.25) as before, rewritten to show that they may
be regarded as a set of ordinary differential equations. This is very useful
in practice since such equations may easily be solved numerically by stan-
dard computer routines. A solution [x(t), k(t), ω(t)] of the set (0.26 a,b,c) of
ODE’s is said to trace out a ray (the path x(t)) as well as giving the values
of k and ω along the ray. The moving point x(t) may be termed a ‘ray point’
[not standard terminology]. The values of θ along the ray may be found by
integrating

θ̇(t) = −Ω(k,x, t) + ki ∂Ω(k,x, t)/∂ki, (0.27)

where again θ(t) is shorthand for θ{x(t), t} so that

θ̇ ≡ dθ/dt =
∂θ

∂xi

ẋi(t) +
∂θ(x, t)

∂t
= ki ẋi − ω

by definition of k and ω̇; this and (0.26 a) ⇒ (0.27).
We have of course been assuming that (0.26) are to be integrated with ini-

tial conditions satisfying the relevant branch of the dispersion relation, (0.23),
i.e. ω = Ω(k,x, t), which was the starting point of the analysis. Then (0.23)
will be satisfied by the resulting solution for all t; and this is useful in prac-
tice as a check on the solution. Alternatively, (0.23) can be used in place of
one of (0.26), reducing the order by 1.

Wavecrests

By definition, the surfaces (in 3D) or lines (in 2D) θ(x, t) = constant, the
wavecrests, are known once we have solved (8) for a large enough number of
rays. The crests need not be orthogonal to rays (because k = ∇θ, not ‖ cg)
except in the case of isotropic propagation Ω = Ω(|k|,x, t) (which does of
course give k ‖ cg). Sometimes θ(x, t) can be found analytically in simple
cases, e.g. ship-wave pattern:

Ω(k,x, t) = Ω(k) = Uk + g
1
2 (k2 + l2)

1
4 or Uk − g

1
2 (k2 + l2)

1
4

(2D, anisotropic, U, g consts.).5

5Assume rays all come from origin. RHS(0.26 b,c) zero; rays are straight lines; (0.27)
becomes θ̇ = −Ω(k) + k · cg (= const.) on a ray. If ray point is at origin then t = t0,

10/6/2008
prel

0.9



14 Part 0, §0.3

Remark

This mathematics of wave dynamics is precisely the same as the mathemat-
ics of particle dynamics, in the Hamiltonian description. In this sense Sir
William Rowan Hamilton anticipated quantum mechanics by nearly a cen-
tury!

then x(t) = (t − t0)cg; θ(x, t) = θ(0, t0) + (t − t0){−Ω(k) + k · cg}. For ship waves
ω = Ω(k) = 0 [selects set K of possible k]; since t − t0 = |x|/|cg|, we get finally θ(x, t) =
θ(x) = θ(0) + k · ĉg|x|, ĉg ≡ cg/|cg| = x/|x|, hence ‘reciprocal polar’ construction for
wavefront θ = const.

0.9 10/6/2008
prel
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1.

Boussinesq approximation (for
incompressible fluid)

—I.1—

In this first part of the course, we neglect rotation: Ω = 0.

§1.1 (Oberbeck–)Boussinesq equations

The (Oberbeck–)Boussinesq equations represent the mathematically simplest
model that captures the essential effects of buoyancy and stratification on
fluid motion.

The equations apply in a parameter limit that is often an excellent ap-
proximation, especially for oceanic and laboratory cases. As well as incom-
pressibility (sound speed infinite) — already assumed above — we assume
further that gravity g is infinitely large and fractional density variations ∆ρ
infinitesimally small, such that the product g∆ρ remains finite in the limit
g → ∞, ∆ρ → 0. In this limit, usually called the ‘Boussinesq limit’, we
can treat the density ρ as constant where it represents inertia in Newton’s
second law, even though not constant where it represents buoyancy effects.

To make this explicit, we introduce some new notation, as follows. In
equation (0.2 a), set Ω = 0, χ = gz and (for the moment) F = 0; z is an
upward-directed Cartesian coordinate. Substitute

ρ = ρ00 + ρ1(x, t) (ρ00 = const.) (1.1)

P = −gρ00 z + p1(x, t). (1.2)

Then (0.2 a) becomes

∂u

∂t
+ u · ∇u = − 1

ρ00 + ρ1

∇p1 −
ρ1

ρ00 + ρ1

g ẑ,

where ẑ is the unit vertical vector {0, 0, 1}. Take the limiting case
ρ1

ρ00

→ 0

with
g ρ1

ρ00

finite [i.e.

“
ρ1

ρ00

≪ 1 but
g ρ1/ρ00

(typical acceleration)
h 1 ” ]

∂u

∂t
+ u · ∇u = − 1

ρ00

∇p1 + σ1 ẑ,

(1.3)

10/6/2008
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18 Part I, §1.1

where σ1(x, t) ≡ −g ρ1/ρ00, the buoyancy acceleration (positive for a fluid
element less dense than its surroundings).

For stratified fluid systems it is convenient to split σ1 into contributions
σ̄(z) and σ(x, t) representing background stratification and departures there-
from associated with fluid motion:

σ1 = σ̄(z) + σ(x, t)

p1 = ρ00

∫ z

σ̄(z′) dz′ + p(x, t)

Thus, if the fluid is at rest we have σ(x, t) ≡ 0 and p ≡ 0 everywhere.
The background stratification σ̄(z) is often chosen as a horizontal average

of σ1. The strength of the stratification is naturally measured by the quantity

N2(z) defined by N2(z) ≡ dσ̄

dz

(

=
−g

ρ00

dρ̄

dz
where ρ̄ is defined analogously to σ̄

)

.

We assume N2 > 0: the stratification is stable, with heavy fluid below light.
In summary, the limiting process has produced the following simplified

set of equations, the (Oberbeck–)Boussinesq equations:

∂u

∂t
+ u · ∇u = − 1

ρ00

∇p + σ ẑ ; (1.4 a)

(0.2 b) ⇒ ∂σ

∂t
+ u · ∇σ + ẑ · uN2(z) = 0 (1.4 b)

and (0.2 c) is-N11-

∇ · u = 0 (1.4 c)

If density diffuses, say with constant diffusivity κ, then terms ∝ κ appear
in the last two equations; however, we shall usually neglect κ altogether.

[*Optional exercise: Show that if κ 6= 0 then (1.4 b) is replaced by ∂σ1/t + u · ∇σ1 =

κ∇2σ1 and (1.4 c) by ∇·u = −κ ρ−1∇2ρ. To see why the small extra κ term is needed in

(1.4 c), consider the fact that the velocity field u is defined in terms of mass conservation: it

must be such that the flux of mass is ρu in the mass-conservation equation (0.1). So u can’t

quite be zero if dense fluid diffuses into less dense. Imagine for instance what happens to

the fluid’s centre of mass when density diffusion causes the stable stratification to diminish

over time, in a body of fluid otherwise at rest.*]—I.2—

Equations (1.4) are, as already indicated, the (Oberbeck–)Boussinesq
equations for an ideal incompressible fluid. N(z) is called the buoyan-
cy frequency [*or Brunt–Väisälä frequency, or Brunt–Väisälä–Schwartzchild–
Milch–Hesselberg frequency*] and is the sole property of the resting medium
u = p = σ = 0, given the Boussinesq approximation (and ideal fluid, inviscid
with κ = 0).

I.2 10/6/2008
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The physical meaning of N can be seen very simply from the fact that

u = {0, 0, ŵ(x, y) e±i N t}, p ≡ 0, σ = ± iN ŵ e± i N t

solves (1.4) formally, when N = const.. “A long thin vertical column of
fluid displaced vertically oscillates with frequency N” (not a fluid element of
arbitrary shape, as sometimes said).

Typical values of N :

Centrally-heated room: 1◦K m−1: N ≃ 0.18s−1;
2π

N
≃ 34 sec.

Troposphere: 10−2s−1;
2π

N
≃ 10 min; lower stratosphere 2×10−2s−1,

2π

N
≃

5 min.

Ocean:
2π

N
varies from minutes to hours; see O. M. Phillips fig. 5.4 (5.9 in

2nd edition) reproduced at bottom right of figure 1.1 on page 21.

Boussinesq vorticity equation: ∇× (1.4 a) gives, with (1.4 c),

∂ζ

∂t
+ u · ∇ζ = ζ · ∇u − ẑ ×∇σ. (1.5)

Alternatively, note that in equation (0.4), to be consistent with the Boussi-
nesq approximation, we must take ρ−2∇P = −ρ00 g ẑ, and that only the
horizontal part of ∇ρ then matters. (Figure on p. 4 directly relevant.) —I.2.a—

10/6/2008
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Figure 1.1: Top panels and bottom left panel: Buoyancy or Brunt–Väisälä
frequency in the summer, winter, and summer–winter comparison. Bottom right
panels: Some representative distributions of the buoyancy or Brunt–Väisälä fre-
quency N(z) measured in the ocean. A multiple shallow thermocline structure,
found by Montgomery and Stroup (1962, p. 21) near the equator in the Pacific
Ocean is shown on the left. The thermocline on the right is deep and diffuse; it
was measured by Iselin (1936, fig. 6) as part of a section between Chesapeake Bay
and Bermuda. From Phillips (1966) Dynamics of the Upper Ocean. Overleaf:
Typical globally-averaged temperature profiles, expressed as density scale height
H = RT/g, where T is temperature and R is the gas constant for dry air.

10/6/2008
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-N12-—I.2.b—
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Figure 1.2: (bottom panels): Observational evidence for internal gravity waves
from a high-powered Doppler radar, from Röttger (1980) Pure & Appl. Geophys.

118, 510. Note observed frequencies ≤ N (buoyancy or Brunt–Väisälä frequency
of the stable stratification). Author’s caption reads as follows: Left (a): Contour

plot of vertical velocity measured with the SOUSY-VHF-Radar after the passage of a

thunderstorm. The grey-shaded and non-grey-shaded parts denote upward and downward

velocity. Velocity difference between contour lines is 0.125 m s−1. The velocity time series

are smoothed with a Hamming filter with cut-off period 3 min. Right (b): Spectrogram:

Velocity power spectra (deduced from unfiltered velocity data) plotted in form of contour

lines. The peaks in the spectrogram correspond to a velocity power density of 1.1 ×
10−5m2s−1. The dotted curve [replaced above by a heavy curve] shows the height profile

of the mean Brunt–Väisälä period calculated from radiosonde data taken at noon on 2

and 3 June 1978 in Berlin.

10/6/2008
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2.

Small disturbances, constant N :

§2.1 The simplest example of internal gravity

waves

[Derivation 1, using vector analysis:]
Boussinesq equations, linearized about rest:

ut = − 1

ρ00

∇p + σ ẑ (2.1 a)

σt = −N2 ẑ · u (2.1 b)

∇ · u = 0 (2.1 c)

Eq. (1.5) gives
ζt = −ẑ ×∇σ. (2.2)

(ẑ ×∇)2 (2.1 b) — (ẑ ×∇) · ∂

∂t
(2.2) gives, with (2.1 c):

∇2(ẑ · utt) + N2(ẑ ×∇)2ẑ · u = 0,
—I.2.c—

-N13-

—I.3—

or in cartesians, with u = (u, v, w):

∇2wtt + N2(wxx + wyy) = 0 (2.3)

[Note, valid also when N = N(z).] We have thus found a DE for the vertical
component w of the velocity u.
[Derivation 2, avoiding vector analysis:]

We may also derive (2.3) without vector analysis. Use cartesian compo-
nents, with axes s.t. gravity g = (0,0,−g). Write the components of vortic-
ity as ζ = (ξ, η, ζ); (2.1 b) is σt = −N2 w with u = (u, v, w), cpts. of velocity
the components of (2.2) are -N14-

ξt = σy (2.4 a)

ηt = −σx (2.4 b)

ζt = 0 (2.4 c)

10/6/2008
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N2 = N2(z)
{

ξ = −vz + wy

η = −wx + uz

so we take
(

∂2

∂x2
+

∂2

∂y2

)

︸ ︷︷ ︸

∇2
H say

(2.1 b) +
∂

∂y

∂

∂t
(2.4 a) − ∂

∂x

∂

∂t
(2.4 b)

giving

∇2
Hσt + (ξy − ηx)tt

︸ ︷︷ ︸

−vzy+wyy+wxx−uzx

= −N2 ∇2
Hw +

(
∂2

∂y2
+

∂2

∂x2

)

σt.

But (2.1 c) is
ux + vy + wz = 0 ⇒ −vzy − uzx = wzz.

Therefore
(wxx + wyy + wzz)tt + N2 ∇2

Hw = 0 ,

which is (2.3).
[The reason this works so neatly is that ∇× ζ = ∇× (∇× u) = −∇2u, in
virtue of ∇ · u = 0; note also that ẑ · ∇ × (∇× u) = −∇2w.]

From (2.3) we see that the fundamental plane-wave solutions are

w = Re[ŵ ei(k·x−ω t)], k = (k, l,m) (2.5)

[∂t → −i ω, ∂x → i k etc.] where (k2 + l2 + m2) ω2 − N2(k2 + l2) = 0.
Equivalently, in vector notation,(2.6) is traditionally

called the “disper-
sion relation”.

ω = ±|ẑ × k|
|k| N =

±(k2 + l2)1/2

(k2 + l2 + m2)1/2
N. (2.6)

Group velocity cg

cg ≡
(

∂ω

∂k
,
∂ω

∂l
,
∂ω

∂m

)

= ±{(ẑ · k)k − |k|2 ẑ} ẑ · k
|k|3 |ẑ × k| N

=
±{k m, l m,−(k2 + l2)}

(k2 + l2 + m2)3/2 (k2 + l2)1/2
mN.

(2.7)

These results can be summarized geometrically, see figure 2.1.

I.3 10/6/2008
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Figure 2.1:

-N15-

Note cg ⊥ k and that ω ẑ ·k has opposite sign to ẑ ·cg (‘energy upward ⇔
phase downward’ and vice versa). (ω’s independence of |k| could have been
anticipated on dimensional grounds: there is no length scale in the equations,
i.e. no length scale in the problem apart from the inverse wavenumber |k|−1;
thus frequency can depend only on the direction, not the magnitude, of k.

Wave-energy density and flux: ρ00 × [u · (2.1 a) + N−2 σ(2.1 b)] gives

∂

∂t

(

1
2
ρ00 |u|2 + 1

2

ρ00 σ2

N2

)

+ ∇ · (pu) = 0 (2.8)

[*again valid when N = N(z); but then, smallness of σ (compared with
N2× height scale on which N varies) is necessary in order for 1

2
ρ00 σ2/N2

to be a consistent approximation to the exact “available potential energy”;
see (0.11)–(0.16)*].

Write

E ≡
(

1
2
ρ00 |u|2 + 1

2
N−2 ρ00 σ2

)

plane wave

F ≡ (pu)plane wave [not the same F as in (0.2)!]

where ( ) means the average over a wavelength or period [also true without -N16-

( ), in this case]. —I.4—

We find (e.g. from (2.12) below) [note |ŵ|2 = 2w2, as cos2 = sin2 = 1
2
],

E = 1
2
ρ00

|k|2
|ẑ × k|2 |ŵ|2 = 1

2
ρ00

N2

ω2
|ŵ|2

F = E cg (see below fig. 2.2)

(2.9)

(|ŵ| is the maximum vertical particle speed over a cycle) where moreover the
kinetic and potential contributions to E are equal (but we shall find later on
that ‘equipartition of energy’ in this sense does not usually hold, once the
Coriolis effect is introduced).

10/6/2008
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Figure 2.2: ω > 0; phase propagates upward.

Note downward particle velocity is correlated with high p; pu is directed
downwards (see below left ). From (2.12 c) and (2.12 a):

|pu| = 1
2
ρ00

|σ̂ sin θ|
|k| |ŵ′| = 1

2
ρ00 |ŵ′|2

︸ ︷︷ ︸

E

|ω|
|k|

∣
∣
∣
∣

sin θ

cos θ

∣
∣
∣
∣

︸ ︷︷ ︸

cg

; (2.10)

σ̂ is the complex amplitude of σ (see just below); so |pu| ∝ cg, see fig 2.1.

Typical flow field: A typical flow field is sketched in fig. 2.2. The dynam-
ics is succinctly described in equations (2.1) expressed in the (x′, y′, z′) sys-
tem (axes chosen with x′-axis ‖k; thus k = (k′, 0, 0). We assume (u, p, σ) =
(û′, v̂′, ŵ′, p̂, σ̂)ei (k′ x′−ω t); note y′ = y, ∂/∂y′ = ∂/∂y = 0, ∂/∂z′ = 0; thus

y′ cpt of (2.1 a) ⇒ v̂′ = 0 (if ω 6= 0)

(2.1 c) ⇒ û′ = 0
(2.11)

Notice also the ‘trivial’ steady solutions ω = 0, u ∝ (l,−k, 0) (old axes,
horizontal flow) — important later. The z′ cpt of (2.1 a) is simply

−i ω ŵ′ = σ̂ cos θ (2.12 a)

and (2.1 b) reduces to

−i ω σ̂ = −N2 ŵ′ cos θ (2.12 b)

whence the dispersion relation (2.6) is immediately recovered in the form

ω2 = N2 cos2 θ.

I.4 10/6/2008
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Finally, the x′ cpt of (2.1 a) describes how the pressure fluctuations fit in:

0 = − 1

ρ00

∂p

∂x′
+ σ sin θ (2.12 c)

(hence p̂ = (ik′)−1ρ00 σ̂ sin θ). The picture makes it obvious that

u′ = v′ = 0, w′ = e−i ω t × {any func.(k · x)} (2.12 d)

will still give a solution; also that a single such solution has u · ∇u =
0, u ·∇σ = 0, and so at finite amplitude is still a solution of the Boussinesq
equations. Also the physical reason why |cg| ∝ wavelength is seen from
(2.12 c) to be that, for given E, σ̂, θ, ŵ , the pressure fluctuations and
therefore |pu| ∝ wavelength. —I.5—

Example 1: Disturbance due to steadily-translating

boundary

z = h(x, t) ≡ ǫ sin{k(x − U t)}; k > 0; ǫ ≪ 1.

Linearized boundary condition: w = −U ∂h/∂x, i.e. Taylor-expand
about z = 0

w = −ǫ Uk cos{k(x − U t)}, at z = 0.

Use this with the plane-wave solution (2.5) and equation (2.3) to determine
the solution

Case 1 : ω ≡ U k > N :

w = −ǫ ω e−m0 z cos(k x − ω t); m0 =

∣
∣
∣
∣
∣
k

(

1 − N2

ω2

)1/2
∣
∣
∣
∣
∣

(2.13)

(rejecting e+m0 z). Quasi-irrotational flow (ω ≫ N is classical, irrotational
limiting case).

Case 2 : 0 < ω ≡ U k < N :

w = −ǫ ω cos(k x − ω t ± m0 z); m0 =

∣
∣
∣
∣
∣
k

(
N2

ω2
− 1

)1/2
∣
∣
∣
∣
∣
. (2.14)
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Horizontal mean force exerted by boundary on fluid -N17-

= −p
∂h

∂x
per unit area

As before, ( ) means the average over a wavelength or period; the x-component-N18-

of (2.1 a) gives p =
ω

k
u = ∓m0 ω

k2
w using ∇ ·u = 0; so horizontal force/area

on fluid

= ∓1
2
ρ00 m0 k−1 ǫ2 ω2 = ∓m0

k

ω2

N2
E = ∓m0 k E/(k2 + m2

0) . (2.15)

From (2.7),

cg · ẑ = ∓ k m0 N

(k2 + m2
0)

3/2
= ∓m0 ω3

k2 N2
;

[

ω2 =
N2 k2

k2 + m2
0

]

;

from (2.9),
E = 1

2
ρ00 N2 ǫ2;

so
E cg · ẑ = ∓1

2
ρ00 m0 k−2 ǫ2 ω3 = (2.15) × U .

That is, the upward energy flux is equal to the rate of working by the bound-
ary per unit area.

Strictly speaking, the condition for validity of linearization, ǫ ≪ 1, should
be replaced by ǫm ≪ 1. (Why?)

The physically-plausible requirement that both are positive can also be
deduced from the Sommerfeld radiation condition, cg · ẑ > 0 in this problem.
The radiation condition selects the lower sign in (2.14), corresponding to the
wave crests tilting forward rather than trailing behind. The same feature
can be seen in more complicated problems of stratified flow over obstacles,
constructed by Fourier superposition, in which energy is radiated vertically.
The radiation condition then says that each Fourier component has cg · ẑ > 0;
see section §2.2. Here’s an example of such a problem:—I.6—
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Figure 2.3: Semi-elliptical ob-

stacle,
height

half-width
= 0.6;

N

U
×

(height of semi-ellipse) = 1.12. [see
Bernoulli’s Theorem (0.9)] [streamlines
closer on lee side]

The figure shows streamlines
of steady flow over a semi-
elliptical obstacle (solution
obtained by Huppert & Miles
(1969) J. Fluid Mech. 35,
494). Because the flow is
steady (and buoyancy dif-
fusion zero, as above) the
streamlines are also lines of
const. σ1 = N2

z + σ). Here
we are in a frame of reference
in which the obstacle has been
brought to rest. The waves
are lee waves (i.e., they ap-
pear in the lee of the obsta-
cle, i.e. downstream of the ob-
stacle) because the horizon-
tal phase velocity (ω/k) ex-
ceeds the horizontal compo-
nent of group velocity cg, as
can be checked from the for-
mulae above. This is actually
a finite-amplitude, exact solu-
tion; see §3 below. The sixth
streamline up is vertical at just one point. For some laboratory schlieren
pictures of similar wave patterns see Stevenson 1968: Some two-dimensional
internal waves in a stratified fluid, J. Fluid Mech. 33, 720.)

The force can increase(!) as U decreases, owing to a decrease in the
relevant values of k. [This kind of force is a significant contribution to the
force between the atmosphere and mountainous parts of the earth, and has
to be taken into account in climate modelling. One of the pioneering papers
was that of Bretherton 1969: Momentum transport by gravity waves, Quart.
J. Roy. Met. Soc. 95, 213–243; there’s now a vast literature.]

§2.2 Justification of the radiation condition

Consider a linear wave problem in which you have a source of waves, gener-
ating a wave pattern than can be regarded as a superposition of plane waves
propagating through a uniform medium. We want the wave pattern to cor-
respond to a thought-experiment in which the wave motion is set up from an
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initial state of rest. That is, we are interested in the ‘physically relevant’ or
‘causal’ solutions, the solutions that could have been set up from a state of
rest. We may reasonably expect such solutions to have group velocities away
from the source: the cg · ẑ > 0 for each plane wave or Fourier component.
This is the radiation condition. We now justify this in the context of the
previous example, §2.1.

We first need a way of representing the thought-experiment mathemati-
cally. The simplest way is as follows. Let

h(x, t) = Re[−i ǫ F (T ) ei(k x−ω t)]

where T = µ t (µ ≪ 1)
(2.16)

T

and F is a smooth, real-valued ‘fade-in’ function,
such that F → 0, 1 as T → −∞, ∞ (see sketch).
The small parameter µ expresses the idea of a wave
source turned on gradually. A formal asymptotic
solution, as µ → 0, of the linearized equations and
boundary conditions is now easy to find correct to O(µ). As usual this is
shorthand for saying that the solution has been shown to satisfy the equations
and boundary conditions except for a remainder O(µ2) as µ → 0. Substitute
into (2.3) the following trial solution:

w = Re[ǫ ω G(Z, T ) ei(k x−ω t±m0 z)];

where Z = µ z.
(2.17)

—I.7—

Using rules like ∇2 = −k2−m2
0 ± 2im0 µ

∂

∂Z
+O(µ2) where ∂/∂Z is defined toApply the chain and

Leibniz rules to ex-
pressions like (2.17).

-N19-

operate only on slowly-varying functions like G, and similarly
∂2

∂t2
= −ω2 −

2iω µ
∂

∂T
+ O(µ2), we find that (2.3) is already satisfied at zeroth order in µ

by previous choice of m0, eq. (2.14), and is satisfied at first order if

∂G

∂T
+ cg · ẑ

∂G

∂Z
= 0 (2.18)

because, taking l = 0 in (2.6) and (2.7), we have −cg · ẑ = ±m0ω/(k2 + m2
0).

Thus our solution has

G(Z, T ) = −F

(

T − Z

cg · ẑ

)

,

which can satisfy the initial condition of no disturbance only if cg · ẑ > 0,
i.e. if we take the lower of the two signs, given the assumed ‘fade-in’ form of
F (T ).

I.7 10/6/2008
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A particular case of special interest is F (T ) = eµ t (µ > 0) since then (2.17)
is clearly an exact solution of the linearized problem, with

G(Z, T ) = −eµ (t+α z) (α = const.)

— not merely a formal asymptotic solution as µ → 0. But the previous
algebra evidently implies that when µ → 0, the number α has the behaviour

α = − 1

cg · ẑ
+ O(µ),

which is all we need to know.

Generalisation of (2.18): Equation(2.18) is a special case of a more gen-
eral way of looking at group velocity. For a linear partial differential equation
with constant coefficients like (2.3)

P

(
∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)

= 0,

where P is a polynomial s.t. the dispersion relation P (−i ω, i k, i l, im) = 0
gives ω real when k real (not like the diffusion equation!), we have that

P

(

−i ω + µ
∂

∂T
, i k + µ

∂

∂X
, i l + µ

∂

∂Y
, im + µ

∂

∂Z

)

G(X, T ) ei (k.x−ω t) ,

where X = (X,Y, Z) = µx, is evidently zero at first order in µ if

∂G

∂T
+ cg · ∇XG = 0

where

cg = +
{∂P/∂(i k), ∂P/∂(i l), ∂P/∂(im)}

∂P/∂(−i ω)
.

This coincides with the usual definition of cg when P (−i ω, i k, i l, im) = 0. —I.8—

Example 2: 2-D disturbance due to a harmon-

ically oscillating piston
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Take the ‘boundary + piston’ in the form

z = h(x) ω−1
0 sin(ω0 t), with ω0 const. and

h(x) =

∫ ∞

0

(
ĥ(k) ei k x + ĥ∗(k) e−i k x

)
dk (real).

For descriptive purposes take h = 0 for |x| > L.-N20-

Pose solution of form w = Re{w̃(x, z) e−i ω0 t}. Then from (2.3) and
boundary condition, w̃ satisfies, with B2 defined as (N2/ω2

0) − 1,

w̃zz − B2w̃xx = 0 (2.19)

w̃ = h(x) (real) at z = 0. (2.20)

[When ω2
0 > N2, (2.19) is elliptic (B2 < 0) and we have another example of

quasi-irrotational flow; here w̃ = O(r−1) (r2 = x2 + z2 → ∞) and O(r−2) if∫

h dx = 0, etc. etc.]

Now assume ω2
0 < N2; then (2.19) is hyperbolic.1 (But the problem is

not a Cauchy problem and one should not, e.g., jump to the conclusion that
only the regions of ‘influence’ R1 and R2 respond to the boundary motion;
see below.) The following expression satisfies (2.3) or (2.19), and boundary
condition:

w(x, z, t) = Re

∫ ∞

0

{
ĥ(k) ei k (x±B z) + ĥ∗(k) e−i k (x±B z)

}
e−i ω0 tdk.

Any choice of signs gives a solution of (2.3) and (2.20); but we now assume
that the solution is such as could have been set up from rest, and this implies
that each Fourier component must have cg directed away from the source.
This is plausible from the last example together with considerations of su-
perposition, and can be justified by solving various initial-value problems
(which we shall not do here). This is the appropriate form of the ‘radiation
condition’, and implies the lower sign in the first term, and the upper in the
second, with the conventions

{

B > 0

ω0 > 0.
.

Write

f(X) ≡
∫ ∞

0

ĥ(k) ei k Xdk (N.B.: complex -valued) (2.21)

I.9 10/6/2008
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—I.9—

and
X1 = x − B z (So R1 is the region |X1| < L in picture)

X2 = x + B z.

Then the unique solution satisfying the radiation condition can be written

w = Re
{
f(X1) e−i ω0 t + f(X2) e+i ω0 t

}
(2.22 a)

using the fact that Re(a∗) = Re(a), in the second term. I.e.

w = Re f(X1) · cos ω0 t + Imf(X1) · sin ω0 t

+ Re f(X2) · cos ω0 t − Imf(X2) · sin ω0 t. (2.22 b)

Now Re f(X) = 1
2
h(X); thus when the boundary is instantaneously flat (and

moving fastest) (e.g. at t = 0), the velocity profile is precisely that of the
boundary, and the fluid outside R1 and R2 is instantaneously at rest.2 At -N21-

all other times this fluid is not at rest but undergoes a ‘standing’ oscillation,
described by the ‘Imf ’ terms.

That Imf(X) is indeed 6= 0 for |X| > L can be verified as follows. ĥ(k)
is the Fourier transform of the real function h(X) provided we take ĥ(−k) =
ĥ∗(k); then

h(X) =

∫ ∞

−∞

ĥ(k) ei k Xdk.

But Imf(X) has the Fourier transform (2 i)−1 sgn (k) · ĥ(k), since

Imf(X) =
1

2 i

∫ ∞

0

(
ĥ(k) ei k X − ĥ∗(k) e−i k X

)
dk

=
1

2 i

∫ ∞

−∞

sgn (k) · ĥ(k)ei k Xdk.

It follows that Imf(X) =
1

2 i
X convolution of h(X) with the —I.10—

Fourier transform of sgn (k), which is 2 i/X, with the convention that the
Cauchy principal value is understood both in the relation

sgn (k) =
1

2 π
i

∫ ∞

−∞

2 i

X
· e−i k XdX

and in the convolution itself. Thus

Imf(X) =
1

2 π

∫ ∞

−∞

h(X ′)
dX ′

X − X ′
. (2.22 c)

1What happens when ω2
0 = N2 requires a full ‘transient’ analysis, not pursued here.

2In this respect there is a qualitative difference from an analogous problem described
in Greenspan’s book Greenspan, fig. 4.4, p.202. In that problem there are no times at
which all the fluid outside R1 and R2 is instantaneously at rest.
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This is obviously nonzero for general |X| > L.
It is also evident that wherever h(X) has a fi-
nite discontinuity, Imf(X) has a (logarithmic)
infinite discontinuity : not merely do finite dis-
continuities persist along characteristics as in
the Cauchy problem for (2.19) — they turn
into infinite ones! (but still integrable). [This
is typical of such problems; see also the picture
on p. 40; not unrelated to the large-time limit of the problem of q.2, example
sheet 1. Note that viscosity and density diffusion have been neglected, and
that an infinite time has been allowed for a steadily-oscillating state to be
reached. The corresponding initial-value problem contains no such singular-
ities at finite time, as would be anticipated from the fact that an arbitrarily
small-scale component takes an arbitrarily long time to propagate from the
source of the disturbance to any interior point, inasmuch as |cg| ∝ |k|−1.]

E.g., simple piston:

The resulting motion (2.22 b) gives the qualitative appearance of a down-
ward ‘phase’ propagation, as one might guess — but only within R1 and
R2. This feature appears in laboratory experiments, e.g. that of Mowbray &
Rarity (1967) A theoretical and experimental investigation of the phase con-
figuration of internal waves of small amplitude in a density stratified liquid.
J. Fluid Mech. 28, 1–16.

Essentially the same problem has been discussed, in great detail, by
Baines (1969) PhD thesis, Cambridge, pp.45–55. (Cf. internal tides gen-
erated at continental shelves.)—I.11—

Example 3: concerning low frequency motions

in 2 dimensions

When ω2 ≪ N2 for a plane wave, k is nearly vertical. That is, the wave
crests and u are nearly horizontal.3

3In (2.6), m2 ≫ k2 + l2. It should be noted that neglect of k2 + l2 in the denominator
of (2.6) corresponds to neglect of ∂w/∂t in the vertical component of (2.1 a) — i.e. to
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This is the simplest example of a very general tendency of stable strat-
ification to ‘flatten out’ the motion, whenever the kinematics involves time
scales all ≫ N−1. (See §3.2 below for further discussion.)

Suppose now that we do the following thought-experiment on a uniformly-
stratified Boussinesq fluid initially at rest. Gradually apply the following
horizontal body-force/unit mass

F = (F, 0, 0); F = f(x, t) eimz

[

real part understood

f real

where

f = 0 for |x| > x1, say, and for t < 0;

f = g(x) for t > t1, say;

e.g.

and ‘gradually’ will mean
∣
∣
∣
∣

∂2f

∂x ∂t

∣
∣
∣
∣
≪ |mN fmax| (2.23)

— so if f varies spatially on horizontal scale m−1, its time scale ≫ N−1.
If the fluid were not stratified, it would respond as

shown at left (continually accelerating). (We mean the
simplest solution (↓ exponentially in |x|) with the given
forcing, i.e. we ignore possible hydrodynamical instabil-
ities). The influence of the forcing does not extend far
outside the forcing region . With ‘strong stratification’
(‘strong’ is another way of verbalizing (2.23)) we might ex-
pect the force at each level to accelerate the fluid mainly at

that level over a large horizontal extent. This does happen,
in a way that will become clear from the following solution of the linearized
problem for sufficiently small F:

hydrostatic balance for the disturbance, eq. (2.25) below.
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Linearized momentum equations: (v, ∂/∂y = 0 :)

ut = − 1

ρ00

px + f(x, t) eimz

wt = − 1

ρ00

pz + σ ; [we are going to neglect the LHS here]

these imply that

ηt = −σx + im f eimz (2.24 i)

where η = uz − wx vorticity [y-component of (1.5)]. The linearized equation
for the buoyancy is

σt = −N2 w (2.24 ii)

Continuity:

ux + wz = 0 ⇒ ∃ψ(x, z) s.t. u = ψz, w = −ψx

η = uz − wx = ∇2ψ = ψxx + ψzz

The mathematics is enormously simplified if we now assume (subject to—I.12—

checking for self-consistency afterwards) that the disturbance is hydrostatic,
to a first approximation, i.e. that

0 = − 1

ρ00

pz + σ [wt now neglected] . (2.25)

This corresponds to neglect of the first term in ηt = ∂t(ψxx + ψzz), the rate
of change of y-vorticity — which in turn is consistent with the intuition that
hydrostatic balance will hold when horizontal length scales ≫ vertical length
scales. [But see footnote 4 below.]

Under the assumptions ηt = ψzzt and ψ ∝ eimz, quations (2.24 i) and (2.24 ii)
become

−m2 ψt + σx = im f(x, t) eimz

σt − N2 ψx = 0 ;
(2.26 a)

σ can be eliminated to give

ψtt − c2 ψxx =
−i

m
ft e

imz; c = N/|m|. (2.26 b)

Equation is of classical form for forced nondispersive waves (e.g. stretched
string); c = (horizontal) phase and group speed. (Note that (2.6) and (2.7)
give ω/k = ∂ω/∂k = ±N/m = ±c, when l = 0, k ≪ m.)c will be denoted

ch in section §3.1
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For arbitrary f(x, t) it can be verified that a solution is

ψ =
−i eimz

2m

∫ t

−∞

[

f
(
x − c (t′ − t), t′

)
+ f

(
x + c (t′ − t), t′

)]

dt′

σ =
−icmeimz

2

∫ t

−∞

[

f
(
x − c (t′ − t), t′

)
− f

(
x + c (t′ − t), t′

)]

dt′







(2.27)

[It is the only causal solution — if f(x, t) is zero for t < some given time,
t = 0, say, then (2.27) is the only solution satisfying ψ ≡ σ ≡ 0 for t < 0 and
for |x| large enough at each t > 0.] Note |cm| = N

We can now verify that (2.27) ⇒ wt ≪ σ, i.e. that our use of the hy-
drostatic approximation was self-consistent — provided that (2.23) holds.4

Write τ = t′ − t in (2.27):

ψ =
−i eimz

2 m

∫ 0

−∞

[

f
(
x − c τ, t + τ

)
+ f

(
x + c τ, t + τ

)]

dτ

—I.13—

∴ wt = −ψxt =
i eimz

2 m

∫ 0

−∞

[
∂2f (x − c τ, t + τ)

∂x ∂t
+

∂2f(x + c τ, t + τ)

∂x ∂t

]

dτ

∴ |wt| <
1

2 |m|

∫ 0

−∞

∣
∣
∣
∣

∂2f (x − c τ, t + τ)

∂x ∂t

∣
∣
∣
∣
dτ +

∫ 0

−∞

∣
∣
∣
∣

∂2f(x + c τ, t + τ)

∂x ∂t

∣
∣
∣
∣
dτ

≪ 1

2 |m| |2mN fmax|
2x1

c
from (2.23); range of integration 2x1/c ,

which from (2.27) is a typical magnitude for σ. So it was, indeed, consistent
to neglect vertical acceleration wt.

For the particular form of f assumed, (2.27) ⇒

ψ = σ = 0 for |x| > c t + x1, and

ψ =
−i eimz

2N
G, σ = im

{

−1
2
G +

∫ x

−∞

g(x′) dx′

}

eimz

for |x| < c(t − t1) − x1







(2.28)

(so u = (2N)−1meimzG) where G ≡
∫ ∞

−∞

g(x) dx.

So the motion is steady and (therefore) horizontal (by (2.24 ii)) through-
out a region expanding with constant speed c to either side, including the

4 It is interesting that the horizontal scale of variation of f does not have to be ≫ m−1.
This is because ∂/∂t ≪ N in the forcing region.
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forcing region |x| < x1. Within the latter (i.e. inside
...
...), the applied force

is balanced by a pressure gradient associated with a tilting of the constant-
density surfaces:







0 = − 1

ρ00

px + g(x) eimz

0 = − 1

ρ00

pz + σ







or σx = im g(x) eimz (2.29)

(here it is steadiness . . . see top of image)-N22-

The horizontal pressure gradient across the wavefront is precisely that
required to accelerate a fluid particle from rest up to its steady value

u = ψz =
eimz

2 c
G

during the passage of the wavefront. Continuity requires w such that the
lifting up or down of the isopycnal surfaces produces σ = 1

2
imGeimz. Hy-

drostatic compatibility of this with the pressure then determines the value
of c.—I.14—

This continually-forced, ever-lengthening disturbance may be called a
‘columnar disturbance’. [Note same solution applies when horizontal bound-

aries present, if choose m = integer × π/H. Columnar disturbances in
laboratory wind or water tunnels for stratified flow can evidently penetrate
far upstream when a criterion like U/N H < π−1 is satisfied (which is the
parameter regime of greatest interest for all stratification effects); this ‘up-
stream influence’ prevents one from being able to prescribe the upstream

I.14 10/6/2008
st-1-2



Part I, §2.2 41

velocity and density profiles independently of what is going on in the ‘test
section’ of the tunnel — e.g. Odell & Kovasznay (1971) A new type of water
channel with density stratification. J. Fluid Mech. 50, 535–543 (fig.5).]5 -N23-

The response to a horizontally and vertically localized weak horizontal
force can be found by Fourier superposition of the above
solution for all m. Corresponding velocity profiles are typ-
ically very wiggly; at a given place the wiggles become
finer as time passes and higher wave numbers arrive. (A
simple example is that of Sheet 1, last question.) (Cf.
the ‘jets’ seen in Long’s film on stratified flow, ca. 16–17′

in; http://web.mit.edu/fluids/www/Shapiro/ncfmf.html
or websearch “National Committee for Fluid Mechanics”.)

Related problem: very slow flow
past a two-dimensional obstacle.
Velocity profiles for impulsively-
started flow U of ideal Boussinesq
stratified fluid past cylinder, on lin-
earized theory for ‘small U ’ — ac-
tually (U/N a) ≪ (N t)3. (Af-
ter Bretherton (1967) The time-
dependent motion due to a cylinder
moving in an unbounded rotating stratified fluid. J. Fluid Mech. 28, 545–
570; see also chapter 6 on page 113). -N24-

The peculiar peaks in the profiles for tN a/x ≥ 15 are ‘due to’ the fluid
trying to get over or under the cylinder with minimal vertical excursion; the
resulting jet-like profiles, again because of the stratification, then tend to
be found at greater and greater horizontal distances to either side of the
cylinder.

5Reproduced on p. 52 below.
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3.

Finite-amplitude motions

—I.15—

[We ignore phenomena, such as ‘flow separation’ and turbulence, which
occur in homogeneous (viscous) fluids and are merely modified by stratifica-
tion. Another excuse is that the problem of describing these phenomena the-
oretically is largely unsolved, especially in the (albeit important) case of tur-
bulent flow — in which (by definition1) strong nonlinearity, 3-dimensionality,
unsteadiness, viscosity, and diffusion of σ are all essential ingredients.]

§3.1 Some exact solutions of the Boussinesq,

constant-N equations (all 2-dimensional)

We note these briefly and then move on; simple exact, finite-amplitude so-
lutions often miss the phenomena of greatest physical interest (cf. §3.3 ff.).
The known finite-amplitude solutions can be classified as follows:

(i) A single plane wave, or any superposition of plane waves with parallel k’s,
as in (2.12d) above. Obviously a finite-amplitude solution because, as
already mentioned on page 29, u is perpendicular to ∇σ,∇u,∇v,∇w;
so u · ∇σ = 0,u · ∇u = 0.

(ii) Less obviously, any superposition with all k’s in the same vertical plane
(the xz plane, say) and such that all the horizontal phase ‘velocities’
ω/k have the same value ch. This is a particular case of:

(iii) More generally, any real solution of the linearized equations such that
u and σ are of form func(x − ch t, z). This is an exact solution of the
full equations provided also that there is some x0(z, t) such that

(∇2ψ − c−1
h σ)

∣
∣
x=x0(z,t)

= 0

and
(
σ + N2c−1

h ψ
)∣
∣
x=x0(z,t)

= 0

}

∀z, t, (3.1)

1By definition of ‘turbulent’, that is, in the sense of classical 3-dimensional fluid dy-
namics — not in the dynamical-systems sense, meaning ‘anything chaotic’.
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where ψ is a streamfunction for the two-dimensional motion, defined by u =
ψz, w = −ψx. It is not true that u · ∇u = 0 for such solutions; but the full
y-vorticity and buoyancy equations are, from (1.5), (1.4 b) respectively,

∂t∇2ψ + σx = ψx ∇2ψz − ψz ∇2ψx

∂tσ − N2 ψx = ψx σz − ψz σx ,

}

(3.2)

—I.16—

and the nonlinear terms on the right are zero! For the left-hand sides are
zero (linearized equations satisfied) and ∂t = −ch ∂x, whence the left-hand
sides of (3.1) are zero for all x if zero for x = some x0. Since N and ch

are constant, we therefore have ∇2ψ ∝ ψ ∝ σ, so that the Jacobians that
make up the right-hand sides of (3.2) are zero. It follows that u ·∇u, though
nonzero, is irrotational and balanced by −ρ−1

00 ∇p.
It is easily verified that the plane-wave superposition (ii) satisfies (3.1).

Another case, which has received much attention in the literature, is that
of lee waves generated by an obstacle, e.g. as in figure 2.3 on page 31. The
usual linearized solutions for constant-speed, constant-N basic flow, valid
for an infinitesimally slender obstacle (e.g. question 5 on example sheet 1)
have the property that ψ, σ and derivatives → 0 far upstream. Hence these
solutions satisfy (3.1), with |x0| = ∞, and hence they are also solutions
of the full nonlinear equations at any amplitude.2 (But only the linearized
boundary condition at the obstacle is satisfied; so such a finite-amplitude
solution will satisfy an exact boundary condition only for an obstacle of
different shape. Solving the finite-amplitude boundary-value problem for a
prescribed obstacle, as in the case of figure 2.3 on page 31, requires additional
mathematical ingenuity.)

[*Finite-amplitude solutions of this type have been found also for a num-
ber of special cases of non-Boussinesq basic flow,3 the simplest of which is
ρ = ρ(z), U = U(z), ρU2 = const., and dρ/dz = const. (not N2 = const.)
(but not necessarily small compared with ρ÷ height scales of interest).*]

[*Whether these particular solutions represent an asymptotically steady
state, reached a long time after introduction of a finite obstacle into an
initially-uniform, inviscid flow, is a separate question. In some cases, colum-
nar disturbances (p. 39) arise and penetrate far upstream, altering the veloc-
ity and density profiles (by amounts of the order of the square of the obstacle
amplitude a and violating (3.1) even for very shallow obstacles.4 5 *]

2Long (1953) Tellus 5, 42.
3Yih (1965) Dyn. Inhomog. Fluids, Chap. 3, §3.
4McIntyre, M. E. (1972) J. Fluid Mech. 52, 209; see also 60, 808, fig. 2, and 106, 335,

fig. 1.
5For fast enough switch-on, and N H/π U in range (n, n + ǫ) where n = integer and

0 < ǫ < 1, ǫ depending on height of obstacle and rapidity of switch-on, one gets columnar
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Furthermore, most finite-amplitude solutions, of either type (i) or (ii) and
(iii), are likely to be unstable on time scales generally of the order N−1 ×
(amplitude)−1; see §3.5 below. —I.17—

If the amplitude is sufficiently large, fluid can become unstably stratified
locally (i.e. density increases upwards) — and therefore probably unstable
on time scales generally h N−1. (Sheet 1 question 2.)

Exercise: Show that for plane internal gravity waves the local unstable strat-
ification begins to occur when the maximum horizontal fluid-velocity fluctu-
ation |û| just exceeds the horizontal phase speed |ω/k|. (E.g. use (2.12b)
with |û| = |ŵ′ sin θ|.) In figure 2.3 on page 31, conditions are just critical in
this sense: if the obstacle amplitude were to be increased any more, the fluid
would be statically unstable just above and to left of the obstacle. (Note
again that the flow is steady in picture’s frame of reference, so streamlines
are isopycnal (constant-density) lines, by (0.2b)). Of course ω/k,= ĉ say, is
the phase speed relative to the (now-moving) background flow.

Laboratory experiments usually show patches of turbulence approximately
in the same places; the associated nonlinear effects (e.g. Reynolds stress) can
(e.g.) be equivalent to a force distribution ⇄ and thus could generate strong
columnar disturbances, again violating (3.1) upstream.6 (Again cf. the ‘jets’
observed by Long and shown in his film, URL on p. 41 — these are columnar
disturbances of high vertical wave numbers, probably modified by viscosity
and perhaps also by density diffusion.)

Yet other kinds of instability can be increasingly important (as discussed
in §3.5 below) as wave amplitude, defined as |ûk/ω|, approaches order-
unity values. But what is important in practice is that wave amplitudes can
seldom greatly exceed unity without dissipation becoming very strong. In
practice, amplitudes7 tend to ‘saturate’ at values around unity. Ocean waves
breaking on a beach are merely the most visible example. Much the same
thing happens when internal gravity waves propagate up into the mesosphere
— amplitude unity is typically reached at altitudes h 50 km in winter, 80
km in summer. This has important consequences for strengths of prevailing
eastward or westward winds in the upper mesosphere and as the solution to
the sometime enigma of the cold summer mesopause — for reasons to emerge
in §3.3.

disturbances 0(a), not 0(a2), generated by intrinsically transient nonlinear effects near the
obstacle. Experiments by Baines (1929) Tellus 31, 383; also his book, Baines, P. G., 1995:
Topographic effects in stratified flows, Cambridge University Press, xvi+482pp; paperback
with corrections, 1998.

6For some computer simulations bearing on these points see Pierrehumbert & Wyman
(1985) J. Atmos. Sci. 42, 986–987.

7of most kinds of dispersive waves
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—I.18—

§3.2 ‘Slow’ motions (low Froude number)

Without solving the equations we can obtain useful information about the
probable general character of stratified flows in the limiting case

FU ≡ U

NH
≪ 1, (3.3 a)

FT ≡ L

NH
· 1

T
≪ 1, (3.3 b)

H

L
. 1, (3.3 c)

assuming in the usual way that the motion is sufficiently simple, in its
functional dependence on space and time, that there exists single ‘scales’ U ,
L, H, T for the magnitude of u and the lengths, heights and times over which
u and σ, in general, vary significantly. That is, we suppose for example that
(L/U)∂u/∂x is finite in the limit FU , FT → 0, and generally bounded away
from 0 in that limit: we say ∂u/∂x is generally or typically “of order U/L”,
and write this as

∂u

∂x
h

U

L
, or

L

U

∂u

∂x
h 1. (3.4)

(We use h rather than ∼ so that the latter remains available for its usual,
and stronger, mathematical meaning of asymptotic equality.) [Similarly, the
notation

a . b

is defined to mean that a/b is bounded in the limit (including the possibility
that a/b → 0 everywhere, for all motions in the general class of interest.
Equivalently to a . b we can also write ‘a = O(b)’ (Lighthill, 1958, Fourier
Transforms and Generalized Functions, CUP, p.2), pronounced “a equals Oh
b”, or “a is Oh b”. To a mathematician, a = O(b) does not mean ‘a is of
order b’ in the sense of (3.4); it corresponds, rather, to a . b. Finally, a ≪ b
and a = o(b) both mean that a/b does tend to 0.]

Back to our problem of slow motion. Take the equations to be as follows,
assuming no external forces but not, now, linearizing. These are the full
nonlinear (Boussinesq) equations, starting with the vorticity equation, as is

I.18 10/6/2008
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often convenient:

ζt + u · ∇ζ = ζ · ∇u − ẑ ×∇σ (Boussinesq vorticity) (3.5 i)

∇ · u ≡ ux + vy + wz = 0 (3.5 ii)

σt + u · ∇σ = −N2 w. (3.5 iii)

Postulate scales

L for x, y, and H for z (3.5 iv)

T for t (3.5 v)

U for
(
u2 + v2

) 1
2 (horizontal cpt. of velocity) (3.5 vi)

Σ for (horizontal and temporal variation of) σ (3.5 vii)

(For ∂σ1/∂z we shall assume N2 + σz h N2) (3.5 viii)

—I.19—

Then (3.5 ii) and (3.5 iv) ⇒ w . UH/L. (‘.’ because we do not wish
to exclude the possibility that wz be generally of smaller order than ux

and vy — a possibility which, moreover, turns out to be true!). Thus

|horizontal cpt. of ζ| . (u2
z + v2

z)
1
2 h U/H. So using (3.5 i) and (3.5 vii),

-N25-

Σ

L
. max

(
1

T
,
U

L

)
U

H
. (3.6)

Equation (3.5 iii) (using (3.5 viii)) now implies a severe restriction on |w|:

w . max

(
1

T
,
U

L

)
Σ

N2
. max

(
1

T
,
U

L

)2
1

N2
· UL

H

i.e.

w . ǫ2UH

L
, (3.7)

where ǫ ≡ max(FU , FT ) ≪ 1. -N26-

This restriction expresses in a very general way the ‘flattening-out’ ef-
fect of stratification — even for general N(z), and for fully nonlinear, time-
dependent motions — subject only to assumed constraint of low generalised
Froude number. Fluid particles move nearly horizontally, on trajectories
whose slopes are O(ǫ2)H/L or less. [The steady part of the columnar-type
motion described by the linearized theories of pp. 36–40 has this property,
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Figure 3.1: ‘layerwise 2-dimensional and irrotational’ flow around a
Fujiyama-shaped obstacle; ζ not zero; but nearly horizontal.

trivially, because w = 0. (But note that the transient wavefronts have FT . 1
if their horizontal scale is L and the vertical scale is H = m−1.)]

An immediate consequence of (3.7), (3.5 iv), and (3.5 vi) is that wz ≪
ux, vy and w ∂z ≪ u ∂x, v ∂y. Therefore the limiting forms of the continuity
and horizontal momentum equations are (with typical relative error O(ǫ2)):

-N27-

∇h · uh ≡ ux + vy = 0 (3.8 a)

∂tuh + uh · ∇huh = −ρ−1
00 ∇hp (3.8 b)

where uh and ∇h are the two-dimensional vectors (u, v), (∂x, ∂y). These
are three equations for three dependent variables u, v, p — a closed system.
This has the striking implication that the motion is determined at each level—I.20—

z = const, independently of the other levels, to leading order. It is “layer-
wise two-dimensional” — the simplest example of a very typical situation in
atmosphere–ocean dynamics.

Moreover equations (3.8) are identical to the equations of classical invis-
cid hydrodynamics in two dimensions, and so the general character of the
solutions is a corollary of the classical theory. E.g. if initially vx − uy, the
vertical component of ζ is zero it remains zero (‘persistence of irrotational-
ity’) (unless we generalize by adding a rotational force to the r.h.s. of (3.8 b)).
E.g. slow flow past a Fujiyama-shaped obstacle, see figure 3.1.

[*And for a slightly-viscous fluid we might expect flow
separation and unsteadiness, but ‘layerwise two-dimensional’
flow nevertheless. Note that a blunt-topped obstacle (more
realistic Mt. Fuji shape) would tend to give rise to a flow
with infinite8 shear ∂u/∂z, ∂v/∂z at the corresponding level.
This violates the assumptions on which the initial approx--N28-

imations were based; 9 nevertheless for real fluids it correctly suggests the

8i.e. “H = 0”
9Further discussed by P. G. Drazin 1961, Tellus 13, 239 — also work by e.g. Lin &

Pao (see Lilly 1983 J. Atmos. Sci. 40, 751).
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probable existence of an ‘internal boundary layer’ or ‘detached shear layer’,
centred on that level — viz., a thin transition region in which viscosity and
density diffusivity are important no matter how small. The possibility of
such regions well away from boundaries is characteristic of stratified flow,
and also of rotating homogeneous flow (as will be seen later).*]

The vorticity equation already having been taken into account, it follows
that the vertical momentum equation must be able to be satisfied with what-
ever p field has already been determined by (3.8) (up to an additive f(z)).
The way in this is achieved is via hydrostatic balance; σ can likewise contain
an arbitrary function of z:

0 = − 1

ρ00

pz + σ + O(δ) (3.9)

whose error δ is bounded by the scale for the vertical acceleration,

δ = ǫ2 max

(
1

T
,
U

L

)

U
H

L

(

&
Dw

Dt

)

,

which generally is smaller than σ by a factor ǫ2H2/L2 ; recall (3.6). In
other words, assuming ǫ2H2/L2 ≪ 1, the stratification plays the essential
role of hydrostatically supporting whatever pressure field is required by (3.8); —I.21—

ǫ2H2

L2
≪ 1 means that the stratification can do this via small vertical material

displacements (h Σ/N2 . ǫ2H, from (3.3a,b) and (3.6), or directly from L×
trajectory slope), consistent with the approximate horizontal non-divergence,
(3.8 a). In general we do, of course, have that (3.6) is in fact true with h

instead of .. We certainly can’t have ≪ in general; the σ term in (3.5 i) is
essential to avoid having a near-balance Dζ/Dt ∼ ζ · ∇u in (3.5 i), implying
classical (Helmholtz) vorticity dynamics in the limit — obviously ruled out,
except for trivial special cases, by the restriction (3.7) on the magnitude of
w.

The kind of procedure leading to (3.7) and (3.8) is often called scale
analysis.10 If the resulting approximate equations have a solution consis-
tent with the postulated scales, this solution evidently comprises the leading
order terms in a formal asymptotic expansion in powers of ǫ. The higher
terms could also be obtained by iteration, first considering corrections of
relative order ǫ, and so on. The same expansion could be constructed, al-
ternatively, by (a) nondimensionalizing the equations using the scales, (b)
posing expansions of the dependent variables in powers of ǫ, and (c) equat-
ing like powers of ǫ. (Try it!) (Actually, the first non-zero correction will be

10Other examples of its use will appear later in the course. It is an indispensable research
tool, especially when first exploring an unfamiliar research problem.
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O(ǫ2) in the present case.) [It is sometimes said that the latter expansion pro-
cedure is ‘more rigorous’. This is nonsense, because the two procedures are
precisely equivalent.11 But note that ‘scale analysis’ has the practical advan-
tage, especially when used as an exploratory tool in an unfamiliar problem,
of greater flexibility. (There is then no need to decide on all the scales for
nondimensionalization before one has any idea as to how they might be inter-
related.) It usually becomes evident in the course of the argument that some
formally-possible scale relationships are physically absurd, enabling one to
cut down the number of possibilities considered.]—I.22—

In practice one wants to know how to interpret the scale relationships
numerically — e.g. “how small must ǫ be for a given solution of (3.8) to be
a qualitatively good approximation?” There is no simple answer to this, but
obviously a rough rule is to say “numerically small compared with 1”, pro-
vided the scales are chosen so that ∂u/∂x or ∂v/∂x is typically numerically-N29-

close to U/L, and so on. E.g. if u is sinusoidal in x with wavelength λ, then
L = λ/2π would be a better choice than L = λ. [In the (viscous conducting
fluid layer heated from below) the scale relationships for convective instabil-
ity to be just able to win against diffusion are σ h ν∇2w, N2w h κ∇2σ (κ =
density diffusivity, N2 < 0), implying that the critical Rayleigh number

R ≡ |N2|H4/ν κ h 1. ν = kinematic viscosity

Because the height scale H appears to the fourth power, Rcrit will be nu-
merically nowhere near 1 unless H is chosen rather carefully to be close to
the true scale of variation of w — actually about 1/6× depth of layer if the
boundaries if the boundaries are no-slip, in which case the typical variation
of w with z is qualitatively like one wavelength of a sine wave (see fig. 3.2).
If H is taken as the whole depth, Rcrit is numerically about 64 ≏ 103!]

[Remark: The ‘persistence of layerwise irrotationality’ is an exact conse-
quence of equations (3.5 i)–(3.5 iii) if we redefine ‘layers’ to mean isopycnal
surfaces (whose slopes are σx/N

2 = O(ǫ2) for small ǫ). This is an immediate
consequence of Ertel’s theorem: equation (0.5 b), with α = eρ and Ω = 0; it
implies that if ζ · ∇ρ is zero at some time, it remains zero.]

11and neither is ‘rigorous’ in the mathematical sense, that a solution of the ‘full (un-
approximated) equations’ — whatever they are taken to be — has been shown to exist
and to possess the expansion in question. What is shown is that the full equations are
satisfied apart from a residual which is O(ǫp) times |largest term|, when p terms are taken
in the expansion — a necessary condition for the first statement to be true. (“Formal
asymptotics”, as before.) There is often good reason to believe that it is also a sufficient
condition for it to be true over a finite domain in spacetime, in many problems of practical
interest — but proof is usually unattainable (and even if attainable, not worth the likely
years of effort!). We are dealing with nonlinear partial differential equations. See also ‘On
Approximations’ below.
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Figure 3.2: ∂w/∂z = 0 at no-slip boundary since ux and vy are both 0.

Figure 3.3: Some jargon: “blocking”.

[For stratified flow in a rotating frame of reference, it is evident that the
potential vorticity (2Ω + ζ) · ∇ρ 6= 0 in general. And even when Ω = 0 we
can often have ζ ·∇ρ 6= 0 in (layerwise rotational) flows (e.g. vortex shedding
in a more realistic version of the “Fujiyama” flow hypothesized on p. 48,
rather like the laboratory flow shown in the well-known paper by D. K. Lilly
(1983, Stratified turbulence and the mesoscale variability of the atmosphere,
J. Atmos. Sci., 40, 749–761)). For any such layerwise-2D rotational flow the -N30-

distribution of potential vorticity on each constant density surface — or for
more general, compressible flow the distribution of ρ−1(2Ω + ζ) · ∇α (α = θ
for perfect gas) on constant-α surfaces – plays a key role in the dynamical -N31-

evolution just as in ordinary 2D flow the distribution of ordinary vorticity
does (e.g. Q. J. Roy. Met. Soc. 111, 877 and 113, 402, Hoskins et al.)] —I.23—

2-dimensional motion If ∂/∂y = v = 0:

(3.8 a) (continuity) says
∂u

∂x
= 0 (3.10)

(3.8 b) says ut = − 1

ρ00

px .

Equations are trying to tell us that in 2D “slow motion”, u is independent
of x (or that x-scale ≫ L, equivalently.) (fig. 3.3). The solution given on
pp. 36–40 provides an explicit example of how a flow like this could be set
up from rest.

Case of large ǫ: Exercise: show by scale analysis that if ǫ ≫ 1 than
all stratification effects may be neglected. [“Fast motion does not feel the
stratification” (actually it may destroy it).]
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Figure 3.4: Odell–Kovasznay experiment

[Small ǫ again:] An example of steady flow past a 2-dimensional obstacle
in a salt-stratified water tunnel: Odell & Kovasznay 1971, JFM 50, 535.
Note the lee waves behind the obstacle 12, and that the blocking is upstream
only (cf. 40). This is characteristic of steady stratified flows in which viscosity
is important but density diffusivity much less so. The streamlines are also
isopycnals, to close approximation; note that the pair grazing the obstacle
converge together at its rear. There the buoyancy force pulls the fluid against
viscous retardation; in terms of vorticity, the boundary generated vorticity
is balanced by that due to σx, i.e. to the isopycnal slope.—I.23.a—

-N32-

On Approximations (some philosophical remarks)

(illustrating the notion of ‘hierarchy of models’ that is so important through-
out science — and indeed fundamental to how human perception and cogni-
tion work. See the Lucidity papers, copies in the Part III room & also via
www.atm.damtp.cam.ac.uk/people/mem/lucidity-principles-in-brief/)

NOTATION:
←→ ‘empirical comparison’, i.e. comparison of a finite number of cases at
finite accuracy.
- - - > formal asymptotics, i.e. error in equations made limitingly small, but

12and that they are about the right length; |k|−1 = U/N ≏ 0 · 17 inch (perpendicular
distance 2π/|k| between wavecrests h 1 inch, which fits as well as one can tell from the
experimental picture).
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no proof of corresponding behaviour of solutions. (As in para 3.2 in lim ǫ → 0)
-N33-

=⇒ Mathematically rigorous asymptotics.
· · · > ad-hoc approximations (their only justification is ‘←→’)

BASIC REMARK:
‘The exact equations’ ≡ Nature (unknown)
We always work with approximate sets of equations. E.g. in fluid dynamics:

Notes:

1. The term ‘the exact equations’ is often used to mean the middle box, re
‘macroscopic equations taken as basic... e.g. Navier–Stokes equations...’
(It is convenient to call these ‘exact’, but such loose usage may lead to
the desirability of ‘=⇒’ being overestimated).

2. ‘=⇒’ does not appear, and plays no important role simply because it
is not available in practice (because it is too difficult) except in very
simple cases.

3. In astrogeophysical fluid dynamics we usually work only in the bottom
two boxes. A sufficient reason is the vast range of scales of motion.
We need equations averaged over ‘small’ scales that we cannot describe
explicitly. If the mean effects of the small-scale motions is negligible,
we may claim the relation - - - > to the middle box; if not, then the
vertical link is usually no stronger than · · · >, if only because of the
intractability of the problem of ‘turbulence’.
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4. Working in the bottom two boxes still provides a very powerful check on
the self-consistency of any set of ideas being used to try to understand
observed phenomena and make predictions about them. That’s why
it’s important!
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—I.24—

§3.3 Weakly nonlinear effects: an example of

second order mean flow change due to

gravity waves

This is our first glimpse of the radiation-stress-
dominated atmosphere. A very simple example il-
lustrates most of the important points. Take the
2-dimensional internal wave pattern (2.14) studied
on p. 29 with

boundary z = h(x, t) = ǫ sin(k x − ω t) ; ω = Uk , U < Nk ,

k > 0 , ǫ m ≪ 1 (to apply linearized boundary condition),

m0 = k

(
N2

ω2
− 1

)1/2

> 0 , real

w = −ǫ ω cos ϑ ,

u =
−ǫ m0 ω

k
cos ϑ

(3.11)

(since ux + wz = 0) , where (ϑ is not to be con-
fused with the ear-
lier θ denoting wave-
crest and wavenum-
ber orientation)

ϑ ≡ k x − m0 z − ω t

and where −m0 is chosen to satisfy the radiation condition.
Average x-component of equation ((1.4)a) w.r.t. x. Take (1.2a) -N34-

ut + uux + w uz =
−1

ρ00

px ⇒ ūt = −(uu)x − (wu)z = − ∂

∂z
uw (3.12)

again using ux + wz = 0, and assuming that p and uu = u2 are finite Notice that −uu,
−uw and −ww are
cpts. of the (sym-
metric) ‘Reynolds
stress’ tensor

at x = ±∞. Notation: ( ) ≡ lim
L→∞

1

2L

∫ L

−L

( )dx

[Finiteness of p at x = ±∞ is not the only physically-reasonable
possibility — but the resulting problem will, for instance, cor-
rectly idealize the geophysically interesting one in which x corre-
sponds to longitude and y to latitude (thus periodic in x)].
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Now

(3.11) ⇒ uw =
ǫ2 ω2 m0

k
cos2 ϑ = 1

2

ǫ2 ω2m0

k
. (3.13)

This is constant, and (3.12) merely says ūt = 0, as we might have antic-
ipated from the fact that (3.11) is already a finite-amplitude solution of the
equations, see (§3.1(i)) on page 43! But this does not mean that the waves
never affect the mean flow, as can be seen by asking, again, what happens if
the disturbance is set up from the rest. The simplest such transient solution
is that in §2.2 on page 31; the disturbance is given by

(3.11) × F (T − Z/wg),

in the notation of section §2.2 except that we have written T, Z in place of
τ, ζ, the slow variables, and

wg = cg · ẑ = m0 ω3/k2 N2,

—I.25— the vertical component of cg. Thus (3.13) is multiplied by |F (T − Z/wg)|2
and (3.12) becomes (using ∂/∂z = µ ∂/∂Z)

ūt = −1
2
ǫ2 ω2 m0

k
µ

∂

∂Z

{∣
∣F (T − Z/wg)

∣
∣
2}

. (3.14)

Note that it is a formally self-consistent procedure to evaluate the r.h.s.
of (3.12) from the linearized solution for ū ≡ 0, since an O(ǫ2) contribution
to ū is negligible in the linearized problem. Again this is equivalent to taking
the leading terms in a formal (double) asymptotic expansion in powers of ǫ
(as well as µ).

In (3.14), ρ00 times the coefficient in front of
∂

∂Z
is equal to minus the

wave drag per unit area, (2.15). Thus (3.14) states that the mean flow feels
the horizontal component of the force exerted by the boundary, not at the
boundary, but at the other ‘end’ of the wavetrain. This feature is charac-
teristic of more complicated, but similar, problems (some further discus-
sion, and references, are given below) and obviously has far-reaching con-
sequences for the problem of correctly describing, e.g., the response of the
large, ‘meteorological’ scales of atmospheric motion to the wave drag due
to flow over mountains [which has been estimated to be a significant part
of the total drag force exerted by the earth on the atmosphere].13 Using

13This is now routinely, though still not very accurately, taken account of in weather-
forecasting and climate models.
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µ
∂

∂Z
= − µ

wg

∂

∂T
= − 1

wg

∂

∂t
, we may integrate (3.14) at once:

ū = −1
2

ǫ2 ω2 m0

k wg

[F (T − Z/wg)]
2,

assuming ū ≡ 0 initially.
Writing E = 1

2
ρ00 N2 ǫ2 as before (page 30), we find

ρ00 ū =
E

U
[F (T − Z/wg)]

2. (U = ch = ω/k) (3.15)

—I.26—

[And the expression (2.15) for wave drag/area

= 1
2
ρ00 ǫ2 ω2 m0/k = wg E/U . In this problem and

some others of similar simplicity, all the wave drag,
then, is realized as actual momentum (this is be-
cause of the assumption that p̄x = 0). This momen-
tum, according to (3.15), appears to travel with the
wave. Such results have led some authors to suggest
an analogy between waves in fluids and photons in
vacuo — which latter do possess momentum equal
to energy/phase speed — but such an analogy is in
fact wrong in general. In the present case it depends
on the special circumstance that ∂/∂x (all mean quantities) = 0). [For fur-
ther discussion and references see McIntyre, M. E. 1981, J. Fluid Mech. 106,
331. Further discussion

in: Theoretical and

Applied Mechanics

1992, Proc. XVIII
Int. Congr. Theor.
Appl. Mech., Haifa,
ed. S. R. Bodner,
J. Singer, A. Solan,
Z. Hashin, 459 pp;
Amsterdam, New
York, Elsevier,
281–304 (published
1993) (available on
my website ftp as
the files beginning
“airsea); see also
Bühler & McI. 2003,
J. Fluid Mech 492,
207–230.

Energetics We noted on page 30 that the rate of working of the wave-drag
force needed to move the boundary at speed U is equal to the rate of increase
of wave-energy, wg E, per unit xy area.14 So the energy of the waves comes
from the boundary, in the present frame of reference. However this cannot be
so in the frame in which the boundary is stationary and the fluid moves past
it towards the left; in that frame, no work can be done via the boundary. But
we can now see where the energy comes from — namely from a reduction in
the kinetic energy of the mean flow, which is now significant since

∫ ∞

0

∂

∂t
1
2
ρ00 (−U + ū)2 dz = −

∫ ∞

0

ρ00 U
∂ū

∂t
dz + O(ǫ4) [ū = O(ǫ2)]

= −2 E

∫ ∞

0

F ′

(

T − Z

wg

)

F (T − Z/wg) · µ dz
︸︷︷︸

dZ

, by (3.15)

= −wg E, provided that F (T ) has reached its final value of unity.

14both being equal to the upward flux of wave-energy, pw = wg E; see (2.8) and (2.9).
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Thus the ‘energy budget’ — in this case whether the wave-energy appears to
come from the boundary, or from the mean flow (or some mixture of the two)
— depends entirely on one’s frame of reference. (This of course is a rather
elementary dynamical point — but one that is forgotten about surprisingly—I.27—

often in the literature!)

Effect of wave dissipation Clearly RHS (3.12) can be nonzero, after the
transient wavefront has passed, of the waves are being attenuated by any
of the dissipative processes we have neglected. The mean flow can then
accelerate, persistently, at a given level, for much longer than the time for
the transient wavefront to go past; substantial cumulative alterations to the
mean flow can result. The parameter ǫ2 may (perhaps) be small, but ǫ2 t
certainly need not be, if we wait long enough.

There is a kind of positive feedback in that these alterations tend to re-
duce the phase speed U − ū relative to the local mean flow, which tends
in turn to enhance the effectiveness of wave dissipation, and so on. This
is part of why the QBO exists (recall the video of the Plumb–McEwan ex-
periment, and see also the .avi movie of the same experiment repeated, on
the website http://www.gfd-dennou.org/library/gfd exp/ (Remember, this
illustrates the generic point that dynamically-organized fluctuations about
the mean can lead to anti-frictional behaviour)

The simplest example of vacillation due to wave, mean-
flow interaction: Plumb and McEwan’s laboratory ana-
logue of the ‘quasi-biennial oscillation’ QBO

If the waves on p. 55 are dissipating throughout the depth of the fluid, then
the height scale D for wave attenuation (“height scale” measured in terms
e-folding attentuation of E or ǫ2) tends to be proportional to the vertical
component wg of the group velocity. For uniform dissipation the mean flow
will initially develop as in Fig. 3.5a below [ū ∝ exp(−z/D)], with the biggest
change near the boundary z = 0.
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Figure 3.5: (a), (b): Effect on the mean-flow profile ū(z) of a single internal
gravity wave with phase speed +c at two successive times. (c)–(f): effect of
two waves with phase speeds ±c, after Plumb (1977).

We can think of the problem as composed of two sub-problems: sub-
problem (i) is the one just discussed, that of cumulative mean flow evolution
due to wave dissipation. Sub-problem (ii) is something we haven’t discussed
yet, namely the effect of mean shear, once it becomes large enough, upon
wave propagation and dissipation. (A phenomenon describable in this way
is often referred to in the literature as “wave, mean-flow interaction”, or
“wave–mean interaction” for brevity.)

The main point about sub-problem (ii) is that the feedback of the mean-
flow change onto the waves affects D. When the intrinsic phase speed c − ū
gets small enough, wg becomes small too (a fact that we shall use again, and
which is easily verified from the dispersion properties of plane internal gravity
waves); therefore D decreases and also becomes a function of z — we may still
speak of it as the local height scale for wave dissipation — and it is smallest
of all near z = 0. Clearly this cannot go on forever since there is a limiting
situation, shown schematically in Fig. 3.5b, in which ū = c at z = 0, and
no more waves are generated and no more wave-induced mean-flow change
takes place. Actually, linear theory must break down near z = 0 before
this situation is reached, but the idea is qualitatively right. We are tacitly
assuming that viscosity has a negligible effect on the mean flow, especially
near z = 0.

If we now add to the input of waves at z = 0 a component travelling with
equal and opposite phase speed −c, something very interesting happens.
(The first theory demonstrating the effect was that of Holton and Lindzen,
(Holton and Lindzen (1972) J. Atmos. Sci. 29, 1076) and our understanding
of it was greatly improved by the work of Plumb (1977) J. Atmos. Sci. 34,
1847).) Suppose for simplicity that the two waves, with phase speeds ±c,
have equal amplitudes so that the boundary is now executing a standing wave —I.28—
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z = h(x, t) ≡ a sin k(x − c t) + a sin k(x + c t)

= 2 a sin kx cos kct; (3.16)

and suppose moreover that 2kc is less than 0.816 times the buoyancy fre-
quency N of the stratification. Then not only can the leftward-travelling com-
ponent propagate even if ū = +c, but it can also be shown that the relation
between wg and intrinsic horizontal phase speed is strictly monotonic,15 so
that wg and therefore D for the leftward-travelling component is necessarily
larger, for all values of x, than it was for the rightward-travelling component
before the mean flow developed. Thus, it is easy to see that the leftward-
travelling wave will now induce a negative acceleration ∂ū/∂t throughout a
comparatively deep layer, leading to the appearance of a downward-moving
zero in the mean velocity profile as shown in Figs. 3.5c–e, and as we saw in
the video of the Plumb–McEwan experiment.

In Fig. 3.5e, D for the leftward-travelling wave has become small just
above the narrow shear layer at the bottom; however, the leftward-travelling
wave cannot by itself quite destroy the shear layer because if ū were to become
slightly different from +c at z = 0 the effect of the rightward-travelling wave
would reassert itself in a very shallow layer near z = 0. The shear layer
must nevertheless get destroyed sooner or later, either because mean viscous
effects become dominant (Plumb (1977) J. Atmos. Sci. 34, 1847) or, more
likely in a real fluid, because the Richardson number Ri = N2/(ūz)

2 becomes
small (see ‘Miles–Howard theorem’, etc., page 94) and the shear layer goes
turbulent. This will quickly wipe out the shear layer and leave us all of a
sudden with something like the profile of Plumb Fig. 3.5f — i.e. qualitatively
like Fig. 3.5b, but with the sign changed. (Plumb (1977) J. Atmos. Sci. 34,
1847) refers to this transition between the profiles of Figs. (3.5)e and f as
‘switching’.

At this point, we can see that the same sequence of events will take
place all over again, with the signs changed. The double feedback loop, sub-
problems (i) and (ii), between the mean flow and the dissipating waves, has
led to a vacillation cycle in which the mean flow reverses again and again,
entirely because of the constant input of waves. Figures 3.5b–f qualitatively
depict just half this vacillation cycle.

The Plumb–McEwan experiment (Plumb & McEwan (1978) J. Atmos. Sci.
35, 1827) beautifully demonstrates this behaviour — which as already em-
phasized is a clearcut example of “anti-frictional” behaviour in the sense of

15Exercise: Check this! (Show first that w2
g ∝ N2 ĉ4 − k2 ĉ6 (ĉ = c − ū), assuming that

|c| = N/
√

k2 + m2, dispersion relation in frame moving locally with mean flow.)
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driving the system away from solid rotation. The mean motion is entirely
the result of the fluctuations introduced by the wavemaker at the boundary!

As we saw in the opening lecture, Plumb and McEwan took an annu-
lus of salt-stratified fluid (not rotating) and introduced a standing wave via
the motion of an elastic membrane at the bottom, so that equal amounts
of clockwise and anticlockwise-travelling waves with periods of a fraction
of a minute were generated. The initial conditions involved no mean flow
— an almost completely symmetrical situation — yet, sooner or later, sub-
stantial mean flows would appear, going through a vacillation cycle just as
in Figs. 3.5b–f. (In modern parlance, this is an example of spontaneous
symmetry-breaking.) The initial state is unstable to the vacillation cycle
(Plumb 1977). The period of the cycle depended of course on the wave am-
plitude a, but was typically an hour or so. No mean flow developed if the
wave amplitude a was too small. That is because of the stabilizing effect of
viscous forces on the mean flow.

It is overwhelmingly likely that an essentially similar mechanism under-
lies the real atmosphere’s QBO: the quasi-biennial reversal, every 27 months
or so, of the zonal (= east–west) mean winds in the equatorial lower strato-
sphere — a spectacular example of order out of chaos in the real world.
The 27 months or so is thus to do with the amplitudes that the relevant
(tropospherically-generated) waves happen to have — and nothing to do
with any ‘obvious’ periodicity such as the annual cycle as was thought in
the 1950s, when only the first two cycles had been observed. Plumb and
McEwan’s finding that the mechanism is rather easily killed off by viscous
diffusion of the mean flow immediately suggests one of the reasons why the
large atmospheric models run on supercomputers, mainly for weather and
climate prediction, have only very recently managed to produce anything
resembling the QBO. Because of their (still quite coarse) spatial resolution,
these models have artificial viscosities that can kill a QBO-type phenomenon,
and in any case cannot resolve all the waves that drive it. —I.29—

Figure 3.6 shows a well known picture of the real QBO, from ongoing
work at the Free University of Berlin (ū(z, t) in metres/sec). It is clear that
the zonal wind reversals do not phase-lock with the annual, seasonal cycle.
The average period, defined as the total time divided by the number of cycles
in Figure 3.6, is around 27–28 months and nowhere near 24 months. Wave-
induced momentum transport is the only mechanism that can produce the
real QBO; this is very strongly arguable from the evidence, including nega-
tive evidence from early attempts to model the QBO without invoking such
momentum transport. These early negative results, especially the ground-
breaking work of Wallace and Holton (1968, J. Atmos. Sci., 25, 280–292)
illustrate the “Michelson–Morley principle” in science — the importance of
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Figure 3.6: Time-height section of the zonal wind near 9◦N with the 15-year
average of the monthly means subtracted to remove annual and semiannual
cycles. Solid isotachs are placed at intervals of 10 m s−1. Shaded areas
indicate ‘westerlies’, i.e. eastward winds. Courtesy Dr Barbara Naujokat,
Free University of Berlin.
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negative results (something of which today’s bureaucrats need constant re-
minders). For recent reviews see Baldwin et al. 2001: Revs. Geophys. 39,
179–229. and my Millennium review in Perspectives in Fluid Dynamics, ed.
G. K. Batchelor, H. K. Moffatt, M. G. Worster; Cambridge, University Press,
557–624 (please read wedges as crosses — corrected in the 2003 paperback
edition). Not all the waves that drive the real QBO are well observed, but
they are thought to be mostly generated in the troposphere below — in
a highly nonlinear and very poorly-understood way, e.g. by tropical thun-
derstorms. Two effects not included in our simple model are important
here: (1) the decrease with height of the atmosphere’s density (e-folding
scale height 6–7 km) and (2) Coriolis effects on the waves, which (i) trap
some of them in an equatorial waveguide ∼ ±10◦ latitude — see examples
sheet 3 — and (ii) in any case constrain the mean-flow evolution in such a
way as to confine the signal in ūt to latitudes within ±10–20 degrees of the
equator (Haynes, P. H., 1998, Q. J. Roy. Meteorol. Soc., 124, 2645–2670). —I.30—

-N35-

Digression on ‘eddy diffusion’ and ‘eddy vis-

cosity’

What’s involved in the issue of friction versus anti-friction? Why are molec-
ular transport processes usually equivalent to a diffusion (macroscopically),
but eddy transport processes (contributions like ρ̄ u′

i u
′
j to fluxes in the mean

equations, arising from the fluctuating parts of the total fields in the nonlin-
ear terms) not, except in very special circumstances? ‘Diffusion’ of a mean
or macroscopic field Q̄(x, t) means that Q̄ is conserved, with an eddy con-
tribution Ffluct to its flux which is linearly dependent on (proportional to)
the local gradient of Q̄ and vanishes when ∇Q̄ = 0. [The coefficients of the
linear relation, or ‘coefficient’ when Q̄ is a scalar in the isotropic case, may
be constant or may depend on local scalar functions of the mean fields —
e.g. temperature. Their signs are such that no upgradient Ffluct can occur.]

The following conditions seem to be characteristic of the ‘molecular’ case
[and they are satisfied for air and water under terrestrial conditions]:

1. The fluctuating motions do not depend for their existence upon par-
ticular mean-field configurations. Also, fluctuation energies (thermal
energies) are enormous compared with typical mean-flow kinetic ener-
gies (in any sensible frame).

2. Moreover the relevant properties of the fluctuations are little affected
by the mean fields, except perhaps for a local dependence on mean
scalars: the dependence on mean-field nonuniformities is weak.
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3. The time and space scales of the mean fields are all much larger than
those of the fluctuating motions.

4. Moreover changes in the properties of the fluctuations at one place do
not propagate a significant distance away, on the scale of the mean
fields; thus the (weak) dependence on the mean fields is also local. An-
other way of saying this is that the transport of conservable quantities
by the fluctuations is a short-range process. By contrast, wave-induced
momentum transport, being very much a long-range process, spectac-
ularly violates this condition!

[It is 3 and 4 together with considerations of symmetry that seem to
underlie the (observed) linear dependence on the local ∇Q̄ alone, and
the vanishing of Ffluct when ∇Q̄ = 0.]

In the ‘eddy’ case, some or all of 1–4 are typically untrue, if only because
of the ubiquity of wave propagation mechanisms. E.g. 3 and 4 are untrue
for classical turbulent shear flow (with ( ) an ensemble or a ‘downstream’
average). When Q̄ is momentum, 1 and 2 are almost always untrue in prac-
tice. When the fluid is stably stratified, true turbulence (involving cascade
of fluctuation energy down to Kolmogorov microscale) typically occurs very
intermittently in space and time, reflecting extreme sensitivity of the prop-
erties of the fluctuating motions to mean-flow configuration. Moreover, 4
is then violated because of the existence (and essential role in contributing
to Ffluct for mean momentum) of wave propagation mechanisms, giving rise
to systematic correlations among the fluctuating fields and hence to
(long-range) momentum transport. (It is this violation of 4 that permits
contributions to Ffluct that have nothing to do with the local mean flow, and
e.g. can be nonzero even if ∇Q̄ = 0, and often with ‘anti-frictional’ sign when
∇Q̄ 6= 0.)
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—I.31—

The temperature of the mesopause

Wave-induced mean forces of the kind under discussion also seem certain
to be the correct explanation for the one-time enigma of the ‘cold summer
mesopause’ (and are also important for the ‘warm winter mesopause’). At
altitudes around 80–90 km, temperatures seem inexplicable in terms of in-
frared cooling, photochemical reactions, etc. Dynamics is the only remotely
viable explanation. The temperature distribution is related to ū (because
the associated Coriolis force affects the mean pressure field, which in turn is
related hydrostatically to temperature — see ‘thermal wind’ in third part of
course (stratification and rotation), page 169. And ū is strongly affected, at
these altitudes, by the u′ w′ stress associated with internal gravity waves (e.g.
Houghton (1978) Q. J. Roy. Met. Soc.), most of them propagating all the
way from the troposphere below and reaching their ‘breaking’ or ‘saturation’
amplitudes (u′

h horizontal phase speed relative to mean flow) anywhere
upwards of 50 km or so in winter, and 80 km or so in summer. For the pio-
neering modelling efforts see Holton, J. R. (1982) ‘The role of gravity wave
induced drag and diffusion in the momentum budget of the mesophere’, J. At-
mos. Sci. 39, 741, building on the ideas of Lindzen (1981) J. Geophys. Res.
86, 9707.

We have so far had only a glimpse of why wave dissipation should be cru-
cial, in general, to these phenomena (just as it is to their classical analogue,
‘acoustic streaming’), even when ū becomes a function of z — in which case
it is no longer obvious whether ∂(u′ w′)/∂z should be zero for steady waves
in the absence of dissipation. Nor have we demonstrated in complete gen-
erality the (admittedly plausible) qualitative dependence of the dissipation
height scale D upon wg. These matters can be investigated using standard
techniques — take disturbances of form f(z)ei(k x−ω t) and study the ordinary
differential equation governing f(z) [which can be quite complicated for some
dissipation mechanisms, although JWKB techniques, related to our simple
example using the ‘slow’ scale Z, can help to get approximate solutions].

However, a more powerful procedure is available (Andrews & McIntyre
(1976) J. Atmos. Sci. 33, 2031 and 35, 175). It works essentially because
of the existence of three distinct but interrelated conservable quantities: mo-
mentum; pseudomomentum; and Kelvin’s circulation. The conservable quan-
tity called pseudomomentum is, in turn, closely related to a more general one
called wave-action.
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§3.4 A more general theoretical approach
—I.32—

Let u = ū + u′, where ( ) means an average over x as before, and(But still neglecting
t-dep’ce of ū(z, t) in
the linearized prob-
lem for u′, so treat-
ing ū(z, t) as ū(z) in
the linearized prob-
lem.)

ū = {ū(z, t), 0, 0}, u′ = u′(x, z, t), u′ = 0 [take ( ) of u = ū + u′]

So u′ represents a disturbance on a more general mean flow ū(z); we also
allow N = N(z). Now linearize the 2D Boussinesq equations (1.4) about
this mean state; write ∂/∂t + ū ∂/∂x ≡ Dt; assume σ̄ and p̄ both zero so
σ = σ′, p = p′. (Consistent, within linear theory.)

Dt u
′ + ūz w′ = −p′x − X ′ (set ρ00 = 1) (3.17 a)

Dt w
′ = −p′z + σ′ − Z ′ (3.17 b)

Dt σ
′ + N2 w′ = −Q′ (3.17 c)

u′
x + w′

z = 0 (3.17 d)

Here the extra terms X ′, Z ′, Q′ have been inserted to allow for possible wave
dissipation mechanisms. E.g. the fluctuating force F′ = (−X ′, 0,−Z ′) could
be a viscous force ν ∇2u′, and −Q′ a heat conduction or buoyancy diffusion
term κ∇2σ′, or an effect of radiative heat transfer (known to be important,
e.g. for the actual stratospheric waves generating the QBO). Then again, F′

or Q′ could also represent given fluctuating forces or heating, generating the
waves (which happens e.g. with solar heating in the stratosphere of Venus,
and similarly with Earth atmospheric tides).

Now define particle displacements ξ(x, z, t) = {ξ(x, z, t), 0, ζ(x, z, t)} by16

Dt ξ = u′ + ūz ζ (3.18 a)

Dt ζ = w′ (3.18 b)

and ξ = ζ = 0 everywhere, at some initial time when (it is assumed) there
was no disturbance (u′, w′, σ′, p′, X ′, Z ′, Q′ all zero). We can now verify that

ξ̄ = ζ̄ = 0 , (3.19)

∇ · ξ̄ = ξx + ζz = 0 , (3.20)

by respectively taking ( ) and ∇· of (3.18) [e.g. w′
z =

∂

∂z
(Dt ζ) = Dt ζz+ūz ζx;

u′
x =

∂

∂x
(Dt ξ − ūz ζ) = Dt ξx − ūz ζx; so 0 = u′

x + w′
x = Dt(ξx + ζz).

16RHS’s (3.18) are “Lagrangian disturbance velocities” of a fluid particle, relative to the
mean flow at the height where the particle originally came from.
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Now use initial conditions to get (3.20), noting that, for each fixed z, Dt is
the directional derivative in xt-space along characteristic lines with slopes
dt/dx = ū−1. So if ξx + ζz = 0 at some initial t and all x, then we can
integrate along each characteristic to deduce that ξx + ζz = 0 for all t as well
as all x.]

Now take ξx × (3.17 a) + ζx × (3.17 b) [like forming the kinetic energy
equation, except that the x-derivative of ξ is used in place of u′]. Define

ul ≡ u′ + ūz ζ ,
[

= rhs of (3.18 a)
]

(3.21)

(horizontal component of ‘Lagrangian disturbance velocity’). Define also

−q ≡ σ′ + N2(z) ζ , (3.22)

same as the ‘Lagrangian disturbance buoyancy’ σl
1 (≡ 0 when Q′ ≡ 0); note

q̄ = 0, Dt q = Q′, by (3.19), (3.18 b) and (3.17 c). (3.23)

Assuming, as before, that any term of the form ∂( )/∂x = 0 (true if we
continue to assume either x-periodicity, or that everything is bounded as
|x| → ∞, as in eqn (3.12) on page 55. Noting now that LHS (3.17 a) = Dt u

l

and that

ξx Dt ul = Dt(ξx ul) − ul ul
x by (3.18 a) and (3.21)

= Dt(ξx ul),

and similarly that ζx Dt w′ = Dt ζx w′, we get

∂

∂t

(

ξx ul + ζx w′
)

+
∂

∂z

{
ζx p′

}
= −ξx X ′ − ζx Z ′ − ζx q (3.24)

where σ′ has been eliminated using (3.22). Also, (3.20) has been used to
write ξx px + ζx pz = (ξx p)x + (ζx p)z. The relation (3.24) can be used to
compute how wave amplitude varies with height, as will be shown below.

Note that if X ′, Z ′, Q′ all ≡ 0, ∀t, then q ≡ 0 by (3.23) and the initial —I.33—

conditions, and so RHS (3.24) ≡ 0. Then the relation (3.24) is a con-

servation relation. That is, ξx ul+ζx w′ is the density (remember ρ00 = 1)
of a conserved quantity, with vertical flux ζx p′ (and in fact horizontal flux
ξx p which, however, makes no contribution since under our present assump-
tions it is independent of x). This conserved quantity is closely related to
a more generally conserved quantity, the wave-action (got by replacing x-
derivatives and the averaging with respect to x by derivatives with respect
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to, and averaging with respect to, an ensemble or phase-shift parameter α,
usually in the range 0 6 α < 2π).

The present conserved quantity, associated with ∂/∂x rather than ∂/∂α,
should strictly speaking be called minus the pseudomomentum or quasi-
momentum. In our Boussinesq system with ρ00 = 1 the density of the
x-component of pseudomomentum is

p ≡ −ξx ul − ζx w′. (3.25)

From a theoretical-physics viewpoint, conservation of p is associated with in-
variance of the mean flow with respect to translations in the x direction — —
just as conservation of momentum is associated with a different translational
invariance, that of the whole physical problem including gravitational poten-
tials. The translational invariance encountered here is expressed through the
way in which ∂/∂x appears throughout the calculations, and the vanishing

of ∂( )/∂x. [This is analogous to quantum-mechanical momentum and
pseudomomentum operators. Momentum and pseudomomentum are often
confused in the literature; for a celebrated controversy attributable to this
confusion, see Peierls, R. E. (1991) More Surprises in Theoretical Physics,
Princeton University Press.]

We now use (3.24), with right-hand side nonzero, to relate wave dis-
sipation to mean-flow changes. (We don’t actually have to worry about
the wider significance of (3.24) and its relatives just now.) First we find a
relation between the Reynolds stress −u′ w′, (minus the vertical flux of hor-(Remember the

traditional but
perverse sign con-
vention that defines
‘stress’ with sign
opposite to that of
‘momentum flux’.)

izontal momentum) and the vertical flux −ζx p′ of pseudomomentum. (We
expect that there should be a relation, because we have already noted that
−ζx p′ is also minus the wave drag — cf. below equation (2.14) — on a surface
displaced by ζ(x, t) about a horizontal plane.)

To find a relation between u′ w′ and ζx p′, multiply equation (3.17 a) by ζ
and note that

−ζ p′x = +ζx p′ (3.26)

and that

ζ Dt u′ = −u′ Dt ζ + Dt(u′ ζ)

= −u′ w′ +
∂

∂t
u′ ζ ; (3.27 a)

ζ w′ = ζ Dt ζ =
1

2

∂

∂t

(

ζ2
)

. (3.27 b)

Hence we get

−u′ w′ = +ζx p′ − ζ X ′ − ∂

∂t

[
1
2
ūz ζ2 + u′ ζ

]

, (3.28)
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—I.34—

correct to second order in small quantities, anticipating that ūt and therefore
ūzt will be small of second order in wave amplitude (the latter true a fortiori
in the ‘slowly-varying’ example (3.15)).

Finally, we have (confirming that ūt is indeed generally second order)

ūt = −(u′ w′)z (neglecting X̄ provisionally) (3.29)

in the same way as before, (3.12). Substituting from (3.28) and then elimi-
nating ζx p′ via (3.24) we see that, correct to second order,

ūt = −(ζ X ′)z − ξx X ′ − ζx Z ′ − ζx q

+
∂

∂t

[
−(ζ u′)z − ξx ul − ζx w′ − 1

2
(ūz ζ2)z

]
.

(3.30)

This expresses the mean acceleration ūt directly in terms of X ′, Z ′, q i.e. wave
dissipation, or other departures from conservative wave motion (first line),
and departures from steadiness of the wave pattern (second line) such as
would occur with the upward-propagating wave envelope envisaged earlier. It
is actually a disguised generalization of Kelvin’s circulation theorem, though
to see this one has to rework the theory using Lagrangian averaging since
undulating material contours are involved.

[Exercise: verify that (3.15) may be rederived directly from (3.30) by set-
ting X ′, Z ′, q to zero and using the ‘slowly-varying’ approximation (which
makes the first and last terms within the square brackets negligible in com-
parison with the other two. Recall also (3.18), in which ūz ζ is negligible,
and (2.9) together with the remark below it concerning ‘equipartition of en-
ergy’. Note again, however, that (3.30) is much more general: it applies
to any mean profiles ū(z), N(z).]

Simplification when disturbances have the form

f(x − c t, z, T ) (T = µ t, µ ≪ 1), (3.31)

where c = constant — i.e. time-dependence slowly-varying apart from phase
propagation. (Slight generalization of earlier problem — includes it, because
z-dependence could be e−i m0 z × func(Z1) — but ū(z), N(z) and therefore
disturbance now allowed to depend on z in a more complicated way.) Then

(ū − c){ξx, ζx, qx} = {ul, w′, Q′} + O(µ) (3.32)
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and (3.30) becomes

ūt = −(ζ X ′)z +
1

(c − ū)
{ul X ′ + w′ Z ′ − ζ Q′}

+
∂

∂t

[
−(ζ u′ + 1

2
ūz ζ2)z +

1

(c − ū)
{ul 2 + w′2}

]
.

(3.33)

(You can use this result as an easier stepping stone to the Exercise above.)
—I.35—

In the simplest, dissipation-dominated, feedback situation (mid. p. 58),
∂

∂t
[ ] is negligible, as is −(ζ X ′)z if ‘slowly-varying’ holds for z-dependence.

The term { } in the first line is positive for almost-plane waves if X ′, Z ′ and
Q′ are dissipative. Hence tendency for sgn ūt = sgn (c − ū), even when ū
and N depend on z.

The foregoing theory leads to a more elegant (and generalizable) deriva-
tion of the result that the dissipation scale height D ∝ wg. For instance:

Exercise: Height scale for dissipation-induced mean-flow acceleration, for
a single model of wave dissipation. Let X ′ = 0, Z ′ = 0, Q′ = α σ′

(‘Newtonian cooling’) and α (+ve const.) small enough and ū(z), N(z) vary-N36-

slowly enough that w′ p′ ≃ wgE as on p. 27, and (3.32) holds, with ul = u′.
Show that ζx p′ ≃ wgE/(ū − c), and (noting that (3.17 c) and (3.18 b)
⇒ ζ = −σ′/N2 + O(α) ) that −ζx q = ζ qx = −α σ′2/N2(ū− c) + O(α2) =
−αE/(ū − c) by ‘equipartition’, p. 27. Deduce that (3.24) and (3.30) with
∂/∂t terms neglected on r.h.s. imply a height scale D = wg/α for ζx q and
therefore for ūt. [This confirms what was assumed on p. 59 ff. (where U = c).
Note wg ↓ 0 as ω = k(c − ū) ↓ 0, by equation before (3.14).]

Connection with Bretherton–Garrett formula for ‘wave-action’: By
similar manipulations, again involving ‘equipartition’ between kinetic and
potential energy, we can show that for slowly-varying plane waves the pseu-
domomentum p appearing in (3.24) — recall definition (3.25) — is given to
leading order by

p = E/(c − ū) = E k/ω̂ (E defined on p. 27; ρ00 = 1)

where ω̂ = k(c − ū) = ω − ū k, the frequency relative to the mean state,
sometimes called the ‘intrinsic frequency’; E/ω̂ is often called the (den-
sity of) ‘wave-action’. (When applying this as an approximation for slowly-
varying ū(z), N(z) we could think of ω̂ as the frequency “intrinsic to the local
wave dynamics”.) So multiplying (3.24) by k we see that E/ω̂ is conserved
(Bretherton & Garrett (1968) Proc. Roy. Soc. A 302, 529). This is a nice
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form of the result, because it also applies, as is easily shown (details omitted
here), when variation of waves and mean state is allowed in x, y, t as well as z.
The proof is similar to that of (3.24) — the only trick is to replace averaging
and differentiation with respect to x by averaging and differentiation with

respect to the phase shift α, noting that ∂( )/∂α = 0 is always true.

[An echo of our digression re ‘eddy viscosity’, ‘anti-friction’ etc: The situation
depicted in the middle of p. 58 is an example of the ‘peculiar’ behaviour of
‘eddy viscosity’, the appropriate definition of which is

−u′ w′/(∂ū/∂z)

in the present context. Notice that this is infinite at
the turning point in the ū(z) profile, and negative -N37-

below it (where left-travelling wave dominates). Of
course there is nothing surprising about this (now
that we understand what’s going on) but it is worth
keeping in mind when encountering the numerous
references to ‘eddy viscosities’, tacitly assumed well-
behaved and, in particular, positive, in the literature. Once again we see
how the long-range momentum transport associated with a wave propagation
mechanism (through systematic correlations between the fluctuating fields,
such as u′ and w′) gives rise to the ‘anti-frictional’ behaviour already men-
tioned, as distinct from the ‘frictional’ behaviour associated with the ‘eddy-
viscosity’ predicted by classical turbulence theories. In all those turbulence
theories, be they simple or sophisticated, wave propagation mechanisms are
wholly neglected, so that momentum transport becomes a short-range effect
— over lengthscales of the order of material particle displacements. —I.36—

§3.5 Resonant interactions among internal grav-

ity waves of small but finite amplitude;

resonant-interactive instability

The finite-amplitude solution (2.12) is unstable (for all amplitudes) because
of a mechanism ubiquitous in nonlinearized dispersive wave problems — ‘res-
onant interaction’. It can most simply be described by a formal asymptotic
solution correct to second order in amplitude. The algebraic details are com-
plicated, even for the case of plane internal gravity waves in an unbounded
Boussinesq fluid with constant N ; but this complication is inessential for
appreciating the main points.
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If we replace equations (2.1) and (2.2) by their nonlinear counterparts (1.4)
and (1.5), (2.3) is evidently replaced by

∇2(n · utt) + N2(n ×∇)2n · u

= −(n ×∇)2(u · ∇σ) + (n ×∇) · ∂

∂t
(u · ∇ζ − ζ · ∇u).

A superposition of 2 plane waves with constant w-amplitudes a1, a2 (complex)
— they will be treated as ‘small but finite’ —

w ≡ n · u = Re
{
a1 ei (k·x−ω1 t) + a2 ei (k2·x−ω2 t)

}
, (3.34)

satisfies the linearized equations (LHS (3.17) = 0) if each kj, ωj satisfies the
dispersion relation (2.6). A second-order correction to (3.34) is obtained by
substituting (3.34), and the corresponding u, ζ, σ fields, known from (2.1)
or (2.12), with RHS (3.34), and then finding a solution of the resulting inho-
mogeneous (linear) equation for w.

The RHS of (3.34) is quadratic in the dependent variables, and so without
carrying out the substitution we see that its result must consist of a sum of
terms of the form Re{γ ei (k3·x−ω3 t)} where γ = O(a1 a2) as a1, a2 → 0 and

k3 = ±k1 ± k2, (3.35 a)

ω3 = ±ω1 ± ω2. (3.35 b)

Here the same set of signs must be taken for ω3 as for k3. (There are
no terms with factors like e 2 i (k1·x1−ω1 t), e0 (“there are no self-interactions”)
because a single plane wave is an exact solution of (3.34). In general, the
response to such a forcing will also be O(a1 a2), ∀t, since, in general, k3 and
ω3 will not satisfy the dispersion relation (2.6). But if a possible {k3, ω3}
does satisfy (2.6), then the response will be resonant. I.e., it will contain a
contribution—I.37—

Re{a3 ei (k3·x−ω3 t)} where |a3| increases with time according to

d|a3|
dt

= B|a1 a2| (3.36)

where B is a positive constant for a given set of ki, ωi. (Cf. resonantly-forced

oscillator ü+u = ǫ ei t : u = a ei t +O(1) (a =
−i

2
ǫ t) as t → ∞ — essentially

the same thing.)
The only source of energy available for the growth of this third wave is

the energy of the other two. (3.36) suggests that they will have transferred
a substantial portion of their energy to the third wave17 after a (long) time

17More precisely, that |a3| will have reached a value of order |a1 a2|1/2.
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ti h B−1|a1 a2|−1/2. A set of three waves, which can interchange substantial
energy this way despite smallness of amplitude and consequent weakness of
their nonlinear interaction, because (3.35) and the dispersion relation for all
three are satisfied, is called a ‘resonant triad’.

Figure 3.7: Resonant interaction diagrams for short (i.e. constant-N) internal
gravity waves, when θ2 = 0, 30◦ and 60◦. Any point B on a branch of the
curve specifies a resonant triad OB, BA, OÅ; the wave-number with the least
slope being always the vector sum of the other two. Only wave-numbers in
the vertical lane are shown. The wave-number scale is arbitrary. (Phillips,
O. M. (1966) 177; (1977) 230).

The dispersion relation (2.6) admits many resonant triads. [E.g: show
that any 3 k’s forming an equilateral triangle in a vertical plane qualify.]
for each given wave number, OÅ on the right, the diagrams define a single-
infinite family of triads. In three dimensions the corresponding family is
doubly infinite.

The description using constant a1, a2 clearly is valid only for times ≪
the interaction time ti. We can get an approximate solution which is self-
consistent for all t if we allow a1 and a2, as well as a3, to vary slowly in time,
cf. scale N−1. Let αj ≡ i aj/ωj (complex amplitude for vertical displace-
ments). Since Re{α ei (k·x−ω t)} = Re{α∗ e−i (k·x−ω t)}, ∗ = complex conjugate)
we can suppose without loss of generality, and for the sake of symmetry, that
the triad satisfies (3.35) with all signs chosen minus. Then after much alge-
bra18 it can be shown that -N38-

18(but the basic mathematical trick is simply the one used at top of p. 32, applied to
∂

∂t
)

10/6/2008
st-3x4-5

I.37



74 Part I, §3.5

1

ω3

dα3

dt
= C α∗

1 α∗
2 (3.37)

and two similar equations obtained merely by permuting the indices; here C
is the same complex constant19 in all three equations; its value depends (sym-
metrically) on k1,k2,k3. [This symmetry of (3.37) is not obvious from (3.34),
but can be shown to be a consequence of the fact that the dynamics of
the system can be derived from Hamilton’s principle (Hasselmann (1967)—I.38—

J. Fluid Mech. 30 737; Bretherton (1969) Radio Sci. 4 1279; Simmons
(1969) Proc. Roy. Soc. A 3-9 562; Olbers (1976) J. Fluid Mech. 74 375) us-
ing the Lagrangian (particle-following) description of the fluid motion. [Note
that (3.37) contains (3.36); take α3 ≪ α1, α2; α1, α2 h const.]

We now see that (3.37) implies the above-mentioned instability. Any
single plane wave α3 ei (k3·x−ω3 t) is unstable to any two other triad members
of initially infinitesimal amplitude such that ω3 is the frequency of largest
magnitude (“Hasselmann’s theorem”). For then ω1 ω2 > 0 in (3.35)minus-N39-

and, linearizing in α1, α2 (α3 const):-N40-

1

ω1 ω2

d2α1

dt2
= C α∗

3

1

ω2

dα∗
2

dt
= C α∗

3 · C∗ α3 α1

i.e.
d2α1

dt2
= ω1 ω2 |C|2|α3|2

︸ ︷︷ ︸

> 0 by assumption

(3.38)

so α1 (and also α2) will in general grow like exp{(ω1 ω2)
1/2|C α3|t} initially.

This kind of instability has been strikingly demonstrated in laboratory
experiments by McEwan (1971) J. Fluid Mech. 50, 431, Martin, Simmons
& Wunsch (1972) J. Fluid Mech. 53, 17, and McEwan & Robinson (1975)
J. Fluid Mech. 67, 667. the instability, and resonant-triad interactions in
general, are almost certainly significant in most internal-wave fields occurring
in nature; the oceanic main thermocline (away from continental shelves)
being the most studied case (e.g. Müller & McComas (1981) J. Phys. Oc.
11, 970; recent updates in Polzin, K. (2004) J. Phys. Oc. 34, 214 & refs.).

The standard theory considers a continuum of triads and assumes a ran-
dom phase relation between α1, α2, α3 leading to a Boltzmann equation.
There is an analogous theory for surface gravity waves, and an analogous

19And C may be taken real, without loss of generality. For if C = |C|ei δ, replace αj by

αj exp(
1

3
i δ). Then

d

dt
(α1 α2 α3) is real, so if α1 α2 α3 initially real it remains real; this

says that waves 1 and 2 are resonantly generating a third wave in phase with the initial
wave 3, etc.
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instability, ‘Benjamin–Feir instability’, the details being more complicated
since (3.35) has no solutions when the dispersion relation connecting k and
ω is that of surface gravity waves, ω2 = g |k| (two-dimensional), and so the
leading-order resonant effects come from quartets of plane waves, not triads.
(Discussed in Phillips’ book.)

Note incidentally that the wave-action density E/ω̂ comes into this theory
too. Let Ej = 1

2
ρ00 N2|αj|2 (wave-energy density for jth triad member).

Then multiply (3.37) by α∗
1, and add the result to its complex conjugate,

then multiply by 1
2
ρ00 to get

d

dt

(
E1

ω1

)

= (real) quantity symmetric in j = 1, 2, 3

therefore
d

dt

(
E1

ω1

)

=
d

dt

(
E2

ω2

)

=
d

dt

(
E3

ω3

)

(3.39)

which implies that (E2/ω2) − (E1/ω1) and the two other similar expressions
are each constants of the motion. With the help of (3.39) it can be shown
(Bretherton (1964) J. Fluid Mech. 20, 457) that (3.37) soluble analytically in
terms of Jacobi elliptic functions; see also Simmons (1969) Proc. Roy. Soc. A
309, 551. It follows that for isolated triads the amplitudes fluctuate period-
ically.

Note incidentally that the sum (E1/ω1) + (E2/ω2) + (E3/ω3) is not a
constant of the motion, because the wavefield no longer involves a single
phase-shift α as on p. 68. The result (3.39) has a natural counterpart
in quantum theory in terms of numbers of particles created or destroyed
in particle–particle interactions; see Peierls (1979) Surprises in Theoretical
Physics, eq. (5.2.4), also Peierls (1991) More surprises in Theoretical Physics.
However, we still have conservation of wave-energy and wave pseudomomen-
tum (the background being translationally invariant). From (3.39) and (3.35)
(which, remember, was already used in arriving at (3.39)) we have

d

dt
(E1 + E2 + E3) = 0 (3.40 a)

d

dt

(
E1 k1

ω1

+
E2 k2

ω2

+
E3 k3

ω3

)

= 0 (3.40 b)

This is a good check on the algebra: the conservation of pseudomomentum
and wave-energy (more generally pseudoenergy) under nonlinear interactions
is a known consequence of the fact that the background is both translationally
invariant and steady (Andrews & McIntyre (1978), On wave-action and its
relatives, J. Fluid Mech. 89, 647–664).
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4.

A closer look at the effects of
non-uniform ū(z) and N 2(z)

§4.1 Various forms of the linearized equations
—I.39—

Again, we think in two dimensions but write equations in form such that
generalization to three dimensions easy by rotating the horizontal axes. If
no dissipation or external forcing, (3.17) is

Dt u
′ + ūz w′ = −p′x (4.1 a)

Dt w
′ − σ′ = −p′z (4.1 b)

Dt σ
′ + N2 w′ = 0 (4.1 c)

u′
x + w′

z = 0 (4.1 d)

where Dt = ∂/∂t + ū(z)∂/∂x as before. [Note Dt commutes with ∂x but not
∂z] Note also Lagrangian disturbance from; it is simplest in nondissipative
case since, with definitions (3.6) ff,

D2
t ξ = Dt(u

l) = Dt(u
′ + ζ ūz) = Dt u

′ + w′ ūz (from (3.21))

and σ′ = −N2 ζ (from (3.22))
(4.2)

so

D2
t ξ = −p′x (4.3 a)

D2
t ζ + N2 ζ = −p′z (4.3 b)

ξx + ζz = 0 , from (3.20). (4.3 c)

This is actually the best starting point for getting (3.24) and its general-
izations). Note setting ξ = 0 recovers case of oscillation of vertical column
with frequence N (p. 18). [*This system is self-adjoint ; see section §4.2 on
page 79.*]

Analogue of (2.3): Take ∂(4.1 a)/∂z − ∂(4.1 b)/∂x:

Dt(u
′
z − w′

x) + ūzz w′ + σ′
x = 0 (using (4.1 d)) (4.4)
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(vorticity again). Then Dt (4.4) − ∂

∂x
(4.1 c):

D2
t (u

′
z − w′

x) + ūzz Dt w
′ − N2 w′

x = 0.

Finally, −∂/∂x of this, and use (4.1 d) again:

D2
t ∇2w′ − ūzz Dt w

′
x + N2 w′

xx = 0 (4.5)

For disturbances of form

w′ = ŵ(z)ei k(x−c t) (4.6)

this becomes

ŵzz +

{
N2(z)

(ū − c)2
− ūzz

(ū − c)
− k2

}

ŵ = 0 (4.7)

the celebrated Taylor–Goldstein equation. (Case c = 0 also called Scorer’s
Equation.)—I.40—

Now notice the condition for validity of ‘slow variation’ in z; we used
a local plane-wave solution satisfying (2.3) instead of (4.5) or (4.7), i.e. we
neglected the ūzz term. For slow variation to be valid we therefore need

N2 H2

U2
≫ 1 (4.8)

where H is a height scale for the z-dependence of the mean flow and U ditto
for ū and (ū − c). This is consistent with the condition m ≫ H−1 (vertical
wavelength ≪ H) since m is generally of order N/U , from the dispersion
relation, if we assume U h (ū − c). The condition (4.8) is sometimes re-
ferred to as that of ‘large Richardson number’, though the usual definition
of Richardson number Ri is not quite the same; it is

Ri =
N2(z)

ūz(z)2
, (4.9)

which is generally a function of z. Ri and N2 H2/U2 are generally of the
same order of magnitude (in simple cases characterized by the one height
scale H).

Analogue of (4.5) starting from (4.3):

Take ∂(4.3 a)/∂z − ∂(4.3 b)/∂x:

D2
t (ξz − ζx) + 2 ūz Dt ξx − N2 ζx = 0 (4.10)
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Take −∂/∂x of this, and use (4.3 c):

D2
t ∇2ζ + 2 ūz Dt ζzx + N2 ζxx = 0 (4.11)

(Exercise: Check now that (4.5) gives Dt (4.11) when we substitute w′ = Dt ζ.
Note that

wz = Dt ζz + ūz ζx

so wzz = Dt ζzz + 2 ūz ζzx + ūzz ζx

and notice that last term cancels the ūzz term in (4.5).)

These equations contain several new and basic phenomena, plural:

• trapping (waveguide formation, by shear ūzz or N2(z) structure)

• shear instability

• ”absorption” (irreversible degradation of disturbance, often involving
wave breaking).

—I.41—

One can now proceed in the usual way to study various initial-value and
boundary-value problems for these linearized equations — evolution of an
arbitrary initial disturbance in an unbounded shear flow, disturbance due to
flow over a boundary undulating in some given way, etc. It is often convenient
to exploit homogeneity in x and to use Fourier transformation, with basic
solutions ∝ ei k x. There is a vast literature on this, arising from attempts to
understand observed phenomena like lee-wave trains behind mountains, and
‘billow clouds’ (a manifestation of shear instability) — more generally the
circumstances leading to turbulence in oceans and atmospheres, e.g. CAT
(clear-air turbulence), which can present a hazard to aviation.

[Skip to §4.4.] —I.39.a—

§4.2 Digression: self-adjointness of (4.3) and

some of its consequences
Non-examinable
(and needs revision)This is just as easy to do in three dimensions, for general ū(x) (we are still,

however, confining ourselves to linearized theory, and ū may still be taken
to be a mean or a basic, undisturbed flow (in the linearized theory under
discussion it doesn’t matter which), and its time dependence neglected). In
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our Boussinesq linearized model, ∇· ū = 0 and ∇·ξ = 0. We replace (4.3a,b)
by (with Dt now ∂/∂t + ū · ∇):

L(ξ) ≡ D2
t ξ +

1

ρ00

(ξ · ∇)∇p̄ = −∇p′ (4.12)

i.e. the linear operator L has cartesian components Lij = δij D2
t +

1

ρ00

∂2p̄

∂xi ∂xj

.

(It takes a little nontrivial algebra to get (4.3a,b’) from the three-dimensional

Eulerian linearized equation Dt ū
′ + ū′ ·∇ū = − 1

ρ00

∇p′ +nσ′ (set p1 = p̄+p′

and σ1 = σ̄+σ′ on page 17). You have to assume that ū·∇ū = − 1

ρ00

∇p̄+σ̄ n,

i.e. basic flow is a dynamically possible steady flow (unforced). It is easy,
however, to check that (4.3ab’) does reduce to (4.3a,b) for the unidirectional
(and hydrostatic) basic flow assumed there.) (If you want to prove the full
three-dimensional form, it’s useful to define ul = u′ + ξ · ∇ū = Dt ξ.)

The self-adjointness of L says that, for any pair of fields ξ(1)(x, t), ξ(2)(x, t),

ξ(1) · L(ξ(2)) = S(ξ(1), ξ(2)) + (4D divergence) (4.13)

where S(·, ·) is a symmetric scalar-valued differential operator on pairs of
fields:

S(ξ(1), ξ(2)) = S(ξ(2), ξ(1))

= −(Dt ξ
(1)) · (Dt ξ

(2)) +
1

ρ00

ξ
(1)
i ξ

(2)
j

∂2p̄

∂xi ∂xj

(4.14)

(This is rather easy to prove once you have (4.3ab’); you have to use ∇·ū = 0
and ∇·ξ = 0; note incidentally that ∇· ūl is not zero.) The four-dimensional
divergence in (4.13) is

∂

∂t
(ξ(1) · Dt ξ

(2)) + ∇ · (ū ξ(1) · Dtξ
(2)). (4.15)

(4.13) holds also for ξ(2) · L(ξ(1)) provided (1) and (2) are swapped in (4.15),
trivially.

Special cases of interest:

1. ξ(1) = ξ(2) = ξ such that (4.3ab’) holds, and average over a wave-
length or period of a plane wave on a uniform basic flow: S(ξ, ξ) = 0
(‘equipartition’ of wave-energy; cf. top p. 89 and mid. p. 70).
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2. ξ(1) =
∂ξ

∂x
, ξ(2) = ξ satisfying (4.3ab’) and average in x for x-independent

basic state; S̄ = 0 then (because Dt and
∂

∂x
then commute, and

( )
∂

∂x
( ) = 0 on RHS (4.14)), and (4.15) +∇ · (ξ p′) gives conserva-

tion of pseudomomentum (quasimomentum).
—I.39.b—

You might well ask: why don’t we somehow include the −∇ in (4.3ab’) -N41-

and the ∇· in ((4.3 c)) in ‘the operator’ L which exhibits self-adjointness? The
answer is that, strictly speaking, the operator involved is not really (·) but
rather Π(L(·)), where Π(v) is a projection operator from a function space of
arbitrary vector fields v(x) to a function space of nondivergent vector fields:

Π(v) = v(nd) where v = v(nd) + v(irr),

the nondivergent and irrotational parts of v, with the former satisfying
v(nd) · ν = 0 on a rigid boundary with normal ν. The decomposition is unique
(assuming all fields evanesce fast enough at large distances, as appropriate);
this is because v(irr) is then given by ∇φ where

∇2φ = ∇ · v
∂φ/∂ν = −v · ν on a rigid boundary.

We may then work within the space [actually a Lie algebra] of nondivergent
vector fields ξ satisfying ξ · ν = 0 on boundary, and regard the complete
equations of motion as

Π
(
L(ξ)

)
= 0;

note Π annihilates −∇p′, and recall that ∇ · ul 6= 0, i.e. ∇ · (Dt ξ) 6= 0. The
reason why this doesn’t affect the previous calculation is that irrotational
vector fields are orthogonal to nondivergent ones, in the sense

∫∫∫

v(irr) · w(nd) dV = 0,

for any irrotational v(irr) and any nondivergent w(nd), such that w(nd) ·ν = 0
on the boundary. —I.41.rest—

§4.3 Two basically different types of solution:

Type I: disturbances of form

func(z) ei k (x−c t), k real, c constant, (4.16)
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(= ω/k in earlier notation) as in (4.6). We may distinguish
{

Type Ia: c real: ‘internal gravity waves’ Type Ib: k Im(c) > 0: (exponentially growing)

Type II:

disturbances which

∼ func(t) × func(z) ei k [x−ū(z) t] as t ↑ ∞ (4.17)

or more generally

∼ func(t) × func(z) · func[x − ū(z) t] as t ↑ ∞ (4.18)

[N.B. Type II is not, of course, a classical ‘normal mode’ (and the problem,
small disturbances on shear, is not a classical small-oscillations problem).]
Good general discussions of Type I and Type II can be found respectively
in Banks, Drazin & Zaturska (1976) J. Fluid Mech. 75, 149 and Brown &
Stewartson (1980) J. Fluid Mech. 100, 811. See also both editions of Phillips,
O. M., Dynamics of the Upper Ocean, C.U.P.; Hartman (1975) J. Fluid Mech.
71, 89; Marcus & Press (1977) J. Fluid Mech. 79, 525 and references (Kelvin
(1887) Phil. Mag. 24(5), 188!); Yamagata (1976) J. Oceanog. Soc. Japan 32,
162; Shepherd (1985) J. Atmos. Sci. 42, 1868.

Remark: All these solutions are unaffected by introducing a mean flow v̄(z)
in the y direction (i.e. they all apply unchanged when meal flow changed
from (ū(z), 0, 0) to (ū(z), v̄(z), 0), since ∂/∂y and therefore v̄ ∂/∂y are zero
(‘Squire’s Theorem’). [There is a trivial additional equation Dt v

l = Dt v
′ +

v̄z w′ = 0, decoupled from the other equations.]

§4.4 Type Ia solutions

For Type Ia solutions, which include steady internal-gravity-wave patterns in
a slowly-varying mean flow under (4.8) etc., the main phenomenon we have
not yet discussed is total internal reflection and the resulting

Trapping (of type Ia disturbances). Take c = 0 in (4.7), without loss of
generality:

ŵzz + m2(z) ŵ = 0 (4.19)

where

m2(z) =
N2(z)

ū2(z)
− ūzz

ū
− k2 = l2(z) − k2 say.

The function l2(z) is sometimes called ‘Scorer’s parameter’ in the lee-wave
literature (even though it’s a function and not a parameter). We have

sgn (ŵzz/ŵ) = −sgn m2;

I.41.rest 10/6/2008
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that is, ŵ(z) has ‘oscillatory behaviour’ (concave towards) or ‘exponential
behaviour’ (concave away from, z-axis) according as m2 is +re or −re. —I.42—

Clearly if we have (e.g.) a boundary at z = 0 on which w′ = 0, and l2

decreasing with height (either because N2 decreases or ū increases, or both),
there is the possibility of solutions like

Figure 4.1: [This is classical ‘total internal reflection’: solution locally like
an Airy function here.] [Cf. potential well for Schrödinger’s equation.]
[as is easy to confirm by solving (4.19) numerically, if you feel the need].

For example the radiosonde
at Jan Mayen Island (71◦N,
81

2

◦
W) gave the sounding shown

at left, at the time of the ship-
wake pattern I showed in the
satellite picture (the informa-
tion — and satellite picture —
is taken from Gjevik & Marthin-
sen (1978) Q. J. Roy. Meteo-
rol. Soc. 104, 947). Here ū was -N42-

almost exactly from the north,
and increased with height while
N2 decreased, according to their
estimate at left, above altitudes
of about 3 km. [To estimate N2

one needs to make some allowance for compressibility; the chart at far left
is a standard meteorologist’s tool to help do this roughly ‘by eye’.] So it ap-
pears that l2 did decrease with height, from its typical values in the first few
km. Gjevik & Marthinsen give a rough calculation giving values of k agree-
ing quite well with values ∼ 2 π/9 km measured from the satellite photo
(provided we use the component of mean wind perpendicular to the local
wavecreases — Squire again). This is an example of an internal-gravity-wave
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waveguide. Clearly the ocean thermocline can act similarly as a waveguide,
and (on a larger scale) the whole stratosphere (see bottom left, of fig. 1.1 on
page 1.1), although to deal with the latter case properly we would need to
take compressibility fully into account.

One can now go on and apply a lot of standard bits of mathematics
to (4.19) — e.g. if we set sensible boundary conditions such as ŵ(0) = 0, ŵ →
0 as z → ∞, and if ū > 0 everywhere so l2 nonsingular, then regarding k2 as
an eigenvalue we have a Sturm–Liouville system with real eigenfunctions ŵ(z)

— note this ⇒ no phase change with height, unlike our example
of (untrapped) waves. Eigenvalues k2 real, infinite decreasing sequence, but
most (or possibly all) negative;1 there is ‘room’ for only a finite number of
modes in a layer of finite depth (e.g. think of the trivial case l2 = const. > 0,

ŵ(0) = ŵ(H) = 0 etc: ŵ ∝ sin mz, m2 = l2 − k2, n modes with
k2 > 0, real x-waveno, where n is largest integer such that n2 < l2 H2/π2;
when ū and N are const. this is the square of N H/ū π as before).

Another nice result is that the expression for the eigenvalue (Rayleigh
quotient)

k2 = I(ŵ) ≡
∫

(l2 ŵ2 − ŵ2
z)dz

∫
ŵ2 dz

, (4.20)

obtained by multiplying (4.19) by ŵ and integrating, assuming ŵ = 0 at
limits of integration when integrating ŵ ŵzz by parts, is stationary for small
variations δ ŵ(z) in ŵ which vanish at the boundaries (limits of integration):

δI(ŵ) = O(δŵ2) (4.21)
—I.42.a—

—I.43— Proof is simple standard exercise in the calculus of variations (replace ŵ
by ŵ + δŵ in RHS (4.20), neglect square of δ ŵ and its z-derivative δŵz,
integrate by parts to get rid of δŵz, using δŵ = 0 at boundaries, and use
‘numerator of (4.20) = k2× denominator’ as well as (4.19); this gives (4.21)).
The stationarity property (4.21) implies that (4.20) is a good way of calcu-
lating k2 if one has a rough approximation to the mode structure ŵ(z) (the
relevant extension of ‘Rayleigh’s principle’). It also means that we can get
an analogous expression for the group velocity in the x direction

cg =
∂

∂k
(c k)

∣
∣
∣
∣c=0 = k

∂c

∂k

∣
∣
∣
∣
c=0

(4.22)

1If all are negative there are no waveguide modes, and we say that the flow is ‘super-
critical’ (to all modes). This always happens if l2 is small enough or (usually) if ū fast
enough.

I.43 10/6/2008
st-4a



Part I, §4.4 85

Figure 4.2: Three-dimensional lee-wave pattern. Section of a VHRR pho-
tograph taken by NOAA 5. The scale indicates the flight direction of the
satellite. The scale perpendicular to the flight direction is diminished by a
factor 0.72. (a) Jan Mayen 1 Sept. 1976, 1117 GMT (visible band). On the
left, Scoresby Sound, east Greenland. (b) Jan Mayen 29 Dec. 1976, 1122
GMT (infrared band). (c) Jane Mayen 8 Oct. 1976, 1314 GMT (infrared
band). (d) Spitzbergen 19 Sept. 1976, 1137 GMT (visible band).
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since (4.21) means that in (4.20) we can make small changes dc, dk [l2 be-
comes

N2

(ū − dc)2
− ūzz

ū − dc
= l2|dc=0 +

(
2 N2

ū3
− ūzz

ū2

)

dc + O(dc2) ],

and neglect the implied changes in ŵ, so that

2 k dk = dc

∫ (
2 N2

ū3
− ūzz

ū2

)

ŵ2 dz
∫

ŵ2 dz
= dc

∫ (
N2

ū3
+

l2

ū

)

ŵ2 dz
∫

ŵ2 dz

whence

cg =
2 k2

∫
ŵ2 dz

∫ {
N2(z)

ū2(z)
+ l2(z)

}
ŵ2(z)

ū(z)
dz

(4.23)

(You should check that this does indeed give cg in the trivial case ŵ = sin mz;
but remember that this cg is relative to our present frame of reference, i.e.
is ū + ĉg where ĉg is the intrinsic group velocity given by (2.7). Remember
moreover that if ū > 0 we have c = 0 so intrinsic phase and group velocities
are in minus x direction.) The expression (4.23) explains at once why ob-
served mountain waves are lee waves, occurring downstream of their source
(like ship waves); evidently, when l2 > 0 and ū is one-signed,

sgn cg = sgn ū. (4.24)

Moreover it is clear that (since it can be shown — Sturm–Liouville again —
that ŵ(z) is well-behaved as k2 ↓ 0)2

cg ↓ 0 as k2 ↓ 0 (ĉg → c) (4.25)

so that we can begin to see that the dispersion properties in the horizon-
tal are likely to resemble those of surface gravity waves in an ocean of
finite depth, and it is not surprising that the satel-
lite pictures of lee waves from a single mountain show
patterns qualitatively like ship waves. E.g. this is the
calculated pattern for the case shown earlier (source
reference, QJRMS 104, 947). (Exercise: Note also
that if l2 > l2min > 0 above surface layer (more real-
istic) then as k ↓ 0, trapped modes cease to exist at
some k ≤ lmin.)—I.44—

2But we have to be a little careful in the unbounded (e.g. semi-infinite atmosphere)

case. E.g. if l2
z→∞ 0, vertical range of ŵ extends upwards like k−1; then cg ↓ 0 like k

not k2; this has implications for the theory of ‘solitary waves’ and related large-amplitude
‘solitary disturbances’, e.g. the ‘Morning Glory’ of North Australia.
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§4.5 A special case of trapped waves: the

thin thermocline

A special case of trapped waves, of special theoretical in-
terest, is that of the ‘thin thermocline’: a layer L of depth
≪ k−1 outside which N2 is zero. Take

{

ū = const. > 0

c = 0
.

Then (4.7) becomes

ŵzz +

(
N2(z)

ū2
− k2

)

︸ ︷︷ ︸

= −k2 outside L

ŵ = 0 (4.26)

The solution ∝ e−|k z| outside L, and approximately
satisfies

ŵzz +
N2(z)

ū2
ŵ = 0 (4.27)

within L (a simple case of ‘matched asymptotics’ in the
limit of thin L (fundamental to notion of ‘layer’ mode)
or large k−1). Moreover ŵ in (4.27) can be taken as a
constant, ŵ0, to leading order, so the jump in ŵz across
L is [ ] = [ ]z+

z−

[ŵz] = −ŵ0

∫
N2(z)

ū2
dz (4.28)

To match outer solution, which has ŵz = ±k ŵ0 just outside L, we have

2|k| =

∫

L

N2 (z)

ū2
dz; (4.29)

but ū is constant and N2 = −g ρ−1
00

dρ̄

dz
in notation of p. 17 so 2 |k| =

1

ū2

(−g ∆ ρ

ρ00

)

, therefore

(intrinsic phase speed)2 = ū2 = 1
2
g′ |k|−1 (4.30)

where

g′ = −∆ρ̄

ρ00

g (> 0) (4.31)
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the ‘reduced gravity’ as it is often called. (The phase speed is
1√
2
·
√

g′

g
times

the intrinsic phase speed of surface gravity waves in a semi-infinite ocean:
reason for

√
2 is that we have two semi-infinite layers and therefore twice the

effective mass for a given displacement of the thermocline L.)
The same result can of course be got by assuming a ‘two-layer model’ at

the outset and applying continuity of (absolute) pressure at the interface;3

the present derivation illustrates that such ‘layer models’
are often justifiable as the limit of a continuous system.
This is just as well, since we shall see that it is only the
continuous system that can be stable for any finite range of
amplitudes. The reason is that continuity (4.1 d) implies

u′ = i k−1 ŵz ei k x (4.32)

which develops a jump discontinuity (of strength (4.28))
as L shrinks to an interface. So in this limit the model
predicts infinite shear at the interface. (Note that the
associated vorticity is due entirely to σ′

x in (4.4) [n ×∇σ
in (2.1)].)

If we idealize the local motion as itself approximating to a horizontal—I.45—

flow ū(z), we see that it is indeed unstable, and get our first example of a

§4.6 Type Ib disturbance:

(solution of (4.7) with ci = Im c > 0, representing an exponentially grow-
ing instability). Note first a consequence of pseudomomentum conservation
[(3.24) with RHS = 0] which holds for general ū(z) and N(z). For type Ib
disturbances(real parts under-

stood)

ξ = ξ̂ ei θ

ul = Dt ξ = i k (ū − c) ξ̂ ei θ,

w′ = i k (ū − c) ζ̂ ei θ (where real parts must be taken!),

ξx = i k ξ̂ ei θ, (4.33)

ζx = i k ζ̂ ei θ,

so that pseudomomentum ℘ per unit mass is-N43-

3plus kinematics: particles at interface assumed to stay at interface
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℘ = −ξx ul − ζx w′

= k2 |ξ|2 {cr − ū(z)} where cr = Re(c) (4.34)

[Use [Re{a ei θ}]2 = 1
2
|a|2, and Re{ }Im{ } = 0, |ξ|2 = ξ2 + ζ2 = 1

2
|ξ̂|2 + 1

2
|ζ̂|2,

where ( ) denotes x-average.]
We see at once that sgn ℘ = sgn (cr − ū(z)). Since pseudomomentum is

conserved, the only way to get a growing, free (i.e. not driven externally, e.g.
from boundary) disturbance,

|ξ|2 ∝ e2 k ci t (ci = Im c > 0), (4.35)

is for ℘ to take both signs (in different parts of the flow). Explicitly, in-
tegrate (3.24) with respect to z (with RHS = 0) and assume ζ = 0 at
boundaries: (no wave sources)

∂

∂t

∫

℘ dz (4.36)

and so from (4.34) and (4.35):

2 k ci

∫

k2 |ξ|2 {cr − ū(z)} dz = 0 (4.37)

which proves that if an exponentially growing disturbance is possible, it must
comply with

min ū(z) < cr < max ū(z). (4.38)

[We note in passing a beautiful extension of this re-
sult (Howard’s semicircle theorem): If ci > 0,

c = cr + i ci lies in the semicircle −→ (4.39)

This is a consequence of (3.24) and a generalization
of wave-energy ‘equipartition’, a ‘virial theorem’
got by multiplying (4.3a,b) scalarly by ξ and aver-
aging (cf. ∂ξ/∂x to get ℘ conservation). This was
first shown by Eckart (1963) Phys. Fluids 6, 1042. The proof (in this La-
grangian form) extends trivially to the non-Boussinesq, compressible case.] —I.46—

In our case, ξ(4.3 a) + ξ(4.3 b) gives [since e.g. ξ D2
t ξ = Dt(ξ Dt ξ) −

(Dt ξ) = Dt(
1
2
Dt(ξ

2)) − (ul)2, and similarly ζ D2
t ζ]

N2 ζ2 − |ul|2 = −(ζ p′)z − 1
2
D2

t |ξ|2. (4.40)
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Notice this proves ‘wave-energy equipartition’ for plane waves on a uniform = ∂2/∂t2 since (
indep. etc.basic state, for which RHS is zero.

Now assuming as always that N2 ≥ 0, we have

|ul|2 − |ζ p′|z − 1
2

∂2

∂t2
|ξ|2 = N2 ζ2 ≥ 0

Integrate over z and use

|ul|2 = k2 |ū − c|2 |ξ|2, ∂2

∂c2
|ξ|2 = 4 k2 c2

i |ξ|2,

and fact that we have no boundary sources (℘-flux vanishes at limits of
integration): ∫

(k2 |ū − c|2
︸ ︷︷ ︸

=ū2−2 ū cr+c2r+c2i

−2 k2 c2
i ) |ξ|2 dz ≥ 0.

[ci = Im c, cr = Re c, as before.] Note

∫

u |ξ|2 =

∫

cr |ξ|2 by (4.36). There-

fore

k2

∫

|ξ|2 {ū2 − |c|2} dz ≥ 0

i.e.

|c|2 ≤
∫

k2 |ξ|2 {ū(z)}2 dz

/
∫

k2 |ξ|2 dz (4.41)

therefore, a fortiori

|c|2 ≤ (max |ū(z|)2 (4.42)

But this is true in all x-moving reference frames!
It is true in particular for a frame of reference moving in the x direc-

tion with velocity 1
2
(min ū + max ū), so that max |ū| = max ū = −min ū,

which minimizes RHS (4.42) and gives the strongest result implied by bit,
viz. (4.39).
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We now give the promised example of a type Ib
disturbance. We are interested (see tope p. 88) in
ū(z), N2(z) looking like this: (ubiquitous in Nature
— for reasons already hinted).4 Again we consider -N44-

a thin layer L (compared to k−1). But this time it is
safer (easier at least) to use (4.11) rather than (4.5),
(4.11), since it turns out that w is not continuous
across L, although ζ is. For type Ib disturbance,
(4.11) becomes

(ū − c)2 ζ̂zz + 2 ūz (ū − c) ζ̂z + {N2 − k2 (ū − c)2} ζ̂ = 0 (4.43)

or

{(ū − c)2 ζ̂z + {N2(z) − k2 (ū − c)2} ζ̂ = 0 (4.44)

(exhibiting self-adjointness of the differential operator). —I.47—

Consider, then, a (gravest-mode) disturbance in which whole layer L is
displaced, ζ = ζ̂(z)ci k(x−c t) where ζ̂ continuous across layer L in limit of thin
layer. Then (4.44) can be integrated across L to give in place of (4.28)

[(ū − c)2 ζ̂z] = −ζ̂0

∫

L

N2(z) dz

N2 ≫ k2(ū − c)2 in limit (L shrinks holding ∆ ρ̄ const.)

= −g′ ζ̂0 (4.45)
(

g′ is same ‘reduced gravity’ − ∆ ρ̄

ρ00

g

)

Rest of calculation same as before: if N2 = 0 and ū = const. outside L (U1

below L and U2 above L) then ζ̂ ∝ e−|k z| (because ζ̂zz − k2 ζ̂ = 0 from (4.43)
(irrotational))5 outside L so ζ̂z = ±k ζ̂0 just above/below L, and (4.45) gives

−(U1 − c)2|k| − (U2 − c)2|k| = −g′

×− 1
2
|k|−1:

c2 − (U1 + U2)c + 1
2
{(U2

1 + U2
2 ) − g′|k|−‘} = 0

c = 1
2
(U1 + U2) ± {1

2
g′ |k|−1 − 1

4
(U1 − U2)

2}1/2 (4.46)

4e.g. Woods, J. D. (1968) J. Fluid Mech. 32, 791 — direct observation (within the
Mediterranean oceanic thermocline) of almost precisely the situation of p. 86.

5[Exercise: Note extension to N → const. (6= 0) outside L (trivial).] (almost) (note m
depends on c, complex)
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This demonstrates the possibility of Type IIb, unstable disturbances,6 since
we can have Im c > 0 when

(U1 − U2)
2 > 2 g′ |k|−1. (4.47)

It should be noted that when U1 = U2 = ū and c = 0 we recover (4.30).
Again, we can get (4.46) by assuming a ‘two-layer’ model ab initio; here(not p′)

continuity of absolute pressure across the interface yields (4.45). [Lamb’s
Hydrodynamics does it this way (Lamb (1932) Hydrodynamics §232, following
Helmholtz.]

We get another check by noticing that the marginally stable disturbance
[with ‘=’ in (4.47) instead of ‘>’] has the same wavenumber k as the sta-
tionary, trapped gravity wave (4.30) with ū = 1

2
(U1 −U2). E.g. think of case

U2 = −U1 = ū of (4.30)

(Both are dynamically possible and inviscid steady flows !)
The two solutions have the same interface shape and the same absolute

pressures P on either side of the interface (e.g. apply Bernoulli — equa-
tion (0.9) is convenient since already in terms of absolute pressure P — and
neglect u′2 in 1

2
(ū + u′)2 since this is linear theory). So if one is a correct

solution, in the thin-layer limit, then so is the other. (Note plausibility that
increasing |U2 − U1| distabilizes, via excess aerodynamic ‘lift’ !)

6Meteorologists often call this mode of instability the ‘Kelvin–Helmholtz instability’.
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Figure 4.3: Eigenvalues and amplifications for a shear layer: U = tanh y.
From Betchov & Criminale, Fig. 5.4 (p. 33), Academic Press.

—I.48—

It will be noticed that (4.47) predicts instability for any g′, by taking
|k| large enough, and (4.46) then gives ci = Im c ∼ 1

2
|U1 − U2| as |k| → ∞

[showing incidentally that Howard’s semicircle theorem (4.39) gives a sharp
bound in at least one case], and so the growth rate |k| ci → ∞. This of
course is where we have to remember that the layer L is not infinitely
thin in real life; we expect our approximations to break
down as soon as |k| exceeds H−1, H being a scale for the
thickness of L, and the growth rate to reach a maximum
for some such |k|. Numerical solution of (4.7) or (4.43)
confirms this. E.g. in the case N2 = 0, ≫′= 0, ū(z) =
tanh z, see fig. 4.3.

Note ci → 1 as |k| → 0, in agreement with (4.46) for
g′ = 0, U1,2 = ±1. Much the same result is found when N2 > 0 provided
N2 is not too large; (4.47) suggests that ‘too large’ means g′ of order U2|k|
where U is a scale for the variation of ū(z) with height. Since we expect the
most unstable |k| to be of order H−1, this suggests that stratification can
stabilize the flow altogether, when (in order-of-magnitude terms)

g′ & U2/H or g′/H(h N2) & U2/H2

i.e.
N2 H2/U2 & 1. (4.48)

Notice that this is consistent with the criterion (low Froude number) for
buoyancy forces to dominate fluid accelerations §3.2; cf. also (4.8). The same
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conclusion can be reached from an order-of-magnitude comparison between
the N2 and ūzz or ūz terms in (4.7) or (4.43), or in the wave-energy equation
obtained from u′(4.1a)+w′(4.1b)+σ′(4.1c)/N2 [note E is no longer conserved
in shear flows, unlike p̃].

We can, however, prove a theorem making (4.48) precise, the celebrated
Miles–Howard theorem.—I.49—

Miles–Howard Theorem: For (linearized) type Ib disturbances to exist,
it is necessary that

Ri(z) =
N2(z)

{ūz(z)}2
< 1

4
for some z. (4.49)

Proof. Put Z(z) = {ū(z) − c}1/2ζ̂(z) in (4.44): Result can be written in the
self-adjoint form

{(ū − c) Zz}z −
[

1
2
ūzz + k2 (ū − c) +

1
4
ū2

z − N2

ū − c

]

Z = 0

Multiply by Z∗(z) (complex conjugate) and integrate, assuming all boundary
terms vanish. On integrating some terms by parts, we get

∫ [

(ū − c) {|Zz|2 + k2|Z|2}

+1
2
ūzz |Z|2 + (1

4
ū2

z − N2)(ū − c∗)

∣
∣
∣
∣

Z

ū − c

∣
∣
∣
∣

2 ]

dz

(4.50)

Take imaginary part:

−ci

[
∫

{

|Zz|2 + k2 |Z|2} + (N2 − 1
4
ū2

z)

∣
∣
∣
∣

Z

ū − c

∣
∣
∣
∣

2
}

dz

]

= 0 (4.51)

If ci > 0 but N2 − 1
4
ū2

z > 0 everywhere, this gives a contradiction, which
proves the theorem. [Howard’s proof].

Recent progress towards a finite-amplitude counterpart of this theorem
is reported in Abarbanel et al. (1986) Phil. Trans. Roy. Soc. 318, 349–409.
Mathematical concepts used are simply explained in McIntyre & Shepherd,
J. Fluid Mech.. It is sometimes said that (4.49) is a consequence of ‘energy-N45-

considerations’, but this is not true except in the rough order-of-magnitude
sense leading to the order-of-magnitude statement (4.48). The functional
appearing in (4.51) is not ‘energy’ in any of the usual physical senses of the
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term; Z involves (ū − c)1/2, corresponding (apart from a factor (i k)1/2) to
the operator (Dt)

1/2 = (∂/∂t + ū(z) ∂/∂x)1/2.
The Miles–Howard theorem (4.49) shows that stratification is stabiliz-

ing, according to linear theory, for small disturbances, when there is enough
stratification. It should not however be thought that stratification is always
‘stabilizing’.

Cases are known (the first discovered by G. I. Tay-
lor; see also Thorpe (1969) J. Fluid Mech. 36, 679)
where a stable unstratified flow is rendered unstable by
adding some stratification (N2 > 0) but not enough to
violate (4.49). (The cases in question have a minimum
in N2(z) and ūz(z), and don’t seem to arise very often in
practice. —I.49.a—

—I.49.b—

—I.50—

Throughout the discussion of type Ib (unstable) disturbances, we have
been taking it for granted that these disturbances are always ‘trapped’ in
the sense that they die off as |z| → ∞ (where relevant) — fast enough, for
instance, for integrals like (4.51) to converge. We expect that this will be the
case for an exponentially growing disturbance in an unbounded fluid, when
the seat of the instability is localized in some layer of finite depth like the L of
our example, since information (in non-acoustic modes of fluid motion with
finite k) is not expected to travel infinitely fast, so the disturbance at large
|z| will only ‘know’ about what was happening at, say, z = 0, a long time ago
when the amplitude was exponentially smaller than at present. This suggests
that type Ib disturbances will generally die off exponentially as |z| → ∞ away
from the seat of the instability if the latter is indeed localized. [Actually, if
N2 = 0 above or below L the motion is irrotational and information does
travel infinitely fast — but in that case the structure is ei k x e−|k z| and so
dies off anyway.]

The results (4.38), (4.46) contain a clue as to how to make this idea more
precise: the seat of the instability must involve a change of sign of ū(z)− cr.
We can in fact prove the following

Theorem (generalized Charney–Pedlosky theorem). If {ū(z − cr} > some
positive constant A throughout a semi-infinite region z ≥ z0, or {ū−cr} < −A
throughout that region, and if ū is bounded so that |ū(z − c)| < another
positive constant B, then any type-Ib disturbance bounded as z ↑ ∞ must
have pseudomomentum flux F = −ζx p′ satisfying

|F | < C e−D z (4.52)

where C and D are positive constants, and D ∝ growth rate k ci . (A similar

result holds as z ↓ −∞ where relevant.)
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Figure 4.4: Note on a heterogeneous shear flow, from Thin thermocline (long-
wave) approximation gives cut-off at Ri = 0.05, 0.1, 0.15, . . . (not bad!). J =

Ri =
N2(z)

(ūz)2
Wavelength =

2 π

k
· H

2
, so k ≃ 0.4 ⇒ wavelength ≃ 8 H.

Figure 4.5: Basic profiles (piecewise linear)
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Notice corollary that, according to linear theory, a fast-growing distur-
bance cannot (ipso facto) penetrate far from the seat of the instability. This
applies even when a disturbance with the same phase speed cr but constant
amplitude (ci = 0) would not be trapped — in which case linear theory
would be a bad guide to how far a real disturbance would penetrate from
the seat of the instability once growth had stopped.7 In such a case, I call
the ‘trapping’ implied by apparent trapping (as opposed to the real trapping
exemplified on p. 83). The point has often been overlooked in the literature
on linear instabilities — so much so thatM. A. Weissman and I felt the need
to publish a polemic about it in 1978 (McIntyre, M. E., Weissman, M. A.,
(1978) On radiating instabilities and resonant overreflection, J. Atmos. Sci.
35, 1190). The point proves important in other problems, too, e.g. the be-
haviour of weather systems which affect medium-range weather forecasting.
To prove (4.52), we recall from (4.34) that

p̃ = k2 |ξ|2{cr − ū(z)}

[p̃ has same sign as intrinsic phase speed cr − ū] and for type Ib, ∂/∂t of such
a quadratic quantity (∝ e2 k ci t) is 2 k ci times the quantity, so that

∂p̃

∂t
= 2 k3 ci |ξ|2 (cr − ū).

—I.51—

Now (in the absence of dissipation or external forcing), (3.24) ⇒ pseudo-
momentum is conserved locally:

∂p̃

∂t
+

∂F

∂z
= 0

therefore
∂F

∂z
= +2 k3 ci |ξ|

2
(ū − cr), > 2 k3 ci A |ξ|2 (4.53)

if we take the case (ū − cr) > A. but we can bound |F | itself by a constant

times |ξ|2, using the equation of motion to eliminate p′. In the present case
this is (4.3a), whence

|F | = | − ζξ p′| = |ζ p′| ≤ (ζ2)1/2(p′2x )1/2 (Schwartz’ inequality)

≤ (ζ2)1/2
{
(D2

t ξ)2
}1/2

, using (4.3a),

≤ (ζ2)1/2k2|ū − c|2(ξ2)1/2

< |ξ|2k2 B2. (|ξ|2 = ξ2 + ζ2 ≥ ξ2 or ζ2.)

7which requires nonlinear theory to describe it (the cessation of growth!) theoretically,
of course.
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Combining this with (4.53) and writing D =
2 k ci A

B2
we get

∂F

∂z
> D |F | (4.54 a)

If we had taken the case (ū − cr) < −A we would have obtained

∂F

∂z
< −D |F | (4.54 b)

Note k ci > 0 (growing disturbance assumed), so D > 0.
One or other of (4.54a,b) holds in z ≥ z0. If (4.54a), we deduce that

F ≤ 0 (z ≥ z0); for if F > 0 for some z > z0, (4.54a) would imply that
|F | ≥ (const.)×e+D z as z ↑ ∞ contradicting boundedness of the disturbance.
So

F ≤ 0 when (4.54a) holds. (4.54 c)

Similarly
F ≥ 0 when (4.54b) holds, (4.54 d)

and (4.52) now follows. (For z ↓ −∞ we similarly obtain |F | < C e+D z.)
[The theorem was originally proved by Charney & Pedlosky (1963) J. Geo-
phys. Res. 68, 6441, but using conservation of wave-energy rather than
pseudomomentum, so they had to restrict ū to be constant for z ≥ z0.]

Type II or ‘sheared’ disturbances

have not been discussed yet. They are the simplest solutions describing how
disturbances to a shear flow are irreversibly ‘absorbed’ or ‘degraded’. It is
remarkable how far linear theory for ostensibly non-dissipating disturbances
goes towards predicting such processes — which are going on all the time
in the real atmosphere and oceans. Type II disturbances always arise, e.g.,
when one solves an initial-value problem for —I.52—

arbitrary disturbances to a shear flow — hence the expectation that they
should occur ubiquitously in Nature. Since they have the structure (oscilla-
tory) func (x − ū(z)t) at large t, they develop finer and finer vertical scales
as t ↑, when ūz 6= 0. Their essential properties are thus well represented by
the simplest example, which is all that we study here, viz. the

Case of linear shear

ū = Λ z (Λ = const.). Then (4.5) simplifies to

D2
t ∇2w′ + N2 w′

xx = 0

(

Dt =
∂

∂t
+ Λ z

∂

∂x

)

(4.55)
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We show that this has type II solutions, exactly (∀t) of the form

w′ = f(t) ei k (x−Λ z t) (4.56)

For then(or any func (x −
Λ z t)) ∇2w′ = k2 f(t) (1 + Λ2 t2) ei k (x−Λ z t)

Note that Dt annihilates the exponential (or any func (x−Λ z t)), so in first

term of (4.55) only −k2

[
d2

dt2
{
f(t) (1 + Λ2 t2)

}
]

· ei k( ) survives. So (4.56)

satisfies (4.55) if, and only if, f satisfies the ordinary differential equation

d2

dt2
{(1 + Λ2 t2) f(t)} + N2 f(t) = 0. (4.57)

(“Only if” is emphasized because there are some erroneous results in the
literature asserting, by implication, that there are solutions of the form (4.56)
for which f(t) does not satisfy (4.57); see the Brown & Stewartson paper cited
earlier.8 The correct solution for this case was first given by Eliassen, Høiland
and Riis in 1953, also independently in O. M. Phillips’ first edition (1966).
The problem originally looked difficult because the prejudice that one should
think in terms of ‘normal modes’ (type I) led to the (simple) solution (4.56)
being described as a (complicated) superposition of a continuum of singular
type Ia disturbances — the so-called ‘continuous spectrum’ of neutral normal
modes, leading to mathematical subtleties and pitfalls.)

(4.57) has two independent solutions (expressible in terms of hypergeo-
metric functions9 of t2). For large t the leading term in their asymptotic
expansion in inverse powers of t satisfies

d2

dt2
{Λ2 t2 f(t)} + N2 f(t) = 0 (4.58)

which has solutions f(t) ∝ tµ where µ is a constant satisfying

(µ + 2) (µ + 1) + Ri = 0 (Ri = N2/Λ2 = const.).

[note tµ = et log µ on oscillatory function of t if Ri > 1
4

here]
Therefore

µ = −3

2
±

√
1
4
− Ri. (4.59)

The implied amplitude dependence always ⇒ local static instability (heavy1

4
: (the magic num-

ber again!) fluid over light): this is another situation where the waves always break, as
we now show.—I.53—

8Brown & Stewartson, op. cit. (J. Fluid Mech. 100, 811).
9No text?

I.53 10/6/2008
st-4b-5



Part I, §4.6 101

This becomes obvious when we consider horizontal displacements ξ. In
fact equations (4.3) give a very direct view of what is going on, in terms
of ‘inclined-plane’ dynamics, as with the simple plane waves discussed on
p. 27; but this time the inclination is changing with time. The planes on
which disturbance quantities are constant make an angle cot−1(Λ ) with the
horizontal. With this in mind we can rederive the solution directly from
equations (4.3). One could use rotating or sheared (oblique) axes, but it is
simpler just to take the component instantaneously along the ‘inclined planes’
by adding (4.3b) at Λ t times (4.3b), which eliminates p′ if p′ ∝ ei k (x−Λ t z):

Λ tD2
t ξ + D2

t ζ + N2 ζ = 0

Assuming that ξ and ζ have the same structure: ξ = ξ̂(t)ei k(x−Λ z t) and ζ̂
similarly, we note again that D2

t ξ = ei k( ) ξ̂′′(t) etc, and from (4.3c) that

ξ = Λ t ζ. (4.60)

Therefore (true with or with-
out ŝ)d2ξ̂

dt2
+

1

Λ t

d2

dt2

(

ξ̂

Λ t

)

︸ ︷︷ ︸

+
N2

Λ2 t2
ξ̂ = 0. (4.61)

The underbraced term will be negligible for large t (≫ Λ−1), so large-t asymp-
totic behaviour governed by

d2ξ̂/dt2 +
(
N2/Λ2 t2

)
ξ̂ = 0 (t ↑ ∞) (4.62)

to which the solutions are (again writing N2/Λ2 = Ri)

ξ̂(t) ∝ t
1
2
±

r

1
4
−Ri

(t ≫ Λ−1) (4.63)

[You should check via (4.60) and the relation w′ = Dt ζ that (4.63) is con-
sistent with (4.59), and that middle term (4.61) is negligible for t ≫ Λ−1.]

w′: whence f(t) =
d

dt
ζ̂(t)Equation (4.62) is the same as the equa-

tion for a particle on an inclined plane, under
a restoring force acting vertically and equal to
N2 per unit vertical displacement. The situa-
tion is closely comparable to that depicted on
p. 27, apart from the fact that the angle of inclination is fixed there, and
changing here. In particular, solution still valid at finite amplitude.
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Now note from (4.63) that ξ is unbounded as t ↑ ∞,
showing that light fluid elements must eventually slide un-
derneath heavier ones. motion becomes statically unstable locally (cf. p. 45)10

Thus, remarkably, our dissipationless, ideal-fluid model has led to a firm pre--N46-

diction that type II disturbances must, in practice, if not otherwise dissipated,
lead to small-scale turbulence and dissipation. This is quite fundamental to
understanding the—I.54—

irreversible processes that go on all the time in naturally-occurring stratified
(shear) flows — and we have already glimpsed in §3.4 some of the reasons
why the observed mean flows may depend on just such ‘irreversibly transient’

processes. [‘wave transience’ or
∂

∂t
terms in (3.30) do not have time integral

zero, integrated over lifetime of disturbance.] The unstable breakdown of
type II disturbances is also the basic process underlying the so-called ‘critical-
layer absorption’ or ‘singular absorption’ phenomenon. If a packet of internal
gravity waves propagates in a shear flow with Ri & 1, say, it is found that
almost all the disturbance gets ‘caught’ near those levels, if such exist, where
ū(z) falls within the range of horizontal phase speeds ω/k possessed by the
Fourier components whose superposition comprises the wave packet.11-N47-

A numerical experiment
-N48-

Here are some pictures from a numerical experiment by D. Fritts J. Geoph. Res.
87C, 7997 (1982) in which equations (4.1) were solved with the ū(z) profile
shown in fig. 4.6. The waves were generated by prescribing w′ = ŵ0(t) cos k x
at z = 0, where w0(t) is shown in fig. 4.6 also.

10This prediction is self-consistent, since our solution is another exact solution of the
nonlinear equations, for the same reason that the simple plane waves on p. 27 are (u′·∇u′ =
0 = u′ · ∇σ′ for structure func (x − Λ t z)).

11Exercise: Show that the ‘ray-tracing equations’ for internal gravity waves with dis-
persion relation

ω = ω̂(k,m) + k ū(z), ū = Λ z,

where ω̂ is the intrinsic frequency given by (2.6), predict that a wave product of frequency
ω approaching its ‘critical level’ ω = k ū(ω̂ = 0) never escapes (ray time infinite). This
corroborates picture in case of ‘large’ basic-flow Ri (2 ≫ 1 in practice!). We can now
understand why ‘lee waveguides’ (pp. 83–84) depend on ū(z) being one-signed!
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Figure 4.6: Left figure: max ūz = 0.01 s−1, N2 = const. = 2 × 10−4 s−2,
so min Ri = 2 for basic flow. z0 = 3.75 metres (height of domain),
k = 0.8 metres−1. (Numbers are chosen with oceanic thermocline in mind.)

Right figure: w0(t). The duration is 3 of the units
2 π

k ū(0)
= 2 ū × 100 sec.

Some results are shown in fig. 4.7. Various ways of viewing the result:
Time increases as we go down this sequence, and is denoted by boxed num-

bers giving time in units of
2π

k ū(0)
= 2π × 100 sec. The left column shows

isopycnals, ρ ∝ n2z + σ.

The middle sequence shows where this linear calculation predicts fluid is

locally statically unstable (and also where Ritotal, the local Richard-
son number for basic flow plus disturbance, i.e. for total motion, < 1 and
(the · · · contour) < 1

4
) (the − − − contour). A corresponding fully non-

linear numerical simulation shows small-scale instabilities developing in
regions as expected. In a real fluid these would usually lead to turbulence.

At timestep 6 the solution is now unmistakably type II, over range of
levels ū(z) = ω/k. ? dependence of (Amplitude ∼ Fourier transform of ŵ0(t)
Booker, J. R., Bretherton, F. P. (1967), The critical layer for internal gravity
waves in a shear flow, J. Fluid Mech., 27, 513–539.)
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1

Figure 4.7: Results from D. Fritts, J. Geoph. Res. 87C, 7997 (1982). The
left column shows isopycnals, ρ ∝ n2z+σ. The middle sequence shows where
the linear calculation predicts fluid is locally statically unstable. See text for
further description.
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5.

The simplest model exhibiting a
gravitational restoring mechanism —

the ‘shallow-water’ equations

—I.55—

These will be especially important when we subsequently add rotational
(Coriolis) effects, to get the simplest ‘rotating, stratified’ system. The fluid
system is a layer (depth h say) of homogeneous, incompressible fluid (ρ
strictly constant) with a free upper surface (total pressure P = 0, or con-
stant, on that surface). Thus all the stable stratification is concentrated in
the free surface (N2 has delta-function form). The basic assumptions are

1. horizontal length scales L ≫ h (whence ‘shallow’);

2. hydrostatic balance holds;

3. viscosity can be neglected: the flow is frictionless; and

4. the horizontal velocity components uH = (uH , vH , 0) are functions of

time t and horizontal position x, y alone, so that
∂uH

∂z
=

∂vH

∂z
= 0.

We also assume for simplicity that the bottom boundary is rigid and flat,
though one can easily generalize to gently sloping boundaries.

Writing ∇H =

(
∂

∂x
,

∂

∂y
, 0

)

, we can show that the momentum and mass-

conservation equations, together with the boundary conditions, then imply
the following two-dimensional momentum and mass equations, all variables
(including h) being functions of (x, y, t):

∂uH

∂t
+ uH · ∇HuH

︸ ︷︷ ︸

(call this DHuH/Dt)

= −g∇Hh (momentum) (5.1 a)

∂h

∂t
+ ∇H · (huH) = 0 (mass) (5.1 b)

Equation (5.1a) is simply the horizontal projection of the D/Dt form of
the frictionless three-dimensional momentum equation, since assumption (4)
reduces the horizontal components of u · ∇u to uH · ∇uH , and assump-
tion (2) implies that, at any fixed height z, the (total, unmodified) pressure
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P = const. + ρ g h, so that −ρ−1∇HP = −g∇Hh. Equation (5.1b) is the
vertically integrated mass-conservation equation under assumption (4).1 One
can derive (5.1b) either by considering the rate of flow of mass into a vertical-
sided volume whose horizontal projection is an arbitrary (or, alternatively, a
small) region of the x y plane, or (perhaps slightly easier) by integrating the
incompressible mass-conservation equation ∇ · u == ∇H · uH + ∂w/∂z = 0
with respect to z from bottom to top of the layer, say from 0 to h. For we
have—I.56—

∫ h

0

∇H · uH dz = h∇H · uH , using assumption (4); (5.2)

and ∫ h

0

(∂w/∂z)dz = [w]h0 = w
∣
∣
z=h

=
∂h

∂t
+ uH · ∇Hh, (5.3)

using the boundary conditions that fluid particles remain on the upper and
lower boundaries, i.e. that w = 0 on z = 0 and that w = material rate of change of h
at z = h(x, y, t). Hence

h∇H · uH +
∂h

∂t
+ uH · ∇Hh = 0,

hence (5.1b).
It remains to show that the model (5.1) is a self-consistent approximation

under the assumptions (1)–(4), and that (1)–(4) are themselves mutually
consistent. First, assumption (4) is consistent with equation (5.1a) and
assumption (2), because −∇HP is z-dependent because of its proportionality
to −∇Hh, so horizontal accelerations are z-dependent (in the absence of
friction). Hence if (4) is true at some initial time it remains true, at least
over a bounded time interval. Second, the motion described in (5.1) has
w 6= 0 in general, as already implied; but since ∇·u = 0 in three dimensions
we have w . U h/L just as on p. 47, so that Dw/Dt . (h/L)× typical

magnitude A, say, of
DHuH

Dt
. Let P ′ be the departure of P from hydrostatic-N49-

balance; then need to show ρ−1 ∇HP ′ ≪ A. Now −ρ−1 ∂P ′/∂z = Dw/Dt by
definition of P ′; therefore

|ρ−1 ∇HP ′| =

∣
∣
∣
∣
∇H

∫ h

z

Dw

Dt

∣
∣
∣
∣
z=z̃

dz̃ .
1

L
· h · h

L
A =

h2

L2
A ≪ A, (5.4)

1Exercise: Show that small disturbances about a uniform state of rest h = h0,uH = 0
satisfy the classical wave equation h′

tt − c2
0 ∇2

Hh′ = 0 where c0 =
√

g h0. These nondisper-
sive waves are the gravity waves of the system.
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by assumption (1), showing its consistency with dynamical behaviour under
assumption (2).

It is not necessarily true that the assumed conditions would remain ap-
proximately true of a real fluid layer over arbitrarily long times, although the
smaller h2/L2 is, the longer we might expect validity to persist. We shall see
shortly that strong Coriolis effects (≫ Du/Dt) help assumption (4) to remain
true, via a phenomenon called ‘rotational stiffness’, or the ‘Taylor–Proudman
effect’. Note also [non-examinable]:

(a) ∃ precise analogy (equations are the same) between (5.1) and two-
dimensional gas dynamics, with the correspondence

h in (5.1) ↔ density ρ in gas dynamics
1
2
g h2 in (5.1) ↔ pressure p in gas dynamics

}

with compressible

eqn of state p ∝ ρ2

(so the ‘gas’ is a fictitious one with specific heat ratio γ = cp/cv = 2,

sound speed

(
γ p0

ρ0

)1/2

= (g h0)
1/2.)

(b) Can extend theory (at some cost in accuracy) to include turbulent fric-
tion, and prescribed pressures and frictional stresses on top surface —
giving it direct practical, not only theoretical, importance, e.g. in tidal
and storm-surge forecasting in shallow seas like the North Sea.
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Part II

Rotating flow
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Typical atmospheric and oceanic flows (see next page) strongly
feel Coriolis effects from the Earth’s rotation. Part II of these
notes develops the basic theory necessary to understand such
flows, and their role in atmospheric and oceanic circulation and
transport. The two most basic ideas are those of Rossby wave
propagation and potential-vorticity inversion.
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Figure 5.1: Passive tracer on upper-air stratification surface, from Appen-
zeller, C., Davies, H. C., Norton, W. A. (1996), J. Geophys. Res., 101,
1435–1456.

Figure 5.2: Gulf Stream eddies, from C. Garrett, The Dynamic Ocean, in
Batchelor, G. K., Moffatt, H. K., Worster, M. G. (2000), Perspectives in
Fluid Dynamics, CUP.
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6.

The analogy between 2-D, constant-N
stratified flow and 2-D, homogenous

rotating flow:

—II.1—

Homogeneous, incompressible flow in a rotating frame of reference (take
F = viscous force in (0.2 a)):

∂u

∂t
+ u · ∇u + 2Ω × u = −1

ρ
∇P −∇χ̃ + ν ∇2u,

where ρ is strictly constant and χ̃ = χ− 1
2
̟2 |Ω|2. Substituting P = −ρ χ̃+p,

we get

∂u

∂t
+ u · ∇u + 2Ω × u = −1

ρ
∇p + ν ∇2u. Also ∇ · u = 0. (6.1)

(Note: position of rotation axis no longer appears explicitly.)
For two-dimensional motion there exists an exact analogy with uniformly-

stratified Boussinesq fluid. The analogy is summarized in the following table:
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Stratified: ↓ g Rotating: → Ω

N const.;
∂

∂y
= 0; v = 0 (y-cpt. of velocity)

∂

∂y
= 0; v = v(x, z); ρ = const.

Du

Dt
= − 1

ρ00

∂p

∂x
+ ν ∇2u

Du

Dt
= −1

ρ

∂p

∂x
+ ν ∇2u

Dw

Dt
+ N

(−σ

N

)

= − 1

ρ00

∂p

∂z
+ ν ∇2w

Dw

Dt
+ 2 Ω v = −1

ρ

∂p

∂z
+ ν ∇2w

D
Dt

(−σ

N

)

− N w = κ∇2

(−σ

N

) Dv

Dt
− 2 Ω w = ν ∇2v

∂u

∂x
+

∂w

∂z
= 0

∂u

∂x
+

∂w

∂z
= 0

Because ∂/∂y = 0, the material derivative D/Dt = ∂t + u ∂x + w ∂z. Coriolis
terms 2 Ω v and −2 Ω w appear only in the second and third equations on the
right, because Ω points in the x direction.) The two sets of equations are
the same if ν = κ and if we identify v with −σ/N , 2 Ω with N , and ρ with
ρ00.

Notes:

0. All 2-d, constant-N , ‘stratified’ motions are also possible ‘rotating’ mo-
tions.

1. The contribution 1
2
ρ v2 to the relative kinetic energy for the rotating

system is the analogue of the stratified ‘available potential energy’.
[*When N = constant, no approximations are involved in equation
(0.16), apart from the Boussinesq approximation.*]

2. p does not mean the same thing in both systems. [So the analogy
fails if there is a free surface, or other boundary where the boundary
condition involves p.]

3. Analogue of the Froude number, U/NL or U/NH, is the Rossby num-
ber, U/2 Ω L (if L or H is the length scale in the direction ‖ g or ⊥ Ω).
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7.

Inertia waves or ‘Coriolis waves’
—II.2—

(also called ‘epicyclic waves’ in astrophysics)

The restoring effect to which these waves owe their existence is often
called ‘rotational stiffness’, which as we’ll see has some very striking effects.

Viscosity is now set to zero (ν = 0). A simple solution of the linearized
equations is obtained by supposing ∂/∂z = 0 as well as ∂/∂y = 0:

ut = −ρ−1px

wt + 2 Ω v = 0

vt − 2 Ω w = 0

ux = 0, (7.1)

where, as on previous page,

Ω = (Ω, 0, 0, )

Solution: u = 0, ∴ ∂p/∂x = 0; w = ŵ(x) e−2 i Ω t, v = i ŵ e−2 i Ω t. Simplest
possible illustration of how the restoring effect analogous to ‘N ’ works.

Note, fluid particles move in circles, in the sense opposite to that of Ω, as
suggested by the dashed circle in the sketch. (v is π/2 out of phase with w,
because of the factor i.)

More generally, with ŵ any function of k · x alone (cf. (2.12 d)) and
∂/∂z 6= 0, but still with ∂/∂y = 0, we can reproduce the two-dimensional
counterparts of (2.6) and (2.7) together with their geometrical interpretation:

w = ŵ(k · x) e−i ω t, v =
2 i Ω

ω
ŵ e−i ω t, u = −m

k
ŵ e−i ω t

ω = ± 2 Ω k

(k2 + m2)1/2
, k = (k, 0,m)

cg = ± 2 Ω

(k2 + m2)3/2

{
m2, 0,−k m

}

Notice immediately that these formulae can be written in vector form —
therefore independent of choice of axes relative to Ω,k — as follows1

1Note that plane-wave motion is ‘two-dimensional’, in the sense required by the analogy
with stratified motion. The plane of Ω and k replaces the xz plane. There is a velocity
component ⊥ to that plane, but u and p are independent of the direction ⊥ that plane.
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Figure 7.1: Signs in formulae imply that arrows play follow-the-leader, as
shown.

u = û (k · x) e−i ω t, û = u0 ± iu0×
k

|k| (u0 real,⊥ k)

ω = ±2Ω · k
|k| (= ±2 |Ω| cos θ)

cg = ±k × (2Ω × k)

|k|3
(

|cg| =
2 |Ω| sin θ

|k|

)

,

making the geometric interpretation more apparent: The wavemotion can be
thought of as self-induced motion of tubes of basic vorticity 2Ω, due to these
tubes having been twisted into a spiral as shown: the linearized vorticity
equation is ∂ω/∂t = 2Ω · ∇u (ω ≡ ∇ × u); note u and ∴ ω ⊥ k in this
motion.

[But NB: the behaviour can be very different indeed if the basic vorticity
is dominated by a basic shear flow U: e.g. Ω = (Ω, 0, 0), U = (0, V (z), 0):
(7.1) above replaced by-N50-

wt + 2 Ω v = 0

vt + (Vz − 2 Ω) w = 0.

So frequency ω = {2 Ω (2 Ω − Vz)}1/2. This is an example of what is variously
called ‘inertial instability’ or ‘Rayleigh instability’ !]—II.2.a—

II.2.a 10/6/2008
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8.

‘Rotational stiffness’

—II.3—

What is the rotating-flow counterpart of equation (3.10), expressing the
general tendency of 2D stratified flow to be x-independent, or as nearly x-
independent as it can be, at low Froude number? -N51-

-N52-Answer: ditto at low Rossby number; more precisely, for min(RU , RT ) ≪ 1
where RU and RT correspond (partially, see below) to the Froude number
and its temporal counterpart defined in (3.3 a),(3.3 b), on p. 46. But there is
now an extra dimension available ⊥ x.

Let us now rename the axes (anticipating standard notation to be used
below) such that the z-axis ‖Ω. Then the main points are that -N53-

4. 3-D rotating problems are in some respects qualitatively (not exactly) (Continuing the
numbering from the
last section)

analogous to 2-D stratified problems. But note new phenomena arising
from the extra available dimension! A famous example is the “Taylor
column” due to an obstacle obstructing slow motion of fluid in the
direction perpendicular to Ω, between boundaries ⊥ Ω. See Batchelor’s
textbook, Introduction to Fluid Dynamics, plate 23, figures 7.6.3.

Figure 8.1: Unstratified low-Rossby-number flow past an obstacle.

5. 3-D stratified motion

[

e.g.

]

is not analogous to any homoge-

nous rotating flow.

10/6/2008
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Formal definition: (strictly) geostrophic flow

Flow satisfying the limiting forms for ‘zero’ Rossby numbers
1

2 Ω T
,

U

2 Ω L
,

of the inviscid, unforced (F = 0) momentum and mass-continuity equations
in a rotating frame. That is, strictly geostrophic flow is (u, p) satisfying

2Ω × u = −∇p ; ∇ · u = 0.

The first relation (balancing the Coriolis pressure-gradient terms) expresses
what is called geostrophic balance.

Taylor–Proudman theorem

For strictly geostrophic flow we have, taking the z-axis ‖Ω,

∂p

∂z
= 0 ;

∂u

∂z
= 0 .

Proof: With Ω ‖ z, we have ∇p ⊥ z, so pz = 0;-N54-

∴ ∇p = func(x, y) (because of geostrophic balance)

∴ (u, v) = func(x, y) =
(−py, px)

2Ω
⇒ uz = 0 = vz; ux + vy = 0;

∴ wz = 0; so, in summary, ∂u/∂z = 0 ,

using mass conservation/continuity. [Analogue of (3.10), 2D stratified.] [See
Batchelor’s textbook, plate 23, figures 7.6.2.]

Geostrophic contour of a container finite in the Ω direction

Let the depth of the container measured along the Ω direction be d: a
geostrophic contour is a curve on (either) boundary (or projected on to the
plane ⊥ Ω) such that d = const. Note different possibilities, e.g. cylinder

, sphere , hemisphere .

II.3 10/6/2008
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(It is easy to guess immediately that real flows at small Rossby number will
be very different in the three cases.)

Notice that the Taylor–Proudman theorem says nothing whatever about
evolution in time. The information it gives is like a constraint in classical
mechanics, such as saying that a bead must stay on a curved wire of fixed
shape, without saying anything about the velocity and acceleration of the
bead.

Converse of Taylor–Proudman theorem

If ψ(x, y) is the streamfunction of any two-dimensional solution, meaning
∂/∂z (all fields) = 0, of the (viscous or inviscid) incompressible homogen-
eous-fluid equations in an inertial frame of reference (Ω = 0), and if ψ is
single-valued, then ψ also provides a solution of the equations in the rotating
frame of reference, with constant Ω parallel for the z-axis.

Proof: The only equation containing Ω is the momentum equation

∂u

∂t
+ u · ∇u + 2Ω × u = −∇p + (anything independent of Ω) .

With (u, v, 0) equal to, say, (−ψy, ψx, 0), we have 2Ω×u = 2 |Ω| (−v, u, 0) =
−2 |Ω|(ψx, ψy, 0). So when Ω is made 6= 0, we need only add 2 |Ω|ψ to the
p field — permissible because ψ is single-valued — keeping the same u(x, t).
Then we still have a solution of the equations.

Note, however, that this says only that the equations are satisfied. In
a boundary-value problem with a p-dependent boundary condition that is
satisfied when Ω = 0, the solution would cease to satisfy the boundary
condition when Ω is made 6= 0.

10/6/2008
ro-6-8

II.3



120 Part II, §8.0

II.3 10/6/2008
ro-9



9.

Slow 3-D motions (of a homogeneous fluid
— not yet the real atmosphere or ocean)

—II.4—

Ω‖z — call this ‘vertical’. [For any 2D motion, e.g. plane waves, we have
the stratified analogue, but must think of g, for that purpose, as ‘horizontal’
and lying in the (Ω,k) plane.]

Slow motion, in the sense below, is a 3-D generalization of the analogue
of 2D stratified flow for low Froude number, U/NH ≪ 1, and (1/NT ) ≪ 1.
The extra dimension in which rotational stiffness acts — it acts, remember,
in the two dimensions ⊥ Ω, as compared with the one dimension ‖ g — gives
rise to many more interesting possibilities.

What happens to geostrophic motion when inviscid fluid is confined be-
tween boundaries nearly ⊥ Ω? and moves across geostrophic contours? (Or
when, for some other reason, wz = −ux−vy is forced to be slightly nonzero.)
It can’t then be strictly geostrophic.

Assume

RT ≡ 1

2 Ω T
≪ 1

RU ≡ U

2 Ω L
≪ 1

(9.1)

(no longer ‘exactly zero’), where T, U, L scales for time, horizontal velocity
[relative], horizontal (x, y) length. Let H be scale for height z, W scale for

vertical velocity, entailing that w h W h H wz. Assume
H

L
. 1. Equations

(inviscid, incompressible, unstratified) are

∂u

∂t
+ u · ∇u − 2 Ω v = −px (9.2 a)

∂v

∂t
+ u · ∇v + 2 Ω u = −py (9.2 b)

∂w

∂t
+ u · ∇w = −pz (9.2 c)

wz = −ux − vy (9.2 d)
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(Remember p = modified pressure ÷ density.)

From (d), w . U H/L; then (a)–(c) give

u = − 1

2 Ω
py

v =
1

2 Ω
px

(9.3)

the geostrophic relations now with relative error O(R) where R = max(RU , RT ).

Again noting w . U H/L we get, from (c), pz . max

(
1

T
,
U

L

)
UH

L
h

R 2 Ω U L
︸ ︷︷ ︸

H

L2

H pz . max(RU , RT )
︸ ︷︷ ︸

R

max(Lpx, L py) ·
H2

L2
(9.4)

so throughout depths of order H we can take

p = func(x, y)
[
1 + O (RT + RU)

︸ ︷︷ ︸

R

×H2/L2
]

(9.5)

(Taylor–Proudman
theorem with error
terms)

If p(x, y) is given,1 then the approximate velocities that would be deduced
from (9.3) are called the ‘geostrophic velocities’.

—II.4.a—

—II.5—
This first approximation, (9.5) and (9.3) and w ≃ 0 (meaning ≪ U H/L)

is the Taylor–Proudman theorem again. As before, it tell us nothing about
the time dependence on the slow time scale T . To get that, we can write
u0, v0, p0 for a solution of (9.5)(9.3), and

u = − 1

2 Ω
py + u1

v =
1

2 Ω
px + v1

(9.6)

— and consider the next correction u1, v1 explicitly. (The corrections are
sometimes called ‘ageostrophic velocities’.) [In a ‘dimensionless formulation’
this is the same thing as considering the second terms in an expansion in pow-
ers of one of the small parameters2 (page 49) RT , RU .] Alternatively, we can
form the vertical component of the vorticity equation by cross-differentiating
(9.2 a & b), before making any approximations. Write ∇ × u = (ξ, η, ζ)-N55-

1(e.g. by observation of large-scale field)
2recall remarks on p. I.21 (footnote). But by committing oneself to a particular nondi-

mensionalization, one can lose sight of some of the possibilities!
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Figure 9.1: Large scale motions observed in the atmosphere: An example
of a flow pattern at the 500-mb level (∼18000 feet MSL), 0000UT, January
21, 1959. Isolines are height contours at 400-foot intervals. Arrows indicate
observed winds at this level (triangular barb = 50 knots, full barb = 10 knots,
1/2 barb = 5 knots). The contours are essentially of constant p, at 81

2
mbar

intervals. From Phillips, N. A. (1963), Reviews of Geophysics 1, 123–76
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Figure 9.2: Average kinetic energy of E–W wind component in the free at-
mosphere (solid line) and near the ground (dashed line). Number indicate
maximum values of kinetic energy at particular periods (after Vinnichenko
(1970) Tellus 22, 158–166).
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(not to be confused with the particle displacements defined on page 63), i.e.,
ξ = wy − vz, η = uz − wx, ζ = vx − uy . Then

∂ζ

∂t
+ u · ∇ζ = (2 Ω + ζ)

∂w

∂z
+ ξ

∂w

∂x
+ η

∂w

∂y
. (9.7)

2 Ω wz describes stretching of the vortex lines of the (strong, stiff, elastic!)
background rotation. We may expect this term to be important. Indeed,
order-of-magnitude estimation now shows that the leading approximation
to (9.7) is

∂ζ

∂t
+ u · ∇ζ = 2 Ω wz + O

(
2ΩW

H
RU

)

(9.8)

where, furthermore, ζ and u are now given to sufficient accuracy by (9.3).
In particular we may define a stream function

ψ ≡ p

2 Ω
(9.9)

such that in (9.8) we can take u = (u, v, 0) with

u = −ψy, v = ψx; ζ = ψxx + ψyy [functions of (x, y) only]. (9.10)

Finally, for consistency with (9.1), we must have not merely w . U H/L but
(since ζ h U/L in (9.8))

w . R
UH

L

(
R ≡ max(RU , RT as before

)
(9.11)

This uses the assumption made below (9.1) that w h wz H, and shows, in -N56-

turn, that (9.4) is even more strongly satisfied. Its RHS can be multiplied
by a further factor R = max(RU , RT ).]. Furthermore, (9.8) now ⇒ —II.6—

w is not only small, but depends linearly on z. (9.12)

*Can also show u1 and v1 are z-independent, by repeating the argument that led to (9.5)

but with the sharper estimate (9.11) for w hence Dw/Dt in (9.2 c). Thus (9.5) holds with

relative error O(R2), not merely O(R), as R ↓ 0. The Coriolis terms in (9.2 a,b), hence

(u, v), must also be z-independent correct to two orders in R.*

Eq. (9.8) with (9.10) are the simplest example of what are usually called
‘quasi-geostrophic equations’ for rapidly rotating flow. They give us an
asymptotically self-consistent model, which succeeds in describing the time-
dependence of rapidly-rotating flows close to Taylor–Proudman conditions.
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10.

Two examples: Rossby waves and
flow over a gently sloping obstacle

§10.1 Rossby waves

Consider the slow t-dependence due to slightly-
sloping boundaries:

so (9.11) restricts
∆ h

h
. R (10.1)

wtop − wbot. = u · ∇h . (10.2)

Linearized: (9.8) → ζt =
2 Ω∇h

h
· u, using (9.12) above. Specialize to

case
2 Ω h−1∇h = (0,−β) ; β const..

Using (9.10),

∂

∂t
∇2ψ + β ψx = 0 . (10.3)

Note that this includes the possibility of steady flow along geostrophic con-
tours (which are y = const): a solution of (10.3) is

ψ = func(y) (v = 0) . (10.4)

[Clearly, also, a solution of (9.8) before linearization.]
If v ≡ ψx 6= 0, then (10.3) shows at once that the motion must be time-

dependent. The time-dependence is such that there is a restoring effect
against upslope or downslope displacements (i.e. in the y direction). This
is shown mathematically by the fact that (10.3) admits wave solutions

ψ = ǫ ei(k x+l y−ω t) (10.5)

(ǫ = const, small), provided that

ω =
−β k

k2 + l2
. (10.6)
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(Note phase speeds and frequencies ↑ as wavelengths ↑.) In this situation, the
validity of our approximations is not uniform in y even though hy/h can be
made exactly constant — the horizontal divergence ux+vy, neglected in (9.3),
has the same sign along a wavecrest, and an error in v must accumulate over
large y-distances. But these two-dimensionally plane-wave solutions can be
superposed to represent disturbances of effectively finite y-extent, over which
the approximations are valid.

(Recall that one has the same problem of cumulative error, and the same resolution

of it, with the vertical dependence in Boussinesq plane internal gravity waves.)—II.7—

These slow waves are called (topographic) Rossby waves. NB! The
dispersion relation (10.6) has only one branch! Only the negative
sign is allowed, corresponding to the fact that the differential equation (10.3)
has only one ∂/∂t. This is utterly unlike the more familiar kind of wave
problem, in which time-reversibility leads to an even number of ∂/∂t factors,
and an even number of branches of the dispersion relation (usually two).
Here the physical system is nondissipative and therefore time-reversible —
but we need to remember that we’re in a rotating frame. The time-reversed
solution involves making the frame (e.g. the Earth!) rotate the other way,
changing the sign of β.

We can make a picture that helps us to understand the Rossby-wave
restoring effect and the one-signedness of the phase speed, as follows. The
case l = 0 is simplest:

Suppose that a line of fluid columns is displaced from rest as shown.

Those displaced in +y direction are compressed (β > 0: ) and
therefore have negative ζ, as suggested by the ©, and vice versa.

[During the displacement, sgn 2 Ω wz in equation (9.8) = −sgn v. Alter-
natively, if η now stands for displacement in the +y direction, then v =
ηt, and (10.3) is equivalent to ζt + β ηt = 0 ; integrating from rest gives

ζ = −β η . ]

But ∇2ψ = ζ, so ψ = ∇−2ζ with suitable boundary conditions (in this
case periodicity). This illustrates a central concept (“invertibility”), the
principle that the vorticity field may be regarded as determining the velocity
field. Recall general insight from ψ = ∇−2ζ (soap film picture).
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In this case the velocity field is as indicated by the dashed arrows . The

velocity is
π

2
out of phase with displacement, and lags it in x. The whole

pattern must therefore be propagating leftwards.
note use of invert-

ibility principle at

penultimate step

←−

To summarize: ±y-displacement ⇒ vortex compression
or stretching ⇒ relative vorticity ⇒ velocity field lag-
ging displacement by π/2 ⇒ propagation in −x direc-
tion.

Note for later reference that a similar propagation
mechanism exists in a shear flow ū(y) with β = 0, if the
mean vorticity gradient −ūyy is nonzero. E.g. isolated re-
gion of positive vorticity gradient ūyy < 0), see diagram on
right. The linearized equation is now Dt ∇2ψ−ūyy ψx = 0,

or Dt ζ−ūyy Dt η = 0, where Dt = ∂t+ū∂x, so ζ = +ūyy η

and there is again a tendency for a disturbance pattern like
the one above to propagate against the basic flow.

*This propagation mechanism is also present in equations (4.5), (4.19) etc., and pays

a role in shear instabilities (cf. p. 93) and, to some extent, in lee-wave patterns (equa-

tion (4.19)).* We shall see that recognition of this propagation mechanism -N57-

—II.8—provides a good way of understanding how a number of kinds of simple shear
instabilities work. In fact the Rossby-wave mechanism is basic to al-
most everything about the most environmentally important flows,
the slow wavelike and eddying (vortical, tracer-transporting) flows
in the atmosphere and ocean — e.g. shear instabilities, teleconnec-
tions, vortex coherence, ‘blocking’, Atlantic ‘Meddies’,...

Coming back to the simpler, present case of topographic Rossby waves
about relative rest, we note also that the changes in ζ due to vortex stretching
2 Ω wz can be summed up in a variant of the idea of ‘potential vorticity’.
This idea, too, is basic, to all the flows just mentioned. Here we
define the potential vorticity in the form (first noted by Rossby in 1936):

Q =
2 Ω + ζ(x, y, t)

h(x, y, t)
. (10.7)

then (10.2) and (9.8) [and wz = (wtop − wbottom/h] ⇒

DQ

Dt
= 0 . (10.8)

To verify this result, it’s easiest to start with D/Dt of (10.7). Thus, h times
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(10.8) ⇔

D(2 Ω + ζ)

Dt
=

2 Ω + ζ

h

Dh

Dt
=

2 Ω + ζ

h
u · ∇h = (2 Ω + ζ)

wtop − wbottom

h
,

(10.9)
which because of (9.12) agrees with (9.8) to within the quasi-geostrophic
approximations (small R), e.g. ζ ≪ 2 Ω, assumed as before. (NB: no lin-
earization here.)

Thus the Rossby restoring effect may be thought of as due to displace-
ments η across a gradient of potential vorticity. This makes the analogy
with the restoring force in a shear flow, due to a vorticity gradient, more
immediate.1

Actually — did you notice? — the above calculation agrees even better
with (9.7)! The result (10.8) does not depend on the quasi-geostrophic ap-
proximations, but only on assuming that u, v independent of z — which may
be true for other reasons, e.g. ‘shallow-water approximation’ H2/L2 ≪ 1.
(Exercise: show that the last two terms of (9.7) are not then separately zero,
but add to zero.) (10.8) can be regarded as a special case of Ertel’s theorem
(0.5 b), derived by taking α to be a ‘dye’ distribution (dynamically passive
tracer) whose gradient is approximately vertical.

The Rossby-wave dispersion relation (10.6) implies a group velocity

cg =

(
∂ω

∂k
,
∂ω

∂l

)

= β

{
k2 − l2

(k2 + l2)2
,

2 k l

(k2 + l2)2

}

. (10.10)

Geometrically, a curve ω = const. (> 0) in the (k, l) plane is a circle touching
the l-axis thus:

Figure 10.1:

1and is the form of the idea that generalizes to all types of Rossby waves, including some
that depend on stratification rather than boundaries — e.g. stratosphere, Sun’s interior.
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The solid arrows give the direction of cg. Note l1 = l2; k1 and k2 could
represent incident and reflected waves from a wall x = const. Note that
the reflected wave has a smaller wavelength 2π/|k|. [This has interesting
oceanographic implications, re conditions near western boundaries to ocean
basins.] —II.9—

It will have been noticed that the fluid system we are talking about ex-
hibits a hierarchy of two kinds of balance or equilibrium, and oscillations
about them:

Figure 10.2:

2 3 [We could have drawn a similar diagram summarizing aspects of the
simplest models of a compressible, non-rotating atmosphere; when height
scale ≪ H ≡ RT/g: R = pressure scale

height for perfect
gas (p. 22)

Figure 10.3:

The Boussinesq approximation can be extended to this case, if elastostatic
balance holds: Spiegel & Veronis (1960) Astrophys. J. 131, 442; also Gill’s
book.
Cf. mechanical mass-spring systems with stiff and slack springs, giving modes
of oscillation with disparate frequencies. In low-frequency modes, the stiff

2⋆: I.e. tendency of fluid elements to stay at same y-value (more generally, tendency of
a contour of constant potential vorticity q to ‘resist’ deformation from its rest position.

3†: I.e. tendency of fluid elements to stay at their undisturbed ‘buoyancy level’, i.e.
tendency of a surface of constant density or potential density to ‘resist’ deformation from
its resting level.
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springs are effectively rigid and only the slack ones matter (if the masses are
all similar).

Awareness of such hierarchies of balances has played a crucial role in the
development of the computer simulations of large-scale atmospheric motions
that are used today for numerical weather forecasting, climate studies, and
hypothesis-testing ‘numerical experiments’.

In many ways, Rossby waves behave rather like internal gravity waves,
qualitatively speaking, apart from the restriction on the direction of phase
propagation:

(1) There are exact solutions of Long’s type (superpositions where all com-
ponents have the same value of ω/k), applicable to modelling lee Rossby
waves due to uniform flow ū > 0 over topography h(x, y), if β > 0,
const. (Cf. §3.1.)

(2) Rossby waves can ‘break’, irreversibly deforming constant-q contours
(cf. constant-σ1 surfaces for internal gravity waves). For a spectacular
example recently observed in the real atmosphere, see the cover of
Nature vol.305, 13–19 October 1983!

(3) Plane Rossby waves (10.5) (on an unbounded x y domain with const.
β, or ‘β-plane’, as it’s often called) are subject to resonant-triad in-
teractions (cf. §3.5) (Longuet-Higgins & Gill (1967) Proc. Roy. Soc. A
A299, 120), and associated instabilities (Gill, Geophys. Fluid Dyn. 6,
29). Again, the triad member with largest |ω| is unstable.

(4) Rossby waves can induce substantial mean-flow changes if they break
or otherwise dissipate (cf. §3.3).

—II.10—

§10.2 Low-Rossby number flow over a gen-

tly sloping obstacle or shallow bump (a

finite-amplitude solution of the quasi-geostrophic

equations)

Assume now that h(x, y) = const. = h0 say, except in a finite region R.
Assuming steady flow, with constant velocity (U, 0) at large distances,4 we

4We may think in terms of undisturbed conditions upstream. Note that this is unlike

the mountain lee-wave (non-rotating internal gravity wave) problem, ∃ no inertia waves
that can be steady and penetrate far upstream (Ω in wrong direction for analogy). So
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get a very simple solution from (10.8); viz.,

2 Ω + ζ

h
= const. =

2 Ω

h0

[More generally, would have
2 Ω + ζ

h
= func(ψ) for steady flow.] Thus the

solution for the velocity field is (U, 0) plus the (unique) flow that is irrota-
tional and evanescent away from R and has vorticity ζ = 2 Ω(h − h0)/h0

within R.
Denote the streamfunction of the latter, evanescent flow by ψ(x, y) say.

A simple example is a cone; see diagram:
In this example,

{

R ≡ {x, y | r ≡ (x2 + y2)1/2 ≤ a = const.}
h0 − h = ǫ (a − r) within R (ǫ h RU ≪ 1)

ζ ≡ ψrr +
1

r
ψr







= α (r − a) within R
(

α ≡ 2 Ω ǫ

h0

)

= 0 outside R

We expect ψrr continuous5 across r = a [but if h had a jump discontinuity,
only ψr would be cts.]. The unique solution is

ψ = −U y + ψ′ :

{

ψ′ = α (1
9
r3 − 1

4
a r2) + const. within R

ψ′ = −1
6
α a3 ln r + const. outside R .

The corresponding velocity field
is that of a vortex with
azimuthal velocity profile

.

the assumption of no upstream influence is better justified here than for Long’s model of
finite-amplitude lee waves.

5Again, the correctness of this boundary condition can be confirmed by taking the limit

in which a smooth shape approaches the cone shape

10/6/2008
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ψ′
r = azimuthal velocity

= α (1
3
r2 − 1

2
a r) (r 6 a)

Extremum = − 3
16

a2 α, at r = 3
4
a

In plan view, the streamlines of ψ′ are circles:

Figure 10.4:

When does the total flow have closed stream-
lines? Evidently, it has them if and only if 3

16
α a2 >

U , i.e. if and only if (
ǫ a

h0

)

>
16

3

(
U

2 Ω a

)

.

—II.11—

Figure 10.5 shows some computer-drawn pictures
of the streamlines of the total streamfunction ψ ≡
−U y + ψ′). There are closed streamlines in second
and third cases, conspicuously visible in the third
case. The streamfunction is

ψ = −U y + U aA







= 1
6

ln
(r

a

)

(r ≥ a)

= 5
36

+ 1
9

(r

a

)3

− 1
4

(r

a

)2

(r ≤ a)

lines ψ = 0, ±1
2
U a, ±U a, . . . are plotted, see fig. 10.5.

N.B. This kind of solution is strictly relevant to
steady flow of slightly-viscous fluid, or of inviscid,
initially undisturbed flow only if ∃ no closed stream-
lines — as in left-hand picture only.
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Figure 10.5:

Figure 10.6: Drawing of the relative fluid motion past a cylindrical body
moving perpendicular to the rotation axis, [84]. The values of the Rossby
number are: (a) ǫ = 3 × 10−3, (b) ǫ = 1.4 × 10−2, (c) ǫ = 2.3 × 10−2.
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Figure 10.6 shows experimentally-observed steady
flows over a (different-shaped) obstacle (Hide & Ib-
betson (1966) Icarus 5, 279); Greenspan, p.174).

We can reasonably define a ‘Taylor column’ to exist
when ∃ closed streamlines. Above theory predicts Taylor

columns for
∆ h

h0

R−1
U > some critical value (by reductio

ad adsurdum — “if no closed streamlines,. . .” etc. etc.)
— but does not predict the precise flow pattern.
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Quasi-geostrophic shallow-water flow

—II.12—

-N58-The final sections take two major steps towards the far-reaching general-
izations spoken of earlier, from simple two-dimensional vortex dynamics to
the most general quasi-horizontal balanced motion, on timescales ≫ acoustic,
gravity and ‘inertial’ or Coriolis timescales.

Take the case with

{

f = 2 Ω = constant

inviscid flow

}

.

We use scale-analytic arguments paralleling those
on p. 121. New feature is the free surface, see

drawing. Let qa be absolute vorticity f+
∂v

∂x
− ∂u

∂y
,

layer depth h0 + ζ
︸ ︷︷ ︸

= h say

Horizontal velocity compo- NB new notation
since we now need ζ
for free surface dis-
placementnents u(x, y, t), v(x, y, t); define uH = (u, v, 0); ∇ = ∇H =

(
∂

∂x
,

∂

∂y
, 0

)

.

Equations are

∂u

∂t
+ uH · ∇u − f v = −g

∂h

∂x
(x-momentum) (11.1 a)

∂v

∂t
+ uH · ∇v + f u = −g

∂h

∂y
(y-momentum) (11.1 b)

∂h

∂t
+ ∇ · (huH) = 0 (mass conservation) (11.1 c)

⇒ ∂qa

∂t
+ ∇ · (uH qa) = 0 (11.2 a)

or
DHqa

Dt
+ qa ∇ · uH = 0 (vorticity) (11.2 b)

(where
DH

Dt
=

∂

∂t
+ uH · ∇H)

From (11.1 c) and (11.2 a):

DH

Dt

(qa

h

)

= 0 (exact potential vorticity, Rossby 1936) (11.3)
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If RT ≡ 1

f T
≪ 1, RU ≡ U

f L
≪ 1 (notation and scaling assumptions as

in §9), first approximation to (11.1 a,b) is geostrophic balance (relative error
O(R); R = max(RT , RU ):

u ≃ −∂ψ/∂y, v ≃ ∂ψ/∂x, ψ = g ζ/f qa ≃ f + ∇2ψ. (11.4)

(where ∇2 = ∇2
H = ∂2/∂x2+∂2/∂y2). Now if horizontal scale L . LD ≡ c0/f

where c0 =
√

g h0 , the gravity-wave speed for f = 0, then the fractional free-
surface displacement ζ is small :

ζ

h0

=
f

g h0

ψ =
f

c2
0

ψ h

f

c2
o

LU =
f 2 L2

c2
0

U

f L

=
L2

L2
D

RU ≪ 1. (11.5)

So

qa

h
≃ f + ∇2ψ

h0 + ζ
≃ f

h0

{(

1 +
∇2ψ

f

) (

1 − ζ

h0

)}

≃ f

h0

{

1 +
∇2ψ

f
− ζ

h0

}

≃ 1

h0

{

f + ∇2ψ − f 2

g h0

ψ

}

=
1

h0

Q, say . (11.6)

This new Q is called the ‘quasi-geostrophic PV’ to distinguish it from the
‘exact PV’, qa/h.

Putting the approximations (11.4) and (11.6) into (11.3), material con-
servation of Rossby’s ‘exact PV’, gives

DHQ

Dt
= 0 with (11.7 a)

∇2ψ − L−2
D ψ = Q − f (11.7 b)

(where again ∇2 = ∂2/∂x2 + ∂2/∂y2 and ψ is function (x, y, t)). Note
need for boundary conditions to invert (11.7 b); this might NOT be quite
trivial, e.g. uniform flow at ∞, as in the example of §10.2. The lengthscale
LD ≡ c0/f is called the ‘Rossby deformation length’, or ‘Rossby length’
for brevity. In the more old-fashioned literature it’s called the ‘Rossby Radius
Of Deformation’ (as if things were always axisymmetric).—II.13—
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Generic form:

(1) Evolution equation
DQ

Dt
= . . . (zero if materially conserved, or nonzero material derivative

(not linearized)
if there is nonadvective (e.g. diffusive) transport)

(2) Inversion operator

ψ = L−1(Q − Q0)

= L−1(∆Q) say

}

; u = ẑ ×∇Hψ, ẑ unit vertical vector.

Examples

(all in a horizontally unbounded ‘flat earth’ domain, coordinates x, y)

(i) 2D vortex dynamics : Write r2 =
(x − y′)2 + (y − y′)2

L = ∇2
H =

∂2

∂x2
+

∂2

∂y2
,

ψ(x, t) = L−1(∆Q) =
1

2 π

∫∫

∆Q(x′, y′) log r dx′ dy′ = ∇−2
H (∆Q),

{

Q = qa = f + ∇2
Hψ (abs. vortex),

Q0 = f (Coriolis parameter)

(ii) Note that non-rotating, low Froude number dynamics (pp. 46–49) is the
same problem (2D vortex dynamics) on each approximately horizon-

tal isopycnic
(
σ1 = σ +

∫ z

N2(z′) dz′ = const.
)

surface. This is an

immediate corollary of (3.8), with Q =
∂v

∂x
− ∂u

∂y
and Q0 = 0. All logs are base e

t dependence not
written(iii) Shallow-water quasi-geostrophic (q-g) dynamics (previous page):

L = ∇2
H − L−2

D =
∂2

∂x2
+

∂2

∂y2
− L−2

D ;

ψ(x, t) = L−1(∆Q) = − 1

2 π

∫∫

∆Q(x′, y′) K0

(
r

LD

)

dx′ dy′,

Q = f + ∇2
Hψ − L−2

D ψ (LD = const.)

Q0 = f

10/6/2008
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Figure 11.1:

where K0 is the modified Bessel function

K0(X) ∼ − log X − log 1
2

+ γ + O(X2 log X) as X → 0

∼
(π

2

)1/2

X−1/2 e−X + O(X−3/2 e−X) as X → ∞

(also see fig. 11.1)

(iv) 3D stratified quasigeostrophic dynamics (unbounded x y z domain) (§17
below)

L =
∂2

∂x2
+

∂2

∂y2
+

∂

∂z

f 2

N2(z)

∂

∂z
; Q = f + Lψ, Q0 = f

In the case N2 = constant:

ψ(x, t) = L−1(∆Q) = − N

4 πf

∫∫∫

∆Q(x′, y′, z′)
1

R
dx′ dy′ dz′

R2 = (x − x′)2 + (y − y′)2 +
N2

f 2
(z − z′)2

[If horizontal or nearly-horizontal boundaries are present, then the σ1

distribution on the boundary can be regarded as a (singular) part of
the Q field, as shown below.]

(Non-examinable:) [For further discussion see the review article by Hoskins
et al. (1985) Q. J. Roy. Meteorol. Soc. 111, 877, 113, 402, and a paper
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by McIntyre & Norton, J. Atmos. Sci. 57, 1214–1235, which appeared on
Millennium May Day, 1 May 2000 and a discussion paper from the millennial
Limerick Symposium on my website www.atm.damtp.cam.ac.uk/people/mem/

In the most accurate models, Q is replaced by the exact Rossby potential
vorticity for shallow-water models, recall (11.3), or by the exact Rossby–
Ertel potential vorticity for continuously-stratified models, recall (0.5 a). In
such models the velocity field is no longer horizontally nondivergent and the
inversion operator no longer linear. The following section briefly elaborates
on these points as well as on other aspects of the most accurate models,
starting with those in the Millennium May Day paper (figures overleaf). —II.14—
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Figure 11.2: Demonstration of balance and invertibility in a shallow-water
flow with substantial density variations, from a high-resolution numerical
experiment on flow on a hemisphere (McIntyre and Norton, Millennium May
Day paper, J. Atmos. Sci. 57, 1214–1235, Corrigendum 58, 949).
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12.

A glimpse forward towards highly
realistic models

—II.15—Notes on fig. 11.2: Demonstration of balance and potential-vorticity in-
vertibility in a shallow-water flow with substantial h variations, from a high-
resolution numerical experiment on flow on a hemisphere. This was moti-
vated as an atmospheric model but is equally well interpretable as a compress-
ible two-dimensional flow in a hemispherical shell. The system is a shallow
water free-surface model (equations (11.1) but on hemisphere, f = 2 Ω sin φ
where φ = latitude) with area-mean depth h0 = 2 km and corresponding
gravity wave speed c0 = 140 m s−1, or equivalently a fictitious ‘perfect gas’
with ratio of specific heats γ = 2 and sound speed 140 m s−1 at mean den-
sity. Solid contours show positive values, long dashed contours negative, and
dotted contours zero. The projection is polar stereographic; the radius of
the hemisphere is 6371 km. (a): Arrows show the velocity field on the scale
indicated; contours show departures of density or layer depth from the area
mean value. The contour interval is one twentieth of the mean; in the two-
dimensional compressible system it can also be regarded as the anomaly in
the square root of the pressure. (b) Divergence field (∇H · u) contoured at
intervals of 0.6 × 10−6s−1. (c,d) The quantity Q defined above is contoured
at interval 1 × 10−8m−1 in units appropriate s−1 in units appropriate to the
formula Q = qa/h. The shading in the contour plot highlights values lying
between 4 and 6 of these units. The greyscale representation of the same
information in (d) is monotonic from light to dark, from zero at the equa-
tor to a maximum value of 1 × 10−7m−1s−1 near the pole. (e,f) As (a,b),
but reconstructed from Q alone using an accurate nonlinear PV inversion
algorithm.

Further notes on fig. 11.2: Flow is almost inviscid; artificial numerical
‘hyperdiffusion’ affects only the smallest visible scales. What this demon-
strates how astonishingly accurate PV inversion can be, at least for the
shallow-water equations on a hemisphere (McIntyre & Norton (1990, 2000)
J. Fluid Mech. 212, 410; J. Atmos. Sci., May Day 2000, i.e. 57, 1214).

Not quasi-geostrophic theory; the PV here is the exactly conserved quan-

tity Q = qa/h — i.e. the ‘Q’ of (11.3), not (11.7).

Local Froude numbers
(
(u2 + v2)/g h

)1/2
reach values as high as 0.5, in-

deed 0.7 in another case looked at; local Rossby numbers are infinite at the
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equator where f = 0. (f = Coriolis parameter −2 Ω sin φ where φ = lati-
tude.)—II.14.a—

In this realistic, con-
tinuously stratified
example, what’s dy-
namically relevant
is the distribution
of Rossby–Ertel PV
on each isentropic
(θ = const.) surface
where θ is potential
temperature, a
material invariant
with a role similar
to that of the
Boussinesq σ1.

We now note for interest how the PV invertibility principle for realistic
continuously stratified, rotating flows can be stated in its most accurate and
widely applicable form. The relevant PV is the Rossby–Ertel PV:

Q = ρ−1(2 Ω + ∇× u) · ∇θ,

—II.17—

which as shown before is exactly materially conserved (DQ/Dt = 0) in 3D
flow with no frictional or other non-conservative forces and no diabatic heat-
ing (Dθ/Dt = 0; θ is potential temperature). Then if

(a) a suitable “balance condition” is imposed, to eliminate gravity and
inertia–gravity waves from consideration, and if

Re (a), inertia–

gravity waves: due
to both restoring
mechanisms: Cori-
olis and buoyancy;
see Part 3 of course

(b) a suitable reference state specified, for instance by specifying the mass
under each isentropic surface, as is done in the theory of available
potential energy in stratified atmospheres (p. 5), then

(c) a knowledge of the distribution of Q on each isentropic surface, and of
θ at the lower boundary, is sufficient to deduce, diagnostically, all the
other dynamical fields such as winds, temperatures, pressures, and the
altitudes of the isentropic surfaces,

to some approximation that appears to depend on Rossby and/or Froude
numbers being not too large, but which involves far less error than would
be suggested by simple order-of-magnitude estimates of the kind used, for
instance, in p. 137 to construct model (iii). the word ‘diagnostically’ implies
the use of information at a single instant only (cf. ‘prognostically’); further
discussion in Fermi review1 and in QJRMS review, reference on next page.

Now look at the cross-sections in the figure on the next page. The—II.16—

real cutoff cyclone is an approximately axisymmetric vortex, and the the-
oretical one is exactly axisymmetric, and exactly in hydrostatic and cy-
clostrophic balance, where ‘cyclostrophic’ denotes the exact, steady balance
in the radial momentum equation in cylindrical polar coordinates: pressure-
gradient force minus Coriolis force balances the relative centripetal acceler-
ation |u|2/(distance from axis), rather than being considered approximately
zero as when geostrophic balance is assumed. These are, respectively, real and
realistic examples of the layerwise-2D ‘coherent structures’ that correspond
to simple vortices in 2D vortex dynamics, model system (i) of p. 138. Fur-
ther remarks on p. 148. Such coherent structures have long been recognized

1Click on ‘polar cooling thought experiment’ on my home page
www.atm.damtp.cam.ac.uk/people/mem.
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Figure 12.1: Solid quasi-horizontal surfaces are isentropic (constant-θ) sur-
faces. In top picture, − − − − − is T in ◦C. In bottom picture, other
contours are isotachs for azimuthal velocity. Whole structure attributable
to a single compact, cyclonic PV anomaly (on θ-surfaces intersecting the
tropopause). (Peltonen (1963); Palmén & Newton (1969), chapter 10. Cal-
culations by A.J. Thorpe, reproduced in Hoskins, McIntyre & Robertson
(1985) J. Roy. Met. Soc. 111, 877–946, and 113, 502–404.)
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by meteorologists interested in the observed behaviour of the atmosphere, a
fact that pays tribute to their careful and unprejudiced data analysis, done
in the absence of any significant theoretical preconceptions — indeed they
got the facts right despite having some wrong theoretical ideas, and found
some aspects of the top picture surprising! Only recently (mid-’80s) have
such structures been clearly seen as part of a connected theoretical whole;
and even today the subtler points of the theoretical framework involved are
still being actively researched. The relevant theoretical framework is, how-
ever, clear in outline. It is that suggested by the generic form of the model
systems (i)–(iv) of 11 and by the example of p.141. In the latter, the details
of how the PV inversion operator is defined are complicated (and beyond the
scope of this course); the important point is that we still have
(a) an evolution equation of the simple form

DQ/Dt = 0 (and again only one t-derivative) (12.1)

(or slight departure from zero from slight nonconservative effects), plus
(b): the ‘PV invertibility’ principle that the other fields may be con-

structed at any fixed t from the PV. These two features are an important
key to understanding a vast and complicated-looking theoretical literature on
large-scale atmosphere-ocean dynamics and, in particular, to understanding
why simple models like (i)–(iv) — none of which can claim to be quantita-
tively accurate in the real atmosphere and ocean — nevertheless have great
conceptual importance, far beyond their domains of direct applicability.

Notice one point glossed over up until now (though we return to it
in the last part of the course when we consider continuous stratification): one
needs to specify θ at the lower boundary, as well as the isentropic distributions
of Q, in order to get a well-determined inversion. The theoretical example
on p. 143 has uniform θ on the boundary. More generally, θ anomalies on the
boundary induce their own vortex structures and are generally important for
real weather developments [QJ review]. For frictionless, adiabatic motion,
it is easy to see that both the θ distribution on a flat lower boundary, and
the Q distribution on each isentropic (constant-θ) surface in the interior, are
advected quasi-horizontally in the sense that DH/Dt of these distributions,
regarded as functions of time and horizontal position only, vanish. So the
problem has the nature, as hinted earlier, of a ‘layerwise-2D vortex dynamics’,
in which the vertical coupling is solely through the PV inversion operator.2

This qualitative character will show up, in simplified form, when we come to
derive model (iv) of §11.

2Model (ii) is degenerate in the sense that the vertical coupling vanishes to leading
order in Froude number; the first nontrivial, vertically nondegenerate example will be
(iv).
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2-D vortex dynamics revisited in the
light of the above

—II.18—

We now return to the simplified models, beginning with three aspects of
the simplest one of all, model (i) of p. 139, 2D vortex dynamics. Recall that
the inversion operation in that case (from vorticity Q to streamfunction ψ)
can be thought of in terms of the soap-film analogy:

Figure 13.1: Soap-film analogy for vorticity inversion

The three aspects to be emphasized all have their counterpoints in the other
cases, including the most general cases glimpsed in §12. That is, the following
statements are qualitatively true of all the inversion operators mentioned:

(1) Local knowledge of Q does not imply local knowledge of ψ or u; the inver-
sion is a global process. In particular, as the above sketch illustrates,
the inversion depends on specifying suitable boundary conditions to
make the inverse Laplacian ∇−2

H unambiguous.

(2) In this system the balance condition, on which invertibility depends,
corresponds simply to the absence of sound or external gravity wves.
They have been filtered out by the assumption of incompressible, non-
divergent motion.

(3) There is a scale effect, whereby small-scale features in the Q field have
a relatively weak effect on the ψ and u fields, while large-scale features
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have a relatively strong effect. In particular, ψ and u are to varying
degrees insensitive to fine-grain structure in the Q field. The inverse
Laplacian ∇−2

H is a smoothing operator, as is the inverse of the modified
Helmholz operator ∇2

H −L−2
D , and some of the smoothing survives even

when followed by the single differentiations in the relations

u = −ψy, v = ψx. (13.1)

This scale effect is directly responsible for one of the characteristic
peculiarities of Rossby waves, common to the simple case of pp. 127–
128 and the more general cases, that intrinsic frequencies increase as
wavenumbers decrease. The −(k2 + l2)−1 factor in the dispersion rela-
tion (10.6) is nothing but ∇−2

H in disguise. Again, in examples like p. 97
(which are frictionless cases of model (i))) the scale effect is part of the
reason why the small-scale features tend to behave like advected pas-
sive tracers, a key to understanding ‘2D turbulence’. See also Sheet 4
q. 4.

The equations of model (i), namely DQ/Dt = 0 (or DQ/Dt = frictional
terms), together with the inversion defined by

ψ = ∇−2
H (∆ Q) (13.2)

and (13.1), summarize with remarkable succinctness the peculiar way in
which fluid elements push each other around. The non-localness of the in-
version operator and the implied action at a distance (aspect 1) are related
of course to aspect 2. The invertibility principle holds exactly in this case,
because the waves representing departures from balance have been assumed
to propagate infinitely fast and to have infinitely stiff restoring mechanisms.

[The succinctness of (13.2) etc. is to be compared with what is involved
in thinking directly in terms of Newton’s second law. Newton’s law applied
to every fluid parcel is mathematical equivalent to the above, but requires us
to think explicitly about subtle aspects of the pressure field. The formula-
tion via (13.2) represents an economy of thinking analogous to, but greater
than, the economy that results from treating normal reaction forces as con-
straints when discussing the dynamics of a roller coaster on a rigid track.
This treatment reduces a three-dimensional problem to a one-dimensional
problem, making the problem conceptually as well as computationally easier—II.19—

than explicitly using the two normal components of Newton’s second law.
In the fluid-dynamical system the pressure field and boundaries also have
the nature of constraints: to this extent they play a role analogous to the
normal reaction forces in the roller-coaster problem. The power of the view-
point represented by (13.2) etc. has long been recognized, and made use of,
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by aerodynamicists as well as by theoretical meteorologists. Indeed the idea
of invertibility, as examplified by (13.2) and its three-dimensional unstrati-
fied generalization (Biot–Savart law), is built into classical low-Mach-number
aerodynamical language, in such phrases as “velocity field induced by” a
given vorticity field, and in such ideas as the idea that a vorticity anomaly
can roll ‘itself’ up into a nearly circular vortex.]

It will have been noticed from (13.2) that diagnosing the ψ field from
the Q field is almost the same thing, mathematically, as calculating the elec-
trostatic potential induced by a given charge distribution, or the static dis-
placement of a stretched membrane induced by a given pressure distribution
on it. Thus strong local anomalies in Q tend to induce strong circulations
around them in the corresponding sense. Such a Q anomaly, together with
its induced velocity field, is exactly what we have in mind when we speak
of the coherent structure called a ‘vortex’; and it is this idea that general-
izes to the meteorologists’ large-scale ‘cyclones’ and ‘anticyclones’ (and their
smaller-scale cousins seen, for instance, in satellite images of vortex streets
behind islands), and to the ‘coherent eddies’ observed by oceanographers.

Further examples from model (i) are in the Exercises, and the case of
shear instability and its close relation to Rossby-wave propagation (giving
details for the linearized, small-amplitude stage in the example of p. 97)
will be further discussed in Appendix B1 together with its relation to the
‘baroclinic instability’ to be discussed in connection with model (iv) below.2

1Appendix B is of course non-examinable.
2In the section on Eady’s solution, also point (viii) near the end of the previous

section.
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14.

More about the shallow water system
and model (iii): Rossby waves

In the shallow-water system (11.1) the PV inversion operators involved
are qualitatively not unlike the simple inverse Laplacian, except that the
implied action-at-a-distance has a short-range character related to the finite-
ness of c0. This short-range character is part of why PV inversion can re-
main surprisingly accurate as Froude numbers |u|/c0 increase (p. 141 again).
The short-range character is explicitly brought out in the simplest general-
ization of model (i), namely the quasi-geostrophic shallow-water equations,
model (iii). The modified Bessel function K0 has values, and gradients, that
diminish exponentially rapidly at large distances, in contrast with the rela-
tively long-range logarithmic far field characterizing model (i). [The conse-
quences of this difference have been thoroughly explored in recent PhD work
in DAMTP, in the thesis by Waugh, D. W. (1991), in DAMTP library.1]

Here we simply note the effect on Rossby-wave propagation, and go on
to discuss an example of how the geostrophic balance assumed in model —II.20—

(iii) can be set up starting from an unbalanced initial state — an idealized
version of just the kind of initial imbalance that dominated L. F. Richardson’s
pioneering attempt at numerical weather prediction. This is often called the
Rossby adjustment problem’ (next section).

Consider first Rossby waves in the full shallow-water system (11.1), gen-
eralized to the case of a gently sloping bottom boundary. The required mod-
ifications to the equations on p. 137 are similar to what was done on p. 125.
The only change in (11.1) comes from ∇Hζ no longer being equal to ∇Hh.
We retain the meaning of h as layer depth, so that the vertically integrated
mass-conservation equation (11.1 c) still holds. Thus the only change is to
replace h by ζ (surface elevation) on the right of (11.1 a,b); note especially
that (11.3), exact material conservation of the appropriate PV, Q = qa/h, is
still true. It is now obvious, e.g., that a state of rest (relative to the rotating
reference frame) can have a nonvanishing PV gradient and can thus support
Rossby wave propagation. For the qualitative picture on pp. 128–129 still
applies:2 the only essentials are (a) the background PV gradient (let’s say in
the y direction as before), and (b) the PV invertibility principle along with

1non-examinable
2(remember ζ there means qa − f = vx − uy here)
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the qualitative insight that PV inversion is like electrostatics, etc., apart from
now having a shorter range. This assures us that the signs and phase rela-
tions between the velocity and displacement fields are just as on p. 128. The
main difference is that the scale effect is greatly modified at large horizontal
wavelengths 2π/(k2 + l2)1/2 ≫ 2 π LD, because of the short-range character
of the PV inversion operator.

The simplest analytical model illustrating these features is that
based on the corresponding extension of model (iii).
All the ingredients of the theory are already present
on pp. 125, 137 and we can immediately guess
that (10.6) will be replaced by

ω =
−β k

k2 + l2 + L−2
D

, (14.1)

since the only nontrivial change has been to replace the PV inversion
operator ∇−2

H by its model-(iii) counterpart

L−1 = (∇2
H − L−2

D )−1, (14.2)

hence k2+l2 by k2+L−2
D in the denominator.

We anticipate that β will be essentially the—II.21—

same measure of the background PV gradi-
ent as before. (We had β = −f h−1

0 dh0/dy,
where h0(y) is the undisturbed layer depth.)

Let us now verify this by writing, more generally than in §11,

h = h0(x, y) + ζ(x, y, t) = h00 − b(x, y) + ζ(x, y, t), (14.3)

say, where h00 is a constant. To get a simplification corresponding to (11.6)
we need to assume

b/h00 ≪ 1, (14.4)

cf. (11.5); note that (11.4) needs no change since we already introduced ζ in
place of h there. The only change in (11.6), (11.7) is to replace h0 by h00

(just a change of notation) and replace

f by feffective = feff = f

(

1 +
b(x, y)

h00

)

. (14.5)

The last term comes from the b contribution to the Taylor expansion of
qa

h
=

f + ∇2
Hψ

h00 − b + ζ
under condition (14.4). With (11.6) and (11.7) thus modified, the
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equations become (with Q now changed to its model-(iii) meaning, analogous
to (11.6), i.e. Q now defined to be { } in (11.6) with f replaced by feff):

DHQ

Dt
= 0 (14.6 a)

Lψ ≡ (∇2
H − L−2

D ) ψ = ∆Q, (14.6 b)

where now
∆ Q = Q − feff(x, y). (14.6 c)

If we now linearize (14.6 a) about the particular state of rest in which Q =
Q0(y) = feff(y) = f + β y with β assumed constant, we get ∂Q/∂t + β v = 0,
β = dQ0/dy = f h−1

00 db/dy (same as above except h00 replaces h0); hence

∂

∂t
(Lψ) + β ψx = 0, (14.7)

and (14.1) follows for plane-wave solutions ψ ∝ exp(i k x + i l y− i ω t). Note
that the case of p. 125 is recovered as the limit

g, c0, LD, ↑ ∞ (14.8)

as one might expect from the intuition that “infinitely strong gravity makes
the upper surface rigid”. Note also that (14.4) again prevents uniform validity
over an extended range of y; cf. bottom of p. 125.3

The extended model (iii) system (14.6) allows many other interesting
problems to be solved, e.g. the counterpart of the shallow-bump problem
of §10.2, p. 132.

3but it can be seen from p. 151 and 128–129 that this is merely a limitation of quasi-
geostrophic theory as such, not of the general concepts of ‘quasi-horizontal balanced mo-
tion’ and ‘PV invertibility’.
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15.

More about the shallow water system
and model (iii): inertia–gravity waves
and the Rossby adjustment problem

—II.22—

The system (11.1) admits much higher-frequency oscillations (ω ≥ f , in
fact), as can easily be illustrated by returning to the simplest case of a ‘flat’
bottom, meaning h0 = h00 = constant (b = 0), and seeking the elementary
plane-wave solutions of that system linearized about relative rest. This gives
us our first and simplest example of waves whose restoring mechanism com-
bines the buoyancy mechanism of gravity waves with the Coriolis mechanism
of inertia waves. They are generally called ‘inertia–gravity waves’ and, in the
present special context of the shallow-water equations (11.1), sometimes also
called ‘Poincaré waves’.

The linearized equations are (with h = h00 + ζ)

∂u

∂t
− f v = −g

∂ζ

∂x
(15.1 a)

∂v

∂t
+ f u = −g

∂ζ

∂y
(15.1 b)

∂ζ

∂t
+ h00

(
∂u

∂x
+

∂v

∂y

)

= 0, (15.1 c)

the corresponding linearized vorticity and PV equations being (with qa =
f + q, say — remember q is relative vorticity vx − uy, and ζ free-surface
elevation, both being zero, by assumption, in the undisturbed state of relative
rest):

∂q

∂t
+ f

(
∂u

∂x
+

∂v

∂y

)

= 0 (15.2)

∂

∂t

(
q

h00

− f ζ

h2
00

)

= 0. (15.3)

The last two equations can be derived equally well by linearizing their exact
counterparts (11.2) and (11.3), or directly from (15.1). For instance (15.2) is

equivalent to
∂

∂x
(15.1 b)− ∂

∂y
(15.1 a), and (15.3) to

1

h00

(15.2)− f

h2
00

(15.1 c).
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Note that the PV equation (15.3) now contains no term of the type v ∂Q0/∂y,
since the basic state of —II.23—

relative rest now has uniform PV, hence no Rossby-wave mechanism: (15.3)
tells us that in this case, according to linearized theory, PV anomalies do not
propagate but, if introduced initially, just sit around in the same place.

Before writing down the elementary plane-wave solutions to (15.1) we
note one further derived equation. Define a new variable

δ = δ(x, y, t) = ∇H · u =
∂u

∂x
+

∂v

∂y
,

the horizontal divergence. Then
∂

∂x
(15.1 a) +

∂

∂y
(15.1 b) gives1

∂δ

∂t
− f q = −g∇2

Hζ. (15.4)

[The nonlinear counterpart of this ‘divergence equation’, obtained from (11.1 a,b),
plays an important role in the theory of nonlinear balance and accurate PV
inversion used in p. 141.] This is useful since for plane waves

q = vx − uy = i(k v − l u), δ = ux + vy = i(k u + l v) (15.5 a)

and so we can deal with q and δ and work from equations (15.1 c)–(15.4)
rather than (15.1 a–c) — by no means essential, but a useful shortcut. Note
that, once we have q and δ, (15.5) gives us the velocities

u =
i l q − i k δ

k2 + l2
, v =

−i kq − i l δ

k2 + l2
. (15.6 a)

Again for plane waves, we have from (15.1 c), (15.2) and (15.4)

−i ω ζ + h00 δ = 0 (15.7)

−i ω q + f δ = 0 (15.8)

−i ωδ − f q = g(k2 + l2) ζ (15.9)

and from (15.3)

−i ω

(

q − f

h00

ζ

)

= 0. (15.10)

We want to include the case of simple gravity waves with f = 0∗, so let us
eliminate q rather than δ from (15.8) and (15.9).—II.24—

1remember the Ex(ercise) on p. 105
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Using (15.7) also, to eliminate ζ from (15.9), we see that (−i ω) (15.9)
becomes

−ω2 δ + c2
0(k

2 + l2) δ + f 2 δ = 0 (15.11 a)

where c0 = (g h00)
1/2, the gravity-wave speed again. [Note incidentally that,

as on p. 105, we could have postponed introducing plane waves and reduced
∂t (15.4) to

∂2δ

∂t2
− c2

0 ∇2
Hδ + f 2 δ = 0 (15.11 b)

using (15.2) and (15.1 c) — another wave equation well known in other
branches of physics, the Klein–Gordon equation — e.g. radio waves through
a plasma of plasma frequency f , or (restricting to ID) the waveguides used
in microwave technology.] From either version of (15.11) we see that the
equations are satisfied provided that

ω2 = c2
0(k

2 + l2) + f 2. (15.12)

This is the celebrated dispersion relation for inertia–gravity waves in the
simplest shallow-water problem in a rotating frame. What it says physically
is that the restoring forces add — i.e. ‘frequencies-squared add’. Note ω2 ≥
f 2: there is now a low-frequency cutoff.

What has happened to the zero-frequency solutions with nonzero initial
PV? We have swept them under the carpet by eliminating q and ζ. But
they are of fundamental interest since2 they are the counterpart, in this sim-
ple linearized problem, of the more general quasi-horizontal balanced flows
discussed above. [Historically, it has sometimes been noticed that the dis-
persion relation, for the most general possible plane-wave solutions of sys-
tems like (15.1) and its continuously-stratified analogues, is really a cubic —
e.g. (15.12) is replaced by

ω{ω2 − c2
0(k

2 + l2) − f 2} = 0 (15.13)

because of the three ∂t’s in (15.1) — but then the root ω = 0 was sometimes
dismissed as ‘trivial’, and not thought about any more. This illustrates one
way —II.25—

to make mistakes — in the sense of missing important points — in theoret-
ical research! The trap was to forget that understanding something means
being able to view it from all possible angles (which implies taking time to

2*just like the horizontal, zero-frequency flows needed to complete the solution of the
stratified, non-rotating initial-value problem*
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think!)3 — so that in the present problem, for instance, one becomes inter-
ested in the meaning of all the equations, and not just the form of the single
equation (15.11 b), elegant though it may be.]

Once we think of looking for zero-frequency solutions, it is easy to see
what they are like. Setting ω or ∂t to zero and writing ψ = g ζ/f we see at
once from (15.1 a,b) that

u = −ψy, v = ψx, q = ∇2
Hψ (15.14)

and that all the other equations, including (15.1 c), are satisfied — for any
time-independent function ψ(x, y) including, of course, the plane-wave form
ψ ∝ ei k x+i l y. We also notice a feeling of déjà vu — we have already seen
almost the same thing on p. 137, equations (11.4) ff. We have found a special
case of the geostrophically balanced situation envisaged in the more generally
applicable, but approximate, model (iii) of quasi-horizontal balanced motion.
Here, the Rossby-wave restoring mechanism is absent, because of the uniform
PV of the basic state (β = 0 in (14.1)), so that there is no time-dependence
from that mechanism. Also, the linearization giving (15.1) stops the model
from becoming time-dependent through advection of any small-amplitude PV
anomalies introduced initially: there is no uH ·∇H in (15.3), contrast (11.7 a).
This is why ψ here is a function of x and y only, and not of t.

It is clear, also, that because we have a special case of model (iii) we
have a special case of PV invertibility, plus the additional insight that—II.26—

the ‘balance’ required to make PV inversion possible can be thought of as
the absence of inertia–gravity waves.

This is another case of an idea being expressed in a form pointing towards
the most far-reaching generalizations. Such a concept of balance [together
with ideas borrowed from Lighthill’s theory of ‘aerodynamic sound genera-
tion’] is one way of seeing the possibility of highly accurate, nonlinear PV
inversions such as that illustrated on p. 141 AND, in addition, of seeing the
nature of the ultimate limitations on the applicability of the idea. (And all
this started from noticing the ‘trivial root ω = 0’!)

The Rossby adjustment problem is an example of an initial-value problem
for which both the ω = 0 and ω 6= 0 modes are required. The computer
demonstration illustrates this in a case with y-independent geometry:—II.27—

Note v(x, t)|t=9.2
4 is middle curve, already like balanced-N59-

final state. The computer demonstration actually solves the nonlinear initial-
value problem, in the y-independent ‘geometry’, i.e. (11.1) [plus damping

3[The physicist John Archibald Wheeler once wrote that “Genius is the ability to make
all possible mistakes in the shortest possible time”.]

4Note that this v is roughly proportional to ∂h/∂x and hence ∂ψ/∂x.
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Figure 15.1: f = 1, ∆x = 0.1, ∆ t = 0.1, αmax = 2.5, Ratio 1 = 0.25, Ratio
2 = 0.125, ν = 0.2. [see GEFD summer school demonstration notes]
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terms] with ∂/∂y = 0, so uH · ∇ = u ∂/∂x etc. In the case shown, u = v = 0
initially, and h (= h00 + ζ) initially the function of y shown by the top
graph marked t = 0. The demonstration allows other cases to be tried,
including initial profiles hand-drawn with the mouse; Rossby’s original case
was ζ and u zero, with v 6= 0 in the central region. Frictional damping terms
[see computer demonstration notes] have been added to (11.1) to make the
numerical model well behaved in a finite domain. In an infinite domain
with no damping, one would see inertia–gravity waves radiating to x = ±∞,
leaving behind a balanced steady state, satisfying (15.14) together with the
condition

f + ∇2
Hψ

h00 + g−1 f ψ
= P (x), (15.15)

where P (x), the final PV distribution,5 is a function of x qualitatively like
the initial distribution

and, in the case under consideration, ∇2
H = ∂2/∂x2. In the linearized version

of the (undamped) problem, (15.3) shows that P (x) is equal for all t to

the initial PV distribution, = const. +

(
q

h00

− f ζ

h2
00

)

t=0

when squares and

products of small quantities are neglected, u, v, ζ, q being considered small
for this purpose. Thus the PV increment is proportional to

∆ Q(x) = q− f ζ

h00

= ∇2
Hψ−L−2

D ψ = ψxx−L−2
D ψ, [L2

D = g h00/f
2] (15.16)

which is known from the initial conditions (and is zero outside the central—II.28—

region). We can invert (15.16) to give ψ (see below), hence u, v, ζ (= f ψ/g)
and h = h00 + ζ in the final steady state. The difference between these fields
and the initial fields satisfies (15.10) with ω 6= 0, and so can be represented
as a superposition of inertia–gravity waves. So, in summary, a consideration
of the linearized initial-value problem shows two things:

(1) how the balanced final state is approached from the initial, unbalanced
state, and

5PV now being the exact PV of (11.3)
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(2) that the balanced state, for which a PV invertibility principle holds, can
be defined by saying that inertia–gravity waves are absent.

As already emphasized, it is the latter definition, rather than the alterna-
tive one of saying that the balance is geostrophic, that points towards more
general, and more generally accurate, ways of defining ‘balance’ and ‘PV
inversion’ such as that illustrated on p. 141.

[Note for instance that the top and bottom right panels of p. 141 show δ
(= ∇H ·u), making it clear that more general and accurate balance concepts
can allow δ 6= 0.]

The nonlinear solution of (11.1) for the same initial conditions (as sug-
gested by running the computer demonstration and imagining that the fric-
tional damping is made limitingly small) is qualitatively the same as the
linearized solution just described. The main difference, for our purposes, is a
spreading of the initial PV distribution by outward advection (u ∂/∂x) as the
fluid layer slumps downwards and outwards. The linearized solution neglects

this, since u
∂

∂x
of the PV is a product of small quantities. But since the —II.29—

qualitative nature of P (x) is still evident — it still looks like the graph
below (15.15), just spread out wider — so also is the qualitative nature of
ψ, now deduced by inverting (15.15) rather than (15.16). For, in the case
of (15.16), we have

ψ = −1
2
LD

∫ ∞

−∞

∆ Q(x′) e−|x−x′|/LD d x′, (15.17)

the two-dimensional counterpart of L−1(∆ Q), middle of p. 138. In the case
of (15.15), which can be rewritten

ψxx − g−1 f P (x) ψ = h00 ∆ P (x), (15.18)

where ∆ P (x) = P (x) − P (∞) = P (x) − f/h00, we have

ψ =

∫ ∞

−∞

h00∆ P (x′) GP (x, x′) d x′ (15.19)

where GP (x, x′) is the Green’s function of the operator

∂2

∂x2
− f P (x)

g
,= LP say, (15.20)

appearing on the left of (15.18). We may define GP in the usual way by

LP GP =

(
∂2

∂x2
− f P (x)

g

)

GP (x, x′) = δ̂(x − x′), (15.21)
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where the δ̂ here is the Dirac delta function (not ∇H · u, of course) together
with boundary conditions that GP evanesces as |x| → ∞ with x′ fixed. Note
that, to the extent that P (x) is dominated by the contribution f/h00, LP is
close to L = ∂2/∂x2−L2

D, and GP close to −1
2
LD exp{−|x−x′|/LD}. Qual-

itative resemblance prevails as long as the initial range of values of P , which
is the same as the final range in the frictionless limit, by (11.3), keeps P (x)
positive and well away from zero. Then (by inspection of (15.21), noting—II.30—

its implications for sign of the second derivative) GP still looks qualitatively
like −1

2
LD exp{−|x − x′|/LD}, i.e. like this sketch,

showing the same exponential evanescence with e-folding scale LD, as |x| →
∞, and the same slope-jump of unity at x = x′. However, its shape will
change slightly as x′ is varied, i.e. it is no longer exactly a function of (x −
x′) alone. The relation (15.19) gives a simple illustration of nonlinear PV
inversion. If P (x) is prescribed, (15.19) gives ψ and hence v = ∂ψ/∂x as well
as h = h00 + g−1 f ψ; but ψ is now a nonlinear functional of P (x) in (15.19).
[This begins to reveal some of what’s involved re p. 141.]
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Inertia–gravity waves in a constant-N
continuous stratification

Finally, we come back to the case of continuous stratification and the
derivation of model (iv). First we note some basic facts about inertia–
gravity waves in a constant-N continuous stratification, in the Boussinesq
approximation with Ω2 ̟/g ≪ 1.1 So we simply add a Coriolis term to
equation (1.4 a) of p.18, take the effective gravity (gravitational plus cen-
trifugal force per unit mass) to be in the −z direction, and assume that we
can use Cartesian coordinates (‘flat-earth approximation’ — appropriate in
the real atmosphere or oceans within sufficiently small regions, say of hori-
zontal extent . few hundred km). So the basic dynamical model is taken to
be the following, with ρ00 = 1 (note that ∇ is now three-dimensional again):

ut + u · ∇u + 2Ω × u = −∇p + ẑσ (16.1 a)
p is

1

ρ00

(pressure

anomaly);

ẑ is unit vector ‖−g
σt + u · ∇σ + N2 ẑ · u = 0 (16.1 b)

∇ · u = 0 (16.1 c)
—II.31—

with Ω = (Ω1,Ω2,Ω3) (Ω1,Ω2,Ω3 all constant). The elementary plane-wave
solutions that satisfy these equations, when N2 = constant also, are called
(internal) inertia–gravity waves. Looking for a solution in which u, p and
σ ∝ exp(ik · x − i ω t) we find that it satisfies (16.1) provided that, with
k̂ = k/|k|, cf.(2.6), p.26 and

bottom half p.115ω2 = (N ẑ × k̂)2 + (2Ω · k̂)2. (16.2)

The two restoring forces, buoyancy and Coriolis, add — i.e. frequencies-
squared add — in the same way as led to (15.12). Here, however, we have a
wavenumber vector k of arbitrary orientation hence, as in section §1.1, the
possibility of non-hydrostatic motion. One of the best ways of deriving (16.2)
— and of seeing how the restoring forces add — is to note that (16.1 c)
⇒ k · u = 0 and then to consider the projection of (16.1 a) on the plane
of the wavefront (see sketch below), as on p.28 for the pure internal-gravity-
wave case with Ω = 0. Note incidentally that, for the same reason as pointed
out on p.29, a single plane wave is a solution of (16.1) without linearization,
i.e. without the quadratic terms u ·∇u and u ·∇σ deleted. Other properties,

1̟ = distance from the rotation axis, as on p. 3.
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such as group velocity cg ⊥ k, also follow as before. Differentiating (16.2),
we have cg =

ωN

ω
cgN +

ωΩ

ω
cgΩ . (16.3)

where cgN = ∇k ωN and cgΩ = ∇k ωΩ , each perpendicular to k, with direc-
tions lying respectively in the (ẑ, k) and (Ω, k) planes, and with respective
magnitudes |cgN | = N |ẑ · k|/|k|2 and |cgΩ| = |2Ω × k|/|k|2.

#bcg
fjkj !̂Njkj bcgNN=jkj

1

The triangle on the left
of figure 9 illustrates this for
cases in which either Ω is par-
allel to ẑ, or the approxima-
tion N2 ≫ 4 Ω2 is valid. In
these cases cgN and cgΩ have
opposite directions, as sug-
gested by the arrows: the two
terms in (16.3) oppose each
other. In the practically im-

portant case N2 ≫ 4 Ω2 suggested by the zoom circle at the left of figure 9,
we have cg = cgN [1 + O(|2Ω|2/N |N2)]. The error term is often negligible.

The property cg ⊥ k is from dimensional considerations as before, Ω and
N both having the dimensions of frequency. (For ω is independent of |k| and
hence of the magnitude of the wavelength; hence cg, which is the gradient of
ω in wavenumber space, must ⊥ k.) Note also that, because the possibility of
nonhydrostatic wavemotion has been brought back in, we now have a finite
range of frequencies at which inertia–gravity wave propagation can
take place, a fact that is evident from the form of (16.2).

The most important case for the real atmosphere and oceans is that in
which N2 ≫ 4 Ω2, a good approximation throughout most of the atmosphere,
and in the ocean thermocline. Then we can approximate (16.2) by replacing
Ω by its vertical component, 1

2
f ẑ say:

ω2 = N2(ẑ × k̂)2 + f 2(ẑ · k̂)2 (16.4)

= N2 cos2 θ + f 2 sin2 θ
—II.32—

where, as on p. 27, the angle θ is the angle between the wavenumber k and the
horizontal. In this case the finite range of frequencies for wave propagation
is simply (because sin2 θ + cos2 θ = 1)

f 6 |ω| 6 N ; (16.5)

this holds also for arbitrary N and Ω values in the case where2 Ω ‖ ẑ.

2The group velocity properties are strange when Ω‖ẑ and 2Ω = N ; then cg = 0 for all
k. But this case is seldom important. Also unimportant, except at the equator, is the
case Ω ⊥ ‘g, in which there is no low-frequency cutoff: 0 6 ω2 6 (N2 + 4Ω2).
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The approximation (16.4) suggests the important fact that, in a strongly
stratified fluid in the sense that N2 ≫ 4 Ω2, only the vertical compo-
nent of Ω matters dynamically. (This turns out to be true much more
generally.)
Note that in the atmosphere and oceans (and in stellar interiors, to which
the same theory is relevant — for our sun, 2 Ω ≃ 5× 10−6 s−1, N ≃ 10−3 s−1,
so 2 Ω/N < 10−2), the effective gravitational potential χ̃ = χ − 1

2
Ω2 ̟2 is

spherically symmetric to good approximation (Ω2 ̟/g ≪ 1), hence

f = 2 Ω sin (latitude). (16.6)

Here is what the fields
of motion and buoyancy look
like in the case paralleling
that on p. 25. Qualitatively
speaking the only new feature
is the nonzero fluid velocity v′

into the paper (y′ direction)
satisfying LHS is +∂v′/∂t

−i ω v′ = (2Ω · k̂) w′,

so that v′ is
π

2
out of phase

with w′, as for pure iner-
tia waves, p. 115. Equa-

tion (2.12 a) becomes

−i ω w′ = σ cos θ − (2Ω · k̂) v′,

showing how the restoring effects add, making |ω| > |2Ω · k̂|, Equa-
tion (2.12 b) is unchanged:

−i ω σ = −N2 w′ cos θ

(v′ = v̂ ei(k·x−ω t), w′ and σ similarly). —II.33—

These three equations lead immediately to the dispersion relation (16.2),
and to the conclusion that what were circular particle paths for pure inertia
waves (p. 115) have now become ellipses, in general. They expand to circles
if we make cos θ = 0 (with Ω not horizontal), i.e. ẑ × k̂ = 0 in (16.2),
i.e. fluid velocity is horizontal and doesn’t feel the buoyancy restoring force,
same problem as on p. 115. The ellipses shrink to straight lines (∵ v′ = 0)
if we make 2Ω · k̂ = 0 (with Ω not horizontal); then the Coriolis force is
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ineffective to the extent that (16.2) coincides with the pure gravity-wave
dispersion relation derived on p. 26. [Note however that the disturbance
pressure field is different from before, even in these limiting cases, because
a Coriolis term has to be added to Equation (2.12 c). This can be shown
to tie up with the different group velocity behaviour implied by varying the
direction of k̂ in (16.2), via a consideration of wave-energy or wave-action
fluxes.]

Note that, if a problem like that of p. 36 ff with fixed vertical structure
eimz or sin(mz) is considered, then (16.4) reduces to (15.12) when k2 + l2 ≪
m2 (hydrostatic waves), if we identify N2/m2 with c2

0.
Inertia–gravity waves conforming to (16.4) are ubiquitous in the atmo-

sphere and oceans, and have often been identified from observations of dis-
placements or velocities that reveal the characteristic elliptical particle paths,
or turning of the velocity vector with height. For instance the latter has of-
ten been seen in routine meteorological radiosonde soundings; one can tell
from these whether the waves have upward or downward group velocity —
e.g. picture on previous page is case of downward cg · ẑ, for which a vertical
sounding sees u′ turning like a right-handed screw as height ↑ in northern
hemisphere;3 the sonde moves upward through the velocity field much faster
(usually) than the vertical phase propagation. One can also deduce ω2 from—II.34—

the eccentricity of the ellipse, from a single sounding, if the wave signal is
clear enough. Typical velocity amplitudes |û| in the more conspicuous cases
might be a few m s−1 in the atmosphere, or cm s−1 to a few tens of cm
s−1 in the oceans. [We do not have a complete understanding of how all
the observed waves are generated, although some are generated by flow over
topography as in the idealized problem of pp. 29ff. with the Coriolis effects
added.]

3i.e. clockwise as seen from below — actually it is commoner to see the opposite case
of upward cg · ẑ, in the case of the atmosphere.
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17.

Quasi-geostrophic motion in a
continuously stratified Boussinesq

fluid: model (iv)

We now show how the analyses of quasi-geostrophic motion presented in
chapters 9–11 carry over to continuously stratified systems. We retain the
Boussinesq approximation for simplicity. This leads to model (iv) of p. 136,
and is another step closer to realistic models of flows like that on p. 123 and
like those shown in the first lecture.

We take the same equations but, for the moment, allow N2 = N2(z):

ut + u · ∇u − f v = −px (17.1 a)

vt + u · ∇v + f u = −py (17.1 b)

wt + u · ∇w = −pz + σ (17.1 c)

σt + u · ∇σ + N2w = 0 (17.1 d)

wz = −ux − vy (17.1 e)

We expect these to apply in two cases:

(1) to systems with Ω = (0, 0, 1
2
f) (1) is easiest case to

think of at first

(2) to systems with Ω = (Ω1,Ω2,
1
2
f) and 4 Ω2 ≪ N2 (see below).

In case (2) we allow f = f(y) hence larger horizontal scales than in section 16,
such as the 103-km scale of the atmospheric flow shown on p. 123, with y
corresponding to latitude. Write RT = 1/f T , RU = U/f L as before, and as
before assume —II.35—

R ≡ max(RT , RU ) ≪ 1 (17.2)

so that D/Dt . R f , noting w . U H/L (notation as on pp.121ff.
Then we expect geostrophic balance as the first approximation to (17.1 a,b)

as before:

f u ≃ −py, f v = px, with relative error O(R). (17.3)

Again we can proceed, as mentioned on p. 122, to consider the next correction
in an expansion in powers of R. But again the vorticity equation offers a
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shortcut. Recall (9.7) and its simplification to (9.8); exactly the same thing
happens here except that, in case (2) above, we get an extra term in df/dy.
(It seems strange to be working in Cartesian coordinates, i.e. using ‘flat-earth
theory’ yet taking account of the variation of f with latitude; but we shall see
shortly that it is a consistent approximation.) Reverting to the notation
ζ for the vertical component of vorticity, we get (9.7) exactly as before
except for the extra term in df/dy = β say, since (17.1 a,b) are the same
as (9.2 a,b) except for the possible y-dependence of f , and we are taking

− ∂

∂y
(17.1 a) +

∂

∂x
(17.1 b). So under the assumption R ≪ 1 we get (with

ζ = vx − uy h U/L) ∂ζ

∂t
+ u · ∇ζ + β v = f wz (17.4)

with relative error O(R), just as when approximating (9.7) by (9.8). Note
that β now means df/dy and not the topography-related quantity
defined above (10.3). Assume now that

β . R f/L; β = const with relative error O(R)

and, consistently with this, f = f0(1 + O(R))

with f0 = constant.







(17.5)

Then as in (9.11), we have from estimating LHS (17.4) that

w . R
U H

L
(17.6)

∴
Dw

Dt
. R f · R U H

L
h R2 H2

L2
· L

H
|∇H p|
︸ ︷︷ ︸

(h f U from (17.3))

Assume also that H2/L2 ≪ R−2 (17.7)

(usually satisfied very strongly, and satisfied sufficiently well even in some
‘tall’ laboratory experiments with H/L > 1). Then—II.36—

Dw

Dt
≪ L

H
|∇Hp|, (17.8)

which means that LHS (17.1 c) (the vertical acceleration) has negligible dy-
namical effects, ∵ negligible effects on the horizontal part of the pressure
gradient, ∇Hp = (px, py, 0), which enters (17.1 a,b) and (17.3). Introducing
the notation corresponding to that in (9.9) and (11.4), we define

ψ = f−1
0 p, so that u = −ψy, v = ψx, ζ = ∇2

Hψ (17.9)
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with relative error O(R). Consistent with this level of accuracy we may
neglect w∂/∂z in (17.4), because of (17.6). this reduces (17.4) to

Dg

Dt
∇2

Hψ + β ψx = f0 wz (17.10 a)

where, in much the same way as before,

Dg

Dt
=

∂

∂t
− ψy

∂

∂x
+ ψx

∂

∂y
, (17.10 b)

which may aptly be called the ‘geostrophic material derivative’. It dif-
fers from D/Dt not only in approximating the horizontal velocity by its
geostrophic value given by (17.9) or (17.3), but also in neglecting w ∂/∂z
altogether. Note that neglecting w ∂/∂z now relies on the smallness of w as
estimated by (17.6) — the factor R is crucial — since, unlike the case of (9.8),
p, ψ, u, v, ζ may all now depend significantly on z; i.e. the Taylor–Proudman
theorem fails. This is because of the stratification and associated buoyancy
effects: instead of (9.5) we have from (17.1 c) and (17.8) that pz = σ, not
zero to the first approximation.1 This is the essential difference, and the only
significant difference, between the present situation and the z-independent
situation summarized by (9.5). In the notation of (17.9), pz = σ reads

σ = f0 ψz. (17.11)

—II.37—

The departure from Taylor–Proudman conditions can be expressed more ex-
plicitly by eliminating ψ between (17.11) and the geostrophic and hydrostatic
relations u = −ψy, v = ψx, σ = f0 ψz to give

uz = −f−1
0 σy

vz = f−1
0 σx

}

, (17.12)

usually called the ‘thermal wind’ relations (although ‘thermal shear
relations’ would be more logical). This is how, for instance, the cold sum-
mer polar mesopause, implying equatorward temperature and potential-
temperature gradients at altitudes ∼ 80 or 90 km, is connected with wave-
induced angular momentum transport and its effect on uz, where x and u
correspond to the eastward direction.

To complete the derivation of model (iv), and its generalization in which
horizontal boundaries are important, we substitute the same geostrophic and

1There is an implicit assumption here that N2 is not too small in (17.1 d), & f2 L2/H2

in fact, see (17.21) ff.
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hydrostatic relations u = −ψy, v = ψx, σ = f0 ψz into (17.1 d) to obtain,
again using (17.6)

w = − 1

N2

Dg

Dt
(f0 ψz) = −Dg

Dt

(
f0

N2
ψz

)

(17.13)

∴ f0 wz = −
{Dg

Dt

(
f 2

0

N2
ψz

)}

z

= −Dg

Dt

{(
f 2

0

N2
ψz

)

z

}

(since (−ψyz ∂x + ψxz ∂y) ψz = 0). (17.14)

Thus (17.10 a) implies that

Dg

Dt

[

ψxx + ψyy +

(
f 2

0

N2
ψz

)

z

+ f

]

= 0 ; f = f0 + β y (17.15)

At an approximately horizontal boundary in the sense of p. 152, say z = z0+bf , not f0 here

where z0 = constant, we have w = Dgb/Dt at the boundary so that, from
f0× (17.13),

-N60-

Dg

Dt

[
f 2

0

N2
ψz + f0 b

]

= 0 at boundary. (17.16)

—II.38—

The extra factor f0 was inserted to suggest a relationship with (17.15) to be
explained below. Note also (by taking the factor f0 back outside, and the
factor N−2 also) that (17.15) can also be written as

Dg

Dt
(σ + N2 b) = 0 at boundary. (17.17)

This is a somewhat disguised way of expressing the obvious consequence
of (17.1 d) that the density of a fluid particle moving along the boundary stays
the same. *For a compressible atmosphere the corresponding ‘boundary
invariant’ would be the potential temperature θ.* [Note that total density
itself is not exactly σ + N2 b; rather, it is proportional to a constant plus the
total buoyancy acceleration

σ1 = σ +

∫ z

N2(z′) dz′ (17.18)

(recall p. 17). What appears in (17.1 d) as w σz + N2(z) w (= w ∂z σ1) is
represented in (17.17) in the approximate form

(σz + N2) w ≃ N2 w ≃ N2 Dgb

Dt
=

Dg(N
2 b)

Dt
. (17.19)
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In fact we shall assume b ≪ H, so the distinction between N2 b and

∫ z

N2(z′) dz′

will disappear anyway.]
Equations (17.15) and (17.16) define model (iv)2 — a remarkably simple

and succinct model of what was described in more general terms on p. 144 as
a “layerwise-2D vortex dynamics, in which the vertical coupling is
solely through the PV inversion operator”. The geostrophic material

derivative
Dg

Dt
involves only horizontal motion, by definition — hence

‘layerwise 2D’) — and if we know the distributions of the two material in-
variants involved, [ ] in (17.15)–(17.16),3 we can invert to get ψ and hence,
via (17.9), everything else. The inversion problem is of a kind known to be —II.39—

robustly well-posed:

ψxx + ψyy +

(
f 2

0

N2
ψz

)

z

= known func.(x, y, z)

ψz = known func. on boundaries z ≃ const.

∇Hψ evanescent at large horizontal distances







(17.20)

(or ψ = const. along an enclosing side boundary). Note that the interior
equation is elliptic (Poisson-like) ∵ N2 > 0. In the constant-N unbounded
case its 3D Green’s function is {(x − x′)2 + (y − y′)2 + f−2

0 N2(z − z′)2}−1/2,
as mentioned on p. 138; this represents a longer-range interaction than in
models (i) and (ii) but a shorter-range interaction than in model (iii). Note
that the vertical coupling owes its existence to the Coriolis effects (vertical
scale of interaction is proportional to f0). There is a competition between
rotational stiffness trying to make ∂z small, i.e. increase vertical scales (the
Taylor–Proudman conditions expressed by (9.5) ff. being an extreme mani-
festation of this), and stratification trying to make ∇H small, i.e. ∂x and ∂y

small, increasing horizontal scales (model (ii) of pp. 135 and 46 being the
corresponding extreme). In between the two extremes there is a natural
aspect ratio of vertical and horizontal scales

H

L
h

f0

N
(17.21)

(Prandtl’s ratio) such that the two effects are comparable, as manifested by
comparable magnitudes of ψxx + ψyy and (f 2

0 N−2 ψz)z in (17.20). This state

2and its generalizations to vertically bounded domains
3The first of these, the PV appropriate to model (iv), is called the ‘quasi-geostrophic

PV’ or sometimes ‘pseudo-PV’. Its horizontal gradient can be shown to be ∝ the isentropic

gradient of Rossby–Ertel PV (gradient on stratification surfaces), with fractional error
O(R).
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of things,4 with the actual length and height scales conforming to (17.21), is
just that which makes σ significant in (17.11) and (17.12) when the typical
values of σ are those implied by (17.1 d), assuming that order-of-magnitude—II.40—

equality, w h R U H/L, holds in (17.6), and assuming a scale Σ for the
typical variation of σ with x, y, t (as on p.46):

R f0
︸︷︷︸

∂
∂t

+uH ·∇H

Σ h N2 R U H/L
︸ ︷︷ ︸

w

(from (17.1 d)) (17.22)

For if we suppose that (17.21) holds, there follows Σ h N U and

U/H h Σ/N H h Σ/f0 L, (17.23)

consistent with (17.12).

The following additional points can be made:

(i) In problems where it is natural to regard the vertical scale H as
given (e.g. thought-experiments like that of p. 36 ff, in which H = m−1 is
set by a given forcing, or initial-value problems with the scale set by initial
conditions), the length scale

L h LD ≡ N H/f0 (17.24)

will inevitably appear. E.g. in a quasi-geostrophic version of the problem of
p. 36 ff, with β = 0, one would find the response evanescing like exp(−|x/LD|)
rather than propagating to arbitrarily large distances. This structure would
be conspicuous if the forcing occupied a region of width ≪ LD; then the
response in ψ extends beyond that, exactly as in (15.17). The resemblance
is not accidental. E.g. with N = const., the vertical structure eimz implies
a definite hydrostatic internal gravity wavespeed N/m that can be identified
with N H and also with the c0 of (15.11 a), (15.12) and (15.17) so LD has
the same meaning as before,5 LD = c0/f0. The LD of (17.24) is often called,
likewise,—II.41—

4sometimes also called ‘Burger number unity’ conditions since some authors use the
term ‘Burger number’ to denote N2 H2/f2

0 L2, the square of the dimensionless aspect ratio.
Others confusingly call f0 L/N H the ‘rotational Froude number’, which has little to do
with the mainstream Froude-number concept as on p. 46ff. With “Rossby” ((17.25)) and
“Prandtl” we have four names associated with one concept. (I disclaim responsibility!)

5and ∇2
H +

(
f2
0

N2
ψz

)

z

= ∇2
H −L2

D, cf. (11.7 b). [For small disturbances about relative

rest this can be generalized to arbitrary N2(z) via Sturm–Liouville theory, somewhat as
on p. 83.]
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the Rossby length (or more archaically, for historical reasons, the ‘Rossby
radius’ or ‘Rossby radius of deformation’) associated with height scale H.

(ii) A corresponding set of remarks hold in problems where it is natural
to regard L as given; the implied natural height scale

H h HR ≡ f0 L/N (17.25)

is now called the ‘Rossby height’ associated with length scale L. A classic
example is the response of the β = 0 system, initially at relative rest over [and with ψz = 0

a flat lower boundary, to an imposed undulation of that boundary such as
b = (ǫ sin k x) times a slowly-growing function of time t. (Note (17.16) was
derived in such a way as not to exclude the possibility of time-dependent
b(x, y, t). Also, with b h ǫ ≪ H one may apply (17.16) at z = z0 just as well
as at z0 + b.) If in (17.16) [ ] = 0 initially for all x, y we have

ψz = −N2

f0

b(x, y, t) at z = z0, ∀t; (17.26)

and the quasi-geostrophic PV, [ ] in (17.15), is spatially uniform initially so
that in the inversion problem (17.20) we have

ψxx + ψyy +

(
f 2

0 ψz

N2

)

z

= 0, ∀t. (17.27)

It is evident that (if we assume N = const. again) the response ψ ∝ exp(−z/HR),
in the sinusoidal case. [If we made the boundary hump up in an isolated
area only, then the far field of ψ will be like the 3D Green’s function,
ψ ∝ (x2+y2+f−2

0 N2 z2)−1/2, still conforming to (17.21) even though there is
no longer a clear-cut single horizontal scale.] This kind of problem is relevant
to understanding the response of the stratosphere to disturbances in the —II.42—

troposphere with length scales L . 103 km for which β and compressibility
can to some extent, qualitatively speaking, be ignored.6 For instance the
scale of penetration of the cyclone structures illustrated on p. 140 into the
stratosphere is of the order suggested by (17.25).

The equation (17.27) and boundary condition (17.26) are also obtained in
the stratified counterpart of the problem of pp. 133–135, flow over a shallow
hump. Then ψ represents the departure from uniform flow. As might be
expected from (17.25), the flow patterns are qualitatively like those on p. 135,

6[It can be shown that to ignore compressibility altogether (i.e. Boussinesq, as here)
requires H ≪ density scale height Hρ (≃ 7 or 8 km); otherwise the ∂z term in (17.15),
(17.20) is replaced by ρ−1

0 (ρ0 f2
0 N−2 ψz)z where ρ0 = ρ0(z) ∝ exp(−z/Hρ); the problem

is still qualitatively similar.]
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but weakening as z increases through the Rossby height HRa
= f0 a/N based

on the horizontal scale a of the hump. For instance if the flow at small
z/HRa

looks roughly like the top right-hand picture on p.135 then at z/HRa

somewhat greater (but still . 1) the flow would look more like the top left-
hand picture. In a rather fuzzy sense the stratification is providing
an ‘upper lid’, forcing (negative) vortex stretching to take place, f0 wz < 0
in (17.4)β=0 , just as in (9.8).

(iii) As already mentioned, if b ≪ H we may apply the general boundary
condition (17.16) at z = z0 = const. Note that we do indeed have b ≪ H
when the condition corresponding to the inequality in ca. mid p. 134 (the
condition for a strong disturbance) is satisfied — i.e. replacing the layer depth
h0 there with a constant of order unity times HRa

here:

max b = ǫ a h

U

f0 a
· HRa

a
a = Ra HRa

≪ HRa
(17.28)

if Ra denotes U/f0 a. Applying (17.16) at z = z0 rather than at z = z0 + b
greatly simplifies the mathematics of finding explicit solutions. However,
in problems with large-scale boundary slopes, analogous to the topographic
Rossby-wave problem of p. 127–130, say a slope in the y direction as there,
one has the same problems of nonuniform validity for large y ≫ L as noted—II.43—

near top p. 128 and in the footnote on p. 153. Again this is a limitation of
quasi-geostrophic theory, not of the generic picture summarized on p. 139.
In the stratified case there are similar problems associated with large-scale
slopes of the constant-σ1 stratification surfaces. Such slopes (both of σ1-
surfaces and of boundaries) can give rise to Rossby-wave propagation in the
same way as in the original problem of pp. 127–130.

(iv) More precisely, what are relevant are gradients (in the y-
direction, say) of one or both of the two material invariants [ ]

in (17.15) and (17.16). Let us call these invariants Q and B respectively.

Contributions to their y-gradients arise whenever the slopes of the boundary
and the σ1-surfaces differ — just as it was the difference between the two
boundary slopes that mattered on p. 127-130. In general there are further
contributions to the gradients Qy and By. For instance if β = df/dy 6= 0
in (17.15), then this contributes to Qy, as can a nonuniform mean flow ū(y, z)
in the x direction — not only through gradients in ψyy but also through the
∂/∂z term, whose y-derivative is ∂/∂z of f0 σy/N

2, by (17.11). From (17.18),
σy/N

2 ≃ σy/σ1 z = σ1 y/σ1 z, which is minus the σ1-surface slope. Simi-
larly,

By = f0

( σy

N2
+ by

)∣
∣
∣
z=z0

. (17.29)
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( ) is minus the slope difference, i.e., minus the σ1-surface slope at z− z0

plus the boundary slope.

(v) The Rossby waves whose restoring mechanism depends on By alone
are called topographic Rossby waves if b is sloping —II.44—

and σ1 are flat, and (for historical reasons) Eady short waves if σ1 are
sloping and b is flat, b = 0. Their dispersion relation for ψ ∝ ei(k x+l y−ω t)

(ignoring y-nonuniformity) is precisely (10.6)7 with the following changes.
The quantity β in that relation (10.6) (that β being defined above (10.3)) is
replaced by By/HRW (which is equal to f0 by/HRW in the ‘topographic’ case,
with the h above (10.3) identified with HRW here) where

HRW = f0(k
2 + l2)−1/2/N, (17.30)

again illustrating the lid-like effect of the stratification.8 It is curious that,
in the ‘topographic’ case (sloping boundary and flat σ1-surfaces), the factors
f0 cancel giving

ω =
−by N k

(k2 + l2)1/2
. (17.31)

But one should not conclude that rotation is unimportant! Quite the
contrary! [A warning, incidentally, against the common failing of confusing
the underlying dynamics itself with too superficial a view of it through this
or that particular equation — there is a myth, misrepresenting some of the
valid ideas of theoretical physics, that the equations ‘are’ the reality.]

(vi) The Rossby waves whose restoring mechanism depends on β, or
on other things that make Qy nonzero (more generally, that make isentropic
gradients of Rossby–Ertel PV nonzero) can exist independently of bound-
aries. Because of the stable stratification, the σ1-surfaces can entirely take
over the constraining role originally played by the pair of boundaries on
p. 127. For instance we can confidently predict the existence of Rossby
waves deep within the Sun (recall numerical magnitudes, p. 164; N2 ≫ f 2

0 )
even though no way has yet been found to observe them. —II.45—

In the case ū ≡ 0, Qy = β, N = const., (17.15) linearized (about rest)
has plane-wave solutions (which as always can be superposed to give more
localized solutions) ψ ∝ ei(kx+ly+mz−ωt) provided that

ω =
−β k

k2 + l2 + f2

N2 m2
. (17.32)

If β > 0, phase velocity always westwards, as before. Also (this is the present
β = df/dy)

7which reads ω = −β k/(k2 + l2)
8Remember always that we are talking about timescales ≫ N−1: ‘gravity-wave stiff-

ness’ is effectively large, as well as inertia-wave (Coriolis-wave) stiffness.
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cg =
β

(

k2 + l2 + f2

N2 m2
)2

{(

k2 − l2 − f 2

N2
m2

)

, 2kl, 2
f 2

N2
km

}

(17.33)

— can have any direction. Note again, stratification is essential.

*Remark re trapping : Variations in N2(z) won’t do: only basic-flow shear u(z), or rigid

boundaries (ocean surface is effectively rigid if L not too large:
f2 L2

g H
≪ 1 .*

Note also the possibility of vertical Rossby propagation, whose
likely importance for the real stratosphere was pointed out in a celebrated
paper by Charney & Drazin (1961, J. Geophys. Res.) Among other things
they asked the question why — in view of the enormous wave-energies in-
volved — does the earth not have a much hotter mesosphere and ther-
mosphere, perhaps even a ‘geocorona’ like the sun’s corona? Today we
know why this cannot happen. Rossby waves ‘break’, as mentioned on
p. 132, by degenerating into layerwise-2D turbulence9 long before they reach
altitudes where linearized wave theory, generalized to include evanescent
mean density ρ0(z) ∝ e−z/Hρ , would predict thermally significant wave-
energy densities. The video shown in the first lecture, also available at
www.atm.damtp.cam.ac.uk/people/mem/papers/ECMWF/, though only a
shallow-water model, shows rather well what breaking Rossby waves look like
when the real wintertime middle stratosphere (say ∼ 20–40 km altitude) is
observed with sufficient spatial resolution. This has already been achieved
for limited timespans (CRISTA project, two space-shuttle missions of several
days each, websearch "gyroscopic pump in action").—II.46—

It also turns out that the Rossby-wave propagation mechanism is one of
the keys to understanding the ‘anti-frictional’ properties — what used to be
called the ‘negative viscosity’ — of large-scale atmospheric flow; again see
www.atm.damtp.cam.ac.uk/people/mem/papers/ECMWF/, also last ques-
tions of ex. sheet 3. In brief, the sign of u′ v′ is easily understandable if the
Rossby mechanism is invoked, and the waves are hypothesized to be gener-
ated in middle latitudes and to be dissipated by breaking in lower latitudes.
The observational evidence, including estimates of real isentropic distribu-
tions of PV, strongly supports this hypothesis.

9more fundamentally, by irreversibly rearranging Rossby–Ertel PV along isen-
tropic surfaces. The extreme spatial inhomogeneity of the resulting flow (wave-
like adjacent to 2D-turbulent flow) is central e.g. to understanding the dynam-
ics and chemistry of the ozone hole; see also figures in my Limerick paper (an-
imation on website; websearch "gyroscopic pump in action") and web lecture at
www.atm.damtp.cam.ac.uk/people/mem/papers/ECMWF/
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(vii) Consistency of (17.5) and of cartesian coordinates as a local ap-

proximation in mid-latitudes on sphere, when
H

L
≪ 1 [(2) p. 166].

Note: not same as the usual scaled spherical coordinates encountered in
the literature. We mean true cartesian coordinates in, e.g., a local tangent
plane and perpendicular to it. This represents a self-consistent approximation

if
L

a
≪ 1 (a = radius of sphere); in the present context we require, for

consistency with the quasi-geostrophic approximations:

L

a
. R. (17.34)

Note that this gives (17.5) above: f varies by O(R) over scale L; the β term
in (17.4), (17.10 a) etc. is no greater than the other terms in order of magni-

tude, since β = df/dy h 2 Ω/a. This is called the ‘β-plane’ approximation.
—II.47—

(viii) If we linearize (17.15) about a y-independent mean flow U(z), and
assume a y-independent disturbance in the sense that

ψ = −y U(z) + ψ′(x, z, t), (17.35)

and take N and β both constant and put z = f0 Z/N , then we have

(
∂

∂t
+ U

∂

∂x

)

[ψ′
xx + ψ′

ZZ ] + Qy ψ′
x = 0 . (17.36)

On assuming a solution ψ′ ∝ ei{k(x−ct} we get an equation with the same
mathematical form as the so-called Rayleigh equation, or Taylor–Goldstein
equation (4.7) with N = 0. As is well known, the Rayleigh equation describes
among other things ordinary shear instabilities in 2D vortex dynamics, with

Qy = Qy(Z) = β − UZZ . (17.37)

Thus any result for such an instability carries over to the present case — e.g.
U ∝ tanh Z, β = 0 is unstable — but it represents a physically different phe-
nomenon, ‘baroclinic wave instability’ (next section). In practice, boundary
conditions from (17.16) usually enter, and may enhance the instability —
which is regarded today as the fundamental dynamical instability underly-
ing most cases of real large-scale atmospheric cyclogenesis and oceanic eddy
generation. [* Appendix B shows its close relation to Rossby propagation
(interior or boundary).*]
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(ix) We return finally to the central concept of part II of this course —
the generic structure summarized on p. 138. In model (iv) with a lower
boundary, the dynamical system is more explicitly representable in the form
(neglecting overt dissipation)

(1) Evolution equations

DgQ

Dt
= 0 on each interior level (17.38 a)

DgB

Dt
= 0 on the boundary; (17.38 b)

(2) Inversion operator from (17.20)

ψ = L−1{Q − Q0, B − B0} with (17.9,11) (17.38 c)

where now

L =
∂2

∂x2
+

∂2

∂y2
+

∂

∂z

f 2
0

N2

∂

∂z
.

Q0 and B0 are the Q and B fields for fluid at relative rest. As F. P.
Bretherton has pointed out (paper in Quart. J. Roy. Met. Soc., 1966) we
can actually regard (17.38 a,b) as one equation (precisely justifying remark
near bottom of p. 140) by introducing Dirac delta functions δ̂(·) and replacing

Q by Q + B δ̂(z − z0), (17.39 a)

Q0 by Q0 + B0 δ̂(z − z0) (17.39 b)

and replacing the middle line of the inversion problem (17.20) by ψz = 0.—II.48—

The fact that sloping isopycnals are important warns us to be especially
careful if top or bottom boundaries are present. This is well illustrated by a
famous example of baroclinic instability, that discovered by E.T. Eady in the
mid-1940’s, one of the first two examples ever to be discovered. The other
was discovered by J.G. Charney around the same time.

II.48 10/6/2008
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18.

Eady’s solution

Continue to assume β = 0, N = const., and now take U = ū = Λ z,
Λ = const. Suppose that w′ = 0 on z = 0, H (horizontal boundaries).
With the foregoing example (viii) in mind we might expect instability; the
boundaries will act a bit like the horizontal stratification surfaces above and
below the shear layer in that example.1 [*We shall see that Fjørtoft’s theorem
is not contradicted, because the boundary terms will not now vanish.*]

Linearizing (17.38b), we see that the all-important boundary condition is
(

∂

∂t
+ Λ z

∂

∂x

)

ψ′
z − ψ′

x Λ = 0 on z = 0, H. (18.1)

With β = 0 and N2 = const., (17.27) (zero initial disturbance, Q0 uniform)

⇒ ψ′
zz +

N2

f 2
(ψ′

xx + ψ′
yy) = 0 (0 < z < H) . (18.2)

Seek solution with sinusoidal horizontal structure (k, l real)

ψ̂(z) sin l y ei k(x−c t) ;

c and ψ̂(z) may be complex-valued, indicating a phase shift with height. To
satisfy (18.2), and (18.1) at z = 0, we may take

ψ̂(z) =
K c

Λ
cosh K z − sinh K z (18.3)

where K2 =
N2

f 2
(k2 + l2). (Note that K−1 is a Rossby height for this

disturbance.) If (18.1) is to be satisfied at z = H also, we must have
(substituting (18.3) into (18.1))

c = 1
2
Λ H

{
1 ± γ−1

[
(γ − coth γ)(γ − tanh γ)

]1
2
}

(18.4)

(several lines of algebra missed out here), where γ = 1
2
K H.

1In the yz plane (stratification surfaces for tanh profile on left, for Λz profile on right):

.
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So we have

instability (Im c > 0) for γ < coth γ, i.e. γ < 1.1997. (18.5)

When γ ≫ 1 (short waves),

c ∼ Λ H
1

2 γ
or Λ H

(

1 − 1

2 γ

)

. (18.6 a)

E.g. c ∼ Λ H

2 γ
=

Λ

K
; ψ̂ ∼ e−K z (wave trapped near bottom boundary;

doesn’t feel top). The other solution is similar but trapped near the top
boundary: ψ̂ ∼ e−K(H−z); be careful to substitute exact c into (18.3) before
introducing large-γ approximations. As noted in the previous section, these
short-wave solutions are essentially the same as topographic Rossby waves
between boundary and sloping stratification surfaces σ1 = constant.—II.49—

If min
k

γ

(

=
N H

2 f
l

)

< 1.1997 then there is a range 0 < k < kN say,

where the growth rate k ci = k Im c > 0; its graph looks like the lower of the
two heavy curves (ignore the other curves for the moment) in Fig. 18.1 on the
next page . The graph of Re(c) looks qualitatively like the upper heavy curve
(with its large-k asymptotes given by (18.6)). Actually
the quantitative results in Fig. 18.1 are for the case
l = 0 (y-independent disturbances), and the abscissa is

N H

f
k = K H = 2 γ

in our notation. In this case the growth-rate maximum
occurs when

γ = 0.8031

in which case
−(γ − coth γ)(γ − tanh γ) = 0.3098,

∴

maximum growth rate = max
k

(k ci) =
f

N H
· 2 γ ci = 0.3098

f Λ

N
. (18.7)

(The c in fig. 18.1 is dimensionless: (18.4) ÷Λ H.) For an idea of numerical
magnitudes, take Λ = 3 m.s−1 km−1 = 3 × 10−3 s−1, f = 10−4 s−1, N =
10−2 s−1, giving growth rates of order 10−5 s−1, so e-folding time ≃ (105 ÷
86400) day & 1 day (atmosphere, wintertime mid-latitudes). If H = 10
km (ignoring non-Boussinesq effects — not strictly correct since 10 km is

II.49 10/6/2008
ro-18



Part II, §18.0 181

Figure 18.1: Comparison of first correction results from (10.2) and (10.5) with
some numerical results of Green (1960), for u = z, ǫ−1 β = 1, m = 0 (see

text). Upper graphs: Re(c): lower: scaled growth rate κ Im(c) = ǫ−
1
2 k Im(c).

Note that the first correction to the growth rate is zero for k = k y, but not
for k = k y(•) or k > k y. For accuracy of comparison, the graphs of Green’s
results have been re-drawn, using his original data; in the case ǫ−1 β = 1

2
(not

shown) the agreement at short wavelengths is even closer, upon correcting an
inaccuracy in Green’s corresponding published figure op. cit., p. 242; Green,
private communication.
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comparable to density scale heights in the atmosphere (7–8 km), but can

be shown to be qualitatively not very important), then k =
f

N H
· 2 γ ≃

10−4 s−1

10−2 s−1 10 km
× 1.6 ≃ (1000 km)−1, or wavelength ≃ 6000 km. For the

ocean (away from the Gulf Stream), typical values give e-folding times of
order a month, and k−1 tens of kilometres.

Here are Eady’s pictures of the disturbance structure for the fastest-
growing, l = 0 case (18.7)):

—II.50—

As one might guess from the role of buoyancy in promoting the vortex-
stretching that generates the horizontal disturbance motion, the total po-
tential energy of the system is reduced during disturbance growth. This is
shown most directly by a calculation by Uryu2. Note that this calculation
(or any other way of calculating total PE change) must be done correct to O
(amplitude squared). of the centre-of-mass motions of material tubes of fluid
which are initially of uniform small cross-section and which initially lie par-
allel to the x-axis (at t = −∞, no disturbance). Such material tubes become
wavy as the disturbance grows (and their cross-sections become nonuniform
— the tubes become thicker for some values of x and thinner for others),
and their centres of mass move with velocity v−L, say, in the y-direction, and
w−L in the z direction. [L stands for ‘(generalized) Lagrangian mean’.] These

2 Uryu (1979) J. Met. Soc. Japan 57, 1
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Figure 18.2: Generalized Lagrangian-mean meridional circulation v−L, w−L

associated with a growing Eady wave, from Uryu (1979). The fluid motion
is incompressible, but the Lagrangian-mean motion is divergent because of
disturbance growth (see text). Parameter values are as follows. Disturbance
amplitude, as measured by maximum north–south Eulerian disturbance ve-
locity v′, 11 m s−1 (shown on the same scale as v−L by the long arrows
at bottom): growth rate 0.7 day−1; wavelength 5000 km; width of chan-
nel (meridional half -wavelength) 5000 km; height of channel 10 km; vertical
shear of basic flow 3 m s−1 km−1; buoyancy (Brunt–Väisälä) frequency 10−2

s−1; Coriolis parameter 10−4 s−1.

centre-of-mass velocities look like this, in the case l = π/5000 km: Note that
the centres of mass are all rising on the ‘warm’ side and sinking on the ‘cold’
side — thus the potential energy of the system is being diminished. Baro-
clinic instabilities like these are believed to be one of the main mechanisms
whereby potential energy associated with north–south temperature gradients
in the atmosphere is converted into the kinetic energy of large-scale weather
systems (‘depressions’) in middle latitudes. [‘Depressions’ because at finite
amplitude the minima of ψ′ (pressure) at the surface z = 0 become more
spatially concentrated and hence more prominent on weather maps, than the
maxima.]

I should perhaps explain that the other curves on fig. 18.1 are from per-
turbation theory for

10/6/2008
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β 6= 0 (but small −→ k large) (dashed curves)3 and a numerical calculation

for β
N2 H

f 2 Λ
= 1 by Green. Technique: essentially same trick as on line

above, equation (4.23) (but must work in complex plane).

3J. Fluid Mech. 40, 273 (1970)
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A.

Basic equations, Coriolis “forces”,
and thermodynamics

(This material, from the Cambridge Summer School in Geophysical and
Environmental Fluid Dynamics, is mostly a summary of standard items

from fluids textbooks.)

A.1 Some basic equations and boundary con-

ditions

The Eulerian description is used; so the material derivative D/Dt = ∂/∂t +
u·∇ — the operator for the “rate of change following the fluid”. This gives
the rate of change of any field f(x, t) not at a fixed point x, but at a moving
fluid element or “particle”. Its form comes from the chain rule of differential
calculus when x is made a function of time t.

Mass conservation, or “continuity”:

∂ρ

∂t
+ ∇·(ρu) = 0 , i.e.

Dρ

Dt
+ ρ∇·u = 0

(ρ = density, ρu = flux, of mass). For incompressible flow, Dρ/Dt = 0,
implying that

∇·u = 0 .

Associated boundary condition: Normal components of velocity must
agree, if mass is conserved. That is, we must have

u·n = ub·n at the boundary (where ub is prescribed).

Here n is a unit vector normal to the boundary. The right-hand side can
represent e.g. the normal component of the velocity ub of the boundary
material itself, if we have a moving but impermeable boundary, or, e.g.,
ρ−1 × mass flux across a fixed but permeable boundary. At a boundary that
is both stationary and impermeable, ub = 0 and so u·n = 0.

10/6/2008
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Newton’s second law: In an inertial frame,

Acceleration = force per unit mass .

In this equation, the right-hand side (RHS) and left-hand side (LHS) can be
written in various ways. Defining ζ = ∇× u, the vorticity, we can show by
vector calculus that

LHS =
Du

Dt
=

∂u

∂t
+ u·∇u =

∂u

∂t
+ ζ × u + ∇(1

2
|u|2) (1)

and

RHS = − 1

ρ
∇p + g + F ,

where p is total pressure, including hydrostatic, and g is the gravitational
force per unit mass, exactly the gradient of a scalar function. We take g =
−∇Φ, where Φ is called the gravitational potential. The last term F stands
for all other forces, such as friction, or, especially in large-scale atmospheric
models, forces due to unresolved gravity waves.

Wave-induced forces can in a certain sense be anti-frictional. The most conspic-

uous example is the quasi-biennial oscillation of the zonal wind in the equatorial

lower stratosphere (QBO). The wave-induced forces drive the stratosphere away

from, not toward, solid rotation, as shown in PHH’s lectures and in the QBO com-

puter demonstration. Ordinary (molecular-viscous) fluid friction would by itself

drive the atmosphere and ocean toward solid rotation in the absence of externally

applied stresses.

Viscous force: For ordinary (molecular-viscous) fluid friction we have

F =
µ

ρ
∇2u = ν ∇2u , say,

in the simplest case of spatially uniform dynamical viscosity µ. See e.g.
Batchelor’s textbook for more general cases. (One might guess F = ρ−1∇·(µ∇u),
but that’s wrong! One must replace the tensor ∇u by its symmetric part.
Viscous forces are achiral: they respect mirror-symmetry.)

Associated boundary conditions: For viscous fluid motion we need an
extra boundary condition on u. The commonest cases are of two kinds.
First, if the boundary is solid, impermeable, and again moving with velocity
ub, then

u = ub at the boundary;
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i.e., the fluid at the boundary must move entirely with the boundary. Tan-
gential as well as normal components must agree. There are a few special
cases where this fails, e.g. two-fluid “contact lines” where continuum mechan-
ics itself breaks down.) The agreement of tangential components is called the
no-slip condition and may still apply when the boundary is solid but perme-
able. Second, in a thought-experiment in which the tangential stress τ on
the fluid (friction force per unit area) is prescribed at a plane boundary —
e.g. at the top of a model ocean strongly constrained by gravity — then τ

controls the shear at the boundary:

µ
∂(u·s)

∂n
= τ ·s at the boundary,

where n is distance in the n direction, outward from the fluid, and s is any
fixed unit vector normal to n, i.e. lying in the boundary.(In more general cases

with curved boundaries, we would need to use a more complicated expression for

the total stress due to viscosity and pressure. Batchelor’s textbook gives a clear

discussion: some knowledge of tensors is required.)

Boussinesq approximation: This refers to a set of approximations for
flows that feel buoyancy forces, valid in the asymptotic limit ∆ρ/ρ ≪ 1
where ∆ρ typifies the range of density variations, with g∆ρ/ρ finite
(g = |g| = |∇Φ|). For consistency we need to assume that the motion
has height scales ≪ cs

2/g and that |u| ≪ cs, where cs is the speed of
sound. Mass continuity then reduces to the incompressible case ∇·u = 0 ,
and Newton’s second law simplifies to

∂u

∂t
= − 1

ρ
∇p′ + σ + F (2)

where the total pressure p has been replaced by the pressure anomaly p′, in
the sense of departure from a background pressure. The background pres-
sure is defined to be in hydrostatic balance with a given background density,
both background quantities being functions of Φ only. The effects of den-
sity anomalies, departures ρ′ from the background density, are represented
solely by the upward “buoyancy acceleration” σ = −gρ′/ρ. In the pressure-
gradient term, ρ can be taken to be constant. In summary, ρ = constant when
it measures mass density and inertia but not when it measures buoyancy.

Equation for buoyancy, and associated boundary conditions: Gen-
erally these involve diffusion of heat or of solutes, with gradients of one thing

10/6/2008
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influencing fluxes of another. There are great simplifications in the Boussi-
nesq case with constant g; then

Dσ/Dt = ∇·(κ∇σ) (σ = |σ|)

may suffice. Here σ represents density anomalies relative to a strictly con-
stant background density. That is, σ describes all of the stratification,
and the background none: if the fluid is at rest then the buoyancy fre-
quency (Brunt–Hesselberg–Milch–Schwarzschild–Väisälä frequency) is just
N2(z) = ∂σ/∂z (dz = dΦ/g). If the buoyancy diffusivity κ is spatially
uniform then, even more simply, Dσ/Dt = κ∇2σ. We usually specify a
boundary condition on the buoyancy flux κ ∂σ/∂n, or on σ itself, or on some
linear combination of σ and ∂σ/∂n. It is still consistent to take ∇·u = 0
approximately.

Rotating reference frames: To the RHS of Newton’s second law we must
add

− 2Ω × u − Ω × (Ω × r)

(see A.2, p. 193 below, for a derivation). Here Ω is the angular velocity of the
reference frame, assumed constant, r is position relative to any point on the
rotation axis, and u is now velocity relative to the rotating frame. The first
and second terms are respectively the Coriolis and centrifugal forces per unit
mass — “fictitious forces” felt e.g. by an observer sitting in a rotating room
or in a spinning aircraft. It is convenient, and conventional, to recognize that
not only g but also −Ω × (Ω × r) is the gradient of a potential and that
there exists, therefore, an “effective gravitational potential”

Φeff = Φ − 1
2
|Ω|2r⊥2

such that g − Ω × (Ω × r) = −∇Φeff, where Φ is again the gravitational
potential in the ordinary sense, and r⊥ is the shortest, i.e. perpendicular,
distance to the rotation axis.

On the rotating Earth, the level surfaces Φeff = const. are only slightly different

from the surfaces Φ = const. The Φeff and Φ surfaces tangent to each other at

the north pole are only about 11 km apart at the equator. Brain-teaser : why

does this differ from the equatorial bulge of the actual figure of the Earth, about

21 km? (This is a good exercise in an important transferable skill, that of spotting

unconscious assumptions.)

So in the rotating frame Newton’s second law can be written

Du

Dt
+ 2Ω × u = − 1

ρ
∇p − ∇Φeff + F . (3)
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It is traditional to display the Coriolis force per unit mass on the LHS, even
though in the rotating frame it has the role of force rather than acceleration.
Whether terms are written on the RHS or LHS, with appropriate sign changes, is of

course entirely a matter of convention. Mathematical equations may look like, but

are of course different from, computer code! (There are some myths in the research

literature that might come from forgetting this. One example is the misleading,

though persistent, idea that the stratospheric Brewer–Dobson circulation is driven

by solar heating. The heating term is usually written on the RHS, unhelpfully

suggesting that it be thought of as a known forcing, even though, in reality, it is

more like Newtonian relaxation toward a radiative-equilibrium temperature.)

The Boussinesq approximation can again be introduced, with −∇Φeff

replacing g.

Vorticity equations in a rotating frame: Same as in a inertial frame
except for just one thing: replace the relative vorticity ζ = ∇ × u by the
absolute vorticity ζa = 2Ω + ζ .

Incompressible but not Boussinesq:

Dζ/Dt = ζa·∇u − 1

ρ2
∇p ×∇ρ + ∇× F

Boussinesq:

Dζ/Dt = ζa·∇u + ∇× σ + ∇× F

(with Ω constant, so that Dζa/Dt = Dζ/Dt). If geff = |∇Φeff| can be
taken as constant on each level surface Φeff = const., then ∇× σ simplifies
to −ẑ × ∇σ where ẑ is a vertical unit vector, i.e. parallel to ∇Φeff . These
equations can be derived by taking the curl of Newton’s second law, in the
per-unit-mass form (3) or its Boussinesq counterpart.

In the Boussinesq case, ρ = constant and so µ/ρ = ν is spatially uniform
whenever µ is. Then when F is viscous,

∇× F = ν∇2ζ .

So vorticity behaves diffusively in this case — though not in all other cases,
as the example of a viscous jet in inviscid surroundings reminds us. (There,

all the vorticity ends up on the interface: diffusive behaviour is countermanded by

terms involving ∇µ 6= 0.)
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Ertel’s potential-vorticity theorem: This is a cornerstone of today’s
understanding of atmosphere–ocean dynamics and the dynamics of stratified,
rotating flow in other naturally occurring bodies of fluid e.g. the Sun’s interior
(http://www.atm.damtp.cam.ac.uk/people/mem/). The theorem says that
if (a) there exists a thermodynamical variable θ that is a function of pressure
p and density ρ alone and is materially conserved, Dθ/Dt = 0, and (b) F = 0
or is the gradient of a scalar, then

DQ/Dt = 0 where Q = ρ−1ζa·∇θ, the “Rossby–Ertel potential vorticity”.

For adiabatic motion of a simple fluid (thermodynamic state definable by p
and ρ alone), θ can be taken as specific entropy S (A.3, p. 194 below) or any
function of S. Adiabatic motion means that fluid elements neither receive
nor give up heat, implying that S is materially conserved. In the atmospheric
sciences it is conventional to take θ to be the potential temperature, which
is a function of S: for a perfect gas, θ ∝ exp(S/cp).

In the Boussinesq approximation: As above but with ρ = constant
(implying that the factor ρ−1 can be omitted from the definition of Q), and
with θ replaced by ρ′, or by σ = −geffρ

′/ρ if geff = |∇Φeff| can be taken as
constant on each level surface Φeff = const.

Bernoulli’s (streamline) theorem for steady, frictionless, adiabatic mo-
tion: First, steady and adiabatic ⇒ ∂/∂t = 0 and Dθ/Dt = 0 . Therefore
u·∇θ = 0, i.e., θ = constant along any streamline. Second, the right-hand-
most expression in eq. (1) on page 1 allows us to replace Du/Dt + 2Ω× u
by ζa ×u + ∇(1

2
|u|2). With F = 0 (or F workless, u·F = 0) we can take

u·(3), noting that u·ζa × u = 0, to give simply

u·∇
(

1
2
|u|2 + Φeff

)
= − 1

ρ
u·∇p , ⇒ u·∇

(
1
2
|u|2 + Φeff + H

)
= 0 .

The last step introduces the specific enthalpy H (A.3, p. 194 below) and
uses the constancy of θ, hence S, on the streamline. In the notation of
A.3, dH = V dp = ρ−1dp on the streamline. So the Bernoulli quantity
1
2
|u|2 + Φeff + H is constant on a streamline, even for stratified, rotating

flow, in the circumstances assumed.

Boussinesq Bernoulli quantity: can be taken as 1
2
|u|2 + ρ′Φeff/ρ + p′/ρ

with ρ = constant. If ∇Φeff = constant then ρ′Φeff/ρ may be replaced by
−σz where z is vertical distance, z = Φeff/|∇Φeff|. So then 1

2
|u|2 −σz + p′/ρ

is constant on a streamline.
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A.2 Coriolis and centrifugal “forces”

This part of the problem is just the same for continuum mechanics as for
particle dynamics. The best tactic is to view everything from an inertial
(sidereal) frame of reference.

Let x̂, ŷ, ẑ, be an orthogonal triad of unit vectors that rotate rigidly with
constant angular velocity Ω. (The triad can be right handed too, but that’s
not essential.) Thus x̂ is time dependent, with time derivative

˙̂x = Ω × x̂; similarly ˙̂y = Ω × ŷ, ˙̂z = Ω × ẑ. (S1)

Consider the position X(t) of a single particle (viewed, as always, in the
inertial frame). Let X·x̂ = X(t), X·ŷ = Y (t), X·ẑ = Z(t); thus (by
orthogonality)

X(t) = X(t) x̂(t) + Y (t) ŷ(t) + Z(t) ẑ(t) . (S2)

Take the first time derivative, using (S1) and the properties of vector multi-
plication:

Ẋ(t) = Ẋ(t) x̂(t) + Ẏ (t) ŷ(t) + Ż(t) ẑ(t) + Ω × X(t) (S3)

= Ẋrel(t) + Ω × X(t), say. (S4)

(Notice now that Ẋrel = Ẋx̂+ Ẏ ŷ+ Żẑ is, by definition, the rate of change
that X would appear to have if it were viewed from a reference frame rotating
with angular velocity Ω. That is, Ẋrel is the particle’s velocity relative to
that rotating frame.) Remembering that Ω = constant, we can differentiate
(S3) to get the second time derivative of X(t), the (absolute) acceleration:

Ẍ(t) = Ẍ x̂ + Ÿ ŷ + Z̈ ẑ + Ω × Ẋrel + Ω × Ẋ ,

using (S1) again. The sum of the first three terms, = Ẍrel, say, give, by
definition, the particle’s acceleration relative to the rotating frame. Using
(S4) in the last term, we have

Ẍ(t) = Ẍrel + 2Ω × Ẋrel + Ω × (Ω × X), (S5)

the standard result showing that Ẍ can be equated to Ẍrel plus, respec-
tively, a Coriolis and a centripetal acceleration. Centripetal = inward
(from Latin centrum, centre, + petere, to seek): note that Ω× (Ω×X) =
− |Ω|2X + Ω·X Ω = − |Ω|2̟ where the vector ̟ measures normal
distance from the rotation axis.

If we were now to go into the rotating frame, we could regard Ẍrel as the
acceleration entering Newton’s laws provided that we also regard the forces
acting as including a Coriolis force −2Ω × Ẋrel and a centrifugal (outward)
force −Ω × (Ω × X) per unit mass.
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A.3 Thermodynamic relations

There is a mnemonic trick, not widely known, for remembering the thermo-
dynamic relations for a simple compressible fluid. They can all be read off
from the single array

V A T (A.1)

E ցւ G (A.2)

S H p (A.3)

which itself can be remembered aurally: say “vatg, veshp” to yourself, with
a New York accent if it helps. The notation is conventional. On the corners,
read T as temperature, p as total pressure (including hydrostatic back-
ground), S as specific entropy (= cp ln θ + const. in the case of a perfect
gas with cp the specific heat at constant p), V as 1/ρ, the specific volume
(volume of a unit mass of fluid), and, in between, read A as Helmholtz
free energy, G as Gibbs free energy, H as enthalpy, and E as internal
energy, all ‘specific’ in the per-unit-mass sense. The diagram contains all the
standard thermodynamic relations and Legendre transformations, of which
the most important for fluid dynamics are

dE = −p dV + T dS , dH = V dp + T dS (H = E + V p) .

The first of these, scanned left to right, corresponds to the pattern with
E at mid-left representing dE, etc., and with the diagonal arrows giving
the sign: thus p dV has a minus (against the arrow) and T dS has a plus
(with the arrow). The four Maxwell relations (∂T/∂V )S = −(∂p/∂S)V ,
(∂V/∂S)p = (∂T/∂p)S, etc., can be read off in a similar way.

The speed of sound is cs =
√

(∂p/∂ρ)S = V
√

( − ∂p/∂V )S .
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B.

Rossby-wave propagation and shear
instability

This material is from the Cambridge Summer School in
Geophysical and Environmental Fluid Dynamics;

updated versions with recent literature references are at
www.atm.damtp.cam.ac.uk/people/mem/gefd-supplem-material.html

1. Introduction

This Appendix explores Rayleigh’s inviscid shear instability problem and
its relation to the Rossby-wave propagation mechanism, or ‘Rossby quasi-
elasticity’. The instability problem is the simplest of those solved by Rayleigh
in his pioneering work last century on the undular instability of jets and
shear layers. It provides us with a robust paradigm for a very basic fluid-
dynamical process. It is robust in the sense that it gives essentially the same
result as the U ∝ tanh(y/b) case and practically all the other inviscid shear-
layer profiles that you can explore for yourself in computer demonstration 10.
These include almost any moderately smooth shear-layer profile drawn with
the mouse, with y-scale b somewhat less than the computational domain size
L.

The essential qualitative result, well documented in many places in a
vast research literature, is that almost any shear layer sandwiched between
constant-velocity regions is unstable to small sideways undular displace-
ments, with a fastest exponential growth rate equal to a modest fraction,
often a fifth or so, of the typical shear. The fastest-growing instability has a
radian wavelength of the same order as the shear layer thickness 2b, where
radian wavelength means full wavelength /2π.

As already remarked in the lectures, the same qualitative result applies
also to the ‘KH instability’ (Kelvin–Helmholtz, sometimes called Taylor–
Goldstein, instability) of a stratified shear layer U(z), N2(z) at sufficiently
small Richardson number Ri = (N/Uz)

2. This instability is sometimes visible
in the sky as groups of long-crested ‘billow clouds’ having lifetimes of order
ten minutes. The instability commonly occurs when larger-scale disturbances
tilt a strongly stratified layer and produce sufficient vertical shear Uz in
the layer (via the horizontal gradient of the buoyancy acceleration, in the
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vorticity equation, equivalently the term ∝ ∇ρ×∇p, cf. Dr Linden’s lectures)
to bring the local value of Ri well below 0.25. You can use the computer’s
Movie Viewer (load KH.IMG). to see the evolution to finite amplitude of a
typical KH instability, produced in the laboratory by tilting a thin stratified
layer in a long tank (S.A. Thorpe 1973, J. Fluid Mech., 61, 731)1

It can be shown that, for laboratory-scale shear layers in which viscosity
might be directly significant, the fastest instabilities are not much affected
until Reynolds numbers Ub/ν are down to very modest values, of the order
of 10 or less — another striking indication of the robustness of the shear
instability mechanism in these simplest cases.

Rayleigh’s problem is the case of small-amplitude disturbances to an
exactly inviscid layer with exactly constant shear, the ‘vorticity strip’, see
fig. §4.6 on p. 97. In this particular case the problem can be explicitly solved
in detail, with no more than exponential functions and a modicum of pa-
tience — apart from just one tricky technicality, the derivation of equation
(6) below. Section 4 gives the full analysis, and shows how it illustrates the
fundamental relation between shear instability and the Rossby-wave propa-
gation mechanism. An equivalent visual–verbal description is given in section
5, following the review by Hoskins et al (1985, Q. J. Roy. Meteorol. Soc., 111,
877–946 and 113, 402–404). To prepare the way for sections 4 and 5, the ap-
propriate case of simple Rossby waves is analyzed first (sections 2 and 3). The
qualitative understanding thus gained shows why the instability mechanism
is robust, particularly as regards its finite-amplitude consequences illustrated
in fig. §4.6 on p. 97.

Moreover, that understanding can be extended immediately to the fastest

1You might like to think about how it is that minimum Ri = (N/Uz)
2 tends to occur

in the most strongly stratified layers, i.e., where N2 is largest. This is true both in the
tilted-tank experiment and in most naturally-occurring situations. The tilting envisaged is
one in which some larger-scale disturbance tilts a relatively thin but horizontally extensive
layer of relatively strong stratification. Such a layer, by definition, has a strong maximum
in N considered as a function of z. The key point is that if the layer tilts approximately as
a plane, making a small time-dependent angle α(t) with the horizontal, then the horizontal
gradient ∇Hσ of the buoyancy acceleration σ has approximate magnitude αN2(z), a strong
function of z. This gives rise to horizontal vorticity, appearing mainly as vertical shear
Uz (because of the large ratio of horizontal to vertical scales in this situation), and having
the z-dependence of N2, not N . Specifically, Uz ≃ γ(t)N2(z) where, if Coriolis forces
are negligible, as in the tilted-tank experiment, γ(t) is simply the time integral of α(t).
Then Ri = (N/Uz)

2 = (γN)−2. So, when γ(t) increases, Ri becomes smallest soonest
at a maximum, not a minimum, of N(z). The same formula Ri = (γN)−2, hence the
same conclusion, can be shown to hold far more generally with suitably modified γ(t). For
instance, in the opposite-extreme case of geostrophic balance the formula Ri = (γN)−2

still holds but with γ(t) = α(t)/f where f is the Coriolis parameter.
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— and likewise robust — three-dimensional ‘baroclinic instabilities’ on hor-
izontal temperature gradients which are usually thought of as accounting
for the existence of the mid-latitude cyclones and anticyclones that are con-
spicuous features of atmospheric weather patterns. Mid-latitude cyclones
and anticyclones have horizontal length scales L . 103 km; their oceanic
counterparts (scales L . 102 km) place severe requirements on numerical
resolution for eddy-resolving ocean circulation models. The extension to
three-dimensional baroclinic problems is obtained simply by replacing vor-
ticity with potential vorticity and replacing ‘vorticity inversion’ (the inverse
Laplacian operator) with ‘potential vorticity inversion’. Rayleigh’s instabil-
ity itself has direct relevance to some atmospheric weather developments,
and ocean-current instabilities, associated with horizontal shear, and in this
context is often referred to as a ‘barotropic shear instability’ or a ‘Rayleigh-
Kuo instability’. The description of the instability mechanism in section 5
is written so as to apply, suitably interpreted, both to the barotropic and
to the baroclinic cases. On first reading, however, it can be viewed simply
as a summary of what happens in Rayleigh’s problem, underpinned by the
detailed justification available, for those interested, in sections 3 and 4.2

Rayleigh’s problem, then, is to find the inviscid, exponentially-growing
small disturbances, if any, to the unidirectional basic or background velocity
profile (u, v) = {U(y), 0} shown as C in the following diagram:

The shear Uy = dU/dy is piecewise constant in each profile shown. The
domain is unbounded. The planetary vorticity gradient β = df/dy is taken
to be zero since we are interested, at first, in a paradigm that is equally
relevant to large-scale and small-scale flow.

2There is a vast and highly technical literature on the linearized theory of shear insta-
bilities that are more complicated, slower-growing, and less robust as regards their finite-
amplitude consequences — hence less likely to be practically important, albeit sometimes
mathematically intriguing. Some of these more complicated instabilities can be understood
in terms of a phenomenon called ‘over-reflection’, as first, I believe, clearly illustrated by
A. E. Gill (1965, Phys. Fluids., 8, 1428–1430), who analyzed an instability arising from
the over-reflection of sound waves between two vortex sheets.

10/6/2008
shear

IV.1



198 Part IV, §2.0

2. Rossby-wave propagation on a concentrated vorticity gradient

First consider profiles A and B, which are stable. They provide another il-
lustration of the Rossby wave propagation mechanism or ‘Rossby-wave quasi-
elasticity’, which is basic to most problems in atmosphere–ocean dynamics
and, for instance, has an important role in the approximate chemical isola-
tion of ‘Meddies’ (Atlantic Mediterranean Eddies) from their surroundings,
and similarly the chemical isolation of the stratospheric polar vortex and
ozone hole. (Epigrammatically, “Strong vortices have strongly Rossby-elastic
edges.”)

Here the vorticity gradient to which the wave propagation owes its ex-
istence is concentrated on a single material contour, namely that material
contour whose undisturbed position is y = b. (The distinction between these
Rossby waves and those on a constant, or smoothly varying, basic vorticity
or potential-vorticity gradient may be compared to the distinction between
surface gravity waves and internal gravity waves. The propagation of surface
gravity waves, or ordinary ‘water waves’, can be described as owing its exis-
tence to a density or buoyancy gradient concentrated at the water surface, as
compared with internal gravity waves on a continuous buoyancy gradient.)
The following sketch reminds us of the basic Rossby-wave mechanism:

The encircled signs indicate the sense of the vorticity anomalies q′ caused by
displacing the contour; note that the basic-state vorticity is more positive, or
less negative, on the positive-y or ‘northern’ side of the contour). The straight
arrows indicate the sense of the induced disturbance velocity field, i.e. the
velocity field resulting from inversion of q′. The phase of the velocity pattern
is important. The velocity pattern is a quarter wavelength out of phase with
the material displacements, marked by the undular shape of the material
contour itself. What follows from this is a matter of simple kinematics.
If one makes a movie of the situation in one’s mind’s eye, as viewed from
a frame of reference moving with the basic flow U at y = b, one can see
that the undulations must be propagating relative to the basic flow. (The
notion of vorticity inversion allows one to say, epigrammatically, that the
undulations are caused to propagate by the disturbance vorticity anomalies
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+ − · · · ) The propagation is toward the left in this case; generally it is
in whichever direction has the most positive, or least negative, basic-flow
vorticity or potential vorticity on the right. This is sometimes called ‘pseudo-
westward’ or, more aptly, ‘quasi-westward’.

The all-important quarter-wavelength phase shift is easily understandable
from the properties of vorticity inversion, for instance as visualized by the
electrostatic and soap-film analogies described in the lectures. For instance
a soap film being pushed and pulled in an x-periodic pattern will show a cor-
responding pattern of hills and valleys; this tells us that the streamfunction
anomalies ψ′ are 180◦ out of phase with the vorticity anomalies, and hence
in phase with the material contour displacements. You can also verify this
picture from the computer demonstrations.

The next section verifies the correctness of the foregoing picture in an
independent way, by using the traditional linearized mathematical theory
for small displacements. This prepares the way for a similar mathematical
treatment of Rayleigh’s problem. If you are happy to take the theory on
trust on first reading, you can skip to section 5 at this point.

3. Mathematical verification of the Rossby propagation mecha-
nism

We regard all the basic velocity profiles as limiting cases of smooth profiles
with continuous derivatives. This is one way of being sure to get the correct
jump conditions across the discontinuities in Uy — the only tricky point,
equation (6) below, in an otherwise straightforward analysis. For smooth
profiles U(y), with viscosity neglected, the linearized disturbance equation
can be written (

∂

∂t
+ U

∂

∂x

)

q′ − Uyy
∂ψ′

∂x
= 0 , (1)

where −Uyy = −d2U/dy2, the basic or background vorticity gradient giving
rise to the Rossby-wave mechanism, and q′ and ψ′ are respectively the distur-
bance contributions to the vorticity and streamfunction, with the convention

(u′, v′) = (−∂ψ′/∂y , ∂ψ′/∂x) . (2)

for the disturbance velocity. The relation between ψ′ and q′ appears in this
notation as

∇2ψ′ =
∂2ψ′

∂x2
+

∂2ψ′

∂y2
= q′ (3a)

(

ψ′ periodic in x; ψ′ and ψ
′

y → 0 as |y| → ∞
)

, (3b)
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ψ
′

y being shorthand for ∂ψ′/∂y as usual. We may summarize the content of
(3) more succinctly as

ψ′ = ∇−2q′ , (4)

making explicit the idea of vorticity inversion with boundary conditions of
evanescence in y and periodicity in x understood here.

In the limit of piecewise constant shear dU/dy, we have Uyy = 0 for
y 6= ±b. Hence (1) implies that

(
∂

∂t
+ U

∂

∂x

)

q′ = 0 (y 6= ±b) . (5)

By a careful consideration of the limit near y = ±b it can also be shown3 that
(1) implies

(
∂

∂t
+ U

∂

∂x

)[
∂ψ′

∂y

]+

−

−
[
dU

dy

]+

−

∂ψ′

∂x
= 0 at y = ±b , (6)

where the square brackets denote jumps or differences across y = ±b. That
is, [F (y)]+− at y = b means F (y+) − F (y−) where F (y+) = lim

y↓b
F (y) and

F (y−) = lim
y↑b

F (y), for any function F (y) such that the limits exist. The

condition (6) says, in a rather inscrutable way, that the initial vorticity dis-
tribution moves with the undulating material contour. The inscrutability
arises from using the linearized Eulerian description — for reasons of math-
ematical convenience — to describe something that appears simple only in
the exact Lagrangian description.4

3One way of deriving (6) from (1) is to use the concept of Dirac delta or ‘point-charge’
functions. When we take the limit in (1), Uyy will tend to a delta function of strength
[Uy]+

−
centred on y = b. In the case of profile C one must add a similar contribution

centred on y = −b. Equation (1) can be satisfied in the limit only if the ψ
′

yy contribution

to ∇2ψ′ [see (3a)] likewise tends to a delta function, with ψ′ continuous and ψ
′

y piecewise
continuous.

4More precisely, the inscrutibility of (6) is connected with the noninterchangeability
of the two limits involved in deriving it, the first being the limit of small disturbance
amplitude, already taken in (1) through the omission of terms like q′yψ′

x, and the second
being the limit of infinitely steep vorticity gradients at the material contour! One way to
make sense of (6), independently of its derivation from (1), is to recognize that although
(for reasons of mathematical convenience) (6) refers to values exactly at y = +b, for
instance, it actually represents physical conditions at the displaced position, y = b + η,
say, of the material contour. The total velocity field on each side of the contour has been,
in effect, extrapolated back to y = b using one-term Taylor expansions, again neglecting
products of small quantities like ηu

′

y and ignoring the fact that y = b may be on the wrong
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Both for profile A and for profile B we have solutions of the form

ψ′ = ψ̂(y)eik(x−ct) (7)

where
ψ̂(y) ∝ e−|k(y−b|) , (8)

making q′ vanish for y 6= b and hence satisfying (5). Then (6) gives

ik(U − c)(−2|k|) = [Uy]
+
−ik at y = b ,

so that the intrinsic phase speed is

c − U(b) = −1
2
G|k|−1 (G > 0) (9)

where G = −[Uy]
+
− at y = b (G > 0 for profiles A and B). Thus a disturbance

of x-wavelength 2π/k centred on y = b propagates to the left with phase
speed (9), relative to U(b), as anticipated in the lectures. (This agreement
between equations and pictures is a good check that we have the sign right
in (9). Note also that the intrinsic frequency −1

2
G sgnk is independent of |k|

— inevitable on dimensional grounds, as with internal gravity waves, since
profiles A and B have no length scale, and the only relevant property of the
basic flow, G = −[Uy]

+
−, is a constant having the dimensions of frequency. It

follows incidentally that the intrinsic group velocity is zero.)

[Exercise: Verify that, in this case, Rossby waves that have less ‘room’ to
propagate will propagate more slowly, in the sense of having smaller intrin-
sic phase speeds. Take for instance the case in which rigid boundaries are
introduced at y = b ± a for some positive constant a; it is easy to show that
this always replaces the 1

2
|k|−1 in (9) by a smaller quantity.]

4. Mathematical analysis of the instability mechanism

What happens if we add another region of concentrated vorticity gradi-
ent, with the opposite sign, as in profile C? The Rayleigh–Kuo and Fjørtoft

side of the contour. Now if the simple vorticity discontinuity of profile A or B moves with
the undulating material contour y = b+ η, then the velocity jump ∆ηu across the contour
y = b + η must vanish, ∆ηu = 0, for otherwise a sheet of infinite vorticity would have
appeared from nowhere (see also section 7 below). The small-amplitude approximation to
∆ηu, expressed in terms of the fields extrapolated back to y = b, is [u′ + ηUy]+

−
; so we

must have [u′ + ηUy]+
−

= 0. Therefore we must also have (∂/∂t + U∂/∂x)[u′ + ηUy]+
−

= 0.
This is (6), because η is a continuous function of y (and a differentiable function of x)
such that (∂/∂t + U∂/∂x)η = v′ = ∂ψ′/∂x.
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theorems now suggest that instability is possible: G changes sign between
regions, evading the Rayleigh stability condition, and U also changes sign, in
the sense required to evade the Fjørtoft stability condition. This still does
not guarantee instability; see section 6 below. But we now show directly, fol-
lowing Rayleigh, that profile C does, in fact, have unstable modes provided
|kb| is not too large. (One can see from the decaying exponential structure in
(8) that instability will certainly not be found for |kb| ≫ 1. For if |kb| ≫ 1,
then (8) and a similar solution ψ̂ ∝ e−|k(y+b)| will apply with exponentially
small error; the neighbourhoods of y = ±b are too far away from each other
(b ≫ |k|−1) to interact significantly, and will behave independently.)

For general |kb|, we have (taking k > 0 to save having to write |k| all the
time):

ψ̂ =







A sinh(2kb).e−k(y−b) (y > b)

A sinh k(y + b) + B sinh k(b − y) (−b < y < b)

B sinh(2kb).ek(y+b) (y < −b)

((10))

for some pair of constant coefficients A and B. The form of (10) has again
been chosen to make q′ vanish for y 6= b and hence to satisfy (5), and also to
make ψ̂ continuous at y = ±b. The ratio A/B, and the constant c, are still
available to satisfy (6) at each interface. Writing Uy = Λ (positive constant)
for |y| < b, dividing (6) by ik, and writing sh for sinh 2kb and ch for cosh 2kb,
we have
{

at y = b : (Λb−c)[ψ̂y]
+
− + Λψ̂ = 0; also ψ̂ = A sh, [ψ̂y]

+
−= −Ak sh − (Ak ch−Bk);

at y = −b : (−Λb−c)[ψ̂y]
+
−−Λψ̂ = 0; also ψ̂ = B sh, [ψ̂y]

+
−=(Ak−Bk ch) − Bk sh.

(B.1)
The first line gives

−Ak sh − Ak ch + Bk +
Λ

Λb − c
A sh = 0 . (11a)

The second gives

Ak − Bk ch − Bk sh +
Λ

Λb + c
B sh = 0 (11b)

A nontrivial solution for A : B exists if and only if the determinant vanishes;
write sh + ch = exp = exp 2kb (since ch = 1

2
{exp +(1/ exp)} and sh =

1
2
{exp−(1/ exp)}:

(

−k exp +
Λ sh

Λb − c

) (

−k exp +
Λ sh

Λb + c

)

− k2 = 0 . (12)
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This will give c (for real, prescribed k); it also gives a quick check that we
have done our sums correctly so far, since in the large-k limit both k exp and
sh are overwhelmingly greater than k2, so that in (12) we have ( )( ) = 0 to
an excellent approximation, so that one or other factor must vanish, again to
an excellent approximation. The vanishing of the first factor gives Λb − c ≃
1
2
Λk−1, equivalent to (9) (isolated Rossby wave on interface y = +b). The

second factor similarly gives the wave on y = −b.

Multiplying-out the product ( )( ) in (12) and noting that ( exp)2 − 1 =
2 sh. exp, we have

2k2 sh. exp − kΛ sh. exp .

(
1

Λb − c
+

1

Λb + c

)

+
Λ2 sh2

Λ2b2 − c2
= 0 .

The quantity in parentheses is equal to 2Λb/(Λ2b2 − c2). Therefore

Λ2b2 − c2 =
2kbΛ2 sh. exp − Λ2 sh2

2k2 sh. exp

(

=
Λ2b2

kb
− Λ2b2 sh

2k2b2 exp

)

or

c2 = Λ2b2

(

1 − 1

kb
+

sh

2k2b2 exp

)

. (13)

If we make c dimensionless with respect to the total velocity difference ∆U =
2bΛ, and k with respect to the shear layer width 2b, say C = c/2bΛ , K = 2kb,
then (13) becomes

C2 =
( c

2bΛ

)2

= 1
4
− 1

2
K−1 +

sinh(K)

2K2 exp(K)
=

1

4K2

[
(K − 1)2 − exp(−2K)

]
.

(14)
Note that C2 = −1

4
+1

3
K+O(K2) as K → 0 (by Taylor-expanding exp(−2K) =

1− 2K +2K2 − 4
3
K3 +O(K4); note that the first two orders cancel), so that

C = ±1
2
i(1 − 2

3
K + O(K2)) as K → 0 . (15)

This demonstrates the existence of instability for some range of K: there
exists a mode with Im c > 0, at least for sufficiently small K. At this point
we get another check that the algebra is correct; the limiting values C ≃ ±1

2
i,

or c ≃ ±1
2
∆Ui, agree with those implied by the theory of waves on a single

vortex sheet (e.g. Batchelor’s textbook, eq. (7.1.20)). The fact that small K
means radian wavelength k−1 ≫ 2b suggests that the disturbance should see
the whole shear layer as being thin; i.e. as a vortex sheet. Similarly, any other
U(y) profile that goes monotonically between two constant values should give
the same long-wave behaviour in an infinite domain. For instance the tanh
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profile also checks out in this respect (c ∼ 1
2
i× total change in U). You could

try some mouse-drawn profiles as well, with small-ish but finite k, but it will
be necessary to make the domain size L somewhat larger than k−1.

Next we note the phase relations implied by (10), (11) and (14) — crucial
to a full understanding of what is going on! From (11a, b) respectively we
get

B

A
=

(

exp− Λ sh

k(Λb − c)

)

=

(

exp− Λ sh

k(Λb + c)

)−1

. (16)

We are interested only in cases where k and K are real and c is pure imag-
inary, i.e. (14) is negative-valued. The two expressions in large parentheses
are then complex conjugates of each other, since they differ only in the sign
of ±c. It follows that ∣

∣
∣
∣

B

A

∣
∣
∣
∣
= 1 , (17)

the simplest result consistent with the symmetry of the problem. The relative
phases of ψ′ and therefore of v′ = ψ

′

x are (when c = ici, pure imaginary):

arg

(
B

A

)

= arcsin Im

(
B

A

)

= arcsin Im

(

− Λ sh

k(Λb − ici)

)

= arcsin

( −Λci sh

k(Λ2b2 + c2
i )

)

,

(18a)
or in dimensionless form, dividing numerator and denominator by 2bΛ2,

arg

(
B

A

)

= arcsin

(−Ci sinh(K)

K(1
4

+ C2
i )

)

, (18b)

This gives the phase angle, or fraction-of-a-wavelength times 2π, by which
the pattern in v′ at y = b leads that at y = −b. It is negative for the growing
mode, Ci > 0, so in our picture, with x pointing to the right, the v′ pattern
at y = b is shifted to the left of that at y = −b. The constant-phase lines
‘tilt oppositely to the shear’:

The phase shift (18b) across the shear tends5 to arcsin(−1) = −π/2, cor-
responding to a quarter of a wavelength, as K ↓ 0 and Ci ↑ 1

2
. Since the

5Note that Ci is real, and → 1

2
as K → 0, and that sinh(K)/K → 1 as K → 0.
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complex displacement amplitude η̂ = ψ̂/(U − c), from (∂/∂t+U∂/∂x)η = v′

and v′ = ψ
′

x, and since the q′ pattern at each interface ∝ ∓η at y = ±b, the
phase shift in the q′ pattern is given by

arg

(
B/(−Λb − c)

−A/(Λb − c)

)

= arg

(
B

A

(Λb − c)

(Λb + c)

)

= arg

(
B

A

)

+ arg

(
1 − 2C

1 + 2C

)

= arg

(
B

A

)

+ 2 arctan(−2Ci) if C = iCi , pure imaginary (19)

Thus the q′ pattern has a phase shift in the same sense, but bigger. On the
next page are some numerical values showing how the quantities of interest
vary as function of dimensionless wavenumber K. From left to right: di-
mensionless wavenumber K, imaginary part Ci of dimensionless phase speed
(real part being zero), dimensionless growth rate KCi, phase shift for v′ or ψ′,
phase shift for q′, the last two being expressed as fractions of a wavelength.

Note from (15) (18b), and (19) that the phase shift for the q′ pattern
→ −π, corresponding to half a wavelength, as K ↓ 0. This again is consistent
with expectation (and with well known results) for effectively thin shear
layers, or vortex sheets. It says that, in the long-wave limit, the displacements
η (∝ ∓q′) are almost exactly in phase across the shear layer; that is, the
layer does undulate almost as a single entity.
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Some numerical results for Rayleigh’s shear-instability problem: (Di-
mensionless growth rate K Ci = k c/Λ peaks at K = 0.797, with max. value
K Ci = 0.20119:)

The following picture, taken from Gill’s book, gives ψ′ = ψ̂(y)eik(x−ct) for the
fastest growing mode, as a function of x and y when the arbitrary constant
A is taken such that AB is pure imaginary:
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The next section gives a verbal description that serves to summarize the
key points about the picture that has emerged. It also tries to make the qual-
itative robustness of the whole picture more evident, including the pattern of
phase shifts and how they are related to the exponential growth with time.
As mentioned earlier it can be understood as applying to more than one
type of large and small-scale shear instability occurring in the atmosphere
and oceans; but on first reading it can be understood simply as a summary
of the picture just derived for Rayleigh’s problem.

5. The essentials of the instability mechanism

This follows section 6d of the review article by Hoskins et al. cited in
section 1. Those of you with a particular interest in large-scale atmospheric
and oceanic eddies might be interested not only in the wider meaning of what
is to follow, but also in other parts of the review such as the description of
what happens, in certain cases, when large amplitudes are attained, and the
relationship to cyclogenesis in the real atmosphere (as hinted at in my last
lecture). In this connection you should note one point about terminology.
Phrases like ‘IPV maps’, ‘IPV distributions’, ‘IPV anomalies’, etc., are used
in the review article as a handy abbreviation to signify isentropic or isopycnic
maps, distributions, anomalies, etc, of PV, where ‘PV’ means the quantity
Q = ρ−1ζabs · ∇θ defined in the lectures i.e., the Rossby–Ertel potential
vorticity. (The full name follows the historical precedents dating from a
paper by Rossby published in 1936.) As will be explained in the lectures, it
is isentropic or isopycnic distributions of PV — and, for Rossby waves and
shear instabilities, isentropic or isopycnic gradients, and anomalies, of PV —
that are dynamically significant. They play the role of vorticity gradients and
anomalies in two-dimensional vortex dynamics. In the diagram below, taken
from the review article, ‘IPVG’ means (northward) isentropic gradient of PV
(and ‘N’ or ‘northward’ corresponds to +y above). Since the review was
published it has become apparent, however, that phrases like ‘IPV gradient’
can be too easily misread as signifying a gradient of something called ‘IPV’.
Therefore in these notes I shall use phrases like ‘PV gradients’, leaving tacit
the important fact that, in the case of layerwise-two-dimensional stratified
flow, this must be understood to mean isentropic or isopycnic gradients.

On first reading, as suggested, references to baroclinic phenomena can
be ignored, and, as appropriate for the case of the strictly two-dimensional
flow that is our immediate concern, ‘PV gradient’ can be read as meaning
vorticity gradient (absolute vorticity gradient if in a rotating frame), ‘PV
anomaly’ as meaning q′, and so on.
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As already suggested, the simplest instabilities — by which we mean those
with the simplest spatial structures — are also, in many cases, those with
the fastest growth rates. These simplest instabilities, including that arising
in Rayleigh’s problem, are all characterized by a pattern of PV anomalies (q′

anomalies) of the general sort shown schematically by the plus and minus
signs in the following diagram:

The pattern can be thought of as a pair of Rossby waves propagating side by
side, or one above the other, depending on whether a barotropic (Rayleigh-
like) or a baroclinic instability is in question.

Viewed in a reference frame moving with the zonal phase speed c of the
disturbance, each Rossby wave propagates against, and is held stationary
by, the local basic flow. From the nature of the Rossby propagation mecha-
nism (recall diagram on page 198), this is dynamically possible if the sign of
the basic PV gradient is positively correlated with that of the relative zonal
flow (U − c), i.e. both signs positive, as in the top half of the diagram, or
both signs negative, as in the bottom half. This is evidently the simplest
configuration consistent with the Rayleigh–Kuo and Fjørtoft necessary con-
ditions for instability. It will be noticed that if the basic zonal flow U has
a continuous profile then a ‘steering level’ or ‘critical line’ will be present,
where by definition U −c = 0. We shall assume that the basic PV gradient is
small or negligible in some region containing the critical line (as in Rayleigh’s
problem); the more general case is discussed in the review article. Moreover,
for expository purposes we shall restrict attention at first to patterns whose
spatial scale is such that, if the induced velocity field associated with each
Rossby wave in the diagram did not affect the other, then their phase prop-
agation would be somewhat too slow to hold them stationary against the
basic zonal flow.

The essence of the instability mechanism is that the induced velocity fields
do, however, overlap significantly. That is why the width 2b in Rayleigh’s
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problem, if instability is to occur at a given wavelength 2π/k, has to be
of order k−1 or less. Similarly, in order to get a baroclinic instability of
horizontal scale L, say, and simple spatial structure, the vertical separation
between the two rows of PV anomalies has to be of the order of one Rossby
height fL/N or less, as illustrated by the Eady baroclinic instability problem.
The overlapping of the induced velocity fields has the following consequences,
under the assumed conditions:

(i) Inasmuch as the PV anomaly patterns are less than a quarter wave-
length out of phase with each other, the case shown in the diagram, each
half helps the other to propagate against the basic zonal flow. That is, the
contributions to the northward velocity induced by each PV pattern partially
reinforce each other, making the phase of each pattern propagate upstream
faster than it would in isolation. This is how the patterns hold themselves
stationary against the basic flow, under the assumed conditions.

(ii) Because of this interdependence between the two counterpropagating
Rossby waves, their relative phase tends to lock on to a configuration like
that shown. For if the PV patterns were each to shift slightly downstream,
i.e. the upper pattern towards the right and the lower towards the left, so as
to be more nearly in phase, then each half would help the other to propagate
still more strongly, moving the patterns back upstream towards their original
relative positions. Conversely, if the patterns were shifted upstream, so as to
be more out of phase, then propagation would be weakened, and advection
by the basic zonal flow would tend to restore the original phase relation.

(iii) Just as in the diagram on page 3, the northward velocity induced
by the upper PV pattern alone is a quarter wavelength out of phase with
that pattern. The large black dot in the diagram marks the position of the
northward velocity maximum induced by the upper PV pattern alone, for
the right-hand-most wave period. This is less than a quarter wavelength
out of phase with the bottom PV pattern, and therefore with the bottom
displacement pattern, as indicated by the position of the small black dot
directly below. If we add the velocities induced by the bottom PV pattern
(open dots) to get the total velocity field, we see at once that the total velocity
is also less than a quarter wavelength out of phase with the displacement
pattern. This is true on the top level as well as on the bottom level.
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(iv) It follows that the total northward velocity field in each half of the dis-
turbance can be regarded as a sum of sinusoidal contributions in phase with,
and a quarter-wavelength out of phase with, the northward displacement
field. Moreover, the in-phase contribution has the same sign as the displace-
ment. A velocity in phase with the corresponding displacement implies, by
simple kinematics, that both must be growing.

The instability mechanism just described can be summarized in one sen-
tence, by saying that

‘The induced velocity field of each Rossby wave
keeps the other in step, and makes the other grow.’

These two effects of the induced velocity field are associated respectively
with its in-quadrature and in-phase contributions. The pure, exponentially-
growing normal mode of linear instability theory describes a situation in
which the two PV anomaly patterns have locked on to each other and settled
down to a common phase speed c, such that the rates of growth which each
induces in the other are precisely equal, allowing the shape of the pattern as a
whole to become precisely fixed, and the growth of all disturbance quantities
precisely exponential.

Cases in which the spatial scale is sufficiently large that each wave in
isolation would propagate faster than the basic zonal flow can be understood
in the essentially same way. The main changes needed are in statement (i)
of the foregoing, where ‘help’ is replaced by ‘hinder’, ‘faster’ by ‘slower’, and
so on. Whereas in the ‘helping’ case the phase shift between the two PV
patterns is less than 0.25 of a wavelength, as shown in the diagram, in the
‘hindering’ case the phase shift lies between 0.25 and 0.5 of a wavelength.
The relative phase tends to lock on just as before, and the summarizing
statement (69) remains true.

In fact this latter case is usually the one which exhibits the largest growth
rates, as would generally be expected from the fact that a larger phase shift
between the two PV anomaly patterns enables the total induced velocity to be
more nearly in phase with the displacement, tending to give a larger growth
rate. This is exemplified both by the Rayleigh and by the Eady problem. It
can also be checked, as already done for the Rayleigh problem above, that
the phase shifts in the northward velocity and geopotential height anomaly
patterns are indeed substantially less than those in the corresponding PV
anomaly patterns (respectively 0.18 and 0.25 of a wavelength at maximum
growth rate, in the two examples), as suggested by the diagram. This can
be looked upon as another consequence of the smoothing property of the
inversion operator.
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6. Suppression of shear instabilities by boundary constraints

Arnol’d’s second stability theorem (discovered in the 1960s, but not widely
known until the 1980s) proves that there are cases where neither the Rayleigh–
Kuo theorem nor the Fjørtoft theorem rules out instability, yet where the
flow is stable (indeed, stable in a certain finite-amplitude sense). These are
cases with side boundaries so close to the shear layer that the Rossby-wave
propagation mechanism does not have room to operate sufficiently strongly
to hold a phase-locked configuration. (This is again a manifestation of the
scale effect in the vorticity inversion operator. It shows up also in the simple
plane-wave dispersion relation c−U = −β/(k2 + ℓ2); when y-wavenumbers ℓ
become large, as would be necessary to fit the waves into a narrow channel,
intrinsic phase speeds c − U become small. See also the Exercise at the end
of section 3.)

A relevant case is where β = 0 and U(y) is of the form sin(ay), in which
case the critical channel width 2L = π/a. So for instance if |a| = 0.25π —
note that you can type sin(.25*pi*y) when inputting the U profile — then
Arnol’d’s second theorem implies that making the half channel width L less
than its default value 2 stabilizes the flow (e.g. McIntyre and Shepherd 1987,
J. Fluid Mech. 181, pp. 542, 543). (The result is well known to specialists
in instability theory, albeit missed by at least one of the standard mono-
graphs on hydrodynamic instability theory!) When L just exceeds 2, only
the longest wavelengths (smallest k values) are unstable, and only weakly.
Try for instance k values between 0.01 and 0.1, and L = 2.01, 2.02, 2.05. You
may need a relatively fine grid value, say 38. This is quite a delicate check
on the correctness of the computer program!

7. The continuous spectrum of singular neutral modes

You may be wondering about the origin of the large number of neutral
modes that are always found in the computer demonstration (modes with
real c and therefore neither growing nor decaying). A few of these may be
ordinary Rossby waves, especially for the larger values of β; but the majority
are likely to correspond, within numerical discretization error, to what is
referred to in the literature as the ‘continuous spectrum’ of singular neutral
modes. Being singular, these cannot be properly represented by a general-
purpose numerical method; but their presence in the continuous problem is
likely to be the main reason for the appearance of many neutral modes in
the discretized problem.

Quite unlike the instability in which we are interested (which begins as
an undulation of the pre-existing vorticity distribution), the continuous spec-
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trum modes, and their superpositions including what are called ‘sheared dis-
turbances’, correspond to artificially changing the initial vorticity distribu-
tion — more precisely, artificially changing the vorticities of fluid elements by
small amounts that have an oscillatory x-dependence — and then letting the
system evolve freely. Such (weak) vorticity distributions tend to be sheared
over, and thus tend to develop increasingly fine scales in the y direction, as
one might expect of a quantity advected by a total velocity field that is close
to pure shear. A consideration of such disturbances is necessary for a full
mathematical understanding of the instability problem with arbitrary initial
conditions, but is not of primary interest here.

However, it is easy to say simply but precisely what the continuous-
spectrum neutral modes are, which may be useful since, despite the clear
explanation in Rayleigh’s Theory of Sound, p. 391, the subsequent litera-
ture contains a certain amount of confusion over what is fundamentally a
simple technical point. A singular neutral mode of the continuous spec-
trum, for given wavenumber k, is a disturbance with a non-zero velocity
jump ∆ηu on a single material contour y = y0 + η, with ∆ηu varying like
sin{kx − kU(y0)t + constant} along the contour. In other words, it corre-
sponds to a frozen, sinusoidally varying sheet of vorticity inserted as an initial
disturbance on exactly the one material contour. Here η is the displacement
in the y direction as before. (In order to be a normal mode, i.e. to have con-
stant spatial shape as time goes on, the whole disturbance generally has to
involve undulations of the remaining material contours and hence, in general,
a smoothly-varying distribution of disturbance vorticity at any other y 6= y0.)
Such modes are said to belong to a ‘continuous spectrum’ because they have
frequencies kU(y0) that vary continuously as y0 varies. Of course it takes
at least two such modes, with vorticity sheets located at two values y1 6= y0

of y and advected at different speeds U(y1) 6= U(y0), to begin to describe
the ‘shearing-over’ effect; more usually, one has a continuous superposition
expressed by an integral.

8. Other basic instabilities, especially a 3D one recently discovered

It is arguable that the inviscid shear instability described and analyzed in
§§1–6 above is representative of one of the most basic, quintessentially fluid-
dynamical classes of instabilities, underlying much high-Reynolds-number
fluid-dynamical behaviour both large and small scale, stratified and unstrat-
ified, layerwise-two-dimensional (moderate to large Richardson number) and
fully three-dimensional (small to zero Richardson number). That is why
I have concentrated on it. There are of course many other kinds of fluid
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instabilities, some of an obvious kind, such as the convective or Rayleigh-
Taylor instability associated with negative stratification (N2 < 0), and oth-
ers less so, such as the ‘elliptic instability’ discovered by Pierrehumbert and
Bayly6 which, although its significance is still being assessed, seems likely
to be another robust paradigm and very basic to an understanding of many
fully three-dimensional flows, such as small-scale turbulent mixing (but not
layerwise-two-dimensional flows).

A discussion of the elliptic and related instabilities is beyond the scope
of the present lectures, although it might be brought in on future occasions,
especially if we can develop some suitable computer demonstrations. The
physical mechanism is entirely different from the above — it appears to
be more closely akin to the Mathieu parametric instability of a pendulum
whose point of support is oscillated, and to the ‘resonant triad’ wave–wave
interactions that have been extensively studied in connection with oceanic
surface and internal gravity waves. In the meantime the interested reader
may consult the review by Bayly et al, 1988, Ann. Rev. Fluid Mech., 20,
especially pages 381–384.

9. Suppression of shear instabilities by a large-scale strain field

An important paper analyzing this effect is

Dritschel, D. G., Haynes, P. H., Juckes, M. N., Shepherd, T. G., 1991, The
stability of a two-dimensional vorticity filament under uniform strain, J. Fluid
Mech., 230, 647–665.

Such a suppression of shear instabilities is essential to understand the exis-
tence of thin filaments of vorticity that appear in simulations such as that
shown in fig. §4.6 on p. 97. (Meticulous checks were done in these cases to
make sure that any small-scale shear instability would be resolved numeri-
cally if it occurred.)

This implies an important qualification to the earlier remarks about ro-
bustness. Shear instability is robust to finiteness of disturbance amplitude,
but not to large-scale strain fields that are stretching the filaments. Stabi-
lization by such stretching can occur for strain rates only a modest fraction,
often a sixth or so, of the vorticity contrast in the shear flow. This fact, and
its generalization to baroclinic cases, is often critical to the ‘mesoscale devel-
opments’, or lack thereof, that in turn can be critical to weather forecasting.

6A Soviet colleague, V. A. Vladimirov, has pointed out that the instability is essentially
the same as that discovered by Tsai and Widnall (JFM 73, no 4, 1976) and by Gledzer et
al (Izv. Akad. Nauk SSSR, FAO, 11, no 10, 1975). See also Gledzer, E. B., Ponomarev,
V. M., 1992, J. Fluid Mech. 240, 1–30.
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C.

Some basic dimensionless parameters
and scales

The table summarizes (using standard notation as far as it exists) some
of the basic quantities encountered in the lectures, whose order of magnitude
is usually the first consideration when assessing a fluid-dynamical situation.

In fluid dynamics, even more than in other branches of physics, quantities
like these have more than one meaning and more than one mode of use. For
instance, the nominal length and velocity scales L, U may or may not be
true scales in the sense that we can estimate the order of magnitude of ∂/∂x
as L−1, of ∇u as U/L, of ν∇2u as νU/L2, and so on. In a thin boundary
layer with thickness ℓ and downstream lengthscale L, for instance, we might
have u ·∇u ∼ U2/L and ν∇2u ∼ νU/ℓ2. Then it is Uℓ2/νL that needs to be
of order unity, not the ordinary Reynolds number 1 UL/ν, if viscous forces
are to balance typical accelerations. Again, it is often relevant to consider L
and U to be external parameters (such as pipe radius and volume flux/pipe
area in the Reynolds experiment), especially when interested in ‘scaling up’
or ‘scaling down’ in the sense of identifying the class of problems that reduce
to the same problem when suitably nondimensionalized (e.g. half the pipe
radius and twice the volume flux requires four times the viscosity, in order
to get the same pipe-flow problem). In ordinary low-Mach-number flows,
the timescale quite often ∼ L/U , and this is often tacitly assumed when
estimating typical material rates of change D/Dt = ∂/∂t + u · ∇ ∼ U/L.

1not Reynold’s. After Osborne Reynolds who in a famous experiment showed its rele-
vance to whether pipe flow is laminar or turbulent.
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Dimensionless parameter symbol and formula Interpretation2

Mach number M =
U

csound waves

typical advective acceleration

wave-induced particle accel.

External Froude number Fre =
U

cext. gravity waves

=
U

(gH)1/2
”

Internal Froude number Fri =
U

cint. gravity waves

=
U

NH
”

Small values of M,Fre, F ri imply the possibility of ‘balanced’ or ‘adjusted’ flows that do not self-excite the waves
in question (cf. mass on stiff spring moved gently), e.g. nearly-incompressible flow when M is small enough, or
layerwise-2D stratified flow (e.g. ‘Los Angeles smog’) when Fri is small enough. (Beware: governing equations are
‘stiff’.) N = buoyancy frequency of stable stratification: N2 = g ∂ ln(potential density)/∂z.

Reynolds number R = Re = UL/ν
typical advective acceleration

typical viscous force/mass

Boundary-layer thickness

(
νL

U

)1/2

= Re−1/2L = diffusion length for time L/U

(for flow past obstacle)

Kolmogorov microscale ℓK = (ν3/ǫ)1/4

2when L,U etc are true scales in a flow with simple structure
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(Nominal length scale at which viscous dissipation becomes important in three-dimensional turbulence that is dis-
sipating energy at rate ǫ per unit mass; ǫ has dimensions length2 time−3.)
Associated velocity and time scales UK ∼ (νǫ)1/4, tK ∼ (ν/ǫ)1/2

[Consistency checks: UKℓK/ν ∼ 1, and tK ∼ ℓ2
K/ν (viscous diffusion time)]
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Dimensionless parameter symbol and formula Interpretation3

(gradient) Richardson Ri = N2/(Uz)
2 As for Fri

−2; Uz = vertical shear.
number (= Fri

−2 if Uz = U/H) (Note that UzH is, quite often,
the relevant velocity scale.)

Péclet number Pe = UL/κ
typ. advective rate of change of temp.

typ. diffusive rate of change of temp.
(κ = heat diffusivity)

Prandtl number ν/κ
momentum diffusivity

heat diffusivity

Schmidt number ν/κs
momentum diffusivity

solute diffusivity

Rossby number Ro = U/ΩL ∼ U/2ΩL
typical relative advective accel.

typical Coriolis accel.
(Kibel’ number in ∼ U/cinertia waves

Soviet literature) (Ro ≪ 1 ⇒ rotationally stiff)

Ekman number E = ν/ΩL2 typical viscous force/mass

typical Coriolis accel.

(For relevance to spindown time Ω−1E−1/2, L needs to be a scale in the Ω direction)

Ekman-layer thickness (ν/Ω)1/2 Diffusion length for

3when L,U etc are true scales in a flow with simple structure
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scale time Ω−1

Prandtl’s ratio H/L ∼ f/N
of scales f = 2Ω sin(latitude)

(Natural vertical-to-horizontal aspect ratio for stratified, rotating flow at low Fri and Ro)

Associated quantities:

Rossby length L ∼ NH/f (also ‘Rossby radius’; no standard symbol)

Rossby height H ∼ fL/N (no standard symbol)

Burger number Bu = N2H2/f 2L2 (sometimes defined the other way up)

(H and L are vertical and horizontal length scales; H ≪ L in atmosphere and ocean)

Rayleigh number Ra =
g′H3

νk
(g′ = g

∆ρ

ρ
)

Ra is the product RePe for vigorous thermal convection (assuming that the velocity scale U
is such that vertical advective acceleration U2/H ∼ buoyancy acceleration ∼ g′).

Nusselt number
total vertical heat or buoyancy flux in a thermally convecting layer

conductive heat or buoyancy flux if convection suppressed

Flux Richardson number Rif =
vertical eddy buoyancy flux

Uz × eddy momentum flux

Rif arises from the turbulent energy equation for stratified shear flows. It compares the rate
at which eddies do work against gravity (in reducing the stable stratification) with the rate at
which they acquire energy from the mean shear Uz.
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D.

Some useful numbers

(The numbers are mainly from Gill’s book.)

Solar ‘constant’ S = (1.36 8 ± 0.001) × 103W m−2, where ‘±’ indicates
the order of magnitude of the 11-year variability associated with the solar
activity (Schwabe) cycle. This has been known only for a decade or so (Nature
332, p.811, 1988). Not known is whether larger fluctuations, more obviously
of climatological significance, say ∼ ±0.5% or more, occurred during past
decades; nor is it known to what extent the climate system can nonlinearly
amplify solar fluctuations.

Molecular mass of dry air, ma = 28.966, of water, mw = 18.016, of ozone,
mo3 = 48.01

Universal gas constant, R∗ = 8.3145 J mole−1 K−1 (Nature 331, p.477; Amer.
Inst. Phys. 1993); 1 mole is 10−3kg times the molecular mass

Gas constant for dry air, R = R∗/ma = 287.04 J kg−1 K−1; cp = 1004, cv =
717, same units

Pressure scale height in hydrostatic atmosphere (≃ density scale height) =
RT/g = 7 km when T = 239K, 8 km when T = 273K, 9 km when T = 307K;
recall J kg−1 K−1 = m2s−2 K−1

Gas constant for water vapor, Rw = R∗/mw = 461.50 J kg−1 K−1

Molecular weight ratio ma/mw = Rw/Ra = 1.6078 = 0.62197−1; γ ≡ cp/cv =
1.40; κ ≡ R/cp = 2

7
;

Stefan–Boltzmann constant σ = 5.67 × 10−8 W m−2K−4

Gravitational force per unit mass g (in ms−2) as a function of latitude ϕ and
height z (in m)

g = (9.78032 + 0.005172 sin2 ϕ − 0.00006 sin2 2ϕ)(1 + z/a)−2

Mean surface value, ḡ =

∫ π/2

0

g cos ϕdϕ = 9.7976

Radius of sphere having the same volume as the earth, a = 6371 km (equa-
torial radius = 6378 km, polar radius = 6357 km)
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Rotation rate of earth, Ω = 7.292 × 10−5 s−1; Coriolis parameter f =
2Ω sin φ = 1 × 10−4s−1 at latitude φ = 43.29◦N

Mass of earth 5.977 × 1024 kg

Mass of atmosphere = 5.3 × 1018 kg

Mass of ocean 1.4 × 1021 kg

Mass of water in sediments and rocks = 2 × 1020 kg

Mass of ice on earth = 2.2 × 1019 kg

Mass of water in lakes and rivers = 5 × 1017 kg

Mass of water vapor in atmosphere = 1.3 × 1016 kg ≃ 1
4
% of mass of atmo-

sphere

Mass of ozone in atmosphere = 3×1012 kg ≃ 0.00006% of mass of atmosphere
≃ 3 mm layer at surface (Ozone replacement rate, assuming 3 year circulation
timescale, ≃ 3 million tonnes per day)

Area of earth = 5.10× 1014m2; Area of ocean = 3.61× 1014m2; Area of land
= 1.49 × 1014m2

Area of ice sheets and glaciers = 1.62 × 1013m2

Area of sea ice = 1.75 × 1013m2 in March and 2.84 × 1013m2 in September

Area of Antarctica 1.41 × 1013m2; Area of USA 0.93 × 1013m2

Dry adiabatic lapse rate Γ = g/cp = 9.76K km−1

Moist adiabatic lapse rate Γs depends on temperature T and pressure p:
e.g. at

30◦C (303K) and 1000 mbar (105 Pa), Γs = 3.5 K km−1

25 298 ” 3.8
20 293 ” 4.2
0 273 ” 5.2

-30 243 ” 8.4

[Gill (p 607) gives an empirical formula for Γs(T, p)]

Typical values of buoyancy (Brunt–Väisälä) frequency N : most of strato-
sphere, ∼ 2 × 10−2s−1 (period 5 min); most of troposphere, ∼ 1 × 10−2s−1

(period 10 min); main ocean thermocline, . 0.2× 10−2s−1 (period & 1 hour)
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oceanic main, 74
thin, 87

Trapping, 82
trapping, 79, 98, 176, 185

apparent, 98
real, 98

vortex dynamics
2-D, 139

vorticity dynamics
classical, Helmholtz, 55

Vorticity equation, 199
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wave-action, 67
wave-energy density and flux, 27
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wavecrest kinematics, 11
Wavecrests, 13
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